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ABSTRACT

Computational fluid dynamics (CFD) modeling of left ventricle (LV) flow combined with patient

medical imaging data has shown great potential in obtaining patient-specific hemodynamics infor-

mation for functional assessment of the heart. A typical model construction pipeline usually starts

with segmentation of the LV by manual delineation followed by mesh generation and registration

techniques using separate software tools. However, such approaches usually require significant

time and human efforts in the model generation process, limiting large-scale analysis. In this study,

we propose an approach towards fully automating the model generation process for CFD simulation

of LV flow to significantly reduce LV CFD model generation time. Our modeling framework lever-

ages a novel combination of techniques including deep-learning based segmentation, geometry

processing, and image registration to reliably reconstruct CFD-suitable LV models with little-to-no

user intervention. We utilized an ensemble of 2D convolutional neural networks (CNNs) for auto-

matic segmentation of cardiac structures from 3D patient images and our segmentation approach

outperformed recent state-of-the-art segmentation techniques when evaluated on benchmark data

containing both MR and CT cardiac scans. We demonstrate that through a combination of seg-

mentation and geometry processing, we were able to robustly create CFD-suitable LV meshes from

segmentations for 78 out of 80 test cases. Although the focus on this study is on image-to-mesh
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generation, we demonstrate the feasibility of this framework in supporting LV hemodynamics mod-

eling by performing CFD simulations from two representative time-resolved patient-specific image

data sets.

NOMENCLATURE

CFD Computational fluid dynamics

MR Magnetic resonance

CT Computed tomography

b-SSFP balanced steady state free precession

MMWHS Multi-Modality Whole Heart Segmentation

LV Left ventricle

LA Left atrium

RA Right atrium

RV Right ventricle

AO Aortic opening

MO Mitral opening

CNN Convolutional neural network

INTRODUCTION

Image-based modeling of blood flow is an important research area in biomedical engineering. It is

based on applying computational fluid dynamics (CFD) to image-based computer models of the heart,

arteries or veins in order to compute patient-specific blood flow information that is not measurable in vivo.

Numerous researchers have used this paradigm to explore improvements in cardiovascular diagnoses and

treatments, and the biomechanical underpinnings of diseases. This paradigm has also recently gained

broad clinical use for coronary artery disease diagnosis.

The vast majority of applications of image-based hemodynamics modeling have been in vascular do-

mains. Cardiac applications, while existing, are far less common. This is despite the fact that intracardiac

hemodynamics are known to be important in the initiation and progression of heart diseases, e.g., [1–7].

There are two main approaches to modeling intracardiac hemodynamics. The first approach tracks the

deformation of the heart from time-resolved imaging and imposes this motion to the fluidic domains inside

the heart, which leads to a deforming-domain CFD problem [8–13]. The second approach couples electro-
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physiology, structural mechanics and fluid dynamics in the heart so that the heart motion is solved for rather

than measured [14–16]. This second approach is formidable and is generally unnecessary if the purpose

of the model is to derive intracardiac hemodynamics. Therefore, a deforming-domain CFD approach is

considered the de facto method to derive patient-specific modeling of LV hemodynamics; it is, however, not

without its challenges. Namely, in comparison to most vascular applications, cardiac structures undergo

large deformations, and individual cardiac structures can be difficult to differentiate from each other and

the surrounding tissue. This makes generating CFD-ready cardiac models from medical image data a sub-

stantial challenge and this is regarded as the largest bottleneck in image-based CFD modeling of cardiac

hemodynamics [17].

Model construction in most prior CFD studies of intracardiac hemodynamics has required significant

human effort [8–12,17,18]. A typical model construction workflow starts with the delineation of endocardial

surfaces by manual or semi-automated image-segmentation. Most studies target left ventricle (LV) hemo-

dynamics, and thus segment the LV, and often portions of the left atrium (LA) and aorta (Ao) inflow and

outflow tracks. This is done for a sequence of image snapshots of the heart throughout the cardiac cycle,

resulting in a sequence of segmentations over time. The segmented regions from a chosen time instant

are used to generate a reference volumetric mesh of the fluidic domain using appropriate mesh generation

software. Then a registration process is performed to deform this reference volumetric mesh so that its

boundary is consistent with the image segmentation sequence. These steps are generally performed using

separate software tools, which further complicates the workflow and data management. And the manual

nature of the process is prone to operator-dependent errors that are unpredictable, complicating reliability

and reproducibility.

Some recent works have sought to accelerate part of the model construction process. Schenkel, et

al. [19] accelerated LV segmentation by fitting LV contours that depended on manual seed placements and

manual segmentation of the valve ring. Nguyen, et al. [20] presented a semi-automatic, minimal operator

involvement approach for LV meshing, smoothing and reconstruction but used simplified LV geometries

generated from a closed-source software. Khalafvand, et al. [21] developed a semi-automatic pipeline

using automated multi-atlas segmentation and statistic shape modeling of the LV, but only studied the effect

of shape changes on LV flow and did not apply the method to patient-specific image data. Vellguth, et al. [22]

developed an efficient pipeline using semi-automatic segmentation and geometric modeling packages but

applied the pipelines to only one set of patient data. These recent approaches, while accelerating some part

of the model construction process, still require various operator-dependent steps, employ closed-source
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software packages, or have been tested with very few examples. A need remains to develop an automated

method to reliably generate patient-specific LV CFD models directly from image data.

Following recent developments in deep learning, automated segmentation of cardiac structures us-

ing convolutional neural networks (CNNs) has gained momentum. Indeed, several deep-learning-based

approaches have achieved higher segmentation precision than the previous model- or atlas-based seg-

mentation approaches [23–26]. However, prior works in this area have been focused on the classification

of cardiac structures and, to our knowledge, none have considered the construction of models suitable

for computational modeling. Namely, since most deep learning approaches focus on voxel-based classifi-

cation, e.g., without consideration of the overall topology of segmented structures, the utility of automatic

CNN-based segmentation for computational modeling remains unclear.

Building on prior work in the area of learning-based image classification, we present here an automated

framework to generate CFD-ready models from cardiac CT or MR scans. Our framework proposes a CNN-

based method to perform automatic segmentation of cardiac tissues from clinical imaging. We demonstrate

that our method outperforms several recently-published grand-challenge segmentation algorithms [24]. We

further develop automated surface processing and image registration to generate deforming volumetric

computational models suitable for deforming mesh CFD simulations. The proposed framework can be

executed from the command-line (i.e., requires no visual interventions from the user) as an automated

process and has only open-source software dependencies. We validate our model construction using both

CT and MR benchmark image data sets, and we demonstrate the viability of using the models to perform

CFD simulations of intraventricular hemodynamics.

METHODS

The proposed automated framework consists of three major steps to generate CFD-compatible models

for LV flow simulations: segmentation, mesh generation and registration. For reference, the proposed

process is over-viewed in Figure 1.

Patient Image Data

The MMWHS dataset was recently established as part of a grand challenge to evaluate different algo-

rithms of whole heart segmentation [24]. The CT images were obtained from routine cardiac CT angiogra-

phy and the MR images were acquired by using 3D b-SSFP sequences. The mean axial in-plane resolution

for CT was 0.78 x 0.78 mm and the average slice thickness was 1.6 mm. The image resolution for the MR
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Fig. 1. Diagram of the automated model generation framework for LV CFD simulations

data was re-sampled to around 2 mm along each direction. The imaging window generally spanned from

the upper abdomen to the aortic arch. The patients imaged by MR had a variety of cardiovascular diseases,

including myocardium infarction, atrial fibrillation, tricuspid regurgitation, aortic valve stenosis, Alagille syn-

drome, Williams syndrome, dilated cardiomyopathy, aortic coarctation, and Tetralogy of Fallot [24]. The

dataset includes 60 CT and 60 MR scans. 20 CT and 20 MR scans were released as training data, which

contained manual segmentation of seven cardiac structures: LV, LA, RA, RV, myocardium, aorta and pul-

monary artery. The remaining 40 CT and 40 MR scans were considered test data, with no provided manual

segmentation as ground truth. Some datasets included segmentation of the coronary arteries and/or LA

appendage, but these were not considered for the analyses herein.

Image-based CFD simulation of LV hemodynamics requires cardiac motion over one or more cardiac

cycles. The MMWHS dataset only contains CT or MR scans of a single time frame. This is sufficient for

testing the accuracy of our automated segmentation process, which is expected to be the most critical

step in developing accurate models. However, to test the registration process (and ultimately run CFD

simulations) time-resolved image data is required. For this purpose, time-resolved CT data sets were used
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to verify the complete framework. The time-resolved CT data came from a 74-year-old male patient and

a 73-year-old male patient, respectively. Both patients had left ventricular diastolic dysfunction. The data

was de-identified and previously collected for other purposes. The mean axial in-plane resolution was 0.44

x 0.44 mm and the slice thickness was 1.25 mm. The temporal resolution was around 100 ms and 10 time

frames were constructed for one cardiac cycle.

Intensity normalization and re-sampling were applied to all 3D image volumes to obtain consistent

image dimensions, pixel spacing and pixel intensity range. The pre-processed image volumes can then

serve as inputs to an automatic segmentation framework to generate segmentations. We first normalized

pixel intensity values of each image volume such that they ranged from -1 to 1. Namely, CT intensity values,

nominally ranging from around -1000 to 3000, were clipped to intensity values from -750 to 750. The cardiac

tissues are well within this range while the intensity variations from bones or background noise could be

mostly removed. The intensity values were then divided by 750 such that they ranged from -1 to 1. For MR,

the intensity values depend not only on tissue properties but also on the MR signal intensity in individual

patient scans. Therefore, for each patient MR scan, the pixels intensity values were clipped between 0

and the 99th percentile to reduce bright artifacts. The pixel values were then normalized by the maximum

intensity after clipping and then shifted such that they ranged from -1 to 1. The 3D image volumes were

resampled to have isotropic spacing and resized to 256×256×256, which maintained image resolution with

a manageable computational cost.

Automated Segmentation

Automatic Segmentation Using an Ensemble of CNNs

Our framework employed an ensemble of CNN models as described here. Broadly, using the images as

inputs, a CNN-based model outputs the probability of each image pixel belonging to a particular anatomical

domain (LV, LA, RA, RV, myocardium, aorta and pulmonary artery). Limited by their high memory con-

sumption and computational cost, CNN-based 3D segmentation algorithms usually require down-sampling

the input data or adopting a sliding-window strategy to avoid running out of memory. Such compromises

may lead to either low spatial resolution of the segmentation results or high time complexity, respectively.

Since 2D CNN-based algorithms can be directly end-to-end trained, it is possible to slice 3D image data

into a number of 2D slices and then use a 2D-based algorithm on each slice. However, 2D CNN-based

algorithms ignore the spatial connection between adjacent slices and thus are not able to fully explore inter-

slice information as compared to 3D CNNs. Therefore, to overcome the memory constraint of performing
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a 3D CNN, and information loss of performing 2D CNNs, we utilized an ensemble of 2D CNNs to generate

a 3D segmentation (Figure 2a). Since deep neural network models generally have high prediction vari-

ance, ensemble learning with deep neural networks can reduce the variance and thus better generalize to

unseen data [27, 28]. We sliced the 3D image volumes along the axial, sagittal or coronal axis to obtain

corresponding 2D image datasets. A CNN model was trained for each 2D dataset to predict the probability

of each pixel belonging to each cardiac structure. To automatically segment a new 3D image volume, we

sliced the image volume into 2D images along the axial, coronal and sagittal axes, respectively, and utilized

the corresponding trained 2D CNN model to predict the 2D probability maps of the sliced images in each

viewing axis. The 2D predictions for slices along the same viewing axis were stacked together to form 3D

predictions. These three 3D predictions, each derived from a different viewing axes, were then averaged to

obtain the final probability prediction. The determination of each 3D anatomical domain was then achieved

by finding the regions with the largest probability for each pixel. This automatic segmentation process is

summarized in Algorithm 1.

Algorithm 1: Automatic Segmentation Using an Ensemble of CNNs
Input 3D CT/MR image I; 2D CNNs trained separately for three views
Output 3D segmentation S
Initialize a 3D probability volume P with zeros
for each view i do

for each 2D slice s in view i do
Compute the 2D probability map with the 2D CNN trained for view i

end
Assemble 2D probability maps into a 3D probability volume Pi

P ← P + Pi

end
P ← P/3 ; // Compute average probability map
for each voxel k in S do

S(k)← segmentation domain with the highest probability value in P (k)
end

Network Architecture

The 2D CNN models were implemented based on the U-Net architecture specialized for medical image

segmentation [29] (Figure 2b). The network architecture included a down-sampling path (left side) to extract

features from input images and an up-sampling path (right side) to reconstruct segmentation from extracted

features. The down-sampling path included five convolution blocks. Each convolution block consisted of

repeated convolutions with multiple 3 × 3 convolution kernels, followed by activation functions and 2 × 2

BIO-20-1172, Kong, 7



Journal of Biomech Eng

Fig. 2. a) Diagram of the proposed automatic segmentation approach using an ensemble of CNNs. b) Network architecture of the
2D U-Net CNN model. Numbers illustrate the number of convolution kernels used.

max pooling operations. The activation function was the rectified linear unit (ReLU), f(x) = max(0, x). The

max-pooling operation selected the maximum value within a 2 × 2 window applied across the activation

output and thus halved the spatial-resolution of the output. The up-sampling path included four convolution

blocks and each block consisted of a transpose convolution and repeated convolutions with multiple 3 × 3

convolution kernels, followed by ReLU activation functions. The transpose convolutions utilized 2×2 kernels

with trainable weights to recover the spatial dimension of the intermediate output. An additional convolution

layer was applied at the end to generate an 8-channel probability map, with each channel corresponding to

each cardiac domain. Skip connections concatenated the intermediate output from each convolution block

of the down-sampling path to the corresponding convolution block input of the up-sampling path.

CNN Optimization

The training of our CNN models was supervised by the manual ground truth segmentation in the

MMWHS dataset. We considered a hybrid loss function that contained both multi-class cross-entropy and
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dice-score loss. Namely, let L(I,G) denote the loss of between the CNN prediction P for image I and the

corresponding one-hot coded ground truth segmentation G. The hybrid loss function was

L(I,G) = − 1

N

N∑
i=1

∑
x∈I

Gi(x) log(Pi(x)) +N −
N∑
i=1

2
∑

x∈I Gi(x)Pi(x)∑
x∈I Gi(x) +

∑
x∈I Pi(x)

(1)

where N denotes the total number of the segmentation (anatomical) domains, while x denotes the pixel

in the input image I. Pi(x) represents the predicted probability of pixel x belonging to the segmentation

domain i. Weights of the convolution kernels we computed by minimizing the above loss function using

the Adam stochastic gradient descent algorithm [30]. The initial learning rate was set to be 0.0001, while

β1 and β2 for the Adam algorithm were set to 0.9 and 0.999, respectively. Among the 20 CT and 20 MR

patient scans, 16 CT and 16 MR scans were randomly chosen as training data. The other CT and MR

scans were considered as validation data to select the best-performing model. Dice score was evaluated

on the validation data after each training epoch and the CNN model was saved after one epoch only if the

validation dice score had improved. Therefore, only the CNN model with the best validation dice score was

chosen for future evaluation on the held-out test dataset (which contained another set of 40 CT and 40 MR

scans). We adopted a learning rate schedule where the learning rate was reduced by 20% if the validation

dice score had not improved for 5 epochs. The minimum learning rate was 5 × 10−6. The CNN models

were trained on a GeForce GTX 1080 Ti GPU until the validation dice score converged. Data augmentation

techniques of random flipping, random shifting, random scaling and random intensity changes were also

applied during training to improve robustness. This automated segmentation algorithm was implemented

using the functionality of TensorFlow (version 1.12) [31].

Evaluation Metrics And Statistical Methods

Segmentation accuracy was evaluated with an executable provided by MMWHS organizers [24], which

computed the surface-to-surface distance errors as well as dice and jaccard scores between our segmen-

tation results and the (hidden) ground truth as determined by the MMWHS organizers. Dice and jaccard

scores are similarity indices that range from 0 to 1 as given by

Dice(A,B) =
2|A ∩B|
|A|+ |B|

(2)
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Jaccard(A,B) =
|A ∩B|
|A ∪B|

(3)

Differences in segmentation accuracy among segmentation domains were quantified using paired t-tests.

Geometry Reconstruction and Mesh Generation

We automated the geometry reconstruction and mesh generation process as described here. The

entire process was implemented in Python with open-source, Python scriptable dependencies, VTK and

SimVascular. For each segmentation region (LV, LA, Ao), the largest connected region of each segmenta-

tion domain was extracted to remove any disconnected islands. These segmentations were then smoothed

by a closing filter that filled any sharp corners and holes with a diameter smaller than 5 mm to correct

non-physical segmentation artifacts. Conversely, an opening filter was applied to remove any extrusions

with diameters smaller than 5 mm. Boundaries of the Ao and LA were identified. Since the ground truth

segmentation results did not consider the tissue thickness of the LA or Ao, LA and Ao segmentations were

sometimes connected, leading to an incorrect fusion between the constructed LA and Ao surfaces. There-

fore, LA and Ao segmentations at the location of any shared boundary were eroded until they were distinctly

separated. The segmentation volume containing LA, Ao and LV segmentations was then converted to a

binary segmentation volume and re-sampled with a resolution of 1.2 × 1.2 × 1.2 mm. Illustrations of the

above segmentation processing is shown in Figure 3.

A marching cube algorithm was applied to the processed segmentations to generate a watertight sur-

face mesh of the LV, LA and aorta. In order to define appropriate inlet and outlet surfaces, clipping of the

Ao and LA is generally necessary. To achieve this, the boundary between the LV and LA (LV and Ao) was

identified as the set of points shared between the respective segmentations. The mitral plane (aortic plane)

was fitted through those points. The mitral plane origin (aortic plane origin) was defined by the centroid.

The LA was clipped by defining a clipping plane parallel to, and 22 mm from, the mitral plane. The aorta

was clipped using a plane parallel to, and 45 mm from, the aortic plane origin. Based on our observations,

these distance were large enough to avoid substantial boundary effects but small enough to avoid the com-

putational model from being unnecessarily large. We note that naive trimming would generally truncate

other parts of the model than intended. We, therefore, constructed trimmers that isolated, respectively, the

LA or Ao regions, trimmed these isolated regions, and mapped the results back to the unified model. The

resulting mitral opening (MO) and aortic opening (AO) were smoothed by projecting the mesh vertices to

their fitted plane and applying Laplacian smoothing on nearby mesh elements. The obtained MO and AO
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Fig. 3. Illustrations of segmentation errors corrected by segmentation processing. Top and bottom images display segmentation
results before and after described segmentation processing. Red arrows indicate locations of artifacts that segmentation processing
corrects. Orange, red and blue shadings on the left and middle panels represent respectively, LV, AO and LA segmentations. The
orange shading on the right panel shows the processed binary segmentation of LV with parts of AO and LA combined.

were then triangulated using a constrained 2D Delaunay algorithm.

SimVascular meshing functionality [32], utilizing a combination of custom code, MMG, VMTK and Tet-

Gen, was used to generate high-quality surface and volume meshes. First, the trimmed model is remeshed

with a maximum mesh edge size of 1.0 mm. Second, a volume mesh is generated with a maximum mesh

edge size of 1.5 mm and a boundary layer meshing near walls. Third, non-rigid image registration of the

segmentations was performed automatically (by python scripting of SimpleElastix [33]), to appropriately de-

form the volume mesh over time. During this process, points located on the MO or AO were projected to

their least-square fit plane to ensure that they remained co-planar. The mesh generation process is shown

schematically in Figure 4.

Image-Based LV CFD Simulations

We applied the Arbitrary Lagrangian-Eulerian (ALE) formulation of the incompressible Navier-Stokes

equations to simulate the intraventricular flow and account for deforming volumetric mesh. The weak for-

mulation of the Navier-Stokes equations defined in ALE coordinates for the 3D moving domain Ω(t) ∈ R3 is

given as follows:

BIO-20-1172, Kong, 11



Journal of Biomech Eng

Fig. 4. Surface processing strategies for converting raw surfaces processed by the marching cube algorithm to CFD-suitable LV
meshes. From left to right showing a raw surface generated by the marching cube algorithm, the raw surface with its aorta (red) and
LA (light blue) trimmers, the trimmed LV model with parts of aorta and LA, the LV model with smoothed aortic and mitral openings,
and the completed LV model with identified boundary faces of LV wall, mitral opening (MO) and aortic opening (AO) in dark blue, gray
and red.

Find fluid velocity v ∈ Sv and pressure p ∈ Sp, such that for all test functions w ∈ Vv and q ∈ Vp,

B({w, q}, {v, p}, v̂) = F (w) where, (4a)

B({w, q}, {v, p}, v̂) = 〈w, ρ (v̇ + (v − v̂) · ∇v)〉Ω(t)

− 〈∇ ·w, p〉+ 〈∇sw, 2µ∇sv〉Ω(t) + 〈q,∇ · v〉Ω(t)

(4b)

F (w) = 〈w,h〉Γ(t) (4c)

where 〈., .〉 represents the integral inner product over domain Ω(t), ∇s is the symmetrization of gradient

operator ∇, v̂ represents the mesh velocity defined as v̂ = xt+1−xt

∆t . h represents boundary traction. Blood

was assumed to have a viscosity µ of 4.0 × 10−3Pa · s and a density ρ of 1.06g/cm3. The equations were

solved with the open-source svFSI solver from the SimVascular project [32,34].

We note that LV surface and volume meshes were created at the end of diastole and propagated to

different time frames. Since time resolution of the image data is too coarse to be used directly in time-

stepping of the Navier-Stokes equations, cubic spline interpolation of the mesh motion was applied to

generate 2000 interpolated meshes. The mesh motions computed from these interpolated meshes were
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Table 1. Dice and jaccard scores and surface distance (SD) accuracy of our LV, LA, Ao and WH segmentations. Our WH segmen-
tation accuracy is compared with the top-performing algorithm from the MMWHS grand challenge [24]. All accuracy measures are
represented by mean± standard deviation, which are computed over different patients.

LV LA Ao WH WH (top) [24]

CT

Dice 0.938±0.042 0.936±0.027 0.95±0.02 0.92±0.022 0.908±0.086

Jaccard 0.886±0.07 0.88±0.047 0.905±0.036 0.852±0.036 0.823±0.037

SD (mm) 0.84±0.647 0.941±0.318 0.498±0.177 0.978±0.283 1.117±0.25

MR

Dice 0.915±0.051 0.871±0.064 0.869±0.083 0.871±0.05 0.874±0.039

Jaccard 0.847±0.077 0.776±0.089 0.776±0.113 0.775±0.072 0.778±0.06

SD (mm) 1.155±0.667 1.393±0.524 2.384±1.758 1.612±0.577 1.631±0.58

imposed as Dirichlet boundary conditions on walls, and to the MO during systole, or to the AO during

diastole. Neumann (prescribed pressure) boundary conditions were applied to the mitral inlet during diastole

or to the aortic inlet during systole. Diastole and systole phases were determined based on the increase

and decrease of LV volume.

RESULTS

We tested segmentation accuracy on the 40 patient CT scans and 40 patient MR scans from the

MMWHS test data set. These data were not used in any way to train the model. Table 1 displays the dice

and jaccard scores and average surface distance errors of the LV, LA and Ao produced by our automated

segmentation framework. The MMWHS grand challenge [24] reports these measures for whole-heart (WH)

segmentation results (which includes all seven segmented cardiac tissue domains) from challenge par-

ticipants. In Table 1 we compare our WH segmentation accuracy with the top performing algorithm from

the grand challenge. For CT data, our WH segmentations outperformed the top-performing algorithm in

all metrics–mean dice score, jaccard score and mean average surface distance error. For MR data, our

WH segmentation results achieved better mean average surface distance errors than the top-performing

algorithm but had slightly lower mean dice and jaccard scores.

To provide further details on segmentation accuracy, the box plots in Fig. 5 give the distributions of

the segmentation accuracy measures for LV, Ao, LA and WH segmentation. For CT data, both LV and Ao

segmentations were more accurate than WH segmentation in terms of dice score (p < 0.01) and jaccard

score (p < 0.001). For MR data, LV segmentation was more accurate than WH segmentation across

all metrics (p < 0.001). Altogether, our segmentation algorithm performance was comparable or better
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Fig. 5. Box plots of dice scores, jaccard scores and surface distance errors for LV, LA, Ao and WH segmentation results from the
MMWHS test data sets.

than the most accurate grand challenge algorithms in terms of WH segmentation, and moreover, our LV

segmentation, in particular, was generally more accurate than WH segmentation.

Testing the accuracy of the segmentation process is important, but only assesses the accuracy of pixel

classification. This does not directly assess if segmentations will lead to valid model geometries, or domains

that can be effectively meshed for CFD purposes and therefore post-processing of the segmentation results

was necessary. Thus we evaluated the robustness of our geometry reconstruction and mesh generation

process on the 40 CT and 40 MR scans in the MMWHS test set. We evaluated the accuracy of the

BIO-20-1172, Kong, 14



Journal of Biomech Eng

post-processed LV segmentation, whether there were any errors in geometry construction or volumetric

meshing, and finally visually inspected the models for obvious artifacts. Segmentation post-processing

slightly improved the LV dice score and average surface distance errors for MR data. For CT data where our

segmentation framework already generated more accurate LV segmentation than MR data, post-processing

slightly reduced the LV segmentation accuracy. Figure 6 displays the segmentation and the constructed

LV models from the CT data within the 10th, 50th, and 90th percentiles and the “worst case” scenario

encountered in terms of LV surface distance errors. For all but one segmentation results obtained from the

40 CT patient scans, our framework was able to generate the reconstructed LV geometry with LA and Ao

extensions and produce a valid volumetric mesh. The remaining case had segmentation that contained

holes too large to be removed by our baseline, automatic post-processing. Although model geometry and

mesh were constructed, visual inspection detected large artifactual indentations. Not surprisingly this model

was the one that exhibited the largest average LV surface distance error of 4.44 mm among the CT test set.

Figure 7 displays the segmentation and the corresponded LV models for MR patient data with the

10th, 50th, 90th percentiles and the “worst-case” that had the largest LV segmentation surface distance

errors. Our framework was able to successfully generate CFD-suitable LV meshes automatically for 36 out

of the 40 MR patient data. For 3 out of the 4 cases, we observed missing segmentation in the middle

of the aorta due to poor image quality, causing the framework to be unable to identify the aortic outlet.

However, this particular problem was readily corrected in practice by moving the cutting plane of aorta

towards LV to reduce the length of aorta required to generate aortic outflow. Indeed, by decreasing the

aortic cutting plane locations, our framework was able to succeed in these 3 cases. However, our framework

was not able to generate CFD-suitable LV meshes for one remaining case without manual correction of

the segmentation results. The failed case had erroneous segmentations that missed part of the cardiac

structures and corresponded to the lowest WH dice scores of 0.679 and the largest mean LV surface

distance errors of 3.96mm.

Figure 8 displays the distribution of model construction time, which is the time required to go from image

data to a volumetrically meshed 3D model for single-phase patient CT or MR scans in the MMWHS test

dataset. A 3.5 GHz Intel Core i7 CPU processor was used to evaluate geometry and mesh construction

time, and a Nvidia Tesla K80 GPU was used to evaluate CNN segmentation time. The maximum, median

and minimum total model generation times were 172, 126 and 102 seconds respectively for CT data and

were 188, 138 and 71 seconds respectively for MR data. Model generation time for MR data was signifi-

cantly longer than for CT data (p < 0.01) due to a longer segmentation post-processing time. On average,
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Fig. 6. Segmentation results, raw surfaces and constructed models for CT test cases with the 10th, 50th, 90th percentiles and the
largest average LV segmentation surface distance errors. Segmentation and raw surfaces of LA, AO and LV are shown in blue, red
and orange, respectively. The identified boundary faces of LV wall, mitral opening and aortic opening on the constructed models are
shown in orange, blue and red, respectively.

the percentages of time spent in segmentation, segmentation post-processing, geometry reconstruction

and meshing were 42%, 3%, 5% and 50%, respectively for CT data and were 38%, 8 %, 5 % and 49%,

respectively for MR data.

CFD-ready LV models were automatically generated from the time-series CT data of two patients with

diastolic dysfunction, as shown in figure 9. Non-rigid image registration took an average of 160 seconds

to propagate the constructed LV model to the next time frame on a 3.5 GHz Intel Core i7 CPU proces-

sor. Interpolating the registered meshes and writing the CFD-ready model to SimVascular input files took

another 158 seconds on average. To evaluate the accuracy of the reconstructed LV geometries on these
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Fig. 7. Segmentation results, raw surfaces and constructed models for MR test cases with the 10th, 50th, 90th percentiles and the
largest average LV segmentation surface distance errors. Segmentation and raw surfaces of LA, AO and LV are shown in blue, red
and orange, respectively. The identified boundary faces of LV wall, mitral opening and aortic opening on the constructed models are
shown in orange, blue and red, respectively.

time-resolved data, we used manual and semi-automatic segmentation tools provided by the open-source

software SimVascular to generate a ground-truth segmentation of each time frame. We also constructed

ground truth LV models with LA and Ao extensions from the ground truth segmentation. Compared with the

ground truth models, the maximum value of the average surface distance errors among all time frames was
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Fig. 8. Histogram distribution of the time spent in segmentation, post-processing, geometry reconstruction and meshing for CT and
MR data

1.40 mm for patient A, and was 1.87 mm for patient B. Fig. 9b shows that volume curves computed from

the interpolated meshes generated with our framework were similar to those computed from the ground

truth for both patients and the maximum percentage differences among all time frames were 3.6% and

6.3% for patient A and B, respectively. Fig. 10 shows simulated velocity streamlines of LV flow at different

time frames of the cardiac cycle. During the ejection phase, the velocity streamlines of LV demonstrated

a converging flow pattern for both patients. The maximum outflow velocity during systole for patient A and

patient B was 1.36 and 1.25 m/s, respectively. During diastole, we observed early filling, diastasis and atrial

filling phases for both patients as shown at time C, E and F in Fig. 10. The mitral jet entered LV during early

filling, changed direction due to impact with the LV wall and formed circulatory flow within the LV. During

diastasis, patient A had a dominant LV vortex. With a smaller LV diameter to length ratio, patient B had a

more complicated flow pattern with two major circulations, in the upper and lower parts of the LV, respec-

tively. The maximum inflow velocity during early filling and atrial filling were 0.69 and 0.37 m/s for patient A

and 0.56 and 0.28 m/s for patient B, respectively.

DISCUSSION

Imaged based CFD simulations of LV flow, although powerful in understanding patient cardiac hemo-

dynamics, usually require significant user interactions in the model generation process. Prior studies have

thus involved only a single or very few patient-based models. In the present study, we demonstrated an
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Fig. 9. Patient-specific CFD-ready LV models: a) constructed model geometries at middle diastole and b) comparisons of volume
curves computed from interpolations of LV models generated with our framework (blue) and LV models generated manually (yellow)
during one cardiac cycle.

automated framework to efficiently generate CFD-suitable LV models from patient data from two common

imaging modalities (CT and MR) using a novel combination of deep-learning-based segmentation, geomet-

ric processing and image registration techniques.

The automated segmentation framework based on an ensemble of CNNs demonstrated promising

accuracy for both CT and MR scans. Testing on the same benchmark CT data set, our framework out-

performed the previous best algorithm by Payer et al. who used a two-stage 3D CNN pipeline [24, 35].

Besides increased accuracy, another advantage of our segmentation pipeline was the increased resolution

of segmentation results (33% along each dimension). By using three 2D CNNs rather than 3D CNNs, our

segmentation pipeline reduced the computation and memory requirements during training and thus was

able to handle a larger input image size of 256 × 256 × 256. A higher segmentation resolution is beneficial

to the down-stream model generation process for CFD simulations since it helps to avoid the staircase

artifacts due to poor image resolutions, which can affect computed hemodynamics. Moreover, most prior

deep-learning-based automatic segmentation algorithms for cardiac structures have been trained on single

imaging modality, except for Tong et al. who trained on both MR and CT data but did not achieve very

good performance [24, 36]. We demonstrated that it is feasible to train a single system of CNN models on
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Fig. 10. Patient-specific CFD simulation results from time-resolved patient CT data. Top and middle panels show velocity streamlines
at five different time frames, peak systole (A), late systole (B), early diastolic filling (C), diastasis (D) and atrial filling (E), as labeled on
the flow rate curves on the bottom panel. The color map represents velocity magnitude (m/s).

MR and CT data simultaneously while still achieving good performance for both modalities. This could be

explained by the high capacity of CNNs due to the large number of parameters they possess [37]. With this

advantage, our framework did not require manual specification of which imaging modality to operate on and

may store only one set of CNN model parameters for both MR and CT data. Compared with CT data, MR

data presented larger intensity variation, acquisition field of view, image quality and uncertainties in ground

truth segmentation [24]. Consistent with prior segmentation algorithms, our framework performed better in

segmentation for CT data than for MR data [24]. More training data of MR scans may be required for the
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deep neural networks to better capture the inherently more diverse distribution of MR data.

Although deep-learning-based algorithms have been extensively applied to LV segmentation, to our

knowledge, our framework was the first to explore the down-stream geometry reconstruction procedures

required to generate CFD-suitable models. Maher et al. constructed vascular models for CFD simulations

from segmentation generated by deep-learning algorithms [38]; however, LV models have different geomet-

ric considerations than those of vascular models. In contrast to atlas-based segmentation approaches that

attempt to map an existing atlas to new images, deep-learning-based segmentation algorithms are usually

trained to optimize the voxel-wise segmentation accuracy between predicted segmentation and the ground

truth, thus have no constraints on the shapes of the segmented structures. The lack of shape constraints

encourages better generalization to the new and diverse data and avoids the tremendous computational

cost related to atlas registration [39]; however, it poses challenges to the down-stream LV geometry recon-

struction process required for generating a CFD-suitable geometry since the segmentation results are not

guaranteed to have valid global topology. Indeed, it is possible to have good segmentation accuracy based

on conventional ”closeness metrics” but not have a segmentation suitable for CFD model construction. In

this study, we demonstrated that with a reliable deep-learning-based segmentation framework, along with

simple and automatic post-processing techniques, we were able to successfully construct LV CFD mod-

els for the vast majority of cases considered. Specifically, from the segmentation results of LV, LA and

aorta, small and isolated regions needed to be removed by extracting the largest connected region; bound-

aries between LA and aorta needed to be clearly separated to generate anatomically correct LA and aorta

geometries with the marching cube algorithms; noisy extrusions or holes within and on the boundary of

segmentation needed to be removed or filled. These operations were conveniently achieved by a combina-

tion of image foreground dilation or erosion functions and were successful on 39 out of 40 tested CT image

data and 39 out of 40 tested MR image data. Not surprisingly, reliable segmentation results were essential

to obtain accurate LV model geometries. The failed cases were due to erroneous segmentation results

with large surface distance errors, missing structures or extrusions or holes too large to be corrected by

the post-processing algorithms. For the small number of failed cases, manual corrections may be required

to generate acceptable LV model geometries. Since our deep-learning-based segmentation algorithm was

developed based on a limited number of samples, it may not generalize to all kinds of image abnormalities,

such as low image quality, artifacts or extreme tissue intensity. Indeed, it is impossible to guarantee an

automated approach will always produce a valid result when image quality is not controlled.

Although this study focused on the image-to-volume-mesh process, and not the analysis of intraven-
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tricular hemodynamics, we did demonstrate the capability to perform ALE-based CFD simulations of LV

hemodynamics from the generated models. The fact that the time-resolved CT image data were from clin-

ical scans and from a completely different source than the MMWHS dataset demonstrates the potential

robustness of the approach. Compared with ground truth LV models created through manual efforts, LV

models created by our framework had a relatively small percentage of volume difference over the cardiac

cycle. We note that the ground truth models were created by only one observer with no repeats. Zhuang

et al. reported that while LV was the least challenging cardiac structure to segment manually among oth-

ers, the inter- and intra- observer variabilities were 6.3% and 5.8% for LV segmentation in MR data [24].

Therefore, the volume differences of the LV models generated automatically are comparable to inter- and

intra- observer variabilities. Our CFD simulations provided detailed LV flow patterns throughout the cardiac

cycle and the converging flow pattern during systole and the circulatory flow patterns were consistent with

prior studies [11,18]. Although both patients had diastolic LV dysfunction, their LV shapes were different

especially in terms of LV sphericity. We observed a dominating flow circulation in the patient LV with higher

sphericity but not in the patient LV with lower sphericity. Such difference was in agreement with Martinez-

Legazpi et. al., who demonstrated that reduced LV chamber sphericity could reduce vortex contribution to

the diastolic filling of LV [40].

Our framework was able to generate meshed LV model for a single phase in around two minutes on

average, using a modern desktop computer with the help of a GPU. When including the time spent in

segmentation registration to propagate LV model to other time frames, interpolating meshes and creat-

ing compatible input files for SimVascular svFSI solver, our framework took around 30 minutes in total to

construct CFD-ready LV simulation input files for one set of time-resolved patient image data with 10 time

frames. Segmentation registration was the most time-consuming step among our model construction frame-

work. However, this step could be parallelized in the future to reduce the total model generation time [41].

In contrast, prior approaches of generating one CFD-ready LV model from images could take anywhere

from 20–50 hours of work and significant human efforts [16, 17]. Using the semi-automatic segmentation

techniques and geometry processing algorithms in SimVascular, we spent around 10 hours constructing

each LV model on the same patient data, which we consider to be typical for an “experienced” user. There-

fore, compared with prior model construction approaches using manual or semi-automatic techniques, our

framework could save on the order of hours of time and human efforts.

Limitations of the current automated LV CFD model generation framework include the lack of explicit

mitral valve and aortic valve structures. However, valve leaflets are generally not resolvable from clinical

BIO-20-1172, Kong, 22



Journal of Biomech Eng

scans. Therefore, patient-specific geometry reconstruction of valves is very challenging due to limited

image resolution and large deformation of the valve structures. Recent advances in machine-learning-

based approaches to obtain heart valve geometry based on statistical information could be applied in the

future to improve our framework [42, 43]. Similar to the valve leaflet, the papillary muscles and trabeculae

structures of the LV were not modeled in our framework since these are generally not resolvable from clinical

imaging. Although smoothed LV geometry is a common simplification adopted by many prior studies, recent

studies have demonstrated that these structures could lead to improved apical washout, enhanced viscous

dissipation rate, increased intra-ventricular pressure drop and reduced the wall shear stress and thus should

be incorporated for better simulation accuracy [44,45].

With improved insights into the importance of RV dysfunction in the pathogenesis and outcomes of

cardiovascular diseases over recent years, there has been a growing interest in understanding the intraven-

tricular flow pattern in RV [46–49]. Image-based CFD simulations of RV flow may provide patient-specific,

spatially and temporally well-resolved analysis of RV hemodynamics. We note that although this study fo-

cused on LV, we expect the proposed framework could be readily adapted for the automated construction of

patient-specific CFD-ready RV models. Our framework was able to automatically produce segmentations

of RV, RA and pulmonary arteries. From those segmentations, similar segmentation post-processing and

surface reconstruction procedures could be applied to reconstruct the RV geometry with appropriate inlet

and outlet structures.

CONCLUSIONS

We have developed a streamlined framework to automatically generate CFD-ready LV models from

patient image data. The framework leveraged a novel combination of deep-learning-based automatic seg-

mentation algorithms and geometry processing algorithms to robustly create CFD-suitable LV models from

both CT and MR image data. We utilized an ensemble of 2D CNNs to achieve high 3D segmentation res-

olution and outperformed previous automatic segmentation approaches evaluated on the same dataset. To

support CFD simulation of LV hemodynamics using an ALE formulation, the framework can automatically

identify boundary faces of mitral and aortic opening, and LV as well as computing displacement informa-

tion of the mesh vertices throughout the cardiac cycle using image registration techniques. Compared with

prior manual or semi-automatic methods, our framework offers orders of magnitude savings in time and hu-

man efforts in developing image-based CFD simulation of LV flow. The entire framework was implemented

in Python and can be conveniently executed from the command-line as a program with all dependencies
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(TensorFlow, VTK, SimVascular and SimpleElastix) being open-source and Python-scriptable. The above

advantages may enable our framework to aid in future higher throughput, large-cohort analyses of patient-

specific LV hemodynamics in-relation to LV dysfunction.
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Villacorta, E., Sanchez, P., Fernández-Avilés, F., and Del Alamo, J. C., 2014. “Contribution of the

diastolic vortex ring to left ventricular filling”. Journal of the American College of Cardiology, 64, 10,

pp. 1711–21.

[41] Shamonin, D., Bron, E., Lelieveldt, B., Smits, M., Klein, S., and Staring, M., 2013. “Fast parallel

image registration on cpu and gpu for diagnostic classification of alzheimer’s disease”. Frontiers in

neuroinformatics, 7, 01, p. 50.

[42] Pouch, A., Vergnat, M., McGarvey, J., Ferrari, G., Jackson, B., Sehgal, C., Yushkevich, P., Gorman, R.,

and Gorman III, J., 2013. “Statistical assessment of normal mitral annular geometry using automated

three-dimensional echocardiographic analysis”. The Annals of thoracic surgery, 97, 10.

[43] Liang, L., Kong, F., Martin, C., Pham, T., Wang, Q., Duncan, J., and Sun, W., 2016. “Machine learn-

ing based 3d geometry reconstruction and modeling of aortic valve deformation using 3d ct images:

Machine learning based 3d aortic valve modeling”. International Journal for Numerical Methods in

Biomedical Engineering, 33, 08, p. e02827.

[44] Sacco, F., Paun, B., Lehmkuhl, O., Iles, T. L., Iaizzo, P. A., Houzeaux, G., Vázquez, M., Butakoff,

C., and Aguado-Sierra, J., 2018. “Left ventricular trabeculations decrease the wall shear stress and

increase the intra-ventricular pressure drop in cfd simulations”. Frontiers in Physiology, 9, p. 458.

[45] Vedula, V., Seo, J. H., Lardo, A., and Mittal, R., 2015. “Effect of trabeculae and papillary muscles on

the hemodynamics of the left ventricle”. Theoretical and Computational Fluid Dynamics, 30, 05.

[46] Pasipoularides, A. D., Shu, M., Shah, A., Womack, M. S., and Glower, D. D., 2003. “Diastolic right

ventricular filling vortex in normal and volume overload states.”. American journal of physiology. Heart

and circulatory physiology, 284 4, pp. H1064–72.

[47] Sheehan, F., and Redington, A., 2008. “The right ventricle: Anatomy, physiology and clinical imaging”.

Heart (British Cardiac Society), 94, 12, pp. 1510–5.

[48] Noordegraaf, A., Chin, K., Haddad, F., Hassoun, P., Hemnes, A., Hopkins, S., Kawut, S., Langleben,

D., Lumens, J., and Naeije, R., 2018. “Pathophysiology of the right ventricle and of the pulmonary

circulation in pulmonary hypertension: an update”. European Respiratory Journal, 53, 12, p. 1801900.

BIO-20-1172, Kong, 28



Journal of Biomech Eng

[49] Crystal, G., and Pagel, P., 2017. “Right ventricular perfusion: Physiology and clinical implications”.

Anesthesiology, 128, 10, p. 1.

BIO-20-1172, Kong, 29



Journal of Biomech Eng

LIST OF FIGURES

1 Diagram of the automated model generation framework for LV CFD simulations . . . . . . . . 5

2 a) Diagram of the proposed automatic segmentation approach using an ensemble of CNNs.

b) Network architecture of the 2D U-Net CNN model. Numbers illustrate the number of con-

volution kernels used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Illustrations of segmentation errors corrected by segmentation processing. Top and bottom

images display segmentation results before and after described segmentation processing.

Red arrows indicate locations of artifacts that segmentation processing corrects. Orange,

red and blue shadings on the left and middle panels represent respectively, LV, AO and LA

segmentations. The orange shading on the right panel shows the processed binary segmen-

tation of LV with parts of AO and LA combined. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Surface processing strategies for converting raw surfaces processed by the marching cube

algorithm to CFD-suitable LV meshes. From left to right showing a raw surface generated by

the marching cube algorithm, the raw surface with its aorta (red) and LA (light blue) trimmers,

the trimmed LV model with parts of aorta and LA, the LV model with smoothed aortic and

mitral openings, and the completed LV model with identified boundary faces of LV wall, mitral

opening (MO) and aortic opening (AO) in dark blue, gray and red. . . . . . . . . . . . . . . . . 12

5 Box plots of dice scores, jaccard scores and surface distance errors for LV, LA, Ao and WH

segmentation results from the MMWHS test data sets. . . . . . . . . . . . . . . . . . . . . . 14

6 Segmentation results, raw surfaces and constructed models for CT test cases with the 10th,

50th, 90th percentiles and the largest average LV segmentation surface distance errors. Seg-

mentation and raw surfaces of LA, AO and LV are shown in blue, red and orange, respec-

tively. The identified boundary faces of LV wall, mitral opening and aortic opening on the

constructed models are shown in orange, blue and red, respectively. . . . . . . . . . . . . . . 16

7 Segmentation results, raw surfaces and constructed models for MR test cases with the 10th,

50th, 90th percentiles and the largest average LV segmentation surface distance errors. Seg-

mentation and raw surfaces of LA, AO and LV are shown in blue, red and orange, respec-

tively. The identified boundary faces of LV wall, mitral opening and aortic opening on the

constructed models are shown in orange, blue and red, respectively. . . . . . . . . . . . . . . 17

8 Histogram distribution of the time spent in segmentation, post-processing, geometry recon-

struction and meshing for CT and MR data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

BIO-20-1172, Kong, 30



Journal of Biomech Eng

9 Patient-specific CFD-ready LV models: a) constructed model geometries at middle diastole

and b) comparisons of volume curves computed from interpolations of LV models generated

with our framework (blue) and LV models generated manually (yellow) during one cardiac cycle. 19

10 Patient-specific CFD simulation results from time-resolved patient CT data. Top and middle

panels show velocity streamlines at five different time frames, peak systole (A), late systole

(B), early diastolic filling (C), diastasis (D) and atrial filling (E), as labeled on the flow rate

curves on the bottom panel. The color map represents velocity magnitude (m/s). . . . . . . . 20

BIO-20-1172, Kong, 31



Journal of Biomech Eng

LIST OF TABLES

1 Dice and jaccard scores and surface distance (SD) accuracy of our LV, LA, Ao and WH seg-

mentations. Our WH segmentation accuracy is compared with the top-performing algorithm

from the MMWHS grand challenge [24]. All accuracy measures are represented by mean ±

standard deviation, which are computed over different patients. . . . . . . . . . . . . . . . . . 13

BIO-20-1172, Kong, 32


