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ABSTRACT
This paper motivates the need to support counterfactual reasoning
(i.e., answer "what-if" questions about events that did not occur)
when collecting network data. We focus on video streaming – e.g.,
given logs of a video session, a video publisher may ask whether
a user would continue to experience no rebuffering events if the
lowest quality video choice were eliminated. We discuss potential
pitfalls related to counterfactual reasoning, and argue that dynamic
network state (e.g., bandwidth) serves as a confounding yet hidden
(latent) feature that complicates such analyses. We illustrate the
challenges, and present preliminary methods to address them using
concrete examples. Our evaluations show that existing approaches,
including randomized trials (collecting data from an algorithm
that selects bitrates randomly), are by themselves inadequate for
counterfactual reasoning related to video streaming, and must be
supplemented by techniques that explicitly infer latent features.

CCS CONCEPTS
• Networks → Network performance modeling; • Informa-
tion systems → Multimedia streaming.
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1 INTRODUCTION
When designing networked systems in a manner informed by data
from real deployments, it is common to ask "what-if questions",
on the potential impact if an alternate choice had been made. For
instance, given data collected from real video streaming sessions,
a video publisher may wish to understand the performance if a
different Adaptive Bitrate (ABR) algorithm were used. Alternately,
a publisher may wish to understand whether a user would continue
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to experience no rebuffering events if the lowest quality video
choice were eliminated. In analyzing such questions, it is useful to
ask what the download time of a video segment could have been if
a bitrate different than the one selected in the actual session had
been chosen.

Answeringwhat-if questions of this nature is also known as coun-
terfactual reasoning. Counterfactual reasoning considers the effect
of events that did not occur while the data was being recorded [13],
and is often used in fields such as epidemiology [14]. Unfortunately,
such reasoning with networking data is challenging because many
networked systems are adaptive in that they make decisions based
on the network state (e.g., bandwidth, latency), and this state itself
impacts any observable measurements (e.g., download times). For
instance, Internet video is typically split into chunks, with each
chunk encoded at multiple bitrates. ABR algorithms decide what
bitrate to pick for each chunk based on their perception of network
bandwidth, but the bandwidth in turn determines the download
time of the chunk. Thus, the network bandwidth acts as a confound-
ing variable that makes it difficult to easily infer the download time
that a video chunk would see if an alternate decision had been made
by the algorithm.

While some prior work considers what-if questions (e.g., [17]),
they do not consider the biases arising out of confounding variables.
Other works have recognized the need to account for confounding
variables when analyzing network data [3, 10, 18], though they
do not consider counterfactual reasoning. Further, these works
only deal with observable confounding variables such as a user’s
connection type (i.e., whether a user is behind a DSL, cable modem
or WiFi), for which information is available as part of the data.
Unfortunately, variables that capture dynamic network state (e.g.,
bandwidth, latency) are latent, and require new methodologies not
covered in prior work.

In medical studies, causal effects are directly measured by ran-
domized controlled trials (RCTs)[4], eliminating the need to deal
with latent confounders. In networking, for instance, this would
imply that rather than using an ABR algorithm that picks video
bitrates based on perceived network state, we could collect data
from video sessions where chunk sizes are picked at random. Unfor-
tunately, we show that RCTs are not a silver bullet in networking
applications: we still need to deal with latent confounders, oth-
erwise, in the example above, RCTs would have no effect on our
ability to measure the counterfactual effect of an ABR algorithm
picking different bitrates.

Motivated by these observations, we argue for a researchmethod-
ology that explicitly accounts for such latent confounding variables.
Our approach involves (i) identifying the causal dependency graph
aided by domain knowledge; (ii) identifying measured and latent
confounders; (iii) inferring latent features; and (iv) grouping data
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on the inferred latent features. We illustrate the approach for a
case study with video streaming, and an example bandwidth pro-
cess. The step of inferring latent features is a crucial step which we
achieve using Maximum A Posteriori estimation in our case study.
While the bandwidth process we consider may seem simplistic, it
is nevertheless useful in establishing the importance of accounting
for latent confounders.

We present empirical results that show that latent confounding
variables must be accounted for while evaluating what-if questions
in these systems, and that —because of these latent confounders—
widely used approaches like direct emulation from data incorrectly
estimate the effects of changes in video streaming systems. Our
results also show that accounting for latent confounders is critical
to ensure good results with randomized trials and observational
studies.

2 CAUSALITY IN VIDEO STREAMING
2.1 The need for causal inference
In video streaming, a video is split into chunks, each encoded at
multiple bitrates. To cope with variability in network bandwidth,
clients run Adaptive BitRate (ABR) algorithms [2, 6, 12, 16, 19, 20].
For each chunk, these algorithms select what bitrate to pick based
on the client’s estimated throughput, and the amount of data stored
in the client buffer.

Consider records of a video sessionwith𝑁 chunks. These records
minimally contain a set of tuples of the form Data = {(𝑡𝑖 , 𝑠𝑖 , 𝑑𝑖 )}𝑁𝑖=1,
where

𝑡𝑖 : start time of 𝑖-th video chunk download request,
𝑠𝑖 : the 𝑖-th video chunk size,
𝑑𝑖 : the 𝑖-th chunk’s download time.

Using this data, we wish to answer the following what-if counter-
factual question: for a given 𝑖 ∈ {1, . . . , 𝑁 }, what would have been
the download time 𝑑 ′

𝑖
, if chunk 𝑖 had been downloaded starting at

time 𝑡𝑖 , and if we had requested chunk size 𝑠 ′
𝑖
≠ 𝑠𝑖? In Section 3,

we show that under some conditions, even assuming no latency
or transport layer effects, one cannot accurately estimate 𝑑 ′

𝑖
using

𝑑𝑖 , 𝑠𝑖 , 𝑠
′
𝑖
, and 𝑡𝑖 . Without an accurate estimate of 𝑑 ′

𝑖
, we are unable

to precisely evaluate the potential of an alternate ABR algorithm.
Here, the challenge of counterfactual evaluation comes from the

causal relationships among observed and latent (hidden) variables,
some of which may be confounders. Consider three variables 𝑋,𝑌
and 𝑍 . If 𝑋 influences 𝑌 , but 𝑍 influences both 𝑋 and 𝑌 , 𝑍 is a con-
founder, because it introduces a correlation/dependence between
𝑋 and 𝑌 even in the absence of a direct connection between 𝑋 and
𝑌 . Confounders are easier to handle if their values are directly ob-
served as part of the data (e.g., whether a user is connected behind
cable or wireless [10]). However, we illustrate below in the context
of video streaming, that confounders may be latent. Consequently
many existing techniques do not directly apply as we discuss in
Section 2.2.

Example A: Figure 1 illustrates one of the simplest causal depen-
dencies in a video streaming session employing an ABR algorithm.
The chunk size 𝑆 and download time𝐷 are both observed in the data
but depend on the latent variable 𝐵 (the true network bandwidth,
which is not observed), since the ABR algorithm chooses a video

Figure 1: Causal relationships between size, bandwidth, and
download time. The true bandwidth (unshaded) is hidden, while
the others are measured and available in the data.
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Figure 2: An example time-varying bandwidth process

chunk size 𝑆 based on a prediction of the value of the bandwidth 𝐵,
which therefore acts as a confounding variable for both 𝑆 and 𝐷 .

To understand the effect of latent confounder 𝐵 on counterfac-
tual reasoning in ABR algorithms, consider the following scenario.
Assume 𝐵 ∈ {1, 2} MBps and whenever 𝐵 = 1 we have the ABR
algorithm choosing 𝑆 = 1 MB which implies 𝐷 = 1 second; and
when 𝐵 = 2 we have the ABR algorithm choosing 𝑆 = 2 MB which
again implies 𝐷 = 1 second. A pure data-driven approach would
conclude that 𝑃 (𝐷 = 1|𝑆 = 1) = 𝑃 (𝐷 = 1|𝑆 = 2) = 1. Hence,
statistically, it seems like 𝐷 = 1 regardless of the choice of 𝑆 . The
above mistake comes from confusing 𝑃 (𝐷 |𝑆), which we directly
obtain from the data, with the counterfactual query 𝑃 (𝐷 |𝑑𝑜 (𝑆)),
which is the distribution of download times if the size had been
forced to be 𝑆 .

In the above example, it may appear that one could estimate 𝐵̂ =

𝑆/𝐷 (i.e., the average throughput observed during the download),
and use this information in the conditional. But, the true bandwidth
𝐵 may vary during a download, resulting in the estimation 𝐵̂ not
being theoretically sound as we illustrate next.

Example B: Now consider a time-varying bandwidth process
𝐵(𝑡) in the square wave pattern in Figure 2. The peak and trough
values are 𝐵ℎ and 𝐵𝑙 respectively with the period of the wave
(starting and ending at a falling edge) being 𝑇 (these are assumed
known). The shaded region corresponds to when a particular chunk
is downloaded. Clearly, chunks of different sizes may see different
average observed throughput even if their downloads were to start
at the same time. Further, for a given size, the download time de-
pends on the phase𝜓 of the square wave at which the chunk starts
downloading (henceforth referred to as the chunk start phase).

The causal graph in this setting changes from the one in Fig-
ure 1 to the one in Figure 3 as we will elaborate in Section 3.1. For
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any chunk, the start phase 𝜓 is a confounding variable since (i)
it determines the instantaneous bandwidth perceived by the ABR
algorithm and consequently which chunk size is selected; and (ii)
it impacts the download time for a chunk of a given size. Further,𝜓
is latent since information about𝜓 is not directly available as part
of the data.

Also note that the size of the first chunk affects the start time of
the second chunk. This in turn affects the start phase and download
time of the second chunk, which in similar fashion affects the start
time, start phase and download time of subsequent chunks. More
generally, 𝐵(𝑡) induces a correlation between both the start phase
and size of the 𝑗-th chunk, and the download time of the 𝑖-th chunk,
𝑗 ≤ 𝑖 . Because of these complex dependencies, simply estimating
the bandwidth as 𝐵̂ = 𝑆/𝐷 is not enough to predict how chunk
sizes affect download times (we also show this experimentally later).
Further, this also impacts the effectiveness of standard approaches
to deal with biases such as randomized trials, as we discuss below.

A potential approach to aid counterfactual reasoning is to collect
download time data based on fixed-size data blocks at a finer gran-
ularity. While this may provide more observations regarding the
bandwidth process, it does not eliminate the challenges in dealing
with latent variables. This is because, owing to the on/off patterns
of video streaming transmissions [1, 7], there may be periods for
which no data on available bandwidth is available. Further, it may
not always be possible to collect bandwidth information with suffi-
ciently fine granularity.

2.2 Existing approaches and related work
We next discuss the primary methods used for causal reasoning
and the challenges in using them:
• Controlled experiments or Randomized Controlled Trials
(RCTs). RCTs [4] are widely considered to be the gold standard
for measuring the effects of interventions. An RCT for bitrate se-
lection would choose chunk sizes randomly. This approach forces
randomness by picking video bit rates in amanner that does not con-
sider bandwidth for some sessions. Even if RCTs in real-world video
streaming sessions were viable, their usefulness for causal inference
is somewhat limited in the video streaming context. This is because
a chunk’s download start time still depends on the download end
time of the previous chunk. Hence, the effect of the previous and
current chunk sizes on the download times are not independent.
In Section 4, we present evaluations to show that simply using
RCTs without accounting for the latent variables is insufficient for
accurate inference.
•Observational studies. RCTs might not always be viable in prac-
tice – e.g., in our context, they could result in degraded quality to
users in real-world video streaming sessions. An alternate approach
involves using an offline analysis with collected data, but account-
ing for observed confounding factors during the analysis – i.e., the
confounding variable values are available as part of the data, such
as user connection type (DSL vs. mobile), and geography (country).
The approach has been applied in networking [9, 10, 18] – e.g.,
Krishnan et al. [10] consider how user connection type and geog-
raphy confound correlations between video performance and user
engagement. None of these works consider counterfactual reason-
ing. Further, while controlling on measured confounders removes

some of the bias resulting from the data collection process, dealing
with latent confounders (such as dynamic network state) is more
challenging, and plays an important role, as we show empirically
in Section 4.

The work of Bartulovic et al. [3] seeks to correct the bias that
smaller chunk sizes may see poorer throughput than larger ones
owing to TCP slow start effects — unlike our work, it does not model
the causal relationship that the ABR algorithm itself may pick chunk
sizes in a manner that depends on its perception of bandwidth. To
this end, when comparing the total reward seen by algorithm 𝐵

on a trace collected from an algorithm 𝐴, Bartulovic et al. only
consider those video chunks where the new algorithm picks the
same bitrate as the old algorithm. This evaluation process is viable
as Bartulovic et al. only consider a constant bandwidth process and
their importance reweighting approach simply involves comparing
bitrate choices of the two algorithms, the data for which is directly
available. Unfortunately in our context, the bandwidth process is
latent and not directly available as part of the data. Moreover, we
are interested in counterfactual queries: “What would have been
the download time of the chunk if algorithm 𝐴 had chosen chunk
size 𝑠 ′ rather than 𝑠?”.
•What-if analysis and causal graph inference. Another set of
works [8, 15, 17] consider what if analyses for various applications,
but do not consider how to perform such analyses in the presence
of confounding or latent confounding variables. More closely re-
lated works [5, 9, 11, 17] have looked at inferring the dependency
graph of measured features directly from the data, and some [9, 11]
do account for observable confounding features. Unfortunately, la-
tent confounders are not considered, and in general, causal graphs
inferred from passive data alone may be inaccurate [3, 11].

3 SOLUTIONS: COUNTERFACTUAL
REASONINGWITH LATENT FEATURES

We now discuss a potential approach to enabling counterfactual
reasoning in the presence of latent confounders such as dynamic
network state (e.g., bandwidth), a challenge unaddressed by prior
work (Section 2.2). We introduce the necessary steps to achieve this
goal, and apply it to a concrete case study in the context of video
streaming. The key steps are below:

(1) Identify the causal dependency graph. This involves using
domain knowledge to determine the features that affect the
quantity that we are trying to predict using an appropriate
model of network state such as bandwidth.

(2) Identify measured, and latent confounders. We identify
from the causal graph, both confounding features that are ob-
servable (with information available in the data), and latent
(information not directly available).

(3) Inferring latent features. This is the key new step in the
methodology, and the most challenging, where we seek to infer
any latent features that are not directly measured.

(4) Matching and backdoor adjustment. Finally, we perform a
backdoor adjustment over the latent confounding variables and
condition over the observable confounders. This way, we block
the backdoor over the observable and latent confounders, and
can estimate the probability distribution of download times
given an intervention on the chunk size.
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Figure 3: Causal graph for our case study. The shaded ovals
represent features that are observable, while the other ovals
correspond to latent features.

This procedure is challenging in general, but we outline how it
may be achieved in an initial case study, deferring more general
contexts to future work.

3.1 Case Study
Consider again the bandwidth model corresponding to Figure 2.
Consider that the peak (𝐵ℎ), trough (𝐵𝑙 ), and the time period (𝑇 ) are
known. However, the phase of the wave at the start of the session
(henceforth referred to as the session phase 𝜃 ) is not known. Further,
objects of known sizes are downloaded sequentially starting at time
𝑡 = 0. We apply the general procedure described above to this
context to estimate the download time of an object if its size had
changed.

Identify the causal graph. Figure 3 shows the causal graph for
the square wave model, for a specific object download. If the ABR
algorithm chooses bitrates based on the instantaneous bandwidth
measurement as described in section 2, the chunk start phase 𝜓
determines the instantaneous bandwidth, and hence the chosen
bitrate. Further, 𝜓 and the parameters of the square wave, along
with the chunk size determine the download time of the chunk.

Identify measured and latent confounders. In the causal
graph (Figure 3), we do not know the session phase 𝜃 , nor the
current chunk’s phase 𝜓 . Out of these the chunk’s start phase is
required to determine the download time, and the session phase
is required to determine the chunk start phase. Here, the chunk
start phase is a confounder - it affects the chunk size, but it also
determines the download time. Further, this is a latent confounder,
since the start phase is not provided as part of the data. The chunk
start phase plays a similar role to Bandwidth (B) in Figure 1.

Infer latent confounders. The chunk start phase is not directly
measured by the video player, but is necessary for estimating the
download time. In this case, it is possible to infer an estimate for the
chunk start phase using the data. Let 𝑋 𝑗 be the set of all observable
variables at the time chunk 𝑗 +1 is about to be requested. We do this
by estimating the posterior over the session start phase 𝜃 , given
the chunks that have been observed:

𝑃 (𝜃 |𝑋 𝑗 ) ∝ 𝑃 (𝑋 𝑗 |𝜃 )𝑃 (𝜃 ).

We assume a uniform prior distribution for 𝜃 , so 𝑃 (𝜃 ) = 1/𝑇 . We
compute 𝑃 (𝑋 𝑗 |𝜃 ) for each chunk by splitting its download time into

Condition on 𝑡ℎ
𝑖
and 𝑡𝑙

𝑖
Conditions on the chunk start
phase (𝜓𝑖 ) (at time 𝑡𝑠𝑖 , the start
time of the chunk)

0 < 𝑡𝑙
𝑖
< 𝑇

2 , 0 < 𝑡ℎ
𝑖
< 𝑇

2 𝜓
pred
1,𝑖 = 𝑇

2 − 𝑡𝑙
𝑖
,𝜓

pred
2,𝑖 = 𝑇 − 𝑡ℎ

𝑖

𝑡𝑙
𝑖
= 0, 0 < 𝑡ℎ

𝑖
< 𝑇

2 𝜓 left
𝑖

= 𝑇
2 ,𝜓

right
𝑖

= 𝑇 − 𝑡ℎ
𝑖

𝑡ℎ
𝑖
= 0, 0 < 𝑡𝑙

𝑖
< 𝑇

2 𝜓 left
𝑖

= 0,𝜓 right
𝑖

= 𝑇
2 − 𝑡𝑙

𝑖

𝑡𝑙
𝑖
= 𝑇

2 , 0 < 𝑡ℎ
𝑖
< 𝑇

2 𝜓 left
𝑖

= 𝑇 − 𝑡ℎ
𝑖
,𝜓

right
𝑖

= 𝑇

𝑡ℎ
𝑖
= 𝑇

2 , 0 < 𝑡𝑙
𝑖
< 𝑇

2 𝜓 left
𝑖

= 𝑇
2 − 𝑡𝑙

𝑖
,𝜓

right
𝑖

= 𝑇
2

𝑡𝑙
𝑖
= 0, 𝑡ℎ

𝑖
= 0 𝜓

pred
1,𝑖 = 𝜓

pred
2,𝑖 = 0

𝑡𝑙
𝑖
= 0, 𝑡ℎ

𝑖
= 𝑇

2 ; 𝜓
pred
1,𝑖 = 0,𝜓pred

2,𝑖 = 𝑇
2𝑡ℎ

𝑖
= 0, 𝑡𝑙

𝑖
= 𝑇

2
Table 1: Conditions on 𝑡ℎ

𝑖
and 𝑡𝑙

𝑖
to calculate phase

three segments : (1) from the download start time to the start of the
next trough of the square wave, (2) the longest possible sequence
of full periods of the square wave contained within the download
time, and (3) the remainder. The time spent in segments (1) and (3)
combined can be further subdivided as 𝑡ℎ (time spent at the peak
bandwidth) and 𝑡𝑙 (time spent at the trough bandwidth). 𝑡ℎ

𝑖
and 𝑡𝑙

𝑖
are the amounts of time chunk 𝑖 spends being downloaded in the
high and low sections of the square wave, outside of the complete
time periods. They are given by:

𝑡ℎ𝑖 =
(𝑑𝑖 mod 𝑇 )𝐵𝑙 − (𝑠𝑖 mod (𝑇 ( 𝐵ℎ+𝐵𝑙

2 )))
𝐵𝑙 − 𝐵ℎ

𝑡𝑙𝑖 =
(𝑑𝑖 mod 𝑇 )𝐵ℎ − (𝑠𝑖 mod (𝑇 ( 𝐵ℎ+𝐵𝑙

2 )))
𝐵ℎ − 𝐵𝑙

Each condition on 𝑡ℎ
𝑖
and 𝑡𝑙

𝑖
translates to two possible distribu-

tions on the chunk start phase: (1) two equally likely point estimates
for the chunk phase,𝜓pred

1 and𝜓pred
2 (2) a uniform distribution over

the interval specified by bounds𝜓 left and𝜓 right. The conditions for
𝜓𝑖 are given in Table 1.

Since the square wave is periodic in T, we can infer a distribution
estimate for the session start phase 𝜃 from each chunk’s start phase
by performing a time shift to 𝑡 = 0 from the chunk start time 𝑡𝑠𝑖 :

𝜃
pred
𝑗,𝑖

= (𝜓pred
𝑗,𝑖

− (𝑡𝑠𝑖 mod 𝑇 )) mod 𝑇

𝜃 left𝑖 = (𝜓 left
𝑖 − (𝑡𝑠𝑖 mod 𝑇 )) mod 𝑇

𝜃
right
𝑖

= (𝜓 right
𝑖

− (𝑡𝑠𝑖 mod 𝑇 )) mod 𝑇

The possible session phases are then the set of 𝜃 that are con-
sistent with the distribution estimates for all chunks, and is given
by:

𝑃 (𝑋 𝑗 |𝜃 ) = 1
(
𝜃 ∈ (max(𝜃 left𝑖 ),min(𝜃 right

𝑖
))

)
×(

1

(
𝜃 ∈

𝑗⋂
𝑖=1

{𝜃pred1,𝑖 , 𝜃
pred
2,𝑖 }

)
+ 1

(
𝑗⋂

𝑖=1
{𝜃pred1,𝑖 , 𝜃

pred
2,𝑖 } = 𝜙)

))
,

where 1(·) is an indicator function. This implies that 𝜃 can either
lie in a continuous range where all 𝜃 ’s within that range are equally
likely (unlikely to happen, since we would have enough points to
narrow it down), or that there are a set of disjoint points that are
all equally likely.
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(a) (b)

Figure 4: CDFs of Mean Absolute Prediction Error (MAPE) of download time across video sessions for different prediction tech-
niques under two different training data production methods (a) RCT - Randomized Controlled Trials (b) ABR - Observational Study (see
text)

At this point we have an estimate for 𝑃 (𝜃 |𝑋 𝑗 ), which we can
use to calculate the chunk start phase𝜓 by sampling from 𝑃 (𝜃 |𝑋 𝑗 )
and performing a time shift to each chunk’s start time to obtain
𝑃 (𝜓 𝑗 |𝑋 𝑗 ).

Matching and backdoor adjustment. Once we have a poste-
rior probability distribution over the start phase of each chunk,
𝑃 (𝜓 𝑗 |𝑋 𝑗 ), we can use the backdoor adjustment [13, Theorem 3.3.2]
to estimate the causal effect of changing chunk sizes on the down-
load time, following the causal graph in Figure 3. This entails
marginalizing

𝑃 (𝑑 𝑗+1 |do(𝑠 𝑗+1), 𝑋 𝑗 ) =
∫
𝜓 𝑗

𝑃 (𝑑 𝑗+1 |𝑠 𝑗+1,𝜓 𝑗 , 𝑋 𝑗 )𝑃 (𝜓 𝑗 |𝑋 𝑗 )𝑑𝜓 𝑗 .

Figure 3 shows that𝜓 𝑗 fully determines the download time (since
we know 𝐵ℎ , 𝐵𝑙 , 𝑇 ). We take the mean download time of all the
chunks in the original data that match on a given input chunk start
phase and size, and use that as our estimate for the download time
of that chunk.

4 EVALUATION
In this section, we evaluate the importance of explicitly accounting
for latent confounding variables when supporting counterfactual
reasoning using a simulated video player. We create a training set
by simulating the download of a single 5000 chunk video, with
chunks encoded at two different bit rates: 1 Mbps, and 2 Mbps. The
underlying bandwidth process is the square wave in Figure 2 with
high and low bandwidth parameters 𝐵ℎ = 2 Mbps, and 𝐵𝑙 = 1 Mbps,
following the same notation as in Section 3. The time period (𝑇 ) of
the wave is 5𝑠 , and the session start phase (𝜃 ) is chosen randomly.

Training dataset production. Our evaluations are conducted
in the context of two potential approaches for dealing with causal
reasoning, which are defined by the way the training dataset is
produced: (i) Randomized Controlled Trials (RCT). Here, we
produce a training trace data set by selecting a random bitrate
for each chunk during the download process. (ii) Observational
studies of ABR algorithms (ABR). We produce a training data
set by considering a simplified yet illustrative ABR algorithm that
selects bit rates based on network throughput. Specifically, we

assume the ABR algorithm (1) measures the instantaneous network
bandwidth at the start of a chunk download; (2) selects a chunk at
the highest bitrate below the instantaneous bandwidth 90% of the
time; and (3) selects a chunk at a different bitrate the rest of the
time (corresponding to erroneous decisions).

Methodology. Under both data production methods (RCT and
ABR), we evaluate the following techniques for estimating chunk
download times: (i)Direct Emulation (DirEmul).Here we use the
observed throughput trace as a model for the bandwidth emulating
a video download on the trace. (ii) Match-NoLatent. We match
on the available observed variables that influence download time
i.e. bitrate. The download time estimate for a test chunk is the
average download time of all matching chunks in the training
dataset. This is similar to the methodology used in Bartulovic et
al. [3], wherein matching was done on bitrate for an underlying
constant bandwidthmodel. (iii)Match-Latent.Weproceed as in (ii)
but filter the training trace observations according to the the bitrate
as well as the latent chunk phase feature. We infer the session start
phase, and calculate the start phases for each chunk as described in
Section 3.

RCT and ABR are used to simulate the download of a 5000 chunk
(of duration 1s each) video, and the various features for each chunk
(bitrate, chunk size, download start time, download time, etc.) are
recorded for the training data. For testing, we simulate the down-
load of 50 test videos of 50 chunks each, whose bitrates are chosen
randomly as 1 Mbps or 2 Mbps, and predict their download times
with DirEmul, Match-NoLatent and Match-Latent. We also obtain
the ground truth download times by simulating the test video down-
load on the true bandwidth process. We use the error metric Mean
Absolute Prediction Error (MAPE) of chunk download time, calcu-
lated for each video by computing the absolute prediction error for
each chunk, and taking an average across chunks.

Performance with Randomized Controlled Trials. The re-
sults of this simulation are shown in Figure 4(a). We see that when
the bitrate selection algorithm that produces the training trace is
not adaptive (i.e. it chooses the chunk bitrates randomly), Match-
Latent produces an optimal result. Match-NoLatent does poorly,
and while DirEmul does slightly better, the error can still be bad
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(≈ 20%) in the worst case. Even though RCTs are considered to be
the de facto standard for estimation of causal effects, we see here
that RCT alone is not enough for video streaming; it is critical to
also perform a backdoor adjustment on the latent confounder (the
chunk phase).

Performance with Observational Studies of an ABR algo-
rithm. In Figure 4(b) we see that when the training data is collected
with our simpified ABR algorithm, Match-Latent provides an al-
most 10 percentage point improvement at the median over DirEmul,
and a greater than 15 percentage point improvement over Match-
NoLatent. Similar to the RCT case, we see that the inclusion of
latent variables in the backdoor adjustment provides a clear im-
provement over matching on observable features alone. Recall from
Section 2.2 that prior work in networking [3, 9, 10, 18] that corrects
for biases only considers matching on observable features, and does
not consider latent features.

5 CONCLUSIONS AND FUTUREWORK
In this paper, our primary contribution is to draw attention to the
challenges posed by latent confounding variables when enabling
counterfactual reasoning with network data. We have illustrated
the challenges and sketched a potential solution direction in the
context of video streaming. Our evaluations show the importance
of accounting for latent variables in both Randomized Controlled
Trials and Observational Studies, while also showing the limitations
of direct emulation methods.

Our work is preliminary in many ways. In the case study consid-
ered in this paper, we have assumed that much about the bandwidth
process𝐵(𝑡), apart from the session and chunk start phase, is known.
In general, the bandwidth process is unknown, which makes our
task more challenging. Further, the underlying network bandwidth
can be affected by how much data is transmitted (e.g., owing to
ISP rate-limiting policies). Our examples show that knowing how
to model the bandwidth process is key in being able to estimate
counterfactual effects using the session data of an ABR algorithm.
Essentially, for correctly performing the backdoor adjustment (Sec-
tion 3), we need to find an accurate posterior distribution over
the bandwidth process into the future given the past observations.
Since determining a precise posterior distribution over the network
bandwidth process is an open problem, a general solution is outside
the scope of this work, and part of our ongoing investigations.
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