Robust avalanche in GaN leading to record performance in avalanche photodiode

Dong Ji¹, Burcu Ercan², Garret Benson³, AKM Newaz³, and Srabanti Chowdhury¹

¹ Department of Electrical Engineering
Stanford University
Stanford, CA, USA

² Department of Electrical and Computer Engineering
University of California, Davis
Davis, CA, USA

³ Department of Physics and Astronomy
San Francisco State University
San Francisco, CA, USA

dongji@stanford.edu; srabanti@stanford.edu

Abstract—This abstract presents a study on the avalanche capability of GaN p-i-n diode leading to the achievement of 60A/W, 278V GaN avalanche photodiode. The GaN p-i-n diode fabricated on a free-standing GaN substrate was avalanche capable due to optimal edge termination. Both electrical and optical characterizations were conducted to validate the occurrence of avalanche in these devices. The device showed a positive temperature coefficient of breakdown voltage, which follows the nature of avalanche breakdown. The positive coefficient was measured to be 3.85 ×10⁻⁴ K⁻¹ (0.1V/K) under a measurement temperature ranges from 300 K to 525 K. Moreover, the fabricated device showed excellent performance as an avalanche photo detector with record device metrics: (1) record high photoresponsivity of 60 A/W; (2) high optical gain of 105; and (3) low cark current. Robust avalanche is a key requirement in various device applications and necessary for their reliable operation.

Index Terms-- Avalanche, GaN, Photodiode, Avalanche Photodiode, avalanche photodetector.

I. INTRODUCTION

The avalanche breakdown capability in GaN devices was not demonstrated until 2013 [1] due to the lack of well-developed homogeneous epitaxial techniques. GaN epitaxial layers are typically grown on foreign substrates, such as sapphire, silicon carbide and silicon. Due to the large lattice mismatch between GaN and these foreign substrates, GaN epitaxial layers exhibit high dislocation densities in the order of 10⁹ cm⁻², leading to failures in demonstrating avalanche capability in GaN.

Homogeneous GaN films grown on free-standing GaN substrates leads to low defect density in the epitaxial material grown on top, which when combined with appropriate electric field mitigation technique, such as ion implanted edge termination, bevel etch termination, field plate and ion-

compensated moat etch termination have demonstrated avalanche in GaN diodes [1-8].

In this study, we designed a GaN n-i-p diode with a buried p-type GaN layer and obtained a robust avalanche breakdown behavior from it. Both electrical and optical characterizations were conducted to ensure avalanche. The fabricated device when operated as avalanche photodiode (APD), showed an outstanding performance with record high photoresponsivity of 60 A/W. To the best of our knowledge this is the first demonstration of GaN avalanche photodiode showing strong avalanche as supported by the positive temperature coefficient of their breakdown voltage.

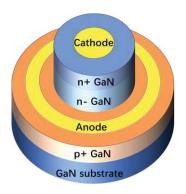


Figure 1. The schematic of the GaN avalanche photodiode (APD).

II. DEVICE STRUCTURE

The p-i-n diode used in this study is shown in Fig. 1. The epitaxial structure began with growing a 1-μm-thick p+GaN layer on top of the free standing GaN substrate. A 1-μm-thick n- GaN drift layer and a 200-nm-thick n+GaN layer were grown on top of the p+GaN by metal organic chemical vapor deposition (MOCVD). The measured dislocation density of the epitaxial layers was in the order of 10⁶ cm⁻². The doping

concentration of the n-GaN drift region was measured as 2×10^{16} cm⁻³ (measured by C-V). The device edge termination was implemented by double-energies Mg ion implantation (which was not shown in Fig.1).

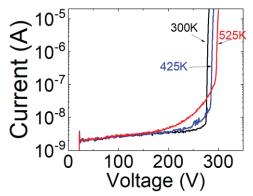


Figure 2. The measured reverse characteristics of the diode under different temperature from 300 K (room temperature) to 525 K (250 °C).

TABLE I: TEMPERATURE REPORTED TEMPERATURE COEFFICIENT OF AVALANCHE BREAKDOWN OF MAIN SEMICONDUCTORS

Mateiral	Temperature Coefficient (K ⁻¹)
Si [9]	1.9-6.8×10 ⁻⁴
GaAs [10]	1.4-10×10 ⁻⁴
4H-SiC [11]	1.5 ×10 ⁻⁴
GaN (this study)	3.85 ×10 ⁻⁴

III. DEVICE CHARACTERIZATION

The temperature-dependent reverse I-V characteristics is shown in Fig. 2. The breakdown voltage increased with the temperature with a positive temperature coefficient. The temperature-dependent breakdown voltage can be written as BV (T)=BV_{300K} (1+ $\alpha\Delta$ T), where α is the temperature coefficient. By measuring the device under temperature ranges from 300 K to 525 K, the temperature coefficient is $3.85 \times 10^{-4} \, \text{K}^{-1}$. Table 1 compares the temperature coefficients of avalanche breakdown voltage of different materials, Si [9], GaAs [10], and 4H-SiC [11]. Although these materials have different crystal structure and bandgap, the temperature coefficients of avalanche breakdown voltage are quite close.

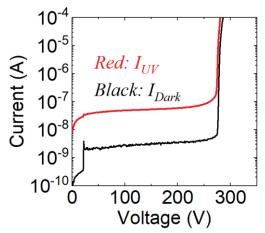


Figure 3. Reverse current measured in dark environment and under ultraviolet light illumination (λ =350 nm).

Figure 3 shows the reverse characterstics of the device. The cathode current was measured under UV light illumination and dark condition, respectivley. The dark current was in the order of nA, and no increase was observed until the voltage reached 278V, where avalanche breakdown occurred. The avalanche breakdown of the device was repeatable, after 10 measurements, the device was still functional. The red curve in Fig. 3 shows the cathode current measured under UV light illumination. The wavelenght of the UV light was 350 nm. The gain of the device can be calculated by Gain=(I_{UV}-I_{dark})/I_{inital,UV}, where I_{inital,UV} was the current measured under UV light illumination before the avalanche breakdown. The gain of the device is shown in Fig. 4, where a maximum gain of 10⁵ was observed when the applied voltage was over 280 V.

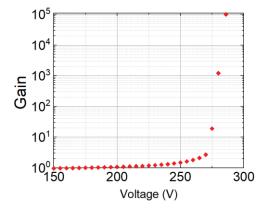


Figure 4. Gain of the fabricated device as a function of reverse bias. The maximum gain is 10^5 .

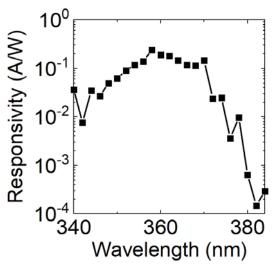


Figure 5. Responsivity of the photodiode. The peak response wavelength was from 350nm to 370nm.

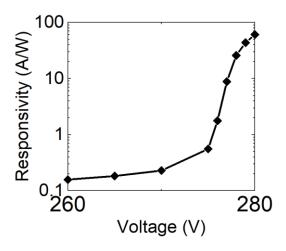


Figure 6. Responsivity as a function of reverse bias. A record high responsivity of 60 A/W was measured under a reverse bias of 280 V.

Fig. 5 shows the responsivity of the device as a function of light wavelengths. The device showed a peak responsivity in the wavelength range from 350nm to 370nm, which was determined by the bandgap energy of GaN. When a high voltage (>260 V) was applied on the cathode contact, an increase in the responsivity was observed. A record high responsivity of 60 A/W was measured under the reverse bias of 280 V. While several groups have reported APDs in GaN [12-17], no characterization on the robust avalanche breakdown capability has been reported in those studies making the current study a remarkably important contribution to the field.

IV. CONCLUSIONS

In summary, a combination of high quality GaN material grown on bulk GaN substrate and optimized field termination technique led to a robust avalanche capability in GaN p-i-n diode. The device showed a robust avalanche breakdown

capability with a positive temperature coefficient of breakdown voltage. The device had a low dark current and high responsivity of 60A/W.

ACKNOWLEDGMENT

The authors are thankful to Prof. James Harris for III-As APD related discussions that helped us evaluate the performance of the reported devices. The authors would also thank Anand Vikas Lalwani and Dr. Jaeyi Chun for measurement related help. The work was partly funded under William George and Ida Mary Hoover Faculty Fellowship at Stanford, and the ARL (W911NF-18-2-0017), and the responsivity was measured at Prof. Newaz's lab at SFSU (NSF ECCS-1708907).

REFERENCES

- [1] I. C. Kizilyalli, A. P. Edwards, O. Aktas, T. Prunty, and D. Bour, "Vertical Power p-n Diodes Based on Bulk GaN," IEEE Trans. Electron Devices, vol. 62, pp. 414-422, Feb. 2015.
- [2] T. Maeda, T. Narita, H. Ueda, M. Kanechika, T. Uesugi, T. Kachi, T. Kimoto, M. Horita, J. Suda, "Parallel-Plane Breakdown Fields of 2.8-3.5 MV/cm in GaN-on-GaN p-n Junction Diodes with Double-Side-Depleted Shallow Bevel Termination," IEEE International Electron Devices Meeting, 687-690, Dec. 2018.
- [3] H. Fukushima, S. Usami, M. Ogura, Y. Ando, A. Tanaka, M. Deki, M. Kushimoto, S. Nitta, Y. Honda, and H. Amano, "Deeply and vertically etched butte structure of vertical GaN p-n diode with avalanche capability," Jpn. J. Appl. Phys., vol. 12, p. SCCD25, May 2019.
- [4] H. Ohta, N. Asai, F. Horikiri, Y. Narita, T. Yoshida, and T. Mishima, "4.9 kV breakdown voltage vertical GaN p-n junction diodes with high avalanche capability," Jpn. J. Appl. Phys., vol. 58, SCCD03, Apr. 2019.
- [5] K. Nomoto, B. Song, Z. Hu, M. Zhu, M. Qi, N. Kaneda, T. Mishima, T. Nakamura, Debdeep Jena, and H. G. Xing, "1.7-kV and 0.55-mΩcm² GaN p-n Diodes on Bulk GaN Substrates With Avalanche Capability," IEEE Electron Device Letters, vol. 37, pp. 161—164, Feb. 2016.
- [6] D. Ji, B. Ercan, and S. Chowdhury, "Experimental determination of impact ionization coefficient of electrons and holes in gallium nitride using homojunction structures," Appl. Phys. Lett., vol. 115, p. 073503, July 2019.
- [7] L. Cao, J. Wang, G. Harden, H. Ye, R. Stillwell, A. J. Hoffman, and P. Fay, "Experimental characterization of impact ionization coefficients for electrons and holes in GaN grown on bulk substrates," Appl. Phys. Lett., vol. 112, p. 262103, June 2018.
- [8] S. Mandal, M. B. Kanathila, C. D. Pynn, W. Li, J. Gao, T. Margalith, M. A. Laurent, and S. Chowdhury, "Observation and discussion of avalanche electroluminescence in GaN p-n diodes offering a breakdown electric field of 3 MV cm-1," Semi. Sci. Tech., vol. 33, p. 065013, June 2018.
- [9] R. Hall, "Temperature Coefficient of the Breakdown Voltage of Silicon p-n Junctions," Int. J. Electronics, vol. 22, pp. 513-519, June 1967.
- [10] C. Groves, R. Ghin, J. P. R. David, G. J. Rees, "Temperature dependence of impact ionization in GaAs," IEEE Trans. Elec. Dev., vol. 50, pp. 2027-2031, Sept. 2003.
- [11] K. V. Vassilevski, K. Zekentes, A. V. Zorenko, L. P. Romanov, "Experimental determination of electron drift velocity in 4H-SiC p⁺ -n-n⁺ avalanche diodes," IEEE Electron Device Letters, vol. 21, pp. 485-487, Oct. 2000
- [12] L. Sun, J. Chen, J. Li, and H. Jiang, "AlGaN solar-blind avalanche photodiodes with high multiplication gain," Appl. Phys. Lett, vol. 97, p. 191103, Oct. 2010.
- [13] S. Verghese, K. A. McIntsh, R J. Molnar, C. L. Chen, K. M. Molvar, I. Melngailis, and R. L. Aggarwal, "GaN-based avalanche photodiodes," Device Research Conference, pp. 54-55, June 1998.
- [14] J. C. Carrano, D. J. H. lambert, C. J. Eiting, C. J. Collins, T. Li, S. Wang, B. Yang, A. L. Bec, R. D. Dupuis and J. C. Campbell, "GaN avalanche photodiodes," Appl. Phys. Lett., vol. 76, pp. 924-926, Feb. 2000.
- [15] R. McClintock, J. L. Paul, K. Minder, C. Bayram, P. Kung, and M. Razeghi, "Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes," Appl. Phys. Lett, vol. 90, p. 141112, March 2007.
- [16] E. Cicek, Z. Zashaei, R. McClintock, C. Bayram, and M. Razeghi, "Geiger-mode operation of ultraviolet avalanche photodiode grown on

sapphire and free-standing GaN substrates," Appl. Phys. Lett, vol. 96, p. 261107, June 2010.

[17] Y. Zhang, S. C. Shen, H. J. Kim, S. Choi, J-H. Ryou, R. D. Dupuis, and B. Narayan, "Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates," Appl. Phys. Lett, vol. 94, p. 221109, May 2009.