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Abstract— In this paper, we study a nursing home staff
schedule optimization problem under resident demand uncer-
tainty. We formulate a two-stage stochastic binary program
accordingly, with objective to minimize the total labor cost
(linearly related to work time) incurred by both regular
registered nurses (RRNs) and part-time nurses (PTNs). As a
significant constraint, we balance RRNs’ total amount of work
time with residents’ total service need for every considered shift.
Besides, we restrict feasible shift schedules based on common
scheduling practice. We conduct a series of computational
experiments to validate the proposed model. We discuss our
optimal solutions under different compositions of residents in
terms of their disabilities. In addition, we compare the total
labor costs and an RRN scheduling flexibility index with the
given optimal solution under different combinations of RRNs
and PTNs. Our analysis offers an operational approach to set
the minimum number of nurses on flexible shift schedules to
cover uncertain the service needs while maintaining a minimum
labor cost.

Index Terms— Nurse scheduling, stochastic integer program-
ming, demand scenario generation, Minimum Data Set (MDS)

I. INTRODUCTION

With population aging and hospital overcrowding in the
United States, demand for receiving care at nursing homes
(often downstream facility after hospital discharge) is in-
creasing rapidly. According to the Department of Health and
Human Services, about 70 percent of the 76 million baby
boomers will need some form of long-term care. About 13
million people may stay more than three years in a skilled
nursing facility (or generically referred to a nursing home)
[1].

Nursing homes are an essential component of the U.S.
healthcare system. These facilities provide long-term care
and rehabilitative care to the elderly and disabled, either
physically or mentally. Most nursing homes have skilled
nurses on duty 24 hours a day. Contrary to the increasing
need for nursing care, there is a growing trend of skilled
nurse shortage due to high nursing home staff turnover.

According to an American Nurses Association Annual
Reports [2], above 40% of registered nurses (main workforce
in nursing homes) expressed many workplace problems, such
as burnout, stressful workplace, inconsistent staffing, as the
reasons of high staff turnover. More than half of them
complained about insufficient time with patients, and 54%
of them reported that they had excessive workloads. While
health service researchers have proposed effective staffing
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mechanisms (e.g., evidence-based nurse-resident ratio) to
avoid the burnout issue of nursing home staff, it remains
challenging to determine how cost-beneficial these mech-
anisms are at a particular nursing home, especially when
dealing with fluctuating resident needs.

This work aims to develop a decision support tool to help
nursing homes arrange their staff schedule at the operational
level to maintain their financial viability while providing
model care for their residents based on diverse needs. In
addition, healthy continuing operations at each nursing home
should not be ignored, which implies that each nursing home
must follow labor guidelines on staffing and shift design,
e.g., providing enough rest time for nurses between shifts.
Overall, it is critical to nursing homes to develop work
schedules to balance financial viability and staff friendliness
under the requirement of delivering standard care.

In this paper, we present a two-stage stochastic program-
ming model for designing an appropriate work schedule
that assigns nurses to each shift, balancing the staff work-
load on a shift basis and fluctuating resident needs. The
stochastic optimization problem we will present involves
a binary decision on both stages, which makes solving it
computationally expensive. Besides, To devise an appropriate
shift-based work schedule, residents need prediction is of
vital importance. Such speculation is challenging because
nursing home managers need to consider various factors such
as resident characteristics, nursing home facilities, and the
environment. Furthermore, the time-varying nature inherent
to some of the above factors, especially resident character-
istics, adds additional complexity to modeling the service
demand uncertainty. With a well-developed prediction model,
we draw samples of shift-wise service demand over a two-
week period (the typical duration of shift scheduling in
a nursing home). We study the correlation between the
two-week operating cost and the shift patterns (full-time
registered nurses vs. part-time agency nurses, number of
shifts for each full-time registered nurses).

Our main contribution in this paper is to develop a stochas-
tic programming model for nursing home staff scheduling
decision optimization under demand uncertainty. Note that
there is a lack of decision support systems in the nursing
home industry, especially towards operational scheduling.
In addition, we utilize real-world nursing home clinical as-
sessment data and established service demand classification
system based on a long-term national nursing home time
study. These add practical value to our optimal decisions.
Finally, with studies in the operational context of a repre-
sentative nursing facility, we demonstrate the viability of



our presented sensitivity analysis in offering management
insights into optimal schedule adjustment concerning case-
mix percentage changes and staff hourly payment changes.

The paper is organized as follows. In Section 2, we review
the relevant literature on health services/outcomes research
areas and operations engineering scheduling problems with
multiple work activities and stochastic demand. We present
some background material related to the clinical assessment
data. We will use these resourses to generate the scenarios
for our two-stage nursing home staff scheduling optimization
problem. In Section 3, we describe the two-stage model. We
also describe the details of creating the scenario set for the
nursing home scheduling model. We present computational
experiments and discuss the results in Section 4. In section
5, we address our conclusions and point out our future work.

II. LITERATURE REVIEW

We first review relevant literature in health ser-
vices/outcomes research areas. Much of the literature is
focused on resource management and planning, which often
reports real-world evaluation studies on experience-based
staffing strategies (e.g., [3], [4]) and/or aggregate and one-
size-fits-all policies (e.g., [5], [6]). These studies often
simplify the service demand by assuming a homogeneous
population of nursing home residents and neglecting the
complexity in the service demand heterogeneity.

We next review relevant operations engineering literature
on personnel staffing and scheduling. We focus on staffing
and shift assignment optimization studies, which are the most
pertinent to this paper. Venkataraman and Brusco [7] pre-
sented an optimal staffing and scheduling model for hospi-
tals. The objective is to minimize total nursing labor costs. As
an early attempt, the authors did not consider the uncertainty
of the demand. Easton and Rossin [8] proposed a general
staffing and scheduling model. The objective is to minimize
wage costs plus labor shortage and surplus penalties. And
the optimal solution is a probability distribution for the
quantity of labor required but not a detailed schedule at every
minimum time unit. The authors use the uncertainty of the
labor requirement in their optimization model by assuming it
comes from some simple distribution. Easton and Mansour
[9] provided a unified formulation for both deterministic and
stochastic labor scheduling problems and solves them by a
distributed genetic algorithm that aims at minimizing the sum
of labor expenses and expected opportunity costs. Although
both approaches aim to solve problems over a one-week
planning horizon, employee patterns are previously defined,
and only a small set of stochastic scenarios is considered.

We then review relevant literature on nurse scheduling
problems. Burke et al. [10] presented a review paper on
nurse rostering problems. They categorize papers according
to solution methods, constraints, and performance measures.
This paper also provides tables with information on the
planning period, the data used (i.e., real-world or theoretical),
and the number of skills and their substitutability, etc. Wright
and Bretthauer [11] solved a nurse scheduling optimization
problem and a staff adjustment problem separately with

deterministic resident demand. Maenhout and Vanhoucke
[12] focused on integrated staffing and scheduling decision
optimization. They used a Dantzig Wolfe decomposition
approach to integrate nurse staffing and scheduling decisions
in a deterministic setting. Bard and Purnomo [13] used an
optimal staffing and scheduling model to compare alternative
mechanisms for handling staff shortage. The authors incor-
porated the uncertainty that comes from a widely fluctuating
demand. This model focus on satisfying nurse’s individual
preferences and design a daily schedule but not a shift-
based schedule. More recently, Punnakitikashem et al. [14]
studied an optimal staffing and assignment problem where
the first-stage decision assigns each nurse to patients, and
the second stage balances the workload for each nurse.
Kim and Mehrotra [15] focused on integrated staffing and
scheduling decision optimization, with demand prediction
based on multiple-year patient volume data. Note that all the
above nurse scheduling problems are applied to hospitals and
emergency rooms.

Based on the above review, we conclude that to the best
of our knowledge, there is no research focused on nursing
home staff scheduling optimization under resident demand
uncertainty. Besides, little work has utilized realistic clinical
assessment data to determine time-based care needs. In our
work, we utilize the Minimum Data Set (MDS), which is
part of a federally mandated process for clinical assessment
of all residents in Medicare or Medicaid certified nursing
homes [16]. To convert the clinical assessment to time-based
care needs, we adopt a national nursing home staff time
measurement (STM) study, the Staff Time and Resource
Intensity Verification (STRIVE) Project [17]. Data collected
from the STRIVE study have been used to establish payment
systems for Medicare and Medicaid funded nursing homes.

III. MATHEMATICAL MODELING

Our study formulated a two-stage stochastic binary pro-
gram that integrates scheduling decisions with extra part-time
agency nurse staffing decisions to hedge service demand un-
certainty. We consider a standard-setting of nursing homes in
practice. We assume that there are three eight-hour shifts per
day in any feasible schedule, which is the most acceptable
schedule for nurses’ comfortable length of working hours.
A morning shift is from 7 am to 3 pm; an evening shift is
from 3 pm to 11 pm, and a night shift is from 11 pm to 7
am on the second day. We consider full-time and part-time
employments over a 2-week schedule, which is the minimum
working length that can be counted in the standard payroll
system. In order to avoid nurses’ burnout, we use practical
nursing home scheduling rules to ensure enough break times.

A. A Two-Stage Stochastic Binary Programming Model

Consider the problem over a planning horizon (2 weeks
in our study). For 14 days, each day contains three shifts.
The overall planning horizon will be 42 shifts long. Along
the planning horizon, we make decisions at two stages: shift
scheduling for regular registered nurses (RRN) at the first
stage (denoted by vector x) and staffing level adjustment



with part-time nurses (PTN) at the second stage (denoted by
vector y). We will use τ ta to denote whether pattern a ∈
A contains time t. Each RRN is assigned to a scheduling
pattern. Let cra and cpt be the hourly rates for the payment
of RRN and PTN, respectively. These rates are assumed to
be variable with different scheduling patterns.

Set of Indices:

R: set of RRNs, ir ∈ R.
P: set of PTNs, ip ∈ P .
T : set of shifts, t ∈ T .
A: set of scheduling patterns, a ∈ A.
Ω: set of scenarios ω ∈ Ω.

Model Parameters:

cra: staffing payment for a RRN assigned to pattern a.
cpt : per shift payment rate for a PTN called in to cover
shift t.
τ ta: 1 if scheduling pattern a contains shift t, and 0
otherwise.
lt: working time at shift t (480 minutes in our study).
ω: random scenarios, ω ∈ Ω.
dt(ω): service demand (in minutes) required in shift t
for scenario ω.
p(ω): probability of scenario ω.

Decision Variables:

xira: 1 if RRN ir is assigned to scheduling pattern a,
and 0 otherwise. First-stage decision variables.
ytip(ω): 1 if PTN ip is scheduled for shift t; and 0
otherwise, for each scenario ω ∈ Ω. Second-stage
decision variables.

min
x

{∑
a∈A

∑
ir∈R

craxira +Q(x)

}
(1)

subject to ∑
a∈A

xira = 1 ∀ir ∈ R, (2)∑
ir∈R

∑
a∈A

τ taxira ≥ 1 t ∈ T , (3)

t+2∑
j=t

xiraτ
t
a ≤ 1 ∀ir ∈ R, a ∈ A, t = 1, . . . , 40, (4)

xira(τ ta − τ t+21
a ) = 0 ∀ir ∈ R, a ∈ A, t = 1, . . . , 21,(5)

21∑
t=1

∑
a∈A

xiraτ
t
a ≤ 5 ∀ir ∈ R, (6)

xira ∈ {0, 1} ∀ir ∈ R, a ∈ A, (7)

Q(x) ,
∑
Ω

[p(ω) ·minyq(x, ω)], (8)

where for each ω ∈ Ω,

q(x, ω) =
∑
t∈T

(∑
ip∈P

cpt y
t
ip(ω)

)
(9)

subject to∑
ip∈P

ytip(ω) ≥ dt(ω)/lt −
∑
ir∈R

∑
a∈A

τ taxira ∀t ∈ T , (10)

21∑
t=1

ytip(ω) ≤ 3 ∀ip ∈ P , (11)

42∑
t=22

ytip(ω) ≤ 3 ∀ip ∈ P , (12)

t+2∑
k=t

ytip(ω) ≤ 1 ∀ip ∈ P , t = 1, . . . , 40, (13)

ytip(ω) ∈ {0, 1} ∀ip ∈ P , t ∈ T . (14)

At the first stage, each nurse is assigned to one scheduling
pattern a in advance, ensured by constraint (2). Constraint
(3) ensures that there must be at least one RRN for every
shift t. At the second stage, PTNs are staffed and assigned
to shifts to cover residents’ demand for each scenario, by
constraint (10). The objective (1) aims to minimize the sum
of RRN shift assignment cost and expected PTN schedule
adjustment cost. For the mathematical expression of the latter
cost, please refer to the second-stage objective (8) and (9)

We further incorporate practical scheduling constraints in
the formulation. Every week, each RRN cannot work over
five shifts (i.e., 40 hours), ensured by constraint (6); and each
PTN cannot work over three shifts (i.e., 24 hours), ensured
by constraints (11) and (12). In addition, for management
convenience and service quality, the shift scheduling of each
RRN often repeats itself from week to week. Finally, each
nurse who works in the morning/evening/night shift cannot
work until the next morning/evening/night shift, ensured by
constraints (4) and (13).

B. Demand Scenario Generator

To generate the scenario set Ω for the above formulation,
we develop a shift-specific facility-wide service demand
generator. We first developed a computer simulation decision
platform in characterizing the heterogeneous service demand
of NH residents by utilizing multi-source information and
knowledge, including real NH data (i.e., Minimum Data Set
3.0 [16]) of our partnering local NH provider in the Tama
Bay area, patient classification system (e.g., [17]) adopted
by the CMS, and existing NH staffing time study (i.e.,
STRIVE project [18]). We develop the arrival process and
individual length-of-stay (LOS) for NH residents incorporat-
ing their characteristics and further considering their multiple
discharge dispositions, such as community discharge and
re/hospitalization. During his/her stay, each resident may
require significantly different daily service demands due to
their varied individual characteristics (e.g., ADL). We con-
sidered the RUG-IV patient classification system [17] to cate-
gorize NH residents into multiple services need groups, and
each service needs group comprised residents with similar
resource usage level. To further quantify service demands for
NH residents from each service need group, we incorporated
STRIVE project [18] from existing NH studies to quantify



the required daily staff-time (in minutes) of nursing staff
for NH residents in each service need group. The developed
simulation is capable of generating the resident-level service
demand of each individual as well as the facility-level service
demand of a heterogeneous population of residents over time.

For the actual simulation model parameterization, we
utilize de-identified electronic health records of residents
from our industrial collaborator, Greystone Healthcare, based
in Tampa, Florida, to evaluate the performance of the pro-
posed work. The data set contains details of admission and
discharges records, and rich resident-level health assessment
information, including but not limited to socio-demographic,
clinical diagnoses, chronic conditions, and functional perfor-
mances (e.g., physical limitation and cognitive impairment).

In the baseline setting, we utilize the original cohort from
this data set. We consider a total of 710 residents. Most
of the residents are frail and have multiple chronic condi-
tions. Moreover, the activities of daily living (ADL) score
is further considered to represent the required functional
assistance of each resident. An ADL score ranges from 0
to 16, and a higher ADL value indicates a higher level of
functional assistance required by the resident. In the baseline
scenario, 10% of residents are functionally independent and
have ADL values no more than 1; 15% of residents are
highly dependent (with ADLs greater than 10) and thus
require significant functional assistance. For the resident
arrival process, negative binomial distribution i.e.,NB(r, p),
is considered to model the arrivals of NH residents (with
estimated parameters of r = 4.95 and p = 0.64) since
it exhibits the best goodness-of-fit as compared to other
parametric distributions. The p-value of goodness-of-fit (e.g.,
Chi-square test) is 0.3, which indicates that the estimated
model has a satisfactory goodness-of-fit to the real arrival
data. In the end, we divide the simulated daily demand into
morning, evening, and night shifts by a ratio of 2:2:1 to
generate the facility-wide service demand (in minutes) at
each shift over the scheduling horizon.

IV. NUMERICAL EXPERIMENTS

In our numerical experiments, we first solve the baseline
setting mentioned above and then perform sensitivity analysis
concerning the case-mix setting. We implement the pro-
posed mathematical model in Python and solve the resultant
instances with the Gurobi MIP solver. We consider 150
scenarios for each stochastic programming instance to solve.
We run all the experiments on a personal computer with an
Intel i5-6200U at a 2.3-GHz processor with 8-GB RAM.

A. Scenario Description

We set the nursing home’s capacity to be 500 (large
enough for any scenarios since the optimal capacity varies
when arrival rate changes). In addition to the baseline set-
ting on the case mixing, we consider two rather extreme
settings to a representative nursing home. We summarize the
characteristics of the three case-mix settings in table I. One
alternative setting is that the majority of residents are highly
dependent. We call it the HD setting. The other one is that

most of the residents are functionally independent. We call
it the LD settting. Note that in the generation of scenarios
for the two alternative settings, the LOS for each simulated
individual varies according to the self-development LOS
models. Table II represents the statistics summary description
of the simulated 150 demand scenarios for each of the
three settings. Because of different ADL distributions, the
daily demand that is counted by hours fluctuates to almost
the same degree around various demand means. Figure 1
illustrates the 150 scenarios of service demand for each of
the three settings.

TABLE I
DEMAND SCENARIO GENERATION SETTINGS

Setting ADL distribution
BLD 10%(0-1),75%(2-10),15%(11-16)
LD 90%(0-1),10%(2-16)
HD 10%(0-10),90%(11-16)

TABLE II
SUMMARY STATISTICS OF DEMAND SCENARIOS (IN HOURS)

BLD LD HD
mean 266.9 187.5 351.7

standard error 36.5 35.8 34.7
minimum 183.0 116.4 257.1
maximum 349.4 257.3 440.0

(a) BLD Setting

(b) LD Setting (c) HD Setting

Fig. 1. Daily Demand under the three Case-mixing Settings

B. Baseline Experimentation

First, we set up the payment for RRNs (full-time con-
tracted nurses) and PTNs (part-time agency nurses). Accord-
ing to the nation-wide wage study [18], a nursing home needs
to pay a basic salary and F&A to each RRN. So the package



to each RRN, factoring the amount of hours worked, tends
to have a higher per-hour value but a lower pay rate than
PTNs. In addition, accessory payments (like transportation)
for PTNs need to be considered operational costs. Because
of the reason we listed above, we set an hourly rate for
paying each RRN to be $11. The source of this rate is the
skilled nursing facility prospective payment system (PPS).
Accordingly, we set an hourly rate for paying each PTN to
be 1.5 times RRN hourly rate under the baseline setting. In
practice, the ratio of RRNs to residents is 1 to 10, and it
is often set relatively constant. Thus, for a nursing home of
500 residents, we set the number of RRNs to be 50 in the
baseline. The following tables show the results. Note that the
cost is counted in thousands of dollars.

TABLE III
TOTAL LABOR COST (IN THOUSANDS) UNDER THE BLD SETTING

RRNs
PTNs

10 20 25 30

40 Infeas. Infeas. Infeas. 46.7
50 Infeas. 46.1 45.2 45.2
60 47.8 46.1 45.2 45.2

Table III represents the total labor cost under different
combinations of RRNs and PTNs staffing levels under the
BLD setting. Infeasible means that the combination can
not cover the resident demand, leading to an understaffing
situation. From the table, we can see that the lowest labor
cost with the minimum number of total nurses appears at the
combination of 50 RRNs and 25 PTNs.

Next, we set the number of RRNs to be 50 to check
the RRN shift pattern distribution in the optimal schedule
with respect to the PTN staffing level, i.e., different numbers
of RRN shifts scheduled to cover the resident needs in a
combination of some given PTN staffing level.

TABLE IV
RRN SHIFT PATTERN DISTRIBUTION UNDER THE BLD SETTING

PTNs 2 shifts 4 shifts 6 shifts 8 shifts 10 shifts
20 0 0 2 23 25
25 0 1 11 15 23
30 0 1 10 17 22

Table IV suggests the schedule flexibility under the BLD
setting, i.e., RRN shift pattern distribution over a two-week
schedule in the optimal solution. For example, when the
number of PTNs is 20, half of the RRNs work ten shifts
in the two-week schedule. We can see from the table that
hiring more PTNs can reduce the number of RRNs working
on too many shifts.

C. Sensitivity Analysis

Our results offer management insights for the case where
nursing home faces a subdued working environment where
the majority of residents are functionally independent. Our
results show the labor cost is reduced by increasing the PTN

TABLE V
TOTAL LABOR COST (IN THOUSANDS) UNDER THE LD SETTING

RRNs
PTNs

5 10 15 20

40 Infeas. 34.6 34.6 33.1
50 35.8 34.6 34.6 33.1
60 35.8 34.6 34.6 33.1

staffing level. From table V, we can see that the lowest labor
cost with a minimum number of total nurses appears at a
combination of 40 RRNs and 20 PTNs. Here we set our
RRN level to be 40 to check the scheduling flexibility in
the optimal solution with respect to different PTN staffing
levels.

TABLE VI
RRN SHIFT PATTERN DISTRIBUTION UNDER THE LD SETTING

PTNs 2 shifts 4 shifts 6 shifts 8 shifts 10 shifts
10 0 0 11 8 31
15 3 2 3 4 28
20 9 2 2 2 25

Table VI suggests the schedule flexibility under LD setting
with 40 RRNs. Our results show that hiring more PTNs can
help to change the working shifts distribution; hence can
increase RRN schedule flexibility. In this case, RRNs can
choose to take rests and pick their suitable work schedules.
Our results indicate that in the LD setting, nursing homes
can consider hiring more PTNs and fewer RRNs to increase
schedule flexibility and reduce total labor costs. Our results
give the management insight for the case where the nurs-
ing home faces an intense working environment where the
majority of residents need a significant assistant. Our results
show the RRN staffing level determines the labor cost.

TABLE VII
TOTAL LABOR COST (IN THOUSANDS) UNDER THE HD SETTING

RRNs
PTNs

20 30 40 50

40 Infeas. Infeas. Infeas. 64.3
50 Infeas. Infeas. 60.7 60.7
60 57.9 57.9 57.9 57.9

From table VII, we can see that the lowest labor cost with
a minimum number of total nurses at a combination of 60
RRNs and 20 PTNs. Here we set our RRNs level to be 60,
and we check the flexibility of the optimal schedule based
on different numbers of PTNs to cover the resident’s needs.
From table VIII, we can see that the staffing level of PTNs
will not affect working shift distribution. Our results indicate,
in this case, where each RRN provides his or her maximum
working time within a reasonable range of working time.
Our results indicate that under the HD setting, nursing homes
should consider hiring more RRNs to help reduce nurse work
burden and total labor costs.



TABLE VIII
RRN SHIFT PATTERN DISTRIBUTION UNDER THE LD SETTING

PTNs 2shifts 4shifts 6shifts 8shifts 10 shifts
20 0 0 0 0 60
30 0 0 0 0 60
50 0 0 0 0 60

V. CONCLUSIONS AND FUTURE WORK

In this paper, we study a nursing home shift scheduling
optimization problem with two nursing staff types, namely
RRNs and PTNs. We formulate the problem as a two-stage
stochastic binary program to determine the assignment of
shift scheduling pattern for each RRN here and now. The
program also offers the recourse action to take, i.e., for what
shifts to call in PTNs to cover the service supply shortage.
Our results suggest that the nursing home should design the
RRNs and PTNs based on the case mixing condition and
make adaption based on the standard resident nurse ratio.
We suggest that for nursing homes having high functional
independence, a lower RRN staffing level and more PTNs
can help reduce labor costs and increase schedule flexibility.
However, for nursing homes with high dependent residents,
increasing the staffing level of RRNs will be a more effective
way to reduce the labor cost and help nurses reduce the work
burden.

In the future, we plan to improve the solution efficiency
with the adaption of Benders decomposition based solu-
tion approaches with proper convexification of the binary
recourse in the formulation. We will also incorporate the
concerns on nurse-resident consistent assignment and nurse
workload balance in the model, which can better justify
the use of the self-developed shift-wise individual demand
generator. The incorporation of the above two concerns will
likely make the offered management insights more appealing
to nursing homes that often suffer from nursing staff turnover
and resident complaints on low patient-centeredness. Finally,
to address temporal nonstationarity in the uncertain service
demand over multiple staff scheduling periods, we will
consider a Bayesian stochastic programming approach that
can incorporate the notion of rolling-horizon staff scheduling
into a stochastic programming framework.
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