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Abstract—Myopic arbitrarily varying channels (AVCs) are
point-to-point communication models in which a channel state is
controlled by a malicious adversary (a jammer) who receives
side-information about the transmitted codeword via a side-
channel (wiretapping) and wishes to maximize the probability
of error. Compared to standard “‘oblivious” AVCs, myopic AVCs
can potentially use the side information to launch a more effective
attack, lowering the capacity of the channel. In this paper, we
define a novel property, myopic symmetrizability, and prove it is a
sufficient condition for the capacity of any myopic AVC to be zero.
We also study the sufficiently myopic setting, in which, roughly
speaking, the jammer’s side information reveals less information
on the codeword transmitted than eventually available at the
receiver. In this scenario we show that myopic symmetrizability
is also a necessary condition for the capacity to equal zero, by
providing a novel code construction using non-i.i.d. codebooks. A
key technical lemma, interesting in its own right, is an argument
showing that for any positive-rate code (whether for myopic AVCs
or not) one can identify a corresponding distribution Px x/ that
is a convex combination of product distributions, and such that
a constant fraction of pairs of codewords have an empirical
distribution approximately equaling Px x-.

I. INTRODUCTION

The arbitrarily varying channel (AVC) is a model for
communication over a channel whose time-varying state is
controlled by an adversary (cf. [1], [2]). In keeping with
prior convention we call the encoder Alice, the decoder Bob
and the adversary, or jammer, James. In the case where the
input codeword x and state sequence s may be constrained
(e.g. by total per-letter costs), the capacity under the average
probability of error criterion was characterized by Csiszar and
Narayan [3], who showed that if James could symmetrize the
channel, then the capacity is zero. Loosely speaking, James
can symmetrize the channel if he can “spoof” a valid code-
word: he can make the channel “look like” a symmetric two-
user (Alice and James) multiaccess channel. James randomly
chooses a codeword x’ to send and Bob will not be able to
disambiguate reliably between Alice’s x and James’s x’.

Recent works have proposed modifications of the general
AVC to investigate how James’s knowledge of the transmitted
codeword affects the capacity problem. In this paper we study
one such variant of this model, the myopic AVC, in which
the adversary can observe the transmitted channel codeword
through a discrete memoryless channel (DMC) before choos-
ing a state sequence to maximize the probability of error [4]-
[6]. The myopic AVC has some similarities to wiretap models,
although here the adversary can affect the channel state
with the goal of maximizing the probability of error. Dey,
Jaggi, and Langberg [6] showed that for “sufficiently myopic”
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adversaries', the capacity is the same as if the adversary had
no knowledge of the transmitted codeword.

The notion of symmetrization for myopic AVCs is a more
complex phenomenon than for the commonly studied model of
AVCs [3], referred to here as oblivious AVCs (in the sense that
the jammer has no knowledge of the transmitted codeword x).
In symmetrizability for oblivious AVCs, James may choose
any valid codeword x’ for his attack: that is, he can render
any pair of codewords (x,x’) confusable. In the myopic case,
specific pairs of codewords may not be confusable but for any
sufficiently large codebook there must exist many pairs which
are confusable. In addition, James may tailor his jamming
attack on the basis of his noisy observation of x.

The primary focus of this work is on understanding whether
a positive rate is possible or not for a given myopic AVC. To
this end our main contribution is to define the new notion of
myopic symmetrizability that acts as a sufficient condition for
a myopic AVC to admit no positive rate. Namely, we show
that the capacity is zero for myopically symmetrizable AVCs.
For the interesting subclass of sufficiently myopic AVCs [6]
we show that this is also a necessary condition, by giving
lower (achievable) bounds on the capacity for myopically non-
symmetrizable AVCs.

A key technical lemma in our zero-rate converse, interesting
in its own right, is an argument showing that for any positive-
rate code (whether for myopic AVCs or not) one can identify
a corresponding distribution Px x/ over X x X such that
it can be decomposed as a convex combination of product
distribution, and such that at least a constant fraction of pairs
of codewords have an empirical distribution approximately
equaling Px, x+. The guarantee afforded by this lemma implies
that if the AVC is myopically symmetrizable, even if the
malicious adversary only attempts to confuse the receiver
about such pairs of codewords, he will nonetheless succeed
with constant probability. The following example, of a myopic
bit-flip AVC, previews the flavour of our main results.

Example 1. A “myopic (p, q) bit-flip AVC” may be described
as follows: The transmitter Alice wishes to communicate a
message m to the receiver Bob over n uses of a binary-
input binary-output channel by transmitting a length-n binary
codeword x. Alice’s encoder is known a priori to all parties.
The malicious jammer James observes z, a noisy version of
X corresponding to passing X through a binary symmetric

'Roughly speaking, a sufficiently myopic AVC is one in which the worst
DMC James can induce from Alice to Bob has a higher Shannon capacity
than the channel from Alice to James.
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channel (BSC) with a transition probability q, i.e., a BSC(q).
As a function of his observation z and his knowledge of Alice’s
encoder, James may choose an arbitrary jamming sequence s
of Hamming weight at most pn. Bob receives y = x®s (where
@ denotes component-wise modulo-2 addition). From y and
his knowledge of Alice’s encoder Bob attempts to recover her
message m.

For this AVC, as a consequence of Theorem 4 (our first
main result, stated in Section III) we can show that for
0 < g < 1/2 no positive rate is possible if p > ﬁ. This
novel impossibility result comes from interpolating between
known impossibility results when q = 1/2 (the oblivious
setting [3] — in this case communication is impossible if
and only if p > 1/2), and q = 0 (the omniscient setting
— in this case the classical Plotkin bound [7] implies no
code of size larger than O(1/e) exists if p > 1/4+¢). Our
impossibility result for this example may be understood as
appropriately fusing the probabilistic arguments for oblivious
channels [3] and the combinatorial arguments for omniscient
channels [7]*> For general AVCs, Theorem 4 similarly
combines oblivious symmetrizability arguments [3] with the
recently developed Generalized Plotkin Bound [§8].

Our achievability result in Theorem 7 (our second main
result, stated in Section III) is restricted to the sufficiently
myopic setting, which in this example corresponds to p and
g such 1 — H(p) < 1 — H(q), ie. p < q < 1/2. Using
the notation outlined in Sections Il and IlI, in this parameter
regime the optimizing Py x distribution in Theorem 7 col-
lapses just to the Bernoulli(1/2) i.i.d. distribution on X with
no need of the time-sharing variable U, and the corresponding
achievable rate guaranteed by the theorem equals 1 — H (p).
In this regard Theorem 7 retrieves a prior result [6]. However,
it is possible to construct AVCs for which i.i.d. distributions
may not achieve a positive rate, whereas independent but not
identically distributed codebooks can — Example 1 in Wang et
al. [8] demonstrates such an (omniscient) AVC.>

It was noted in [9] that stochastic code constructions (with
private randomness at the encoder unknown a priori to either
the jammer or the decoder) can outperform deterministic code
constructions for insufficiently myopic AVCs.* This is one
reason why in this work we do not settle the rate-positivity
question for insufficiently myopic AVCs, since here for our
inner bounds we consider only deterministic code construc-
tions (though our myopic symmetrizability impossibility result

>This parameter regime p > ﬁ corresponds solely to insufficiently
myopic AVCs — however, with some care one can even construct sufficiently
myopic AVCs which are nonetheless myopically symmetrizable.

3While Example 1 in Wang et al. [8] is insufficiently myopic since it
corresponds to an omniscient AVC, it can be bootstrapped into a more complex
example which is sufficiently myopic, and still exhibits similar behaviour,
where no i.i.d. codebook achieves positive rate, but there exists a non-i.i.d.
distribution resulting in a code that achieves positive rate.

4An example of a myopic AVC was provided in Dey et al.! [9] demonstrat-
ing not only that stochastic codes could achieve higher rates than deterministic
codes, but also that the parameter regimes where positive rates could be
attained was strictly larger with stochastic codes than with deterministic codes.

holds in great generality, even for stochastic codes). In ongoing
work we are investigating extending the deterministic code
constructions in this paper to stochastic codes, and examining
whether this can help complete the characterization of the rate-
positivity question for all myopic AVCs, whether sufficiently
myopic or not.

We note that the current results reported here correspond to
understanding when the rate is positive: our achievable rates
may not be capacity-achieving. Understanding the optimal rate
for merely sufficiently myopic AVCs is an interesting problem
in its own right that we do not address. However, we believe
that a tight rate-converse may be possible. Indeed, proving
a rate-converse that would be tight in this regime can follow
from a combinatorial conjecture (stated at the end of the paper)
that may be interesting in its own right.

II. CHANNEL MODEL

Notation: Vectors or sequences will be given in boldface and
sets in calligraphic script. For a positive integer a the set [a]
denotes {1,2,...,a}. Let A(X) be the set of all probability
mass functions on a finite alphabet X (i.e. the simplex of
probability distributions). For distributions () and Q" on X, let
doo (Q, Q") = ||Q— Q]| o and define the £, ball By (Q,d) =
{Q € A(S) : ||Q — Q'|lco < 6}. For a set A C A(X) define
the d-interior Ints(A) = {@ € A : B(Q,d) C A} and
the distance doo (@, A) = infgrep doo (Q, Q). For an n-tuple
x € X", the type (empirical distribution) of x is denoted by
Tx € A(X). For a joint distribution Py, x,...x,, on variables
X1, Xs,...,Xm, we denote the marginal distribution on X;
by [Px, x5 X0 |,

Let X, Z, S, and Y be finite alphabets. A myopic arbi-
trarily varying channel A consists of a discrete memoryless
channel (DMC) Wy x(z|z) from &X' to Z and a collection
{Wyx,s(ylz,s) : s € S} of DMCs indexed by S. For a fixed
x € X" and s € S” the distributions of z and y are given
by W (2%) = TT7y Wy (zife), and Wi (ylx,s) =
[T Wy |x,s(yilwi, si). If Z is independent of X then this
reduces to the standard AVC, which we call an oblivious AVC
and if Z = X we call it an omniscient AVC. A (n,N) code
with stochastic encoding for a myopic AVC is a pair of maps
(®,%) where & : [N] — X™ is a stochastic encoding map
and ¢ : Y™ — [N] is a deterministic decoding map. A (n, N)
deterministic code is a special case in which & is replaced
with a deterministic mapping ¢ : [N] — X™. The rate of an
(n,N) code is R = L log,(N).

In an AVC we assume the state s is controlled by a malicious
adversary, or jammer, who wishes to limit the maximum rate
of reliable communication. In a myopic AVC the jammer has
access to side information about the transmitted codeword. If
m € [N] is to be sent and x = ¢(m), the jammer can observe
z, a noisy version of x. We assume that the jammer knows the
code being used by the encoder/decoder but not the message
being transmitted. A jamming strategy isamap J : Z" — S™.
That is, the jammer can see the entire sequence z € Z" and
uses that to choose its input s € S™.
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For a code (®,1), message m, and strategy J the proba-
bility of error is

e(m, J) =Y Wi ixs(0 (m)lx,s)W x (2/x)

X,Z,S

P(®(m) =x)P(J(z) =s). (D)

The (avera%\e]:) probability of error is defined as & =
maxy + m_q £(m,J), where the maximum is over J
satisfying the cost constraints as defined below. A rate R is
achievable (under average error) if for any € > 0 there exists
a sequence of (n,2"%) codes such that & < e. The capacity
is the supremum of achievable rates over all codes satisfying
the constraints below.

We define linear constraints on codes and jamming strate-
gies as follows. Let A, C A(S) and A, C A(X) be convex
polytopes. A code satisfies the constraint A, if the codeword
type To(m) € A, for all m almost surely. A jamming strategy
J satisfies the constraint A if the type Ty € Ay almost
surely. As an example suppose X = S = {0,1} and A,
are all distributions P with P(1) < « and A, contains
all distributions @ with Q(1) < 3. Then, almost surely,
codewords have Hamming weight at most an and jamming
sequences have Hamming weight at most n.

III. MAIN RESULTS

In this work we generalize the symmetrizability property for
oblivious AVCs given by Csiszar and Narayan [3]. To make the
contrast with our new notion we call their definition oblivious
symmetrizability. Due to space constraints, the proofs of all
claims below will appear in the extended version of this work.
Definition 1 (Oblivious symmetrizability [3]). For an oblivi-
ous AVC A, an input distribution Py is obliviously symmetriz-
able if there exists a channel Vg x from X to S such that the
following two conditions hold:

(i) For all (z,2',y) € X X X x Y:

> Wyix.s(ylz, s)Vsx: (sl2')
S
= ZWY|X,S(y|x/75/)VS|X’(5/|33)a (2)

(i) 3 0 > 0 such that [Px Vg x]s € Ints(Ay).

As mentioned in the introduction, the condition in (2) means
an oblivious adversary can use the channel Vg x/ to create a
symmetric multiaccess channel with inputs X and X’ such
that the distribution of the output y is the same with inputs
(x,x') or (x¥/,x).

To define myopic symmetrizability, we will use the follow-
ing notion of completely positive (CP) joint distributions.

Definition 2 (Completely Positive (CP) distributions). For a
distribution Px on X, the set of completely positive joint
distributions CP(Px ) is defined as the set of joint distributions
Px xr € A(X x X) such that
(i) The marginal distributions are equal to Px: [Px x/|x =
[Px,x']x = Px.

(ii) There exists a finite alphabet U of cardinality at most
|X[(|X] — 1)/2 and distribution Py on U such that
Px x:(x,2") = 3, cos Pu(u) Px v (z|u) Pxu (o' |u).
For a subset of distributions I' C A(X) the set CP(T") =
Uper CP(P).

A completely positive distribution Px x/ may be viewed
as the expected joint type between pairs of codewords in
a code ensemble where for each u € U, in expectation
nPy(u) codeword coordinates are sampled according to the
distribution Py ¢ (-|U = u).3

Definition 3 (Myopic symmetrizability). For a myopic AVC
A, a CP distribution Px x+ (and the corresponding Py x) is
myopically symmetrizable if there exists a channel Vs|z x
such that the following two conditions hold:

(i) For all (z,2',y) € X X X X Y:

> Wz x (z]2) Vs z,x (s]2, 2" ) Wy x5 (ylz, 5)

z,8

= Z Wy ix (2|2 ) Vs z,x/ (5|2, 2) Wy x s (yl2', s"),

3)

(ii) 36 > 0 such that [PX,X’WZ\XVS|ZX']S € Ints(Ag).
If no such channel exists we call the distribution myopically
non-symmetrizable.

For a given AVC (Wy x, Wy |x,5), we denote the set of
myopically non-symmetrizable distributions Px x- as N'S.
Our first result shows that myopic symmetrizability is a
sufficient condition for zero capacity.

Theorem 4. A positive rate is not possible for a myopic AVC
A if the set N'S of myopically non-symmetrizable distributions
is empty.

A few remarks are in order. Definition 1 differs from
Definition 3 in two major aspects. First, as one would ex-
pect, in condition (i) of Definition 3 James’s view z of the
transmitted symbol w through Wz x plays a central role.
The symmetrizing mapping Vg z x+ is thus a function of
both z’ and z. For readers familiar with the oblivious AVC
techniques [3] such a mapping is the natural generalization.
Secondly and more subtly, in condition (ii) of Definition 3,
we consider the joint distribution Px x» € CP(Px) and not
just Px as in Definition 1. Such a restriction of Px x- is a
non-trivial strengthening. For instance, if we did not require
Px_ x/ to be a CP distribution in Example 1, the symmetrizing
region would collapse to the oblivious symmetrizing region
p > 1/2, rather than the strictly larger region p > —1 _we

. . .. .. . 4(1-q)
obtain with the restriction. This is because if Py xs is not

5The set of completely positive matrices are known (see for instance the
excellent survey by Berman and Shaked-Monderer [10]) to form a closed
convex cone. Our definition of CP(Px) may be viewed as intersecting this
cone with additional hyperplanes — in particular requiring the row/column
sums to equal Px. The cardinality bound of |X'|(]X| — 1) /2 arises by noting
that CP(Px) is a convex set comprising of |X| X |X| symmetric matrices
with row/column sums both pre-specified as Px, and applying Carathéodory’s
extension theorem.
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required to be a CP distribution, then James would also have
to symmetrize distributions in which x # z’ with probability
1, which requires the Hamming weight of s to equal n/2 even
if James is omniscient.

The proof of Theorem 4 relies heavily on the Generalized
Plotkin Bound proven by Wang et al. [8]. In particular, we
need the following “robust” version of the converse argument
in Theorem 9 of that work.

Lemma 5 (Robust Generalized Plotkin Bound). Let A, be a
constraint set for codewords over X, n be a positive integer,
and C be a collection of sequences in X™ (a codebook)
such that Ty € A, for all x € C. Then for any 6 > 0,
if doo(Txx', CP(Ay)) > & for all (x,x') € C x C, then
Cl < O(1/82*F),

Proof sketch: We highlight, for deterministic codes, the
intuition behind the proof of Theorem 4. The proof can be
generalized to the setting of stochastic codes using the line of
arguments presented in prior work [11].

Let C be any code of positive rate shared by Alice and Bob.
We first claim that there exists a large approximately-constant
composition subcode C’ of C. Namely, that there exists a
subcode C' C C of size (|C|) for which each codeword
has approximate type Px. This follows from considering, for
constant 6 > 0, a d-net quantization of the simplex A(X’) and
the corresponding Voronoi partition. As X is finite, such a net
is also finite, and induces a finite partition on C. The largest
subcode C’ in this partition, obtained by the Voronoi cell with
center Py, will have size Q(|C|).

We now consider pairs of codewords in C’ and claim that
a constant fraction of them are J-close to some ZADX, x €
CP(Ax). This follows from a combination of Lemma 5,
Turdn’s Theorem, and the fact that C P(Ax ) can be quantized
as well into a finite sized J-net. Specifically, by Lemma 5, there
do not exist large subsets of C’ for which all pairs of codewords
are far from CP(Ax). Turdn’s Theorem then implies that a
constant fraction of pairs of codewords in C’ must be d-close
to CP(Ax). This, in turn, combined with a §-net on CP(Ax)
implies our claim.

Consider now a uniform randomly chosen codeword x from
C. As Px is myopically symmetrizable, James may select
the channel Vg zx/ affiliated with PX, x’, and a spoofing
codeword x" uniformly and random from the codebook C. By
the discussion above, with constant probability the joint type
of x,x’ is d-close to PX7 x. James then selects his jamming
vector s by applying Vg, x symbol-wise on z and x’. By
our definition of symmetrizability, Bob will not be able to
distinguish between the case at hand, and that in which Alice
transmitted x’. [ |

A. The sufficiently-myopic case

Our second main result addresses coding schemes for AVCs
that satisfy a generalized version of sufficiently myopic AVCs
defined in [6]. Here, we address only non-symmetrizable
P(X) for which by Definition 1 there exist Px, x € CP(Px)
with certain properties. We thus use the notation Py x to

describe such Py that arise from the CP-decomposition given
in Definition 2.

Definition 6 (Sufficiently myopic AVCs). We say that an AVC
is sufficiently myopic under Py x if the quantity

R*(Pyx,Wzx,Wy|x,s) = min I(X;Y|U)
Vsiz,u

is strictly larger than 1(X; Z|U), i.e., if the worst DMC James
can induce from Alice to Bob has a higher Shannon capacity
than the channel from Alice to James.

We define
P := {Py x|the AVC is sufficiently myopic under Py, x }

In Theorem 7 below, N'S denotes the set of Py x that are
non-symmetrizable.

Theorem 7. If P is non-empty for an AVC, then the rate

max min I(X;Y|U).
Py, xeNSNP Vs zu
is always achievable. Here U is a (time-sharing) random vari-
able with a cardinality bound® given by [U| < |X|(|X]|—1)/2.

Proof sketch: Key to the construction of the code is
a distribution Py x corresponding to a completely positive
distribution Px x-. Given such a distribution we can identify a
random variable U on an alphabet I/ with distribution Py such
that Px x» = [PyPxuPx/v]x,x/, where the conditional
distributions Px |y and Px/y are the same. Let us fix the
pair (Py, Px|v). We construct the codebook as follows:

1) Fix any u € U™ with type T,, = Py. We call u the cloud

centre.

2) For m € [2"F] generate the codeword x(m) according

to the distribution []}' ; Py |y (w;|u;).
The cloud centre u and codebook C = {x(m) : m € [2"f]}
are revealed to Alice, James, and Bob. To encode a message m,
the encoder sends x(m) if doo(Tx(m), Px) < and Ty, €
A, otherwise it declares an error.

The corresponding decoding scheme and error-analysis is
broadly similar to that used in oblivious AVCs [3]. To decode,
Bob uses a two-step decoder.

1. List decoding: Bob first determines a list £(y) of candidate
codewords x € C such that for each codeword x in the list
there exist z, feasible s and a channel Vg7 such that

doo(Tuxasy, PuPx|uWz1x Vs zuWy|x,s) <,
[PuPxiuWz xVsizuls € As

where 17 > 0 is a constant. Relatively standard techniques in
the AVC literature ensure that for sufficiently myopic AVCs
(this is the only place where sufficient myopia is needed) with
high probability over code-design, the cardinality of Bob’s list
is at most polynomial in n.

®We remark on a subtle point here — while |X|(|X| — 1)/2 suffices
as a cardinality bound for a CP-decomposition of a given Px x/ over an
alphabet X, there are always “redundant” decompositions with (arbitrarily)
larger cardinality. It is not obvious whether or not the functional I(X;Y|U)
may have a larger optimizing value under some such redundant decomposition.
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2. Tournament: We say x dominates x’ if there exist z,
feasible s and Vg7 x/,iy such that

doo(Tuxx'zsy PuPx|u Px/\uWz x Vs|z.x v Wy|x,s) <1,
[PuPx v PxuWz1xVs|z,xvls € As,

and for every z’, feasible s’ we have
doo (Tux'xz's'y s Pu Px|u Px oWz x Vs|z,x v Wy |x,5) > 1.

If there is a X that dominates all other x' € L(y) then
Bob outputs the message corresponding to that X. Otherwise
he declares an error. Arguments similar to the oblivious
case [3], [12] may be used to argue that due to myopic non-
symmetrizability, with high probability the correct codeword
x will win the tournament stage of decoding. ]

The code construction in Theorem 7 results in determin-
istic codes, but as already noted in the Introduction, it is
known [9] that at least for some AVCs stochastic codes strictly
outperform any deterministic codes. We are therefore currently
exploring in ongoing work the impact of incorporating encoder
randomness via superposition coding, for instance in the
classical code construction for broadcast [13] in the context
of passive security against eavesdroppers, and the concomitant
notions of stochastic myopic symmetrizability required.

IV. DISCUSSION

In this paper we provide a notion of myopic symmetrizabil-
ity which is a sufficient condition for the capacity of a myopic
AVC to be zero, and affords a tight characterization of the
positive-rate region for sufficiently myopic AVCs. However,
we do not provide a tight rate-converse on the achievable rate
once the region N'S is non-empty. Towards this end, we pose
an open problem which we find intriguing and which can lead
to a rate-converse that would be tight in the sufficiently myopic
regime. The statement of our open problem appears below,
followed by a short discussion.

Let 6 > 0. Consider a given code C. Let Px x € A(X xX)
be defined by probability distributions Px |y and Py through

Py xo(@, @) = ey Puu) Pxju (xfu) Px o (2'u).

Open question: If for a constant fraction of pairs of code-
words (x,x’) in C x C it holds that deo(Txx', Px x') < 0,
then there exists a constant-fraction sized subcode C' of C
and a single vector u such that for all x € C' it holds that
doo(Txju, Pxjv) < 6.

In words, the question above seeks to find a witness u to the
structure of the code C in the sense that we assume (a constant
fraction of) pairs of codewords in C have (approximate) joint
type governed by the distribution Py and we wish to prove
the existence of a realization u that governs the (approximate)
type of (a constant fraction of) codewords in C.

The open question plays a role in a potential rate-converse
using the following line of analysis. First, using standard
averaging arguments any code C has an associated distribution
Px x+ for which, for small § > 0, a constant fraction of pairs
of codewords (x,x") in C x C satisfy doo(Txx'; Px,x7) < 0.

Using this observation with distributions that are completely
positive, an affirmative answer to the open question above
yields a witness u governing the type of codewords in a
constant-fraction sized subcode of C’. Now, carefully using
u in the design of an attack strategy for James, and requiring
that the attack yield a decoding error with constant probability
on C’, one can obtain the desired tight converse.
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