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Non-Hermitian ring laser gyroscopes with 
enhanced Sagnac sensitivity
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Mercedeh Khajavikhan1,3*

Gyroscopes are essential to many diverse applications associated with navigation, 
positioning and inertial sensing1. In general, most optical gyroscopes rely on the 
Sagnac effect—a relativistically induced phase shift that scales linearly with the 
rotational velocity2,3. In ring laser gyroscopes (RLGs), this shift manifests as a 
resonance splitting in the emission spectrum, which can be detected as a beat 
frequency4. The need for ever more precise RLGs has fuelled research activities aimed 
at boosting the sensitivity of RLGs beyond the limits dictated by geometrical 
constraints, including attempts to use either dispersive or nonlinear effects5–8. Here 
we establish and experimentally demonstrate a method using non-Hermitian 
singularities, or exceptional points, to enhance the Sagnac scale factor9–13. By 
exploiting the increased rotational sensitivity of RLGs in the vicinity of an exceptional 
point, we enhance the resonance splitting by up to a factor of 20. Our results pave the 
way towards the next generation of ultrasensitive and compact RLGs and provide a 
practical approach for the development of other classes of integrated sensor.

Sensing involves the detection of the signature that a perturbing agent 
leaves on a system. In optics and many other fields, resonant sensors 
are made to be as lossless as possible so as to exhibit high quality fac-
tors14–17. As a result, their response is governed by standard perturba-
tion theory, suited for loss-free or Hermitian arrangements15. Recently, 
however, there has been a growing realization that non-Hermitian 
systems biased at exceptional points (EPs)18,19,20, can react much more 
drastically to external perturbations9,10,21. This EP-enhanced sensitivity—
a direct byproduct of Puiseux generalized expansions—is fundamental 
by nature. In particular, for a system supporting an Nth-order EP, where 
N eigenvalues coalesce and their corresponding eigenvectors collapse 
on each other, the reaction to a perturbation (ϵ) is expected to follow 
an Nth-root behaviour9 (ϵ1/N). This is in stark contrast to Hermitian sys-
tems, where the sensing response is at best of order ϵ. Given that ϵ1/N ≫ 
ϵ for |ϵ| ≪ 1, this opens up new possibilities for designing ultrasensitive 
sensors based on such non-Hermitian spectral singularities9–11. For 
illustration purposes, Fig. 1 provides a comparison between the eigen-
value surfaces associated with a Hermitian (Fig. 1a) two-level system 
(N = 2) and its corresponding non-Hermitian counterpart (Fig. 1b) when 
plotted in a two-parameter space around their corresponding spectral 
degeneracies. As shown in Fig. 1b, the presence of an EP forces the two 
Riemann manifolds to become strongly intertwined with each other—an 
attribute that could in turn be used to enhance the performance of a 
sensor22.

Given that sensing is important in many fields, the emerging idea of 
boosting the sensitivity of a particular system via non-Hermitian degen-
eracies could have substantial ramifications across several technical 
areas. Here, we show that the sensitivity of a standard helium–neon 
(He–Ne) RLG can be drastically enhanced provided that its resona-
tor is judiciously modified so as to support an EP. Figure 2 depicts a 

schematic of the non-Hermitian RLG used in this study. As opposed to 
a standard RLG, the retrofitted cavity involves a Faraday rotator (FR) 
and a half-wave plate (HWP). These two elements, acting in conjunc-
tion with the Brewster windows (BW) incorporated on both ends of the 
He–Ne gain tube, can be used to introduce a differential loss contrast 
(or gain contrast), ∆γ, between the clockwise (CW) and the counter-
clockwise (CCW) lasing modes. The method used to achieve this is 
depicted in Fig. 2a, where the evolution of the state of the polarization 
associated with the two counter-rotating modes is provided at three 
consecutive points (A, B, C) in the cavity. In this arrangement, the BWs 
allow only x-polarized light to circulate in the cavity while rejecting the 
y component. As a result, the CW mode enters the FR as x-polarized at 
point A. Because of the magneto-optic effect, the polarization subse-
quently rotates by a small angle α (point B). Under the action of the 
HWP, the angle between the linear electric-field component and the 
preferred x axis is 2β − α (point C), where the small angle β denotes the 
orientation of the fast axis of the HWP with respect to the x–y coordinate 
system. On the other hand, because of non-reciprocity, although the 
CCW mode also starts as x-polarized at point C, it exits at an angle of 
2β + α with respect to the x axis (point A) after traversing the same two 
optical components. Therefore, as clearly indicated in Fig. 2a, the CW 
mode is expected to experience lower losses than its CCW counter-
part does, after passing through the BWs of the He–Ne tube. Hence, 
a differential loss (Δγ) can be introduced between these two counter-
rotating modes. Finally, to establish an EP in this cavity, it is necessary 
to counteract this differential loss with a mode-coupling process22. In 
our system, the coupling between the CW and CCW modes is readily 
induced using a weakly scattering object (for example, an etalon), 
as shown in Fig. 2a. The aforementioned processes can be formally 
described by employing a Jones calculus approach for the elements 
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involved (HWP, FR, BW, scattering object), where the polarization state 
of the CW and CCW waves can be monitored after each pass through the 
following transfer matrix T = SSC × P × JHWP × JFR × JBW (see Supplementary 
Information). In this expression, SSC represents a conservative scatter-
ing matrix (producing coupling) and P denotes a phase accumulation 
matrix that can in principle account for the Sagnac shift3. The matrices 
JHWP, JFR and JBW are the respective Jones matrices describing the change 
of polarization after each element23,24.

To experimentally demonstrate this enhanced Sagnac sensitivity, 
we use a custom-made, educational-grade He–Ne RLG (purchased 
from Luhs; https://luhs.de/lm-0600-hene-laser-gyroscope.html). The 
triangular cavity has a length of 138 cm and supports a free spectral 
range of about 216 MHz at 632.8 nm. The maximum loss that can be 
afforded in this system is approximately 3.6%. This resonator is then 
retrofitted with a terbium gallium garnet (TGG) Faraday element that 
can provide up to about 4° rotation at a magnetic induction of about 
80 mT. This is used in conjunction with a HWP with a rotation angle 
that can vary in a controlled manner with a resolution of 0.005°. An 
etalon in the cavity promotes lasing in a specific longitudinal mode 
while providing some level of coupling between the CW and CCW 
modes. Other elements, such as the TGG, also contribute to this cou-
pling. Overall, the system is designed to allow maximum tunability 
in establishing an EP.

Figure 2b, c provides a comparison between the principles of oper-
ation of a standard RLG and the EP-based RLG arrangement used in 
this study. In the former configuration, the Sagnac effect produces a 
shift (±Δωs/2) in the lasing CW and CCW angular frequencies (which 
at rest coincide at ω0), where the beating frequency Δωs/(2π) = 4AΩ/
(λ0L) depends on the angular velocity Ω of the rotating frame, the area 
A enclosed by the light path (of perimeter L) and on the emission wave-
length, λ0 = 2πc/ω0 (c, speed of light in vacuum). Evidently, the beating 
frequency Δωs/(2π) in this Hermitian setup (which is electronically 
detected) is always proportional to Ω and is dictated by geometrical 
constraints (Fig. 2b). The situation is entirely different for the non-
Hermitian configuration, where the carrier angular frequency ω0 can 
split by ±Δωc/2 even in the absence of rotation because of coupling 
effects arising from the scatterer (Fig. 2c). In this same static frame, 
by adjusting the differential loss Δγ, these two resonances can fuse 

with each other once again at about ω0, thus marking the presence of 
an EP. After the system is set at an EP, upon rotation Ω, the Sagnac 
shifts ±Δωs/2 induce two new angular frequency lines at ω0 ± ΔωEP/2 
(Fig. 2c). In this case, the beating frequency ΔωEP/(2π) is no longer 
proportional to Ω, but instead varies in an enhanced fashion because 
in this regime ω ΩΔ ∝EP , as expected when operating in the vicinity 
of an EP (Fig. 2c).

The frequency eigenvalues of the non-Hermitian RLG can be directly 
obtained from the transfer matrix T, after imposing periodic boundary 
conditions. From this, the induced non-Hermitian splitting ΔωEP can 
be obtained, which interestingly enough remains unaffected even in 
the presence of gain saturation (see Supplementary Information). On 
the basis of these results, under rest conditions, one can compute the 
frequency split associated with the CW and CCW counter-propagating 
modes in our system as a function of the HWP angle when, for example, 
the coupling strength is set to κ = 400 kHz (Fig. 3a). In this case, an 
EP appears at β ≈ 4.7°. The corresponding magnitude of the complex 
eigenvalues |Λ1,2| of the system is plotted in Fig. 3b. The frequency beat-
ing signals expected from the Hermitian (orange line) and the non-
Hermitian (black line) configurations of the RLG are plotted in Fig. 3c 
as a function of Ω. In the non-Hermitian case, we assume that the system 
is positioned at an EP (κ = Δγ) when κ = 400 kHz. The EP enhancement 
of the Sagnac shift is evident in this figure. For these parameters, if, 
for example, the system rotates at Ω = 1° s−1, the Sagnac signal from the 
unmodified version of this RLG (Hermitian) is approximately 7.325 kHz, 
whereas the signal from the retrofitted (EP-based) system is expected 
to be about 5.2 times larger. Finally, Fig. 3d shows the change of beat 
note as a function of gyration speed when the system deviates from 
the EP (by 0.05% to 0.1% of the coupling strength). Although ideally 
one must keep the system at the EP, for small deviations the resulting 
error appears to be negligible.

Figure 4a depicts experimental results obtained from our non- 
Hermitian RLG system when it was biased at an EP. In our experiments, 
before each set of measurements performed, the system was positioned 
at an EP by monitoring the beat note as a function of the HWP rotation 
angle (gain–loss contrast), that is, setting the beat frequency as close as 
possible to zero. To do so, the HWP rotation angle was adjusted using 
a motorized rotation stage while the other components in the system 

a b

Fig. 1 | Conceptual illustrations comparing the eigenvalue surfaces 
associated with Hermitian and non-Hermitian two-level systems. a, The real 
part of the eigenvalues plotted in parameter space (η–ζ; normalized detuning, 
η, versus normalized coupling/gain–loss contrast, ζ ) when the arrangement is 
Hermitian. Because of the Hermiticity, this system responds linearly to 

perturbations. b, The real part of the eigenfrequency surface corresponding to 
a non-Hermitian configuration in the same parameter space. In the presence of 
an EP, the two Riemann manifolds are strongly intertwined, leading to a square-
root response to perturbations, as indicated by the frequency of the emitted 
signal. Using this system, an enhanced sensitivity to small changes is expected.
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were left intact. The figure provides data corresponding to three dif-
ferent coupling strengths, along with data from the standard unmodi-
fied RLG arrangement. These results are plotted in a log–log scale as a 
function of the rotation rate Ω for κ = 65 kHz, 150 kHz, 425 kHz. Whereas 
the response of the standard configuration is linear with respect to Ω 
(slope of 1), the same is not true for its non-Hermitian embodiment. 
In the latter case, the response is found to vary as the square root of 
the rotation rate Ω, as is evident from the slope of the accompanying 
three curves, which is very close to ½—a clear indication that an EP 
is at play. Our experimental observations clearly show that the scale 
factor of the Sagnac effect is substantially boosted by exploiting the 
very properties of EPs. The resulting Sagnac enhancement factors (with 
respect to the standard arrangement) are plotted in Fig. 4b for the same 
three cases. For κ = 425 kHz, a sensitivity boost of more than an order 

of magnitude is observed when Ω = 0.4° s−1. The reported minimum 
gyration speed, Ω = 0.1° s−1, is imposed by the limited rotation capa-
bility of the apparatus. The estimated rotation rate is obtained from 
the beat frequency by applying the transfer functions associated with 
the Hermitian and non-Hermitian arrangements. These transfer func-
tions are illustrated in Fig. 5a, where it can be observed that for small 
angular velocities, not only the absolute value of the beat frequency 
(ΔνEP > ΔνS; where ΔνEP = ΔωEP/(2π) and ΔνS = ΔωS/(2π) is the rotation-
induced beat frequency in the EP-based RLG and the standard RLG, 
respectively) increases dramatically for the EP-based system, but also 
an incremental step in the rotation rate is transferred to a much larger 
difference in the beat frequency (|ΔνEP,2 − ΔνEP,1| > |ΔνS,2 − ∆νS,1|). As a 
result, the resolution of the estimated rotation speed is potentially 
improved. Figure 5b, c displays the error bars on the estimated rotation 
rates, as obtained experimentally for the Hermitian and non-Hermitian 
arrangements, respectively. In a standard gyroscope, the relationship 
between the applied and estimated angular velocities is linear. On the 
other hand, owing to the nonlinear transfer function associated with 
the non-Hermitian system, these two quantities are not on an equal 
footing anymore. In this respect, only when considering the nonlinear-
ity of the transfer function, the errors on the estimated rotation rate 
can be interpreted correctly. Consequently, at higher rotation speeds, 
the modified gyroscope displays larger error bars, as shown in Fig. 5c. 
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directions. b, In a standard RLG, the Sagnac effect induces a shift (±Δωs/2) in the 
stationary lasing angular frequencies (ω0) associated with the CW and CCW 
modes. The resulting angular beating frequency Δωs is proportional to the 
angular velocity Ω of the rotating frame. c, In an EP-based arrangement, the CW 
and CCW modes are first coupled to each other owing to the presence of weak 
scattering in the system. Consequently, the stationary lasing angular 
frequency (ω0) splits according to the ensuing coupling strength (±Δωc/2). On 
the other hand, the loss contrast (Δγ) induced by the simultaneous action of the 
FR, HWP and BWs brings the two split modes back to ω0, that is, to an EP. Once 
the RLG is biased at the EP, the gyration will lead to a beat frequency that is 
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standard arrangement.
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Fig. 3 | Bifurcations of complex eigenfrequencies and sensitivity 
enhancement of EP-based RLG around an EP. a, Resonance frequencies 
associated with the two coupled modes of an EP-based RLG at rest versus the 
HWP angle when the coupling strength κ is set to 400 kHz. These plots are 
obtained from Jones matrix analysis after considering gain saturation effects 
(see Supplementary Information, equation (16)). The EP in this system occurs at 
an HWP angle of about 4.7°. b, Magnitude of the same eigenvalues as a function 
of HWP angle when the non-Hermitian RLG is stationary (see Supplementary 
Information, equation (3)). c, Beat frequency as a function of angular speed Ω 
(in log–log scale) for a standard RLG (orange) and a non-Hermitian RLG (black) 
(see Supplementary Information, equation (6)). The RLG is set exactly at the EP, 
where the loss contrast balances the coupling (Δγ = κ = 400 kHz). For the 
standard RLG, the slope of the curve is unity, whereas it is reduced to ½ for the 
non-Hermitian arrangement. d, Calculated beat frequency for the non-
Hermitian RLG as a function of rotation rate Ω (see Supplementary 
Information, equation (6)) when the loss contrast does not exactly balance the 
coupling (the differential loss differs from the coupling by 0.05%–0.1%) and 
hence the system is not precisely located at the EP. Whereas at large rotation 
rates the slope is approximately ½, it deviates from this value at small angular 
velocities when Δγ ≠ κ. When Δγ > κ (above the EP) the beat frequency (blue 
lines) is below that of the ideal case (black line), which indicates a reduced 
sensitivity to the rotation Ω. On the other hand, when the system is biased 
below the EP (Δγ < κ), the beat frequency does not exhibit a strong dependence 
on the gyration speed.
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The advantage of the EP-based gyroscope becomes apparent at smaller 
velocities, where the error in the estimated rotation rates decreases 
rapidly. This is depicted in Fig. 5b, c, where a noise component of 3 kHz 
has been added to the ideal system (shown as orange and red shaded 
regions).

Several factors must be considered when using non-Hermitian 
arrangements for sensing purposes. First and foremost is appreciat-
ing the difference between sensitivity and detection limit25. In non-
Hermitian settings, the sensitivity enhancement is a fundamental 
feature that is dictated by mathematical properties, governed by the 
perturbation expansion around an EP. The detection limit, on the other 
hand, depends on the physical system and is primarily determined by 
the net gain (or loss), as well as the correlation between the laser noise 
associated with the two resonances26,27. In this regard, one in principle 

can increase the net gain while keeping the RLG at the EP by manag-
ing the gain contrast to boost both the sensitivity and the detection 
limit—as we did in our design. As expected from the Schawlow–Townes 
formula, an increase in the net (average) gain of the system (or the 
output power) will reduce the linewidth of the laser. This in turn tends 
to compensate for the linewidth broadening near the EP while allow-
ing one to exploit the larger sensitivity afforded by such singularities. 
Another technical issue is how closely one can reach and stabilize the 
system at the EP28,29. In our experiment, we fully rely on positioning the 
RLG at the EP before each set of measurements, by visually monitoring 
the beat note as a function of the HWP rotation angle (gain–loss con-
trast). In future devices to be used in the field, one may need to actively 
control the system to remain biased at the EP. Such approaches have 
been suggested elsewhere11,30.

In conclusion, we have demonstrated for the first time, to our knowl-
edge, a new class of non-Hermitian RLGs that can display an enhanced 
Sagnac sensitivity. This is accomplished by exploiting the intriguing 
properties of a special family of non-Hermitian spectral singularities, 
the EPs. At these points, the RLG response has a square-root depend-
ence on the gyration speed, in contrast to the linear response observed 
in standard arrangements. The proposed configuration may inspire new 
technological developments in various settings in which measuring low 
rotation rates via ultracompact systems is highly attractive. Finally, the 
idea of transforming a standard measuring apparatus into an EP-based 
device with superior sensitivity may have important ramifications in 
other areas of science and technology.
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