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Abstract. This paper develops an efficient and accurate numerical method for the
computation of electromagnetic waves scattered by random rough surfaces. The
method is based upon a combination of the Transformed Field Expansion method,
which represents the solution as a provably convergent power series, and the Monte
Carlo technique for sampling the probability space. The compelling aspect of the pro-
posed method is that, at each perturbation order and every sample, the governing
Transformed Field Expansion equations share the same deterministic Helmholtz oper-
ator on a deterministic domain. Thus, an LU factorization of the matrix discretization
of this single operator can be employed repeatedly for all orders and every sample.
Consequently, the computational complexity of the whole algorithm is significantly
reduced as a result. Numerical examples are described which demonstrate the accu-
racy of the algorithm.
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1 Introduction

The scattering of electromagnetic waves from random rough surfaces has long been a
subject of interest due to its significant applications in remote sensing, oceanography,
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surface plasmonics, solar cells, etc. [13, 17, 19, 23, 28, 30]. If the deviation of the surface
shape from trivial (flat) is small then asymptotic techniques such as the perturbation or
Kirchhoff theories can be applied to derive the analytical solutions with reasonable ac-
curacy [5, 26, 29]. However, when the surface is a large and/or rough deviation from
trivial then analytical methods are insufficient to deliver desired error tolerances and
one must resort to numerical simulation of the electromagnetic wave propagation. The
simplest, and most natural, numerical approach is to use the Monte Carlo (MC) method
where a set of numerical solutions are obtained for independent identically distributed
(i.i.d.) sample surface profiles which are subsequently utilized to calculate the statistics
of the scattered waves [14, 18, 25]. An alternative approach is to transform the scatter-
ing problem on a random domain into a stochastic problem on a deterministic domain,
which is then solved with either Monte Carlo simulations or stochastic Galerkin methods
(c.f. [3, 4, 10, 34–36]). In typical simulations both of these methods become computation-
ally intractable when a large number of degrees of freedom is required for the spatial dis-
cretization: The MC method requires solution of the full scattering problem many times
with different sampling surfaces, while the stochastic Galerkin method (which is based
upon the representation of the random solution by either the Karhunen-Loève or Wiener
Chaos expansion) usually leads to a high-dimensional, deterministic equations that are
too expensive to solve. We also refer to [7, 8] for other efficient numerical methods to
solve elliptic equations with random domains.

In this paper, we propose an efficient Monte Carlo-Transformed Field Expansion (MC-
TFE) method for the simulation of electromagnetic wave scattering by random rough
surfaces. More precisely, a High-Order Perturbation of Surfaces (HOPS) Taylor expan-
sion [24] is employed to represent the solution for every realization in a Monte Carlo
method which is applied to sample the relevant probability space. A change of variables,
which flattens the problem domain, generates a Helmholtz equation at every perturba-
tion order with deterministic coefficients and random sources, which is posed on a de-
terministic domain. We apply a High Order Spectral Legendre-Galerkin method [31] to
discretize the deterministic Helmholtz operator. In addition, to accelerate the algorithm,
we take advantage of the fact that, at every perturbation order and every random sam-
ple, the same deterministic differential operator must be approximated. By performing
an LU decomposition of the discretization matrix of the operator, all samples at every
order can be obtained in an efficient way by simple forward and backward substitutions,
thereby significantly reducing the computational cost. Similar expansion techniques and
acceleration schemes have also been used by the authors for the modeling of waves in
random media. The interested reader is referred to [11, 12] for complete details.

The rest of the paper is organized as follows. We introduce the governing equations
for the scattering problem in Section 2. The computational modeling of random surfaces
is briefly discussed in Section 3, and the MC-TFE method is presented and discussed in
Section 4. Several numerical experiments are provided in Section 5 to demonstrate the
accuracy and reliability of the method.
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2 Problem formulation

We consider the scattering of electromagnetic waves by a random one-dimensional sur-
face/curve

Γ(ω) :={(x,y) | y= g(ω;x), −∞< x<∞},

where the interface shape is a stationary Gaussian process. Here ω and (x,y) denote
the random sample and the spatial variables, respectively. Fig. 1 shows one realiza-
tion of a surface sample. We assume that the height of the surface is small by letting
g(ω;x) = ε f (ω;x), where ε∈ (0,1), and f (ω;x)∼O(1) is a stationary Gaussian process
with a continuous and bounded covariance function C(x,y) = c(x−y). In addition, we
assume that the random surface is d-periodic so that f (ω;x+d)= f (ω;x). We denote the
domains above and below Γ(ω) by

Ω+(ω) :={y> g(ω;x)}, Ω−(ω) :={y< g(ω;x)},

respectively. The permittivities in Ω+(ω) and Ω−(ω) are denoted by ǫ+ and ǫ−, respec-
tively. It is also assumed that the permeability is µ0 in each domain.

Ω
−(ω)

Γ(ω)
Ω

+(ω)
ui

Figure 1: One realization of the random interface between the two material layers.

For concreteness we consider the case of Transverse Electric (TE) polarization (Trans-
verse Magnetic polarization can be handled analogously) for which the electric field
E=(0,0,v). The random structure is illuminated by a time-harmonic plane incident wave

vi = eiαx−iβy,

where α = k+sin(θ), β = k+cos(θ), θ is the angle of incidence, and k+ is the wavenum-
ber in the upper layer. The total field v above the surface consists of the incident wave
and a scattered field v+(ω;x,y), while below the surface the total field v is given by the
transmitted field v−(ω;x,y). In this scenario, it can be shown that the Maxwell equations
reduce to the following Helmholtz equations [27]

∆v±(ω;·)+(k±)2v±(ω;·)=0, (2.1)

where k− is the wavenumber in the lower layer. Furthermore, the periodicity of the
surface enforces the quasi-periodicity of the fields such that

v±(ω;x+d,y)= eiαdv±(ω;x,y), (2.2)
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and the scattered waves satisfy upward/downward propagating conditions. At the in-
terface Γ(ω), the continuity of the electromagnetic field implies that

v+(ω;·)+vi =v−(ω;·), (2.3a)

∂νv+(ω;·)+∂νvi =∂νv−(ω;·), (2.3b)

where ν=(−∂xg(x),1)T is an unnormalized normal vector.
The upward/downward propagating wave conditions can be stated with mathemat-

ical rigor by the introduction of artificial boundaries and transparent boundary condi-
tions [1, 15]. In addition, these developments serve the useful numerical purpose of
truncating the bi-infinite problem domain into one of finite extent. To summarize this
procedure we consider two planes {y= a} and {y=−b} chosen so that a,b> |g|L∞ , and
the resulting domain

{(x,y) | −∞< x<+∞, −b<y< a} .

For a fixed sample ω, the Rayleigh expansions state that the scattered field above Γω can
be expressed as

v+=
∞

∑
p=−∞

v̂+p (ω)eiαpx+iβ+
p (y−a),

where

αp :=α+(2π/d)p, β±p :=





√
(k±)2−α2

p, p∈P±,

i
√

α2
p−(k

±)2, p 6∈P±,

and
P± :=

{
p∈Z | (k±)2−α2

p>0
}

,

which are the sets of propagating modes. The {v̂+p } are the Fourier coefficients of v+ so
that

v+(ω;x,a)=
∞

∑
p=−∞

v̂+p (ω)eiαpx.

It is easy to show that

∂yv+(ω;x,a)=
∞

∑
p=−∞

(iβ+
p )v̂

+
p eiαpx =: T+[v+(ω;x,a)],

which not only defines T+ but also allows us to state the upper transparent boundary
condition

∂yv+(ω;x,a)=T+[v+(ω;x,a)]. (2.4a)

A similar calculation at y=−b yields an operator

T−[v−(ω;x,b)] :=
∞

∑
p=−∞

(−iβ−p )v̂
−
p (ω)eiαpx,
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and the lower transparent boundary condition

∂yv−(ω;x,b)=T−[v−(ω;x,b)]. (2.4b)

To conclude, the mathematical model in the domain {(x,y) |−∞< x<∞,−b<y< a} can
be described by (2.1)-(2.4b).

3 Modeling of random surfaces

To model the random surface, we adopt the well-known Karhunen-Loève expansion to
represent the stationary Gaussian process f (ω;x) [20]. In more detail, since f (ω;x) is
d-periodic we may expand its covariance function c(x) as a Fourier series. In most appli-
cations, c(x) is even and it follows that

c(x)=
ĉ0

2
+

∞

∑
p=1

ĉpcos

(
2pπx

d

)
.

It can be shown explicitly that the covariance operator

Kϕ(x) :=
∫ d

0
c(x−y)ϕ(y)dy,

possesses the eigenvalues λj=dĉj/2, j=0,1,2,··· . The corresponding eigenfunctions are

ϕj(x)=





√
1

d
, j=0,

√
2

d
cos

(
2jπx

d

)
, j>1, even,

√
2

d
sin

(
2jπx

d

)
, j>1, odd.

The Karhunen-Loève representation of the random process f (ω;x) is given by

f (ω;x)= f (x)+
√

λ0ξ0(ω)

√
1

d

+
∞

∑
j=1

√
λj

[
ξ j,s(ω)

√
2

d
sin

(
2jπx

d

)
+ξ j,c(ω)

√
2

d
cos

(
2jπx

d

)]
,

where f (x) is some deterministic function, {λj}
∞
j=0 are the eigenvalues of the covariance

operator K, and ξ0, ξ j,c and ξ j,s are i.i.d. Gaussian random variables with zero mean and
unit covariance.

Two widely used covariance functions for the modeling of rough surfaces are c(x−
y) = σ2

0 exp(−|x−y|q/ℓq) for q = 1,2, where σ0 is the standard deviation (or root mean
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Figure 2: Eigenvalues for the Gaussian covariance operator when d=10π and ℓ=1.

square of the surface) and ℓ is the correlation length [26]. Here we consider a Gaussian
random surface by letting c(x−y)=σ2

0 exp(|x−y|2/ℓ2) and 0<ℓ≪d. In practical computa-
tions, a finite-term Karhunen-Loève expansion is adopted, and the contribution from the
truncated terms is negligibly small. Fig. 2 shows the decay of the eigenvalues λj when
the period is d = 10π, the root mean square σ0 = 1, and the correlation length is ℓ= 1.
We see that only the first 30 terms are needed to represent the random surface with an
accuracy of 10−2.

4 The Monte Carlo-Transformed Field Expansion method

The Monte Carlo-Transformed Field Expansion (MC-TFE) method is based upon the fol-
lowing ingredients: (i) a simple domain-flattening change of variables; (ii) a High-Order
Perturbation of Surfaces (HOPS) expansion of the solution; (iii) Monte Carlo sampling of
the probability space and an acceleration strategy for solving the discretized problems for
all samples. For each sample ω, (i) and (ii) have the same spirit as the deterministic TFE
method, which has been studied extensively in [15, 23, 24]. Recently, the TFE approach
has also been applied to solve the inverse surface scattering problem [2]. We describe the
process briefly below for the purpose of completeness. The interested reader is referred
to [15, 23, 24] for full details.

4.1 Change of variables

To flatten the interface Γ(ω), for each sample ω, the TFE change of variables is specified
by x′= x and

y′=





a

(
y−g

a−g

)
, g<y< a,

b

(
y−g

b+g

)
, −b<y< g,
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which implies that x= x′ and

y=





(
a−g

a

)
y′+g, 0<y′< a,

(
b+g

b

)
y′+g, −b<y′<0.

These allow us to define the transformed fields

u+(ω;x′,y′) :=v+
(

ω;x′,

(
a−g

a

)
y′+g

)
,

and

u−(ω;x′,y′) :=v−
(

ω;x′,

(
b+g

b

)
y′+g

)
.

If we denote ∆′ :=∂2
x′+∂2

y′ , then (2.1)-(2.4b) become

∆′u+(ω;·)+(k+)2u+(ω;·)=F+(ω;·), 0<y′< a, (4.1a)

∆′u−(ω;·)+(k−)2u−(ω;·)=F−(ω;·), −b<y′<0, (4.1b)

∂y′u
+(ω;x′,a)−T+[u+(ω;x′,a)]= J+(ω;x′), (4.1c)

∂y′u
−(ω;x′,−b)−T−[u−(ω;x′,−b)]= J−(ω;x′), (4.1d)

u+(ω;x′,0)−u−(ω;x′,0)=−φ(ω;x′), (4.1e)

∂y′u
+(ω;x′,0)−∂y′u

−(ω;x′,0)=Q(ω;x′), (4.1f)

u±(ω;x′+d,y′)= eiαdu±(ω;x′,y′). (4.1g)

In the above equations,

F±(ω;·)=∂x′F
±
x (ω;·)+∂y′F

±
y (ω;·)+F±h (ω;·),

where

F+
x =

2

a
g∂x′u

+−
1

a2
g2∂x′u

++
a−y′

a
(∂x′g)∂y′u

+

−
a−y′

a2
g(∂x′g)∂y′u

+,

F+
y =

a−y′

a
(∂x′g)∂x′u

+−
a−y′

a2
g(∂x′g)∂x′u

+

−
(a−y′)2

a2
(∂x′g)

2∂y′u
+,

F+
h =(k+)2 2

a
gu+−(k+)2 1

a2
g2u+−

1

a
(∂x′g)∂x′u

+

+
1

a2
g(∂x′g)∂x′u

++
a−y′

a2
(∂x′g)

2∂y′u
+,



692 X. Feng, J. Lin and D. P. Nicolls / Commun. Comput. Phys., 23 (2018), pp. 685-705

and

F−x =−
2

b
g∂x′u

−−
1

b2
g2∂x′u

−+
b+y′

b
(∂x′g)∂y′u

−

+
b+y′

b2
g(∂x′g)∂y′u

−,

F−y =
b+y′

b
(∂x′g)∂x′u

−+
b+y′

b2
g(∂x′g)∂x′u

−

−
(b+y′)2

b2
(∂x′g)

2∂y′u
−,

F−h =−(k−)2 2

b
gu−−(k−)2 1

b2
g2u−+

1

b
(∂x′g)∂x′u

−

+
1

b2
g(∂x′g)∂x′u

−−
b+y′

b2
(∂x′g)

2∂y′u
−.

Furthermore,

J+=−
1

a
gT+[u+],

J−=
1

b
gT−[u−],

φ=−eiαx−iβg,

and

Q=
1

ab

{
(ab+ag−bg−g2)(iα∂x′g+iβ)φ−ag∂y′u

+

+(∂x′g)(b+g)(a−g)∂x′u
+−(∂x′g)

2a(b+g)∂y′u
+

−bg∂y′u
−−(∂x′g)(b+g)(a−g)∂x′u

−

+(∂x′g)
2b(a−g)∂y′u

−

}
.

Remark 4.1. Since F± and J± depend on v± and g, then the PDEs in (4.1) are genuine
random PDEs.

4.2 HOPS expansion of the solution

To pursue the High-Order Perturbation of Surfaces (HOPS) method, recall that g = ε f ,
where f is sufficiently smooth (C2 continuity suffices, though Lipschitz profiles can also
be accommodated [16, 22]). For each fixed sample ω, we expand the solution as

u±(ω;·)=
∞

∑
n=0

εnu±n (ω;·). (4.2)
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By substituting this form into (4.1) and collecting the terms at each order in εn, it can be
shown that for n≥0

∆′u+
n (ω;·)+(k+)2u+

n (ω;·)=F+
n (ω;·), 0<y′< a, (4.3a)

∆′u−n (ω;·)+(k−)2u−n (ω;·)=F−n (ω;·), −b<y′<0, (4.3b)

∂y′u
+
n (ω;x′,a)−T+[u+

n (ω;x′,a)]= J+n (ω;x′), (4.3c)

∂y′u
−
n (ω;x′,−b)−T−[u−n (ω;x′,−b)]= J−n (ω;x′), (4.3d)

u+
n (ω;x′,0)−u−n (ω;x′,0)=φn(ω;x′), (4.3e)

∂y′u
+
n (ω;x′,0)−∂y′′u

−
n (ω;x′,0)=Qn(ω;x′). (4.3f)

u±n (ω;x′+d,y′)= eiαdu±n (ω;x′,y′). (4.3g)

The source terms are given by

F±n (ω;·)=∂x′F
±
n,x(ω;·)+∂y′F

±
n,y(ω;·)+F±n,h(ω;·),

where

F+
n,x=

2

a
f ∂x′u

+
n−1−

1

a2
f 2∂x′u

+
n−2+

a−y′

a
(∂x′ f )∂y′u

+
n−1

−
a−y′

a2
f (∂x′ f )∂y′u

+
n−2,

F+
n,y=

a−y′

a
(∂x′ f )∂x′u

+
n−1−

a−y′

a2
f (∂x′ f )∂x′u

+
n−2

−
(a−y′)2

a2
(∂x′ f )

2∂y′u
+
n−2,

F+
n,h=(k+)2 2

a
f u+

n−1−
1

a
(∂x′ f )∂x′u

+
n−1−(k

+)2 1

a2
f 2u+

n−2

+
1

a2
f (∂x′ f )∂x′u

+
n−2+

a−y′

a2
(∂x′ f )

2∂y′u
+
n−2,

and similar expressions for F−n,x, F−n,y, and F−n,h can be derived. Furthermore,

J+n =−
1

a
f T+[u+

n−1],

J−n =
1

b
f T−[u−n−1],

φn =(−1)n+1 (iβ f )n

n!
eiαx,
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and

Qn=
1

ab

{
−iabβφn−iabα∂x′ f φn−1−iβ(a−b) f φn−1

−iα(a−b) f ∂x′ f φn−2+iβ f 2φn−2+iα∂x′ f f 2φn−3

−a f ∂y′u
+
n−1+ab∂x′ f ∂x′u

+
n−1+(a−b) f ∂x′ f ∂x′u

+
n−2

−∂x′ f f 2∂x′u
+
n−3−ab(∂x′ f )

2∂y′u
+
n−2−a(∂x′ f )

2 f ∂y′u
+
n−3

−b f ∂y′u
−
n−1−ab∂x′ f ∂x′u

−
n−1−(a−b) f ∂x′ f ∂x′u

−
n−2

+∂x′ f f 2∂x′u
−
n−3+ab(∂x′ f )

2∂y′u
−
n−2−b f (∂x′ f )

2∂y′u
−
n−3

}
.

Remark 4.2. In the above formulas, we set u±−1 = u±−2 = u±−3 = 0. The source term F±n in
(4.3) depends only on the two previous solution orders u±n−1 and u±n−2, and Qn depends
only on the previous three orders u±n−1, u±n−2, and u±n−3.

4.3 The Monte Carlo-Transformed Field Expansion method

We are now in a position to introduce the Monte Carlo-Transformed Field Expansion
(MC-TFE) method for approximating the solution of the problem (2.1)-(2.4b). The method
is based upon the HOPS expansion (4.2), and for each Taylor order, un, the Legendre-
Galerkin method [31] is applied to discretize (4.3a)-(4.3f). Following this, the classical
Monte Carlo method is employed to sample the probability space and to compute the
statistics of the numerical solution. It should be pointed out that more efficient sam-
pling techniques such as quasi-Monte Carlo methods or stochastic collocation methods
(cf. [6, 21]) can also be applied, but we omit the discussion here for conciseness. Very
importantly, our scheme can be significantly accelerated by noting that the same deter-
ministic differential operator is inverted on the same deterministic domain for all Taylor
orders and all samples. This is discussed in detail below.

Let M be a (large) positive integer which denotes the number of realizations for the
Monte Carlo method. For each m=1,2,··· ,M, we sample i.i.d. realizations of the source
function F±n (ωm;·) and the boundary terms J±n (ωm;·), φn(ωm;·), and Qn(ωm;·). Due to
quasi-periodicity of u±n , we may expand

u±n (ωm;x′,y′)=
∞

∑
p=−∞

u±n,p(ωm;y′)eiαpx′ .

Correspondingly,

F±n (ωm;x′,y′)=
∞

∑
p=−∞

F±n,p(ωm;y′)eiαpx′ ,

J±n (ωm;x′)=
∞

∑
p=−∞

J±n,p(ωm)e
iαpx′ ,
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φn(ωm;x′)=
∞

∑
p=−∞

φn,p(ωm)e
iαpx′ ,

Qn(ωm;x′)=
∞

∑
p=−∞

Qn,p(ωm;y′)eiαpx′ .

By substituting these into (4.3), we obtain the following set of two-point boundary value
problems for the functions u±n,p(ω;y′),

d2u+
n,p

dy′2
+(β+

p )
2u+

n,p=F+
n,p(ωm;y′), 0<y′< a, (4.4a)

d2u+
n,p

dy′2
+(β−p )

2u−n,p=F−n,p(ωm;y′), −b<y′<0, (4.4b)

du+
n,p

dy′
(ωm;a)−iβ+

p u+
n,p(ωm;a)= J+n,p(ωm), (4.4c)

du+
n,p

dy′
(ωm;−b)+iβ−p u−n,p(ωm;−b)= J−n,p(ωm), (4.4d)

u+
n,p(ωm;0)−u−n,p(ωm;0)=φn,p(ωm), (4.4e)

du+
n,p

dy′
(ωm;0)−

du−n,p

dy′
(ωm;0)=Qn,p(ωm). (4.4f)

To solve for u±n,p we write

u±n,p=u±,1
n,p +u±,2

n,p ,

where u±,1
n,p is the solution of (4.4) with homogeneous boundary conditions (i.e., J±n,p ≡

φn,p≡Qn,p≡0) and u±,2
n,p is the solution of (4.4) with F±n,p≡0. Note that u±,2

n,p can be calculated

explicitly [15]. To obtain u±,1
n,p various numerical methods can be applied to solve the

above two-point boundary problem, and here we use the Legendre-Galerkin method.
For this, let Pr be the space of polynomials of degree at most r in the regions (−b,0) and
(0,a) respectively, and

Yr ={u| u∈Pr,(u
′−iβ+

p u)(a)=(u′+iβ−p u)(−b)=0}.

It can be shown that [15]
Yr =span{φ0,φ1,. . .,φ2r−2},

where φj are Legendre polynomials. Then the Legendre-Galerkin method is to find ũ±,1
n,p ∈

Yr such that

−
(
(ũ±,1

n,p )
′,v′r

)
+β2

p(ũ
±,1
n,p ,vr)=(F±n,p,vr), ∀vr∈Yr, (4.5)

where (·,·) denotes the L2-inner product. For each p this leads to (2r−1) linear equations
to solve

Apũ1
n,p= fn,p.
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We refer the interested reader to [15] for the detailed specification of the matrix Ap.

We denote the numerical solution of (4.4) by ũ±n,p, which is the sum of ũ±,1
n,p and u±,2

n,p ,

and approximate the expectation E(u±n ) of each Taylor order u±n by the sampling average

u±n =
1

M

M

∑
m=1

Nx

∑
p=−Nx

ũ±n,p(ωm;y′)eiαpx.

Consequently, by virtue of (4.2), the algorithm yields an approximation of E(u±) given
by

U
±
=

1

M

M

∑
m=1

N

∑
n=0

εn

(
Nx

∑
p=−Nx

ũ±n,p(ωm;y′)eiαpx

)
. (4.6)

Similarly, the standard deviation of the sampled solution, which is denoted by σ±U , can be
computed by using the formula

(σ±U )2=
1

M

M

∑
j=1

(
N

∑
n=0

εn
Nx

∑
p=−Nx

ũ±n,p(ωm;y′)eiαpx−U±

)2

,

and no further computational cost is required.
Importantly, we observe that from (4.4a) and (4.4b), for each fixed p, all Taylor orders

for all samples share the same deterministic elliptic operator ∂2
y′+(β±p )

2 (generating the

same discretized matrix Ap). Using this crucial fact, a LU decomposition of Ap leads
to a tremendous savings in the computational cost. In more detail, for each p we fac-
tor Ap into lower and upper triangular matrices, Lp and Up, which are stored and used
repeatedly to obtain the solution at each Taylor order and every sample. In contrast to
a full direct linear solver with O(r3) computational complexity, our MC-TFE algorithm
requires only O(r2) computational cost to calculate ũ±n,p(ω,·) for each n, p and ωm by
simple forward and backward substitutions. The precise description of this procedure is
given in the following Main Algorithm.

Set U
±
(·)=0 (initializing)

For m=1,2,··· ,M (sampling)

Generate ωm

Set U±N(ωm,·)= ũ±0 (ωm,·) (initializing)

For n=1,2,··· ,N (for each mode)

Evaluate F±n,p(ωm;·), J±n,p(ωm;·), φ±n,p(ωm;·), and Q±n,p(ωm;·) by the DFT.

For p=−Nx,··· ,0,1,··· ,Nx

Solve Lpvn,p= fn,p and Upũ±,1
n,p =vn,p.

ũ±n,p← ũ±,1
n,p +ũ±,2

n,p .
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End For

ũ±n ←
Nx

∑
p=−Nx

ũ±n,p(ωm;y′)eiαpx.

Set U±N(ωm,·)←U±N (ωm,·)+εnũ±n .

End For

U
±
(·)←U

±
(·)+ 1

M U±N(ωm,·).

End For

Return U
±

.

Since the implementation of forward and backward substitutions for solving Lpvn,p=

fn,p and Upũ±,1
n,p = vn,p respectively only requires O(r2) multiplications, the cost for ob-

taining coefficients ũ±n,p for all p, n and ωm is O(MNNxr2)+O(r3). On the other hand,

the evaluation of coefficients F±n,p(ωm;·), J±n,p(ωm;·), φ±n,p(ωm;·), Q±n,p(ωm;·) and the so-

lution ũ± by FFT require O(MN ·rNx lnNx) multiplications for all samples and pertur-
bation orders. Consequently, the overall computational cost for the Main Algorithm is
O(MNNx ·(r2+rlnNx))+O(r3). As a comparison, we note that if a brute-force Monte
Carlo method and standard discretization schemes such as finite element method is ap-
plied for solving the scattering problem over the domain at each sample, the total compu-
tational cost would beO(M·(Ñx Ñy)3), where Ñx and Ñy are the number of discretization
points along the x and y directions respectively. Typically, Ñx≥Nx and Ñy≥r is required
for the finite element discretization in order to obtain the same order of accuracy as that
of the spectral method. Therefore, we see that the cost is significantly reduced by the
MC-TFE method. Finally, we remark that the Monte Carlo sampling process can be per-
formed in parallel.

5 Numerical results

We now present a series of numerical examples to illustrate the accuracy and efficiency
of the proposed method. In order to establish the reliability of our method we recall a
common diagnostic of convergence, the energy defect [27]. For this we recall the Rayleigh
expansions for the scattered wave:

v+(ω;x,y)=
∞

∑
p=−∞

v̂+p (ω)eiαpx+iβ+
p y, y> a,

v−(ω;x,y)=
∞

∑
p=−∞

v̂−p (ω)eiαpx−iβ−p y, y<−b.
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From these we define the mean reflectivity and transmittance by

R=
1

M

M

∑
m=1

∑
p∈P+

β+
p

β+
0

∣∣∣v̂+p (ωm)
∣∣∣
2
,

and

T=
1

M

M

∑
m=1

∑
p∈P−

β−p

β+
0

∣∣∣v̂−p (ωm)
∣∣∣
2
,

respectively. The standard deviation of the reflectivity and the transmittance, σR and σT,
are given by

σ2
R =

1

M

M

∑
m=1

(
β+

p

β+
0

∣∣∣v̂+p (ωm)
∣∣∣
2
−R

)2

,

and

σ2
T =

1

M

M

∑
m=1

(
β−p

β+
0

∣∣∣v̂−p (ωm)
∣∣∣
2
−T

)2

,

respectively.

The principle of conservation of energy for each sample ω [27] states

∑
p∈P+

β+
p

β+
0

∣∣∣v̂+p (ω)
∣∣∣
2
+ ∑

p∈P−

β−p

β+
0

∣∣∣v̂−p (ω)
∣∣∣
2
=1,

and we define the energy defect for each sample by

e(ω) := ∑
p∈P+

β+
p

β+
0

∣∣∣v̂+p (ω)
∣∣∣
2
+ ∑

p∈P−

β−p

β+
0

∣∣∣v̂−p (ω)
∣∣∣
2
−1.

The mean energy defect and the standard deviation are denoted by e and σe respectively.
It is clear that e=R+T−1.

For all of the numerical examples presented below, we have set k+ = 1 and k− = 2,
period d = 10π, and a = b = 2. So, the problem (2.1)-(2.4b) is solved over the bounded
domain {(x,y)|0<x<10π,−2<y<2}. In the Karhunen-Loève representation, P is chosen
such that |λP+1

j |<10−4 and the representation has two digits of accuracy, where λj is the

eigenvalue of the covariance operator K. Finally, we also set the number of realizations
M=104 which yields two digits of accuracy in sampling the probability space.

5.1 Accuracy of the numerical algorithm

The random surfaces are modeled by the Karhunen-Loève expansion described in Sec-
tion 3, with the covariance function c(x−y)=(1/3)2 ·exp(−|x−y|2/ℓ2). Here we choose
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Figure 3: Four realizations of random surfaces when ε=0.4.

the correlation length ℓ=1, and Fig. 3 shows four realizations of random surfaces when
ε=0.4.

In the following numerical simulations, the number of Taylor orders is set to N=10.
In addition, in order to resolve the oscillations of the waves with sufficient accuracy, we
set the lateral and vertical discretizations at Nx = 400 and r = 40, respectively. Fig. 4
demonstrates the computed mean and the standard deviation of the reflectivity for dif-
ferent incident angles when the magnitudes of the surface perturbations are ε= 0.2, 0.4,
0.6 and 0.8, respectively. Fig. 5 demonstrates the computed mean and the standard de-
viation of the transmittance for different incident angles and for different magnitudes of
surface perturbation. We observe that, for a fixed incident angle, the standard deviation
of both the reflectivity and transmittance increases as ε increases. To test the accuracy of
the algorithm, the mean e and the standard deviation σe of the energy defect are calcu-
lated, and are shown in Fig. 6. We note that as ε increases, the accuracy of the algorithm
deteriorates which is to be expected as we are moving away from the center of the disk of
convergence of the HOPS expansion at ε=0. In addition, e and σe become larger as the in-
cident angle increases to the very challenging regime of grazing incidence. For instance,
when ε=0.8 we find e>0.05 if the incident angle θ>50o.

5.2 Performance of the algorithm: Numerical parameters

To test the accuracy of the algorithm as the number of Taylor orders N is increased, we
consider normally incident waves, and fix Nx = 400 and r = 40 in the numerical calcu-



700 X. Feng, J. Lin and D. P. Nicolls / Commun. Comput. Phys., 23 (2018), pp. 685-705

θ (Degree)
0 10 20 30 40 50 60

R

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ε = 0.2
ε = 0.4
ε = 0.6
ε = 0.8

θ (Degree)
0 10 20 30 40 50 60

σR

0

0.005

0.01

0.015

0.02

ε = 0.2
ε = 0.4
ε = 0.6
ε = 0.8

Figure 4: Mean and standard deviation of the reflectivity for θ∈ [0,60o] and ε=0.2, 0.4, 0.6, 0.8.
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Figure 5: Mean and standard deviation of the transmittance for θ∈ [0,60o] and ε=0.2, 0.4, 0.6, 0.8.
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Figure 6: Mean and standard deviation of the energy defect for θ∈ [0,60o] ε=0.2, 0.4, 0.6, 0.8.

lations. The magnitude of the mean energy defect |e| and the standard deviation σe for
various ε and different values of N are displayed in Tables 1 and 2. For a fixed ε, as
expected, we observe that higher accuracy is achieved if more Taylor orders in (4.2) are
retained. On the other hand, for fixed N, a smaller perturbation of the random rough
surface yields a more accurate numerical solution.



X. Feng, J. Lin and D. P. Nicolls / Commun. Comput. Phys., 23 (2018), pp. 685-705 701

Table 1: |e| for ε=0.2,0.4,0.6,0.8 and N=2,4,6.

ε N=2 N=4 N=6

0.2 8.53×10−5 7.42×10−7 5.00×10−9

0.4 1.33×10−3 4.50×10−5 1.81×10−8

0.6 6.74×10−3 4.68×10−4 1.89×10−7

0.8 2.13×10−2 2.28×10−3 5.08×10−5

Table 2: σe for ε=0.2,0.4,0.6,0.8 and N=2,4,6.

ε N=2 N=4 N=6

0.2 2.06×10−4 4.64×10−6 5.38×10−7

0.4 1.73×10−3 9.36×10−5 7.54×10−6

0.6 6.30×10−3 7.42×10−4 1.12×10−4

0.8 1.63×10−2 3.15×10−3 8.51×10−4

5.3 Performance of the algorithm: Correlation length

We now discuss the performance of our algorithm as the correlation length is varied. For
this we consider random surfaces with correlation lengths ℓ=0.5, 1.0 and 2.0; Fig. 7 shows
one realization of each with ε= 0.8. We observe that the surface becomes “rougher” as
the correlation length decreases.
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0.5

0 5 10 15 20 25 30
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0
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0 5 10 15 20 25 30

-0.5

0
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Figure 7: Three realizations of random surfaces with correlation lengths ℓ= 0.5 (top), ℓ= 1.0 (middle) and
ℓ=2.0 (bottom), respectively, for ε=0.8.
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Table 3: |e| for ε=0.2,0.4,0.6,0.8 and ℓ=0.5,1.0,2.0. The incident angle was θ=0.

ε ℓ=0.5 ℓ=1.0 ℓ=2.0

0.2 1.00×10−9 7.82×10−12 3.37×10−13

0.4 2.60×10−7 2.59×10−8 1.78×10−9

0.6 3.24×10−5 3.53×10−6 1.72×10−7

0.8 4.77×10−4 1.02×10−4 1.71×10−6

Table 4: σe for ε=0.2,0.4,0.6,0.8 and ℓ=0.5,1.0,2.0. The incident angle was θ=0.

ε ℓ=0.5 ℓ=1.0 ℓ=2.0

0.2 1.00×10−7 4.61×10−11 3.79×10−12

0.4 2.54×10−6 7.50×10−7 1.10×10−7

0.6 1.25×10−4 1.13×10−5 1.71×10−6

0.8 4.08×10−3 2.75×10−4 1.90×10−5

Table 5: |e| for ε=0.2,0.4,0.6,0.8 and ℓ=0.5,1.0,2.0. The incident angle was θ=30o.

ε ℓ=0.5 ℓ=1.0 ℓ=2.0

0.2 4.45×10−4 6.06×10−4 7.01×10−4

0.4 1.75×10−3 2.41×10−3 2.84×10−3

0.6 3.79×10−3 5.40×10−3 6.35×10−3

0.8 8.91×10−3 9.50×10−3 1.12×10−2

Table 6: σe for ε=0.2,0.4,0.6,0.8 and ℓ=0.5,1.0,2.0. The incident angle was θ=30o.

ε ℓ=0.5 ℓ=1.0 ℓ=2.0

0.2 4.24×10−4 6.28×10−4 5.09×10−4

0.4 1.70×10−3 2.50×10−3 2.02×10−3

0.6 3.87×10−3 5.56×10−3 4.50×10−3

0.8 1.86×10−2 9.77×10−3 7.88×10−3

We now perform numerical calculations for the three values of ℓ above with incident
angles θ = 0 and 30o using the same discretization parameters as in Section 5.1. The
magnitude of the mean energy defect |e| and the standard deviation σe for various ε are
displayed in Tables 3 to 6 for θ=0,30o , respectively. Interestingly, we observe that when
the incident angle is set to θ=0, for fixed ε higher accuracy is obtained as the correlation
length increases (the surface becomes smoother), however, when the incident angle is θ=
30o, the same order of accuracy is observed for surfaces with all three different correlation
lengths.
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6 Conclusion

We presented an efficient numerical method based upon a combination of the Monte
Carlo method and the transformed field expansion for the simulation of electromagnetic
wave scattering by random rough surfaces. One compelling feature of the algorithm is
that the governing equations for all samples at each perturbation order shares the com-
mon deterministic Helmholtz operator, hence all the solutions can be obtained in an effi-
cient manner by simple forward and backward substitutions. One future direction is to
extend the proposed method for electromagnetic scattering by two dimensional random
rough surfaces, this would require solving the full Maxwell’s equations over random
domains. Another challenging problem is to develop numerical methods for wave scat-
tering by non-periodic random rough surface.
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