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Abstract Scoring functions are commonly used to evaluate a point forecast of
a particular statistical functional. This scoring function should be consistent,
meaning the correct value of the functional is the Bayes act, in which case we
say the scoring function elicits the functional. Recent results show that the
mode functional is not elicitable. In this work, we ask whether it is at least
possible to indirectly elicit the mode, wherein one elicits a low-dimensional
functional from which the mode can be computed. We show that this cannot
be done: neither the mode nor a modal interval are indirectly elicitable with
respect to the class of identifiable functionals.

Keywords Elicitation · Point forecast · Scoring function · Loss function ·
Mode · Modal interval.

1 Introduction

To evaluate point forecasts, one commonly uses a scoring function, also called
a loss function, which measures the inaccuracy of the forecast relative to an
observed outcome. Loss functions are also used in estimation, forecast ranking
and comparison, model selection, and back-testing (Gneiting and Raftery 2007;
Gneiting 2011). In all of these applications, given a target statistical functional,
we desire a consistent loss function, meaning that the correct value of the
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functional is the Bayes act with respect to the loss. In this case, we say the
loss function elicits the functional.

While many common statistics are elicitable, such as the mean, median,
and quantiles, it is well-known that the variance is not. This impossibility
follows from an observation of Osband (1985) that elicitable functionals have
convex level sets, meaning mixtures of distributions with the same functional
value must again have the same functional value, an axiom which the variance
does not satisfy. (Indeed, mixtures generally have higher variance.) Nonethe-
less, several authors have pointed out that the variance is indirectly elicitable:
one may elicit the first and second moment of the distribution, and then com-
bine these values with a link function to obtain the variance. The minimum
number of dimensions required in such an indirect elicitation scheme (for the
variance, 2) is referred to as the elicitation order, or elicitation complexity, of
the functional in question (Lambert et al 2008). Recently, several important
non-elicitable functionals, including many risk measures such as conditional
value at risk, have been shown to be indirectly elicitable with low elicitation
complexity (Lambert et al 2008; Frongillo and Kash 2015; Fissler et al 2016).

Heinrich (2014) recently showed that another common statistic, the mode
functional, is not elicitable, despite the fact that its level sets are convex. It
is therefore natural to ask whether the mode is indirectly elicitable, and if
so, determine its elicitation complexity. Our main result is that the mode has
infinite elicitation complexity with respect to identifiable functionals, a rela-
tively weak restriction (see Definitions 3 and 4 and the discussion following).
Interestingly, our results also extend to modal intervals, which are elicitable,
as we discuss in Section 4.

Our results show that it is impossible to develop a consistent loss function
for evaluating point forecasts of the mode, even indirectly. Moreover, they
cast doubt on the existence of broadly effective empirical risk minimization
schemes for estimating the mode or a modal interval. Our techniques differ
from previous work (Frongillo and Kash 2015), and may be applicable to other
functionals of interest. We conclude with open questions, including a discussion
of other notions of elicitation complexity and other properties.

2 Setting

Let P be a set of probability measures on a common measurable space (Y,F).
For each probability measure P ∈ P, denote the expectation of a random
variable Y with distribution P by EPY . We will use the term “property” to
refer to a statistical functional taking values in a report space R, often a subset
of R or Rk.

Definition 1 (Property) A property is a functional Γ : P → R which
assigns a report value to each probability measure in P.

For example, considering probability measures on the measurable space
Y = R, with F being the Borel σ-algebra on Y, the mean Γ (P ) = EP (Y ) is a
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real-valued property. Similarly, another real-valued property is the variance,
Γ (P ) = EP (Y − EP (Y ))2. Our focus in this paper will be the mode, which
will be defined with care at the end of this section.

We next formalize our notion of consistency, which ensures that the Bayes
act for a loss function coincides with the desired property.

Definition 2 (Elicits) A loss function L : R × Y → R elicits a property
Γ : P → R if for every P ∈ P we have {Γ (P )} = argminr EP (L(r, Y )). We
say Γ is elicitable if there exists some loss function that elicits Γ . For all k ∈ N

the set of elicitable properties Γ : P → R
k will be denoted Ek(P).

For example, the mean is elicited by squared loss L(r, y) = (r − y)2.
The following concept of identifiability, due to Osband (1985), has played a

central role in the theory of property elicitation. The definition states that each
level set of the property, that is, the set of distributions sharing a particular
value r of the property, can be described by a linear constraint which depends
on r. Note that Steinwart et al. (2014) adopt a weaker notion of identifiability,
wherein the condition need only hold for almost every level set, and call the
definition below “strong identifiability”; see Section 5.

Definition 3 (Identification) A property Γ : P → R ⊆ R
k is identifiable if

there exists an identification function V : R×Y → R
k such that for all P ∈ P

we have Γ (P ) = r if and only if EP (V (r, Y )) = 0. Let Ik(P) denote the class
of all properties from P to R

k which are identifiable.

To illustrate, the mean is identified by the function V (r, y) = y − r.
Let us return to the notion of elicitation, and consider the variance Γ (P ) =

EP (Y − EP (Y ))2. As observed by Osband (1985), for a property to be elic-
itable it must have convex level sets: the set of distributions having the same
property value must be convex. It follows immediately that the variance is not
elicitable. As noted in the introduction, however, the variance can be expressed
as a function, or link, of elicitable properties, for example the mean and second
moment: Γ (P ) = EP (Y

2) − (EP (Y ))2. This motivates the notion of indirect
elicitability, wherein one elicits an intermediate property, and then computes
a link function to obtain the original property. When confronted with non-
elicitable properties, it is therefore natural to ask the minimal dimension of
such an intermediate elicitable property; this is the notion of elicitation com-
plexity (Lambert et al 2008; Frongillo and Kash 2015; Fissler et al 2016). As
we explain following the definition, we further require that these intermediate
properties be identifiable.

Definition 4 (Identifiable Elicitation Complexity) Let I =
⋃

k∈N
Ik(P)

be the class of identifiable properties. For k ∈ N, a property Γ : P → R is k-
elicitable with respect to I if there exists an elicitable property Γ̂ ∈ Ek(P)∩I
and a function f : Rk → R such that Γ = f ◦ Γ̂ . The identifiable elicitation
complexity of Γ is then the minimum of all k such that Γ is k-elicitable with
respect to I.
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Without imposing such a restriction on the class of intermediate properties,
the definition of elicitation complexity would be trivial, as noted by Frongillo
& Kash (2015): all properties of distributions on R have complexity 1 by first
eliciting the entire distribution via set-theoretic bijections between R and R

N

(see also the discussion following Corollary 1). To justify the restriction to iden-
tifiability in particular, first note that nearly all natural elicitable properties
are identifiable, including expectations, ratios of expectations, quantiles, and
expectiles. Second, the results of Lambert (2018) and Steinwart et al. (2014)
show that continuous non-locally-constant functionals are elicitable if and only
if they are weakly identifiable, meaning identifiability is essentially necessary
for continuous non-locally-constant properties Γ̂ in Definition 4. Third, elic-
itable properties which are not identifiable are often indirectly elicitable via
finite-dimensional identifiable properties, as is the case for all finite elicitable
properties (those taking values in a finite set); this observation is particularly
relevant as we give infinite lower bounds.

Returning to the example of the variance, we see that while it is not elic-
itable, its identifiable elicitation complexity is at most 2. The variance can
be recovered via the function f(x1, x2) = x2 − x21 composed with the identifi-
able and elicitable vector-valued property Γ̂ (P ) = (EP (Y ), EP (Y

2)) ∈ R
2. In

this case the identification function for Γ̂ is V (r, y) = (y − r1, y
2 − r2) where

r = (r1, r2). There is a distinction between a property which is elicitable
like the mean, Γ (P ) = EP (Y ), and a property which is 1-elicitable like the
mean squared, Γ (P ) = (EP (Y ))2. While every elicitable real-valued property
is trivially 1-elicitable via the identity function, not every 1-elicitable property
is elicitable. The mean squared fails to be elicitable, but is 1-elicitable.

Finally, we define identification complexity, which trivially lower bounds
identifiable elicitation complexity, a fact we use extensively in our results.

Definition 5 (Identification Complexity) For k ∈ N, a property Γ : P →
R is k-identifiable if there exists an identifiable property Γ̂ ∈ Ik(P) and a
function f : Rk → R such that Γ = f ◦ Γ̂ . Furthermore, the identification
complexity of Γ is the minimum of all k such that Γ is k-identifiable.

For the remainder of this section, we turn to the mode, which we define as
in Gneiting (2011) and Heinrich (2014). Letting ε > 0 and P ∈ P, consider
the cumulative distribution function F associated with P . A modal interval is
any interval of the form [x− ε, x+ ε] to which F assigns maximal probability.
Let Γε denote a midpoint of a modal interval, defined as

Γε(P ) ∈ argmax
x

(

F (x+ ε)− lim
z↑x−ε

F (z)

)

. (1)

Regardless of whether the modal interval is unique we can use its midpoint
to define the mode of the distribution. Suppose there exists a sequence of real
numbers {εn} where εn → 0 as n → ∞ and a corresponding choice of mid-
points of modal intervals {Γεn(P )} converging to a real number, Γmode(P ).
Then Γmode(P ) is the mode of the distribution. This definition is careful not
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to assume that a probability density exists. In the case where the distribution
function F is absolutely continuous and admits a continuous density p, then
Γmode(P ) coincides with the global maximum of p. When working with a dis-
crete probability distribution, Γmode(P ) corresponds to the point(s) associated
with maximal probability.

We will refer to probability measures which have a well-defined and unique
mode as unimodal . If a probability measure is unimodal and there exists a
probability density associated with it, the density does not necessarily have
a unique local maximum, a stronger requirement. For example, a Gaussian
density is unimodal in both senses of the term, whereas a mixture of Gaussians
with unit variance and strictly distinct weights does not necessarily have a
unique local maximum, but does have a well-defined and unique mode and
thus is unimodal. (See Section 5 for a discussion of the stronger definition.)

3 Impossibility

Heinrich (2014) demonstrates that the mode is not directly elicitable with
respect to several classes of unimodal probability measures. We proceed by
studying the identifiable elicitation complexity of the mode. Our main results
Theorems 1 and 2 both show that the identifiable elicitation complexity of
the mode is infinite with respect to two classes of probability measures. These
results imply that, when restricting to identifiable intermediate properties, the
mode is not even indirectly elicitable.

To begin, let P denote the class of unimodal probability measures defined
on the real line which admit a smooth and bounded density. Below we will de-
fine a class Pψ,ε of probability measures within P consisting of (finite) mixtures
of normalized bump functions which will be the class of probability measures
employed in Lemma 1, Theorem 1, and Corollary 1. We will denote by Q ⊂ P
the class of probability measures which can be expressed as a (finite) mixture
of Gaussians, the focus of Theorem 2. Since each P ∈ P admits a unique prob-
ability density p, we will identify the probability measure P with its density p,
and use the two interchangeably. Hence, when we choose an element p ∈ P, we
mean the probability density p associated with a probability measure P ∈ P .
Finally, Γmode(P ) and Γmode(p) both denote the mode of the distribution P
as defined in Section 2 which corresponds to the global maximum of p.

We define the bump function centered at 0 of width 2ε > 0 as follows,

ψ0,ε(x) =

{

1

cε
exp

(

− 1

ε2−x2

)

|x| < ε

0 |x| ≥ ε ,
(2)

where cε =
∫ ε

−ε
exp(−1/(ε2 − x2)) dx. We then define the bump centered

at x0 to be the function ψx0,ε(x) = ψ0,ε(x − x0). Note that ψx0,ε ∈ P and
Γmode(ψx0,ε) = x0. Let Pψ,ε denote the class of distributions in P which are
finite mixtures of bump functions in the set {ψ4tε,ε : t ∈ N}, i.e., of width 2ε
centered at {0, 4ε, . . . , 4(t− 1)ε, 4tε, . . . }.
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To build intuition, let us first see why the mode itself is not identifiable. In
fact, we will establish the stronger statement that the mode is not identifiable
with respect to Pψ,ε ⊂ P. (See also (Fissler and Ziegel 2017, Lemma 2.4).)

Lemma 1 The mode, Γmode : P → R, is not identifiable with respect to P,

the class of unimodal probability measures defined on the real line which admit

a smooth and bounded density.

Proof For a contradiction, suppose there exists V : R×R → R such that Γmode

is identified by V . For h = 2/3 define the density ph = hψ0,1 + (1− h)ψ4,1 in
Pψ,1. Clearly, Γmode(ph) = Γmode(ψ0,1) = 0, and since V identifies Γmode, we
thus have EphV (0, Y ) = 0 and Eψ0,1V (0, Y ) = 0. Combining,

0 = EphV (0, Y ) = hEψ0,1
V (0, Y )+(1−h)Eψ4,1

V (0, Y ) = (1−h)Eψ4,1
V (0, Y ) ,

from which we conclude Eψ4,1V (0, Y ) = 0 and thus Γmode(ψ4,1) = 0, a contra-
diction. ⊓⊔

We now see that the mode is not identifiable, but it remains to understand
its identifiable elicitation complexity. Theorem 1 generalizes the argument of
Lemma 1, showing that the mode is not indirectly identifiable with respect to
P, the class of unimodal probability measures defined on the real line which
admit a smooth and bounded density. In other words, for this class P, there is
no way to express the mode as a function of a finite-dimensional identifiable
property. We conclude that the identifiable elicitation complexity of the mode
is infinite with respect to P.

Theorem 1 The mode, Γmode, has infinite identifiable elicitation complexity

with respect to P, the class of unimodal probability measures defined on the

real line which admit a smooth and bounded density.

We briefly outline the proof of Theorem 1; the full proof appears in Ap-
pendix A. Let V be an identification function, which identifies some interme-
diate property Γ̂ : P → R

k for some finite dimension k. Taking t > k, we
construct a probability density p ∈ Pψ,ε with bump heights specified by a
vector h ∈ R

t+1
+ , chosen so that the gap between any two bump heights is

smaller than the minimum height. We observe that the expected value of V
is linear in the bump heights, and moreover this linear transformation is rank
deficient, giving us a nontrivial vector h′ ∈ R

t+1 in its kernel. By our initial
choice of h, for any such h′ we can find a suitable choice of coefficient α ∈ R so
that h+ αh′ ∈ R

t+1
+ while changing the mode. After normalization, this gives

us a valid density p′ ∈ Pψ,ε yielding zero expectation of V , and thus residing

in the same level set of Γ̂ as p, yet with a different mode. This contradicts
the existence of a function f satisfying Γmode = f ◦ Γ̂ , as f would need to
map the same Γ̂ value to two different Γmode values. Figure 1 illustrates this
construction, showing the density p along with a hypothetical choice of p′.

The impossibility result of Theorem 1 is strengthened in Theorem 2, which
shows that the mode has infinite identifiable elicitation complexity even after
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h0 h1
h1 + αh′1

ht

ht + αh′t

x

0 4ε 4tε

Fig. 1 The initial density p of Theorem 1 depicted with a solid line, and alternate density
p′ (before normalization) with a dashed. Here t > k, where k is the dimension of the

intermediate property Γ̂ .

y

h0 h1
h1 + αh′1

ht
ht + αh′t

x

0 1 t

Fig. 2 The initial density q in Theorem 2 depicted as a mixture of Gaussians with solid
lines, and the alternate density q′ with dashed, before normalization.

restricting to the familyQ of probability measures in P which can be expressed
as a mixture of Gaussians. While the general outline of the proof is similar,
the bump functions used in Theorem 1 were supported on disjoint intervals,
which is clearly not true of Gaussians. In particular, changing the heights of
distant Gaussians will now alter the mode.

Theorem 2 The mode, Γmode : Q → R, has infinite identifiable elicitation

complexity with respect to Q, the class of probability measures in P which can

be expressed as a mixture of Gaussians.

See Appendix A for the proof, which shows that the statement holds even
when the mixture is over Gaussians with the same variance. As in Theorem 1,
we assume Γmode = f ◦ Γ̂ for some finite-dimensional identifiable Γ̂ , construct
an initial density q ∈ Q, and show that there must exist another q′ ∈ Q
in the same level set as q but with a different mode (see Figure 2). While
the broad outline remains the same, several technical challenges arise from
the overlapping supports of Gaussians. To address these issues, we bound the
potential contribution of one Gaussian to the density value at another to show
that the mode changes from q to q′, and use these bounds again to set the
height vector h so that a coefficient α still exists for all possible vectors h′.
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than the true modal midpoint xε, and the situation worsens for ε < 0.1. (See
Figure 3 and Appendix B for details.) In summary, not only does the modal
midpoint fail to estimate the mode, it fails to estimate the modal midpoint.

These empirical findings suggest the difficulty of eliciting modal midpoints
in practice, despite the fact that they are elicitable. This sentiment is confirmed
by the following Corollary, which extends our argument on the elicitation com-
plexity of the mode to modal midpoints. The result essentially follows from the
following observation. For a distribution consisting of disjoint bump functions
in Pψ,ε, as defined after eq. (2) and used in the argument of Theorem 1, the
mode and modal midpoint Γε coincide. While this equivalence does not hold
anymore for mixtures of Gaussians, we remark that the proof of Theorem 2
could be directly modified, by enlarging the width of the balls to B2σ(xi), and
choosing sufficiently small γ and large C, so that the same logic would hold
for the modal interval when ε is sufficiently small.

Corollary 1 For any ε > 0, the modal midpoint, Γε : Pε → R, has infinite

identifiable elicitation complexity with respect to Pε, the class of probability

measures defined on the real line which admit a smooth and bounded density,

and have a unique mode and ε-modal midpoint.

Proof Let ε > 0 be given. Observe that for any p ∈ Pψ,ε, the disjoint bump
functions comprising p are spaced far enough apart so that an interval of width
2ε can only intersect the support of at most one bump function. Moreover, if
the interval intersects the ith such function, it maximizes the contained mass
by centering the interval at exactly 4εi. The global maximum mass is therefore
achieved by centering the interval to capture the mass of the bump function
with the largest weight, whose midpoint coincides with the mode. From these
observations, we conclude Γmode(p) = Γε(p) for all p ∈ Pψ,ε. In other words,
Γε and Γmode are the same functional with respect to Pψ,ε ⊆ Pε. Hence, the
identification complexity and identifiable elicitation complexity of the modal
midpoint Γε with respect to Pε are at least that of the mode. ⊓⊔

The fact that modal midpoints are elicitable yet have infinite identifiable
elicitation complexity illustrates the subtlety of our definitions. This subtlety
is important; as pointed out by Frongillo and Kash (2015), one can construct
pathological yet elicitable properties, such as a bijective Γ : ∆(Y) → [0, 1]
for finite Y via any strictly proper scoring rule (Gneiting and Raftery 2007).
Hence, the restriction to identifiable intermediate properties, or some other
class of properties ruling out such pathologies (see Section 5), is necessary
for practical estimation schemes. In this light, our results are in line with the
observation that both the mode and modal midpoint fail to be continuous in
even weak senses: for certain distributions p1, p2, Γmode(λp1+(1−λ)p2) is not
continuous in λ, and the same is true of Γε.

To close, it is interesting to contrast the above demonstration and nega-
tive result with the existing positive results in the literature on the estimation
of the mode and modal midpoints. Some positive results, showing favorable
error bounds, assume that the true density is not only unimodal but has a
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unique local maximum, i.e., the density increases before the mode and de-
creases afterwards; see for example Robertson and Cryer (1974, Section 2)
and Lee (1989, Assumption 2). Moreover, many proposed estimators are ex-
pressed as sequences of estimators which depend on the sample size (Parzen
1962; Chernoff 1964; Grenander 1965; Venter 1967); we may roughly view
these estimators as intermediate properties of countably infinite dimension,
consistent with our results.

5 Discussion

Several interesting open questions remain. One could further ask for the iden-
tifiable elicitation complexity of the mode with respect to other classes of
probability distributions. One interesting class would be distributions with
densities having a unique local maximum, though note that the elicitability
of the mode is still open in this case. The method of perturbing the heights
of (in this case, heavily overlapping) bumps as in Lemma 1 and Theorems 1
and 2 does not seem sufficient for this class.

Another set of questions arises when stepping away from the class of iden-
tifiable properties and considering other classes, such as weakly identifiable
properties; negative results with respect to this class would show infinite com-
plexity with respect to continuous, non-locally-constant, component-wise elic-
itable properties (Lambert 2018; Steinwart et al 2014). Another interesting
class of properties in this context would be those elicited by convex loss func-
tions, as these properties are of practical interest yet need not be identifi-
able (Frongillo and Kash 2015). Finally, we suspect that our techniques could
be applied to other properties whose elicitation complexity is not known, such
as the width of the smallest confidence interval.

A Omitted Proofs

Proof (of Theorem 1) Let ε > 0 be given. Since the identification complexity lower bounds
the identifiable elicitation complexity of the mode it suffices to show that the mode is not
k-identifiable for arbitrary k ∈ N. Suppose, by way of contradiction, that the mode is k-
identifiable. Hence, there exists a property Γ̂ : P → R̂ ⊆ R

k identified by V : R̂ × R → R
k

and function f : R̂ → R such that Γmode = f ◦ Γ̂ . Our goal will be to specify two densities
p, p′ ∈ Pψ,ε ⊆ P with Γ̂ (p) = Γ̂ (p′) and Γmode(p) 6= Γmode(p

′), contradicting the existence
of f .

Let t > k and consider the following density p =
∑t
i=0 hiψ4iε,ε in Pψ,ε with strictly

decreasing heights h0 > h1 > . . . ht > h0/2 > 0 and
∑t
i=0 hi = 1. Observe that Γmode(p) =

0 and denote Γ̂ (p) = r. Consider the k × t matrix

M =
[

Eψ4ε,ε
(V (r, Y )), . . . , Eψ4tε,ε

(V (r, Y ))
]

. (3)

Let h′ = (h′1, . . . , h
′
t) denote a nontrivial vector in the kernel of M . To complete the

proof, we will demonstrate that for any h′ there exist real numbers α, β ∈ R so that
p′ = β

(

p+ α
(
∑t
i=1 h

′
iψ4iε,ε

))

is a density satisfying Γ̂ (p′) = r and Γ (p′) 6= 0. We proceed
by considering all cases of h′ and showing the existence of α in each case.
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First, considering h′1, . . . , h
′
t ≥ 0, let h′

i(max)
denote the entry of h′ with greatest mag-

nitude (if not unique, choose the entry associated with the maximal initial height hi(max)),
and take α > (h0 − hi(max))/h

′
i(max)

. Second, if h′1, . . . , h
′
t ≤ 0, then take −h′ and treat

as above. In the final case, at least one pair of entries of h′ have opposite sign. Let h′
i(max)

denote an entry of h′ with the greatest magnitude (if not unique, choose the entry asso-
ciated with the maximal initial height hi(max)) and assume h′

i(max)
> 0; otherwise take

−h′. Choose α such that (h0 − hi(max))/h
′
i(max)

< α ≤ min{i:h′
i
<0} hi/|h

′
i| satisfying

α 6= |hi(max) − hi|/(h
′
i(max)

− h′i) for any i with h′
i(max)

> h′i > 0. Note this interval is

nonempty because h0 − hi(max) <
h0
2
< hi and |h′i| < h′

i(max)
for all i such that h′i < 0. In

each of the above cases, there are finitely many α which do not yield a unimodal p′. If the
α chosen yields a p′ which is not unimodal, then discard this particular α from the interval
and choose again.

With the appropriate normalization constant β, we now have a density given by p′ =
β
(

p+ α
(
∑t
i=1 h

′
iψ4iε,ε

))

. As h′ is contained in the kernel of M , linearity of expectation

and the definition of V now guarantee that Γ̂ (p′) = Γ̂ (p) = r, and the method with which
we showed α exists ensures that p′ is unimodal with Γmode(p

′) 6= Γmode(p) = 0. These two

statements together contradict the existence of the link function f satisfying Γmode = f ◦ Γ̂ .
⊓⊔

Proof (of Theorem 2) As in the proof of Theorem 1, we assume the mode is k-identifiable

and arrive at a contradiction. Hence, we assume there exists a property Γ̂ : Q → R̂ ⊆ R
k

identified by V : R̂ × R → R
k and function f : R̂ → R such that Γmode = f ◦ Γ̂ . We will

again specify two densities from Q in the same level set of Γ̂ , but different modes which
contradicts the existence of f .

Let t > k, and let q0, q1, . . . , qt be Gaussian densities with unit height (σ2 = 1
2π

) centered
at xi = Ci for some C to be determined. For any mixture parameters h = (h0, h1, . . . , ht) ∈
R
t+1
+ , we will denote the Gaussian mixture density as follows,

q[h](x) =

t
∑

i=0

hiqi(x) ∈ Q′ ,

where we define Q′ to be all positive scalings of densities in Q. As we are interested in the
mode, we can always renormalize to obtain a distribution in Q with the same mode. In the
following, we extend Γmode(p) for unnormalized densities in the natural way.

Observe that for any mixture h, we have Γmode(q[h]) ∈ ∪ti=0Bσ(xi), for any C > 0.
This follows from second-order optimality conditions: as the inflection point of a Gaussian

density N(µ, σ) is at µ±σ, we have d2

dx2
qi(x) < 0 ⇐⇒ |x−xi| < σ, and thus d2

dx2
q[h](x) <

0 =⇒ |x− xi| < σ for some i. Let γ := q1(σ) = e−π(σ−C)2 . We will want γ < 1
4(t+1)

, and

thus we choose any C > σ +
√

log(4(t+1)
π

.

We will additionally use the following claims in our proof.

Claim 1 For all h, i, hi ≤ q[h](xi) ≤ maxx∈Bσ(xi)
q[h](x) ≤ hi + γ

∑

j 6=i hj .

Claim 2 If hi > maxj 6=i hj + γ
∑

k hk, then Γmode(q[h]) ∈ Bσ(xi).

Claim 3 If hi < hj − γ
∑

k 6=i hk, then Γmode(q[h]) /∈ Bσ(xi).

In Claim 1, the first two inequalities are trivial, and the third follows from the observation
that the contribution of qj to q[h](x) is upper bounded by hjγ for all x ∈ Bσ(xi). Claim 2
then follows from Claim 1: for all j we have q[h](xi) ≥ hi > hj+γ

∑

k hk ≥ hj+γ
∑

k 6=j hk ≥

maxx∈Bσ(xj)
q[h](x). Similarly, for Claim 3, maxx∈Bσ(xi)

q[h](x) ≤ hi+ γ
∑

k 6=i hk < hj ≤

q[h](xj).



12 Krisztina Dearborn, Rafael Frongillo

Finally, we construct our initial mixture h so that
∑

i hi = 1 and the following condition
holds,

h0 − γ > h1 > h2 > · · · > ht >
3

4
h0 . (4)

By Claim 2, we therefore would have Γmode(q[h]) ∈ Bσ(x0). Condition (4) can be satisfied for
t > 5 (and smaller if C is larger); we give one explicit construction here. Letting c = 1/(t+1)
for ease of notation, we may take h0 = (5/4)c and h1 = c. Enforcing

∑

i hi = 1, the average
of the remaining elements is then c − (1/4)c/(t − 1) = (1 − 1/4(t − 1))c which is strictly
less than h1 but strictly greater than c(1 − 1/16) = (3/4)h0, as desired. We may therefore
choose the remaining elements to be any decreasing sequence in the interval (3h0/4, h1)
whose average is c(1− 1/4(t− 1)) ∈ (3h0/4, h1).

Now let Γ̂ (q[h]) = r. Consider the k × t matrix

M =
[

Eq1 (V (r, Y )), . . . , Eqt (V (r, Y ))
]

. (5)

Let h′ = (h′1, . . . , h
′
t) denote a nontrivial vector in the kernel ofM . To complete the proof, we

will demonstrate that for any such h′ there exists a real number α ∈ R so that q[h+αh′] =
q[h] + α

∑t
i=1 h

′
iqi (after normalization to obtain the corresponding element in Q) is the

desired density. We proceed by cases on the entries of h′.

First, if h′1, . . . , h
′
t ≥ 0, then let h′

i(max)
denote the entry of h′ with greatest magnitude.

If h′
i(max)

is not unique, then choose the entry associated with the maximal initial height

hi(max). Choose α such that

h0 − hi(max) + γ

h′
i(max)

− γ
(

∑

k 6=i(max) h
′
k

) < α.

This ensures that h0 < (hi(max)+αh
′
i(max)

)−γ
(

1 + α
∑

k 6=i(max) h
′
k

)

so that Γmode(q[h+

αh′]) 6∈ Bσ(x0) by Claim 3. Second, if h′1, . . . , h
′
t ≤ 0, then take −h′ and treat as above.

In the final case, at least one pair of entries of h′ have opposite sign. Let h′
i(max)

denote

the entry of h′ with the greatest magnitude and assume h′
i(max)

> 0; otherwise take −h′.

If h′
i(max)

is not unique, then choose the entry associated with the maximal initial height

hi(max). Choose α such that

h0 − hi(max) + γ

h′
i(max)

− γ
(

∑

k 6=i(max) h
′
k

) < α ≤ min
i:h′

i
<0

hi

|h′i|
.

Once again, the lower bound ensures that h0 < (hi(max)+αh
′
i(max)

)−γ
(

1 + α
∑

k 6=i(max) h
′
k

)

so that Γmode(q[h + αh′]) 6∈ Bσ(x0) by Claim 3. We bound α from above in this case to
ensure that q[h+ αh′] ≥ 0, meaning we have a valid density.

It thus remains to verify that this interval is nonempty. Take an index i such that h′i < 0.

Note that h′
i(max)

≥

∑
k 6=i(max) h

′
k

t
> γ

∑

k 6=i(max) h
′
k
, so that h′

i(max)
−γ

(

∑

k 6=i(max) h
′
k

)

>

h′
i(max)

(1− γt) >
3h′

i(max)

4
≥

3|h′
i|

4
. Also note that h0

4
+ γ < h0

4
+ 1

4(t+1)
< h0

2
< 3h0

4
· 3
4
.
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Chaining these inequalities together,

h0 − hi(max) + γ

h′
i(max)

− γ
(

∑

k 6=i(max) h
′
k

) <
h0 − hi(max) + γ

h′
i(max)

(1− γt)

<

h0
4

+ γ

h′
i(max)

(1− γt)

<

3h0
4

· 3
4

h′
i(max)

(1− γt)

≤

3h0
4

· 3
4

3|h′
i
|

4

=

3h0
4

|h′i|
<

hi

|h′i|
.

As this inequality holds for all such i, it holds for the minimum over i.
In each of the above cases, there are finitely many α which fail to yield a unimodal

density, q[h + αh′]. If the α chosen yields such a q[h + αh′], discard this particular α and
choose again.

Similar to the conclusion of Theorem 1, the density q[h + αh′] (after normalization to
obtain the corresponding element in Q) gives the desired contradiction. ⊓⊔

B Experimental Details

So as to allow comparison with Heinrich (2014), we consider a density pmix which is a mix-
ture of two Gaussians; letting p1 = N(2, 1.5) and p2 = N(−2, 0.5), where N(µ, σ) denotes
a Gaussian density with mean µ and standard deviation σ, we set pmix = 0.75p1 + 0.25p2.
The true mode of pmix is m0 = Γmode(pmix) ≈ −1.987047, with the other local maximum
occuring at m1 ≈ 2.000000. The experiment performed is analogous to Heinrich (2014): for
each value of ε as shown in Table 1, and in each of 1000 trials, we collect n = 10, 000 inde-
pendent samples from pmix, and measure the performance of the empirical modal midpiont
x̂ε relative to the true mode m0 and true modal midpoint xε = Γε(pmix). In the case of
a tie for x̂ε, we take the lowest value (which the reader will note should favor the correct
value). In sum, our results are qualitatively similar to Heinrich (2014), in that the modal
midpoint x̂ε fails to estimate the mode, but we can also confirm that it fails to estimate the
modal midpoint xε as well. Note in particular that the two “Versus local max” columns are
identical.

Table 1 The ineffectiveness of the modal midpoint as an estimate of the mode, or even
of the modal midpoint itself. The table headings denote the following. xε: the true modal
midpoint; MSE: mean squared error with respect to the true mode and true modal midpoint
xε; Versus local max: the number of trials (out of 1000) where the estimate x̂ε was closer to
the true mode m0, or true modal midpoint xε, than the other local maximum m1; Minimal
loss: the best empirical average loss observed in the 1000 trials.

MSE Versus local max
ε xε Mode Modal Mode Modal Minimal loss

0.5 −1.976 691 15.88 15.80 0 0 0.791
0.25 −1.984 999 11.06 11.05 302 302 0.890
0.1 −1.986 739 8.75 8.75 447 447 0.952
0.05 −1.986 970 9.00 9.00 433 433 0.972
0.025 −1.987 028 9.12 9.12 424 424 0.985
0.001 −1.987 047 8.84 8.84 431 431 0.998
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