Exploring the interplay between CDN caching and
video streaming performance

Ehab Ghabashneh and Sanjay Rao

Purdue University

Abstract—Content Delivery Networks (CDNs) are critical for
optimizing Internet video delivery. In this paper, we characterize
how CDNs serve video content, and the implications for video
performance, especially emerging 4K video streaming. Our work
is based on measurements of multiple well known video pub-
lishers served by top CDNs. Our results show that (i) video
chunks in a session often see heterogeneous behavior in terms of
whether they hit in the CDN, and which layer they are served
from; and (ii) application throughput can vary significantly even
across chunks in a session based on where they are served from.
The differences while sensitive to client location and CDN can
sometimes be significant enough to impact the viability of 4K
streaming. We consider the implications for Adaptive bit rate
(ABR) algorithms given they rely on throughput prediction, and
are agnostic to whether objects hit in the CDN and where. We
evaluate the potential benefits of exposing where a video chunk
is served from to the client ABR algorithm in the context of
the widely studied model predictive control (MPC) algorithm.
Emulation experiments show the approach has the potential
to reduce prediction inaccuracies, and enhance video streaming
performance.

I. INTRODUCTION

Internet video traffic has grown tremendously over the past
decade. According to reports from Cisco, video is projected
to account for over 82% of the Internet video traffic in 2022,
up from 18% in 2006. Ensuring that video can be delivered
to users with high quality is a challenge. With the advent of
new technologies such as 4K streaming (involving 40 Mbps
or more), these challenges are likely to remain in the future.

A key factor essential to delivering high quality Internet
video is the use of Content Delivery Networks (CDNs) that
cache content close to the network edge. CDNs themselves
are hierarchical with multiple levels of caches, and different
latency [22]. While the use of CDNs is pervasive for delivering
video, there is fairly limited understanding of the extent to
which CDNs successfully serve video content from the network
edge, and the impact on client video performance.

In this paper, we take a step towards understanding the
interplay between CDNs, and client video performance through
end-to-end measurements. Our work is conducted in the context
of HTTP-based video streaming, where video content is split
into chunks that are a few seconds in duration, and encoded at
different bit rates. Our measurements are conducted from well
provisioned Internet hosts, and using publicly visible HTTP
headers that show the distribution of objects among the various
levels in the CDN hierarchy. The experiments involve two
popular video publishers, that between them use three different
well known CDNs. The measurements include 4K videos given

our goal of understanding performance implications for such
videos. For each chunk in a video session, our measurements
characterize where in the CDN hierarchy (or origin) the chunk
is served from, the application-perceived throughput, the chunk
size, and the latency incurred before each chunk is received.

Our results show that it is common for chunks in a video
session to be served from different layers in the CDN hierarchy
or the origin. Further, while there is a higher tendency for
chunks at the start of a session to be served from edge locations,
even chunks later in the session may be served from multiple
locations. Interestingly, some sessions may exhibit significant
switching in terms of the location from which consecutive
chunks are served.

We next measure the impact of where chunks are served
from on video client performance. While the impact on
latency is clear, our results indicate the impact on application-
perceived throughput is more nuanced, and sensitive to the
client location, and CDN. Serving content from the edge
offers higher application-perceived throughput when the latency
savings in receiving the first byte are significant, when certain
optimizations for large file transfer are not enabled by the CDN,
or when the transfer is limited by the throughput from higher
levels of the CDN hierarchy (or origin) to the edge. Further,
for higher bit rate video, the differences in throughput may be
significant enough to impact the video streaming experience.

An implication of our findings is that when streaming high bit
rate video, the throughput perceived by the client may depend
on where in the CDN hierarchy the object is served from. While
several Adaptive Bit Rate (ABR) algorithms for video streaming
have emerged [29], [37], [25], a challenge common to many
of them is the need to predict throughput. Errors in predicting
throughput can lead to poor bit rate adaptation decisions. ABR
algorithms today are agnostic as to whether an object hits or
misses in the CDN, and where in the hierarchy they are served
from, which can potentially lead to prediction inaccuracies.
We evaluate the potential benefits of CDN-aware schemes that
expose information about where the next video chunk is served
from to the client by suitably altering MPC, a representative,
and well studied ABR algorithm [37]. Experiments on an
emulation testbed show that incorporating CDN awareness (i)
reduces prediction error for 81.7% of sessions by 17.16% on
average; and improves a composite video delivery metric by
more than 10% for 20% of the sessions.

Overall, our results lead to new understanding of the interplay
between CDN caching and Internet video performance, and new
insights on how to optimize video performance by exploiting

such knowledge.
II. METHODOLOGY AND DATA COLLECTION

Background. Much Internet video delivery today involves
chunk-based streaming over HTTP. A video is split into chunks
(typically a few seconds in duration), and encoded at multiple
bit rates. Client video players select which bit rates to access
each chunk at using Adaptive Bit Rate (ABR) algorithms [29],
[37], [25] in a manner that considers the amount of video
content in the client buffer, and predictions regarding network
bandwidth. Each video chunk is requested using an HTTP
request and response interaction.

Video content is typically served from Content Delivery Net-
works (CDNs). The CDNs themselves are typically organized
as a hierarchy of caches [22]. Requests from the user go to a
CDN edge server. The edge server directly serves the request
if the object is in its cache. Alternately, it may forward the
request to a CDN server higher in the hierarchy, and ultimately
to the origin. The fetched object is then streamed to the client.

The performance of video streaming applications critically
depends on the application throughput, (or the throughput
perceived by the video player), which we define more precisely
later. The application throughput itself may depend on whether
a chunk is served from the CDN, or the origin, and which
layer of the CDN the chunk is served from. To sustain video
at a particular bit rate, the application throughput must be
sufficiently high. Further, application throughput perceived by
chunks downloaded in the past is used by ABR algorithms to
predict throughput for future chunks.

Motivation. Our work is motivated by several questions:

e Where in a CDN hierarchy are objects in a video session
served from? Is the treatment of video chunks with a session
homogeneous, or are there variations within a session? How
do these policies vary across CDNs?

e What is the impact of where objects are served from by a
CDN on video streaming performance?

e Given that higher bit rate video such as 4K video content
is starting to emerge, what are the implications of CDN
architecture on 4K video performance?

Measurement methodology. To explore these questions, we
conducted measurement studies by streaming videos from 2
different popular video publishers (Twitch and Vimeo) from
4 different locations in the United States. We chose these
publishers because (i) they are popular (within Alexa top 100
US rank [16]); (ii) they provide videos that can be viewed
without subscription fees, yet do not disable CDN caching;
and (iii) they use CDNs such as Akamai [1], Fastly [9] and
CloudFront [2] that support special HTTP headers which allow
us to identify which layer in the hierarchy a video chunk was a
hit (§1I-A). All client locations were well provisioned network
environments, including 2 home locations, one university site,
and another business location, and corresponded to 3 different
geographical regions. We refer to these locations as USHomel,
USHome?2, USUniv, and USBus respectively.

We collected two sets of data:

e The ABR-Set, which involved downloading videos with

Field Name
startedDateTime

wait time (TTFB)

Definition
The requests’ issue time
Time from sending the request

until first byte of response received
Time from receiving the first byte
of the response until the last byte

Type of the HTTP object

Total response’s length

Headers added by CDN

(more details later)

receive time

Content-Type
Content-Length
X-Cache
X-Cache-Remote

Table I: Headers fields retrieved by browsermob proxy.

CDN Required header
Akamai pragrna:akama}—x—cache—on
pragma:akamai-x-cache-remote-on
Fastly Fastly-Debug:1
CloudFront No header required

Table II: Required HTTP header for each CDN.

the client running ABR algorithm as normal. Both publishers
(Twitch and Vimeo) have a category for popular/trending videos,
and we picked our videos from this category randomly.

e The 4K-Set, where we selected videos encoded at 4K rates,
and disabled client ABR, so only 4K video was streamed. We
conducted such experiments for two reasons. First, we wished to
explore the sustainability of streaming 4K video in typical well
provisioned client network environments today. Second, some
of our performance measures (especially application perceived
throughput) are sensitive to chunk size as we will discuss later.
Disabling ABR and focusing on 4K allow us to minimize the
impact (though not completely eliminate chunk size variation
given the variable bit rate encoding used). We focused this
data collection on Vimeo as Twitch does not stream 4K videos.
We picked the videos by filtering Vimeo to list only 4K quality
videos, then we picked the ones with high number of views.

All downloaded videos in both data-sets were between 5 and
15 minutes long. The ABR-Set included data about 104 videos
downloaded from Twitch, and 50 from Vimeo, from USHomel.
The 4K-Set included 100 video sessions from USHomel,
70 sessions from USUniv, 44 sessions from USBus, and 24
sessions from USHome2. The videos from USHomel were
downloaded over a 7 day period in October 2018, while data
was collected from other locations in July 2019.

Measurement setup and data collected. We conduct our
study by automating Google Chrome to run and play real videos
from both video publishers. Each video is downloaded as a
series of HTTP request response interactions. We collected the
HTTP headers associated with the responses which provided
valuable information for our analysis. We collect headers using
the browsermob proxy [5], an open source proxy, and binding it
to Chrome using the ‘—proxy-server’ flag. The proxy monitors
all HTTP requests and responses and archives relevant header
fields when the ‘captureHeaders’ option is set to “True’. Table I
summarizes the header fields most relevant to our measurement.
As the proxy tracks all HTML objects, we use the Content-
Type header to distinguish video chunks from other objects.
The video publishers in our study typically use "video/MP2T"
or "video/mp4" for the Content-Type header.

A. Classifying where objects are served from

A key part of our measurement methodology is classifying
a video chunk based on which CDN layer the object is served
from. To achieve this, we exploit the fact that many CDNs
support HTTP headers for debugging purposes. Specifically,
we add special headers in the outgoing HTTP requests sent
(summarized in Table II), and interpret the values of the
appropriate headers in the HTTP responses (summarized in
Table III). We elaborate for each CDN below:

CloudFront. For the publishers we considered, every HTTP
response for an object served from CloudFront includes an X-
Cache header. We classify an object as being served from
a Cloudfront server if the header has a value "Hit from
cloudfront”, and from an origin server if the value is "Miss
from cloudfront” as summarized in Table III following [14].

Fastly. We add the "Fastly-Debug:1" header to all HTTP
requests to identify whether the request was served from Fastly
or not [8], [15]. A response that contains "Fastly-Debug-Path"
or "Fastly-Debug-TTL" indicates that the object was served
from Fastly. Further, a HTTP response in such a case has an
X-Cache header which may take 6 different values as shown in
Table III. A response with a single HIT/MISS indicates a single
Fastly CDN layer (called Shield) was encountered. A response
with two such values indicates two Fastly CDN layers were
encountered (referred to as the Fastly Edge, and the Fastly
Shield). For example, a "HIT, MISS" indicates that the object
missed in the Fastly Edge and hit in Fastly Shield, whereas
a "MISS, MISS" indicates the object missed at both layers.
Note that the Edge retains the last cache status of Shield for
any request it forwarded to Shield. For example, "MISS, HIT"
indicates that the Edge served the request, with the first MISS
corresponding to a stale cache status for the Shield obtained
in a previous request. The various cases and the resulting
classification are shown in Table III, based on [15].

Akamai. We add the pragmas "akamai-x-cache-on" and
"akamai-x-cache-remote-on" to all HTTP requests [17]. The
first contacted CDN server appends an X-Cache header to its
HTTP response. If a second server is involved, it appends an
X-Cache-Remote header. If the X-Cache header has a value of
"TCP_HIT" or "TCP_MEM_HIT", it indicates the object was
a hit at first edge server (Akamai L1). If it has a "TCP_MISS",
and the X-Cache-Remote value contains "HIT", then object
was hit at second edge (Akamai L2). If both headers have a
value of "TCP_MISS", it is possible that the object was served
by a further CDN server, or the origin server. In either case
we classify the object as being served from origin.

The response headers might also have values that indicate a
refresh hit. For instance, with Cloudfront, in a small number
of cases, the response header had a value "RefreshHit from
cloudfront". Here, although the object hit in the Cloudfront
cache, the Cloudfront server confirmed with the origin server
that the object is not stale before serving the object. We classify
such an object as served by Cloudfront. We adopted a similar
approach with other CDNS.

CDN HTTP response Value Server
headers
TCP_HIT or .
Akamai X-Cache TCP_MEM_HIT ﬁijﬁzi ié
amat X-Cache-Remote | (Any response)
TCP_MISS Origin
(All responses) g
HIT,HIT
MISS.HIT Edge
. HIT .
Fastly X-Cache AIT.MISS Shield
MISS Origin
MISS,MISS &
Hit from cloudfront Cloudfront
CloudFront | X-Cache Miss from cloudfront | Origin

Table III: HTTP response and its corresponding value. The last
column shows our classification of where the object is served
from.

B. Performance metrics

We characterize the performance obtained when objects are
served from different layers using the following metrics:
e Time to first byte (TTFB): This is the time from when a
HTTP request for a chunk is made to when the first byte of a
response is received and is directly collected for each chunk
using the HTTP headers (Table I).
e Network throughput: This is measured as the ratio of the
chunk size to the receive time, where the receive time is the
time from when the first byte is received to when the last
byte is received. Both the chunk size and the receive time are
obtained from the HTTP response headers (Table I).
o Application throughput: This refers to the throughput
perceived by the video player, which includes the impact of
both TTFB, and network throughput. Given a chunk of size S;,
with TTFB T}, and receive time R;, the application throughput
is written as RﬁifT,- . If the network throughput is denoted by /V;,
then, the application throughput may be equivalently written as
W The application throughput is the primary metric
that the video player cares about. When the chunk size is large,
and the TTFB T; is small, it is close to the network throughput,
but lower otherwise.

III. MEASUREMENT RESULTS

We analyze where video chunks in a session are served
from (the origin, or a particular CDN layer), and the impact on
video streaming performance. We begin by presenting results
for data collected from USHomel, and the ABR-Set. We then
present results for the 4K-Set, and for other US locations.

A. Where are objects served from

For the primary location considered, we observed that the
video sessions from Vimeo either used Fastly, or Akamai as
a CDN. Figure 1(a) presents an example video session from
Vimeo served by Fastly. The X-Axis represents different chunks
in the session, and the Y-Axis represents the TTFB of that
chunk. The different colors and shapes correspond to the object
served from different locations (Fastly Edge, Fastly Shield, or
the origin). The figure shows that the chunks could be served
from any of the three locations, and the locations are fairly
interspersed. Further, the TTFB of the chunks from the Edge is

200

. : : : 100
800 | © +++ Fastly Edge s00 |t Akamai L1 All Origin
700 | 03' o o vy :)a_st_ly Shield || 50| vy gk_ar_nal L2 o Y 80| mm All Edge ||

- Oy _— O -

= 600 o 0. o 000 Origin - o000 Origin o g Em Mixed

Ese0f ,,7° cogr © E 200t 2 ol

@ 400} v v o @ | o o]]

™ v’ ;'V w9 ° w 150 o o o 3

E 300/ v E w 400
S0l v v v w00 © v v 6

iy v

100 ? Yy v + _: - + N 50 _Wv+ Hw;‘* "ﬂ'ﬂa"“*ﬁwﬂ | B 20!
s A4 T T et o
o L L L L o L L L L

0 20 40 60 80 100 0 20 40 60 80 100 i} itch Vi vi

Chunk ID Chunk ID Twitc imeo imeo.
CloudFront Fastly Akamai
Fastly

(a) Vimeo Fastly.

Figure 1: Example video sessions served from origin and different CDN layers.

100 100

(b) Vimeo Akamai.

Publisher/CDN

Figure 2: Percentage of sessions that are
served fully by edge, origin, or mixed.

100

I CloudFront I Fastly Edge
B Fastly Shield B Fastly Shield

80 80

60 60

20 20

% of cacheable chunks in CDN
% of cacheable chunks in CDN

1)
Twitch sessions (sorted by % of chunks cached in Origin)

(a) Twitch sessions served by CloudFront/
Fastly CDN (merged for convenience).

1)
Vimeo sessions (sorted by % of chunks cached in Origin)

(b) Vimeo sessions served by Fastly CDN.

I Akamai L1
R Akamai L2

80

60

20

% of cacheable chunks in CDN

0
Vimeo sessions (sorted by % of chunks cached in Origin)

(c) Vimeo sessions served by Akamai CDN.

Figure 3: Percentage of cached video chunks per publisher per CDN.

much smaller than Shield, and in turn smaller than the origin.
Figure 1(b) shows similar results for a session from Akamai.
Similar trends hold — chunks are served from different layers,
and the layers exhibit different TTFB.

With Twitch, we observed that the video sessions either used
Cloudfront or Fastly, though only a single level of each CDN.
For a small number of sessions (7.14%), different chunks in
the session used different CDNs.

Figure 2 presents a classification of sessions for each
publisher and CDN combination. The sessions are classified
as (i) All Origin, if all chunks in a session are served by the
origin; (ii) All Edge, if all chunks are served by a CDN layer
(irrespective of which layer); and (iii) Mixed, if some chunks
are served by the origin, and others by the CDN. The figure
shows that 72% of Twitch sessions, 74% of Vimeo Fastly (FS),
and 61% of Vimeo Akamai (AK) sessions are mixed. This
indicates that a majority of sessions involve chunks served
by both the origin, and the CDN. A smaller portion of the
sessions are served entirely by the origin, or entirely by the
CDN. In the rest of the analysis we ignore these sessions, and
focus on the mixed sessions.

Figure 3 analyzes the mixed sessions (i.e., sessions with
chunks served from the edge and the origin) further, and
decomposes sessions based on which CDN layer the objects are
served from. Each bar corresponds to a session, and indicates
the percentage of chunks within a session that are served by a
CDN layer. Note that each bar does not add up to 100% since
this represents objects served from the origin. For instance, the
right most bar of Figure 3(b) indicates that for that session,
88.8% of chunks are served from Fastly Edge (blue), 10.6%

are served from Fastly Shield (green), and the rest from origin.

For Vimeo and Fastly (middle graph), 80% of the mixed
sessions have objects served by the origin, and the two CDN
layers (Fastly Edge and Shield). Further inspection shows that
on average 28.74%, 29.41%, and 41.85% of the chunks of
these sessions are served from the origin, Fastly Edge, and
Fastly Shield respectively. For Vimeo and Akamai (right most)
graph, 57.14% of the sessions have objects served by the origin
and two different CDN layers. The vast majority of chunks
are served by Akamai L2 (89%), with 8.24% served from the
origin, and 2.74% served from Akamai L1. For Twitch, we
combine sessions served by Fastly, and Cloudfront in the same
graph for convenience, and observe that most sessions see a
mix of CDN (Fastly or Cloudfront), and origin.

Session start vs. later phases. We next consider plausible
explanations for why chunks within the same video session
are served from different layers in the hierarchy. One potential
hypothesis is that chunks earlier in the session are served from
layers closer to the user. This is because users are known to
watch the first few minutes of a video, before abandoning it
for a newer video. Thus, it is possible that initial chunks are
more popular and cached closer to the users. To explore this
further, we split all chunks in all sessions into two categories:
(i) the first K chunks; and (ii) the remaining chunks. We
choose K = 10 which corresponds to several tens of seconds,
which corresponds to the time-frames that a user may watch a
video before moving on (33% of users abandon video sessions
within 30 seconds if not interested [33]). Figure 4(a) shows
the fraction of chunks that are served from each CDN layer
and the origin for the first K, and the next N — K chunks for

K=10

100 100

K=10

100 K=10

80| N 80|

60| 60 |-

% of chunks served
% of chunks served

20 - 20 -

CloudFront Fastly Shield

CDN layer

Origin Fastly Edge

(a) Twitch: CloudFront/Fastly.

Fastly Shield
CDN layer

(b) Vimeo: Fastly.

3 FirstK
ZZ1 Remaining N-K

% of chunks served

Akamai L1 Akamai L2

CDN layer

Origin

Origin

(c) Vimeo: Akamai.

Figure 4: Percentage of First-K, and N-K chunks served by CDN layer.

2 a0
a + + +
& w _E_ 35+ . v + v F + E
o < 530 v * g
w " a2)
g £ Exsl T . . vy,
]] 3 Yo ww Yy v,
g ¢ 320 9o o 0094 0o A
s 5 £ 15| 00" oy ¥
£ c ¢ c v 9 +++ Fastly Edge
=} !)] o 10+ - H
B a £ B -] v
E 02l H R = Twitch(CloudFront/Fastly) E 02l H — Twitch(CloudFront/Fastly) | | 5 5| vy Fa_st_ly Shield
- ' ' Vimeo(Fastly) e ' * Vimeo(Fastly) %’- 000 Origin
¢ S T T T
- - Vimeo(Akamai) IR == Vimeo(Akamai) 2
ookl ‘ X : oolle ‘ : ‘ : 2 o 10 20 30 40 50
0 10 20 30 40 50 (] 10 20 30 40 50 Chunk ID

No. of switches within session

(a) Number of switches per session.

% of switches within session

(a) Vimeo Fastly.

(b) Percentage of switches per session.

Figure 5: Percentage and number of chunks that experience a location switch

for different CDN and publisher combination.

Twitch served from CloudFront and Fastly. The results show
that while the CDN (CloudFront and Fastly Shield) account
for a larger fraction of the first K chunks (e.g., Cloudfront
accounts for 39% of the first K chunks but only 24% of the
remaining chunks), the origin serves a larger fraction of the
last N — K chunks. Similar results are seen in Figure 4(b) for
Vimeo sessions served through Fastly. The results are even more
striking for Vimeo sessions served by Akamai (Figure 4(c))
— the Akamai L1 cache accounts for nearly 20% of the first
K chunks, but only 2% of the remaining chunks, though the
fraction of chunks served by the Akamai L2 cache, and the
origin increases for the rest of the session compared to the
initial chunks. While the above results indicate that the initial
phases see more requests from the edge, they also indicate that
a substantial fraction of chunks even in the later part of the
session are served from different locations.

How often are consecutive chunks served from different
locations? We next consider whether consecutive chunks are
typically served from the same location, or if there is often a
variation in the location from which consecutive chunks are
served. To analyze this, we consider each instance of chunk
1 being served from a different location as chunk 7 — 1 (e.g.,
for Vimeo and Akamai, the locations are Akamai L1, L2
and origin) as a serving location switch. Figure 5(a) shows
the number of serving location switches in the session for
different publisher and CDN combinations, while Figure 5(b)

Figure 6: Difference in application
throughput based on serving location
for an example session.

shows the percentage of chunks in a session that experienced
a serving location switch. Figure 5(a) shows that for Twitch
(Cloudfront/Fastly) and Vimeo (Akamai) 20% of sessions had
more than 14 switches, while for Vimeo (Fastly) 72% of session
experienced at least 14 switches. Figure 5(b) shows that for
Twitch (Cloudfront/Fastly), and Vimeo (Akamai), about 25%
of the sessions see more than 11% of the chunks experience a
serving location switch. In contrast, for Vimeo (Fastly), nearly
80% of the sessions experience a serving location switch,
and for the median session, 23.71% of chunks experience a
serving location switch. Regardless, the number of switches is
significant in many sessions, and this has implications for the
performance of ABR algorithms, as we will see in §IV.

B. Impact on performance

So far, we have seen that objects within a video session may
be served from different CDN layers or the origin. We next
consider the impact on performance.

Figure 6 presents an example of a video session from Vimeo
served by Fastly. The X-Axis represents different chunks in the
session, and the Y-Axis represents the application throughput
of that chunk. The figure shows that the application throughput
for each chunk varies significantly depending on where it is
served from, with the average application throughput for chunks
served from the origin, Fastly Shield, and Fastly Edge being
18.04 Mbps, 23.57 Mbps, and 28.64 Mbps respectively.

We next study performance using data collected across

1.0 1.0 = 10 T
T v vy T T
[l . . et
. '
'y r w ’ w L] .
S 08| c 0.8 N o 0.8} e
o M o '] Vet
2 0.6 , 2 0.6 v 2 0.6 '
n n L n
@ ' @ ' @ 1
n 1 n n MR
5 ' 5 ' %5 P
° 04f S 0.4 1 ° 0.4} -
c £ 1 c .
.2 ’ .2 ’ 2 I
= ' — = — B —
E 02l 1 + Origin | E 0.2 N + Origin | E 02l N = Origin |
[: + | === CloudFront [= Fastly Edge ["' == Akamai L1
1 : = = Fastly Shield et = = Fastly Shield . == Akamai L2
0.0 L L L LW T T T 0.0 o L L L L T T T 0.0 al L L T
0 50 100 150 200 250 300 350 400 450 0 100 200 300 400 500 600 700 800 900] 100 200 300 400 500
Average TTFB (ms) Average TTFB (ms) Average TTFB (ms)
1.0 1.0 1.0 : —r
-
B .
L]
'Y 'S 'S L
c 0.8} g 0.8 . g 0.8 N
o o o '
" '] 4 'y PR
£ 5 ~ g 5 g
‘% 0.6 5 0.6 S - 5 0.6 '
n 0 . ’ 0 :
@ o ’ o
n » 1 »
4 4 N 4
© 0.4 © 0.4 © 0.4
c c c
.2 .o .o
= — = — = —
E 02l - Origin E 0.2 A - Origin | E 0.2 - Origin |
w == CloudFront w n = Fastly Edge w = Akamai L1
_— = = Fastly Shield ’ ' = = Fastly Shield , == Akamai L2
0.0 (hd L I n n 0.0 L 1 L I n n 0.0 P L . T
0 10 20 30 40 50 60 70 10 15 20 25 30 35 40 45 0 10 20 30 40 50

ge application throughput (mbps)

(a) Twitch: CloudFront/Fastly.

Average application throughput (mbps)

(b) Vimeo:Fastly.

Average application throughput (mbps)

(c) Vimeo:Akamai.

Figure 7: Average TTFB and application throughput per publisher per CDN.

°
@

e
o

[
IS

Fraction of chunks CDF

°
N

+= Origin
= Akamai L1
== Akamai L2

Fraction Of Sessions CDF

5 o 10 20 30 40 50
Average application throughput (mbps)

3
Chunk size (MB)

(a) Chunk size of first K and remain-
ing N-K chunks (K=10).

(b) Average application throughput
excluding first K chunks of each
session.

Figure 8: Vimeo Akamai. Explaining impact of initial chunks

on application throughput.

sessions. For each video session, and for each layer, we
computed the average TTFB and application throughput of all
chunks served by that layer. The top row of Figure 7 shows the
cumulative distribution of the average TTFB across sessions
with each graph corresponding to a different combination of
publisher and CDN, and each curve corresponding to objects
served from a given layer. The figure is as expected, with
TTFB increasing for layers further from the users, and the
highest TTFB for the origin.

The bottom row of Figure 7 presents the distribution of
average application throughput across sessions for chunks
served by each layer. The figures show that the average
application throughput of objects served from the CDN layer is
generally higher than the throughput of objects served from the
origin. An exception is Vimeo and Akamai (bottom right). To
explain the discrepancy, note that when chunk sizes are small,
application throughput tends to be biased to be small. Recall
from Figure 4(c) that the Akamai L1 cache tends to serve
objects predominantly in the start of the session. These chunks

tends to be of smaller size since they are downloaded during the
slow start phase. To illustrate this further, consider Figure 8(a)
which shows a CDF of the sizes of the first K chunks across
all sessions, and the remaining N — K chunks. The initial
chunks are clearly smaller (with a median size of 1.32 MB),
while the median size of the remaining chunks is 3.35MB.
Figure 8(b) shows the average application throughput after
eliminating the impact of the first 10 chunks for Vimeo and
Akamai. Figure 8(b) shows clear improvement in throughput
compared to Figure 7(c) for the L1 layer.

Impact on 4K streaming. While the results above were
using the ABR-Set, we next present results with the 4K-Set
to understand the sustainability of streaming 4K video (§II).
Figure 9 summarizes results for sessions corresponding to
the 4K-Set from USHomel. The sessions were split nearly
evenly between Fastly and Akamai with 79% and 89.3% of
their sessions being mixed (objects served from both CDN and
origin) respectively. Figure 9(a) shows that while the throughput
from the origin is too low to sustain 4K rates, the application
throughput is clearly better for CDN layers closer to the user
with both Fastly and Akamai. Further inspection indicated
the contributing factors were different for the two CDNs.
Specifically, we noticed that the TTFB values were really high
with Fastly, and much lower with Akamai. Figure 9(c) explores
this further by showing boxplots that depict the variation of
TTFB for chunks in different size ranges, The figure shows
that for Fastly, the TTFB grows significantly with larger chunk
sizes for both the origin (with a median exceeding 1.5 seconds
for the largest sizes), and Fastly Shield (with a median of
about 400 ms for the largest sizes). In contrast, for Akamai,
the TTFB does not grow with chunk size for L2, and grows
more slowly for the origin.

We hypothesize that this is because an optimization for large

1.0

1.0 -

Origin '
= 2000 || Fastly Edge T |
o o.sf B 0.8 = Fastly Shield P
8 g os y : ?
w n
s 5 1500 é
‘% 0.6 ‘% 0.6 & %
g g £
n n o - Ti
% 0.4 G 0.4 £ 1000 : '

c c + '
.2 .2 T '
Y - Origin T origi '
S 0.2 9 {82 Origin | s00| - % " -
w = Fastly Edge w = Fastly Edge g
- - Fastly Shield - - Fastly Shield = -+ T @
0.0 . . . n : n 0.0 , \ n n = =53
10 15 20 25 30 35 40 45 50 0 20 40 60 80 100 120 8_0,45 2.0MB 2.0MB 3.0MB 16.(;;5 32.0MB
Average application throughput (mbps) Average network throughput (mbps) Chunk size ranges in MB
1.0 1.0
[z Origin
w 2000 [Akamai L1
g 0.8} 5 0.8 3 Akamai L2
3] 5]
o w
s 5 1500
‘B 0.6 ‘" 0.6 N T
@ s g
» H = i T
Zoe n @
% oal R4 C 0.4 £ 1000 .
c -2 e
2 [K
T - - Origin T . igil T H
0.2t - 9 . S 0.2 origin A 500 %
w - = Akamai L1 [= Akamai L1 y‘
vvvv == Akamai L2 . == Akamai L2 é —
0.0 K n : 0.0 o . . n : e T s sl g
5 10 15 20 25 30 35 40 45 o 20 a0 60 80 w0 120 SoMB 2oMB 40MB sOMB 16.0MB 32.0MB
ge application throughput (mbps) Average network throughput (mbps) Chunk size ranges in MB
(a) Average application (b) Average network through- (c) Distribution of TTFB over

throughput of sessions for

each CDN.

put of sessions for each
CDN.

different ranges of chunk
sizes for each CDN.

Figure 9: Performance with 4K-Set collected from USHomel.

=
o

— Akamai L2 — Akamai L2
=+ Origin f == Origin

Fraction Of Sessions CDF
Fraction Of Sessions CDF

= Akamai L2 = Fastly Shield
== Origin =+ Origin

14
3

14
o

Fraction Of Sessions CDF
o
s

Fraction Of Sessions CDF

°
N

14
o

50 100 150 200 250
Average application throughput (mbps)

0 10 20 30 40 50 60 70
Average application throughput (mbps)

80 o 300

(a) USBus: Akamai. (b) USHome2: Akamai.

10 20 30 40 50 60 70
Average application throughput (mbps)

o 50 100 150 200 250
Average application throughput (mbps)

300

°

80

(c) USUniv: Akamai. (d) USUniv: Fastly.

Figure 10: Performance with 4K-Set collected from other locations. Each graph shows a CDF of the average application
throughput across sessions for each location and CDN combination.

file transfer was not turned on with Vimeo and Fastly. As per
Fastly documentation [10], a feature called streaming miss
must be explicitly configured to ensure that when fetching an
object from the origin, the response is streamed back to the
client immediately without waiting for the full object to arrive
at the edge to reduce first-byte latency. In contrast, we believe
an equivalent optimization had been enabled for Akamai.

As further evidence, Figure 9(b) plots the network throughput
(which only considers time from first to last byte and does not
include TTFB effects, see §II-B). Consider that the streaming
miss optimization is turned off. Then, irrespective of whether
the object missed entirely in the CDN, or which layer it hit in,
we would expect the network throughput to be Ngy which
denotes the throughput from the edge server to the user. This
is because the object must be completely shipped to the edge
before being sent to the user. In contrast, if the streaming miss
optimization were turned on, and an object hit in a higher
layer C, rather than the edge F, we would expect the network
throughput seen by the client to be min (Nog, Ngy) where

Ncpg is the throughput from the higher layer server to the
edge. Indeed, Figure 9(b) shows that the network throughput is
similar for all layers with Fastly, but Akamai L1 has distinctly
higher network throughput than other layers.

Figure 10 presents results with the 4K-Set for other client
locations. All sessions collected from USBus and USHome?2
were served by Akamai, while the sessions from USUniv
were split equally between Akamai and Fastly. In all cases,
practically all sessions had chunks served by both the origin and
the CDN. Figure 10 shows the average application throughput
of sessions for all the CDN and location combinations. We
omit Akamai L1 and Fastly Edge since we observed they
primarily served the first few chunks of a session. First, for
the only Fastly case, Figure 10(d) shows that Fastly Shield
has significantly higher average application throughput than
the origin for nearly 80% of sessions which we confirmed is
due to high origin TTFB for similar reasons described above.
In the remaining cases, Akamai L2 performs slightly better
than the origin for USHome2 and USUniv, though almost

indistinguishable for USBus. Further inspection shows that
with Akamai, the origin TTFB is small even for the largest file
sizes indicating an optimization similar to streaming miss is
in place. We hypothesize the limited benefits are because the
network throughput from the origin to the CDN is comparable
to the network throughput from the CDN edge to the user.
Overall, these results show that CDN caching does not always
result in a win in throughput (since the performance from the
cache server to the client may be the limiting factor), and the
benefits are sensitive to client location and CDN.

IV. IMPLICATIONS FOR ABR ALGORITHMS

Our results so far have shown that video chunks within
a session may be served from different CDN layers, or the

origin, with the potential for different application throughput.

Many ABR algorithms [29], [37], [25] use a prediction of
future throughput in guiding their bit rate decisions, with the
prediction itself informed by past throughput observations. Yet,
current ABR algorithms are agnostic as to whether a chunk
hits or misses in the CDN, or which CDN layer it is served
from. In this section, we evaluate the potential improvements in
prediction accuracies, and ABR algorithm performance if CDN
awareness is incorporated in ABR algorithms. We conduct this
study with RobustMPC [37] (that we henceforth refer to as
just MPC), a representative and well-known ABR algorithm.

MPC background. MPC selects bit rates so as to optimize
a metric referred to as QoE-linear (defined later) over a
look-ahead window of the next k chunks (k = 5), while
taking current client buffer occupancy, and predicted network
throughput into account. MPC predicts the future throughput
by calculating the harmonic mean of the application throughput
observed over the past m (m=5 by default), and discounts the
prediction by the maximum prediction error seen over those
chunks.

Incorporating CDN awareness in MPC. MPC like most
ABR algorithms is agnostic of whether chunks are served from
the origin, or the CDN, which could lead to inaccuracies in
throughput prediction. We modified MPC to separately maintain
the past throughput and prediction errors for chunks served
from the CDN and origin. Second, we include a hint that
indicates whether the next chunk is served from the CDN or
the origin, which results in different throughput predictions.
We consider a two-level scheme for simplicity, though it is
possible to maintain separate estimates for each CDN layer.
We henceforth refer to this scheme as MPC-CDN. We only
consider a hint regarding the immediate next chunk, though
better accuracies can potentially be obtained if hints were
provided regarding the next k£ chunks. In practice, such hints
can be provided by the CDN as part of the metadata when a
previous chunk is served.

Performance metrics. In delivering video, it is desirable
to ensure the average bit rates of chunks is high, keep the
rebuffering seen by clients low, and minimize variation in bit
rates across chunks. We measure the performance of a video
session using the QoE-linear metric (proposed in [37]),

which is a linear combination of the above metrics:

N N N—1
QoE-linear = ZBk—TZTk—é Z |Br+1 — Bi| (1)
k=1 k=1 k=1

Here, N is the number of chunks in the video, B; is the
bit rate selected for chunk ¢ (in Mbps), T; is the rebuffering
time associated with chunk 4. Further, 7 and § are the penalties
associated with rebuffering and bit rate variation respectively.
We used 7 = 52.142 which indicates that a rebuffering time of
1 second would incur as much penalty as the reward obtained
if a chunk were downloaded at the maximum bit rate in mbps
(following previous works [29], [37], [20]), and § = 1 (default
value).

Implementation and evaluation setup. We incorporated
our changes in the MPC source code distributed with [29].
We used Chromium (Google’s open-source web browser [6])
and dash.js (version 2.4) as the video player [7]. By default,
dash.js sends all its HTTP requests to a single server. We
modified the dash.js code to send requests to multiple servers
depending on where the chunk is served from (CDN or origin).
We used a buffer size of 60 seconds, and the "Big Buck
Bunny" video [4] which has a total length of 635 seconds.
We used ffmpeg [11] to encode the video into the following
bit rates [9194,15501,25243,52142] kbps which correspond to
[720p, 1080p, 1440p, 2160p] video qualities following Google’s
encoding recommendations [18]. We used MP4BOX [13] to
split the encoded videos to 4-second chunks, resulting in 159
chunks. To handle large 2160p (4K) chunks, we increased the
default video memory limit (default of 150MB) in Chromium’s
code [30], and rebuilt it.

We used 71 traces where the percentage of origin-served
chunks in a session is between 20% and 80% since these traces
have a reasonable number of chunks served from both the CDN
and the origin. We created two separate traces, one each for
the CDN and the origin. Each trace has the throughput of the
corresponding chunks (obtained from our measurements in
§III). We interpolate the throughput at any intermediate point
in time with the average of the throughput of the previous and
next chunks served from the appropriate location.

We used Mahimahi [31] as our network emulator. We used
the node.js http-server [12] to run both video servers (CDN and
origin). We run two mahimahi shells, one to emulate the CDN
trace, and the other emulated the origin trace. MPC-CDN reads
a hint map at the start which indicates whether each chunk is
served from the origin or the CDN. For experiments with each
trace, we use as many chunks as in the trace, or in our video,
whichever is smaller.

Our experiments were run using a gaming laptop with
3.5GHz quad-core processor, 16GB of RAM, and NVIDIA
GeForce GTX 960M GPU, sufficient to play multiple 4K
videos without stuttering. We run the Chromium client, the
ABR server (MPC-CDN or MPC), and two HTTP servers
(CDN and origin) on the same machine.

Results. Figure 11(b) shows a CDF of the reduction in
the throughput prediction error across sessions with MPC-
CDN relative to MPC. For each scheme and each session, the

=
o

=
o

14 e e
B o o

Fraction of sessions (CDF)
o
N

Fraction of sessions (CDF)

o
o

e
o

e
o

0.4

02! - Avg BitRate (increase)

= Rebuffering (decrease)
----- BitRateVariation (decrease)

Fraction of sessions (CDF)

=Y i N

5 10 15 20 ~10 0 10
% of improvement in QoE-linear

(a) Improvement in QoE—1inear. Points to
the right of the Y-Axis indicates improve-
ment, and to the left indicates a reduction.

% of reduction in throughput prediction error

(b) Reduction in throughput prediction error.

20 30 40 50 -5 (] 5 10 15 20 25 30
% of improvement

(c) Increase in average bit rate , and decrease
in rebuffering and bit rate variation.

Figure 11: Emulation results showing the benefits of incorporating CDN-awareness in MPC.

throughput prediction error is the mean of the (normalized)
prediction error of each chunk in the session. Figure 11(b)
shows that MPC-CDN reduced the throughput prediction error
for 81.7% of sessions (points right of the Y-Axis) with 50%
of the sessions seeing a reduction in error of at least 13.1%,
and 20% of the sessions seeing a reduction of at least 35.7%.

Figure 11(a) shows a CDF of the % increase
in QoE-linear with MPC-CDN relative to MPC.
QoE-linear improved for 91.5% of sessions, with an
improvement of at least 10% for 20% of the sessions.
Figure 11(c) shows the benefits for the individual video
delivery metrics, i.e., the increase in average bit rate , the
reduction in rebuffering ratio, and the reduction in bit rate
variation. For instance, 73.23% of sessions experienced a
reduction in rebuffering, with the reduction exceeding 25.5%
for 20% of the sessions. While some sessions did see an
increase in rebuffering, the increase was modest, and less than
5% for all sessions. Overall these results show the potential
benefits of incorporating CDN awareness.

V. RELATED WORK

Researchers [32], [36], [19], [28], [24], [21] have proposed
new caching policies to improve the hit rates at edge, and
eventually improve video QoE. In contrast our work treats
caching policy as blackbox, and sheds light on how the
chunks are served from existing CDNs using an end-to-end
measurement approach. We also show that caching at the edge
may not always improve application throughput, and the results
are sensitive to the CDN and client location. Furthermore, we
also redesign ABRs to incorporate CDN awareness.

Prior work [27], [23] showed how centralized control planes
can allow clients to dynamically switch CDNs to improve
video performance. Others [26] pointed out the potential for
oscillations if lower video bitrate are cached, and higher bitrates
are served from the origin, and suggested throttling bandwidth
from the cache to prevent oscillations. In contrast, we conduct
measurements to uncover real-world evidence that chunks in
the same session could be served from different CDN layers
(or origin), and find more complex patterns (e.g., chunks of the
same bitrate could be served from different locations). Further,
throttling at the cache [26] forgoes the opportunity of obtaining
better video quality. We instead look at exposing information

to the client to improve ABR algorithm performance.

A similar methodology as ours was used to identify where
objects in a web page were served from for one CDN [34].
Our methodology generalizes to multiple CDNs, and our focus
is on video streaming. Researchers [35] have developed better
throughput prediction approaches for video streaming based
on Hidden Markov Models. However, these models do not
separate the past throughput measures of the origin and various
CDN layers which can improve the prediction accuracy. Finally,
others (e.g., [3]) have explored coordination for bulk transfer
traffic between ISPs and CDNs. In contrast, we look at how
exposing information from the CDN to the client can improve
ABR algorithm performance.

VI. CONCLUSIONS

In this paper, we have presented a methodology for analyzing
in an end-to-end fashion how chunks in a video session are
served by a CDN, and the implications for video streaming
performance, especially emerging 4K video streaming. Our
measurements of popular video publishers and three different
CDNs show that chunks of the same session are often served by
different CDN layers, or miss altogether in the CDN. Further,
the differences in application throughput based on where chunks
are served from can differ significantly enough to impact
whether 4K streaming can be sustained even in well provisioned
network environments. However, the extent of differences
is sensitive to client location, and CDN. We considered the
implication of our findings on ABR algorithms. Evaluations on
an emulation testbed show that incorporating CDN awareness
in ABR algorithms can lead to better throughput prediction
accuracies and ABR algorithm performance — e.g., reducing
rebuffering ratios by over 25.5% for 20% of the video sessions.

Acknowledgments. We thank Humberto La Roche for his
helpful feedback throughout this project. This work is supported
in part by an NSF ICE-T:RC Award (Number 1836889), and a
Cisco Research Award. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF or
Cisco.

REFERENCES

[1] Akamai. https://www.akamai.com/.

[2
[3]

[4
[5]
[6]
[7]

[8

=

[9
[10]

(11]
[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Amazon cloudfront. https://aws.amazon.com/cloudfront/?nc=sn&loc=0.
Application-layer traffic optimization (ALTO) problem statement. Avail-
able at http://tools.ietf.org/html/rfc5693.

Big buck bunny video. https://peach.blender.org/.

Browsermob proxy. https://bmp.lightbody.net/.

Chromium. https://www.chromium.org/Home.

Dash industry forum: Dash.js. http://dashif.org/reference/players/
javascript/1.4.0/samples/dash-if-reference-player/.

Deciphering fastly-debug header. https://support.fastly.com/hc/en-us/
community/posts/36004016721 1-Deciphering-Fastly-Debug-header.
Fastly. https://www.fastly.com/.

Fastly:streaming miss. https://docs.fastly.com/guides/performance-tuning/
streaming-miss/.

FFmpeg. https://ffmpeg.org/.

http-server: a command-line http server. https://github.com/http-party/
http-server#readme.

Mp4box. https://gpac.wp.imt.fr/mp4box/.

Reduce CloudFront Latency "X-Cache: Miss from cloudfront.
https://aws.amazon.com/premiumsupport/knowledge-center/cloudfront-
latency-xcache/.

Understanding cache hit and miss headers with shielded ser-
vice. https://docs.fastly.com/guides/performance-tuning/understanding-
cache-hit-and-miss-headers- with-shielded-services.

US Alexa Rank. https://www.alexa.com/topsites/countries/US.

Using akamai pragma headers to investigate or troubleshoot akamai
content delivery. https://community.akamai.com/customers/s/article/
Using- Akamai-Pragma-headers- to-investigate- or-troubleshoot- Akamai-
content-delivery?language=en_US.

Youtube recommended upload encoding settings. https://support.google.
com/youtube/answer/1722171?hl=en.

Hasti Ahlehagh and Sujit Dey. Video-aware scheduling and caching
in the radio access network. IEEE/ACM Transactions on Networking
(TON), 22(5):1444-1462, 2014.

Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica
Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang.
Oboe: Auto-tuning video abr algorithms to network conditions. In
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’18, pages 44-58, New York, NY,
USA, 2018. ACM.

Divyashri Bhat, Amr Rizk, Michael Zink, and Ralf Steinmetz. Network
assisted content distribution for adaptive bitrate video streaming. In
Proceedings of the Sth ACM on Multimedia Systems Conference, pages
62-75. ACM, 2017.

Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels, Michael F.
Schwartz, and Kurt J. Worrell. A hierarchical internet object cache.
In Proceedings of the 1996 Annual Conference on USENIX Annual
Technical Conference, ATEC ’96, pages 13—13, Berkeley, CA, USA,
1996. USENIX Association.

Aditya Ganjam, Faisal Siddiqui, Jibin Zhan, Xi Liu, Ion Stoica, Junchen
Jiang, Vyas Sekar, and Hui Zhang. C3: Internet-scale control plane for
video quality optimization. In /2th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages 131-144, Oakland,
CA, May 2015. USENIX Association.

Chang Ge, Ning Wang, Severin Skillman, Gerry Foster, and Yue Cao.
Qoe-driven dash video caching and adaptation at 5g mobile edge.
In Proceedings of the 3rd ACM Conference on Information-Centric
Networking, pages 237-242. ACM, 2016.

Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, efficiency,
and stability in http-based adaptive video streaming with festive. In
Proceedings of the 8th International Conference on Emerging Networking
Experiments and Technologies, CONEXT 12, pages 97-108, New York,
NY, USA, 2012. ACM.

Danny H. Lee, Constantine Dovrolis, and Ali C. Begen. Caching in
http adaptive streaming: Friend or foe? In Proceedings of Network
and Operating System Support on Digital Audio and Video Workshop,
NOSSDAYV ’14, pages 31:31-31:36, New York, NY, USA, 2014. ACM.
Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ton
Stoica, and Hui Zhang. A case for a coordinated internet video control
plane. In Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’12, pages 359-370. ACM, 2012.

Ge Ma, Zhi Wang, Miao Zhang, Jiahui Ye, Minghua Chen, and Wenwu
Zhu. Understanding performance of edge content caching for mobile

10

[29]

[30]

(31]

(32]

(33]

(34]

[35]

[36]

[37]

video streaming. [EEE Journal on Selected Areas in Communications,
35(5):1076-1089, 2017.

Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive
video streaming with pensieve. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’17,
pages 197-210, New York, NY, USA, 2017. ACM.

Joseph Medley. Exceeding the buffering quota. https://developers.google.
com/web/updates/2017/10/quotaexceedederror.

Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, James Mickens, and Hari Balakrishnan. Mahimahi: Accurate
record-and-replay for http. In Proceedings of the 2015 USENIX
Conference on Usenix Annual Technical Conference, USENIX ATC
’15, pages 417-429, Berkeley, CA, USA, 2015. USENIX Association.
Hasti A Pedersen and Sujit Dey. Enhancing mobile video capacity and
quality using rate adaptation, ran caching and processing. IEEE/ACM
Transactions on Networking (TON), 24(2):996-1010, 2016.

Mary Pedersen. Best practices: What is the optimal length for
video content? https://adage.com/article/digitalnext/optimal-length-video-
content/299386.

Shankaranarayanan Puzhavakath Narayanan, Yun Seong Nam, Ashiwan
Sivakumar, Balakrishnan Chandrasekaran, Bruce Maggs, and Sanjay Rao.
Reducing latency through page-aware management of web objects by
content delivery networks. In Proceedings of the 2016 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Science, SIGMETRICS ’16, pages 89-100, New York, NY, USA, 2016.
ACM.

Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu
Wang, Tao Liu, and Bruno Sinopoli. CS2P: Improving video bitrate
selection and adaptation with data-driven throughput prediction. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
pages 272-285, New York, NY, USA, 2016. ACM.

Tuyen X Tran, Abolfazl Hajisami, Parul Pandey, and Dario Pompili.
Collaborative mobile edge computing in 5g networks: New paradigms,
scenarios, and challenges. IEEE Communications Magazine, 55(4):54-61,
2017.

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-
theoretic approach for dynamic adaptive video streaming over http. In
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, pages 325-338, New York, NY,
USA, 2015. ACM.

