

1 *Short Communication*

2 **Aquatic insects are dramatically underrepresented in** 3 **genomic research**

4 **Scott Hotaling¹, Joanna L. Kelley¹ and Paul B. Frandsen^{2,3}**

5 ¹ School of Biological Sciences, Washington State University, Pullman, WA, USA

6 ² Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA

7 ³ Data Science Lab, Smithsonian Institution, Washington, DC, USA

8 * Correspondence: Email: scott.hotaling@wsu.edu; Phone: (828) 507-9950; Email: paul_frandsen@byu.edu;
9 Phone: (804) 422-2283

10 Received: date; Accepted: date; Published: date

11 **Simple Summary:** The genome is the basic evolutionary unit underpinning life on Earth. Knowing
12 its sequence, including the many thousands of genes coding for proteins in an organism, empowers
13 scientific discovery for both the focal organism and related species. Aquatic insects represent 10%
14 of all insect diversity, can be found on every continent except Antarctica, and are key components
15 of freshwater ecosystems. Yet aquatic insect genome biology lags dramatically behind that of
16 terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be
17 sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes have been
18 sequenced for every aquatic insect genome. A lack of aquatic genomes is limiting research progress
19 in the field at both fundamental and applied scales. We argue that the limited availability of aquatic
20 insect genomes is not due to practical limitations—small body sizes or overly complex genomes—
21 but instead reflects a lack of research interest. We call for targeted efforts to expand the availability
22 of aquatic insect genomic resources to empower future research.

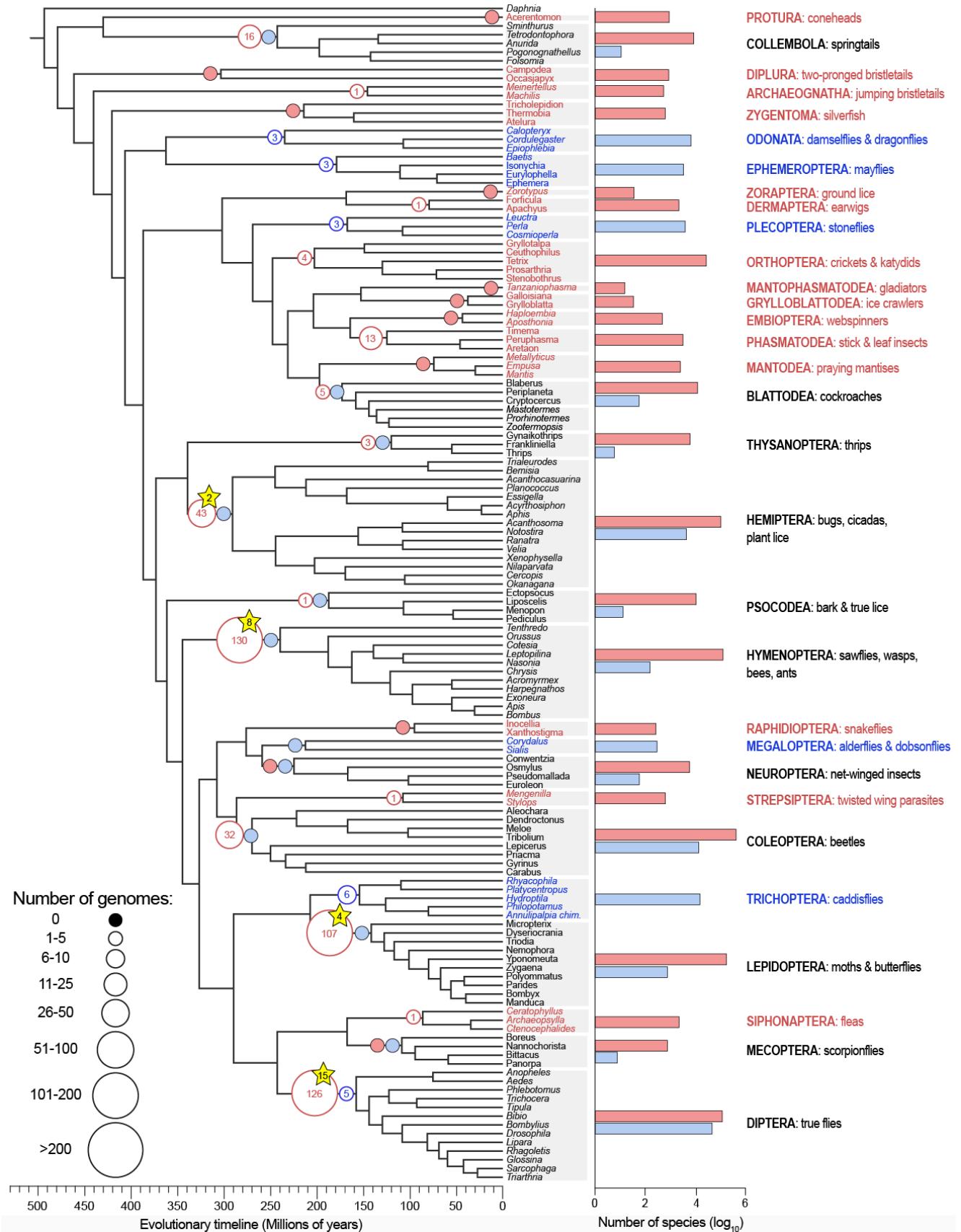
23 **Abstract:** Aquatic insects comprise 10% of all insect diversity, can be found on every continent
24 except Antarctica, and are key components of freshwater ecosystems. Yet aquatic insect genome
25 biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one
26 aquatic insect genome would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24
27 terrestrial insect genomes have been sequenced for every aquatic insect genome. This discrepancy
28 is even more dramatic if the *quality* of genomic resources is considered; for instance, while no aquatic
29 insect genome has been assembled to the chromosome level, 29 terrestrial insect genomes spanning
30 four orders have. We argue that a lack of aquatic insect genomes is not due to any underlying
31 difficulty (e.g., small body sizes or unusually large genomes) yet it is severely hampering aquatic
32 insect research at both fundamental and applied scales. By expanding the availability of aquatic
33 insect genomes, we will gain key insight into insect diversification and empower future research for
34 a globally important taxonomic group.

35 **Keywords:** Ephemeroptera; Plecoptera; Trichoptera; Odonata; Megaloptera; genome biology;
36 freshwater science; insect genomics; arthropod; nuclear genome

37

38 **1. Introduction**

39 There are roughly 1 million described insect species [1]. Of these, ~100,000 species spend at least
40 one life stage in water [2]. With the rise of high-throughput sequencing, whole genome sequencing
41 has become an increasingly cost-effective research tool [3]. As such, our knowledge of the “genomic
42 natural history” of life has greatly expanded through the combined efforts of individual research


43 groups and large-scale initiatives [e.g., i5K initiative to sequence 5,000 arthropod genomes, 4]. Still,
44 while conscious efforts to broadly develop genomic resources across the Tree of Life have been made,
45 major gaps remain. One of these gaps includes the aquatic insects. Despite inhabiting every continent
46 except Antarctica and constituting ~10% of insect diversity, genomic knowledge of aquatic insects
47 lags far behind terrestrial species. If genomic effort was spread evenly, one aquatic insect genome
48 would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes
49 have been sequenced for every aquatic insect genome. Here, we show that genomic resources are
50 dramatically limited for aquatic insects relative to terrestrial species in terms of both the number of
51 available genome assemblies and their contiguity, a surrogate for overall quality. We argue that this
52 limitation is not due to any underlying difficulty (e.g., small body size or an unusually large genome),
53 yet it is severely hampering aquatic insect research at fundamental and applied scales.

54 With life histories that commonly span aquatic and terrestrial ecosystems, aquatic insects play
55 important ecological roles in many habitats, including key ecosystem services [e.g., 5], while also
56 providing resource subsidies to higher trophic levels [e.g., mayfly emergence sustaining nesting
57 birds, 6]. Aquatic insects are also a global standard for monitoring aquatic ecosystem health [e.g., 7],
58 a historically organismal approach that is now being enhanced with environmental DNA techniques
59 [8]. The evolution of aquatic insects, however, remains largely a mystery. Depending on the definition
60 used, aquatic insects span at least 12 orders and may include ~50 separate invasions of freshwater [2].
61 Five insect orders are almost exclusively aquatic—requiring freshwater for their entire larval
62 development—and include more than 27,000 species: Ephemeroptera (mayflies), Plecoptera
63 (stoneflies), Trichoptera (caddisflies), Odonata (dragonflies and damselflies), and Megaloptera
64 (alderflies, dobsonflies, and fishflies) [9]. The repeated evolution of an aquatic life history raises the
65 question: are insects predisposed to an aquatic lifestyle? But, before this question can be fully
66 addressed, we need a more complete understanding of aquatic insect genome biology.

67 2. Materials and Methods

68 To test for differences in aquatic and terrestrial genome availability, we used the assembly-
69 descriptors function in the NCBI datasets command line tool to download metadata for all nuclear
70 insect genome assemblies on GenBank (accessed 7 July 2020). We elected to focus on nuclear genomes
71 over mitochondrial genomes (or a combination of the two) for two main reasons. First, while
72 mitochondrial genomes are valuable resources in their own right, nuclear genomes contain orders of
73 magnitude more sequence data, including coding information for thousands of genes versus dozens
74 in the mitochondrial genome. Second, because mitochondrial genomes are clonal and matrilineally
75 inherited, they have a unique history which can bias evolutionary inference [e.g., 10]. We culled the
76 data set to include only the highest quality representative genome for each species based on
77 contiguity and assembly organization (e.g., to the chromosome level). We then determined the life
78 history strategy (aquatic or terrestrial) for each species with a sequenced genome by defining an
79 aquatic insect as any species that spends at least a portion of its larval or adult life stage living and
80 respiring underwater. For our purposes, we chose to exclude the ~3,500 described species of
81 mosquitoes [11] from our analyses due to their semi-aquatic life cycle where they develop, but do not
82 breathe, underwater [12] and long history in human biomedical research. If we elected to include
83 mosquitoes, they would comprise 61% of all aquatic insect genomes and, a single mosquito genus,
84 *Anopheles*, would account for 51% of the data on its own.

85 For aquatic and terrestrial insects, we compared the availability and quality of genomic
86 resources in three ways: (1) total number of genomes available, irrespective of contiguity. (2) Number
87 of “highly contiguous” genomes, defined as those with a contig N50 (the mid-point of the contig
88 distribution where 50% of the genome is assembled into contigs of a given length or longer) of 1 Mbp
89 or more following [13]. (3) Number of chromosome-level assemblies (contigs or scaffolds assembled
90 into chromosomes via genetic mapping or similar information) that also exceeded our “highly
91 contiguous” threshold of contig N50 greater than 1 Mbp.

Figure 1. A dated phylogeny of evolutionary relationships among major insect taxonomic groups with the availability of genomic resources for each lineage overlaid. The size of each circle represents the number of available nuclear genomes and their color corresponds to life history strategy, either terrestrial (red) or aquatic (blue). To the right of the tree, the number of described species per group

97 are shown on a \log_{10} scale. Groups that include both terrestrial and aquatic species (e.g., Collembola)
98 are in black font with diversity given for both terrestrial (red) and aquatic (blue) species. Mosquitoes
99 (genomes and species; Order Diptera) were not included in the analysis. Yellow stars indicate the
100 number of chromosome-level assemblies for a given lineage with a contig N50 > 1 million base pairs
101 (there are none for aquatic insects). Species numbers were sourced from a combination of studies
102 [1,2,11,14–18] and the figure was modified from [19]. Complete information of genome availability
103 is provided in Table S1.

104 3. Results and Discussion

105 As of July 2020, 536 nuclear insect genomes representing 19 orders have been made publicly
106 available on GenBank (Figure 1; Table S1). Of these, the vast majority are from terrestrial species ($n =$
107 485), 20 genomes belong to aquatic species, and 31 genomes are from “semi-aquatic” mosquitoes
108 (Figure 1). Aquatic insect genomes comprise just five orders (Diptera, $n = 5$; Ephemeroptera, $n = 3$;
109 Odonata, $n = 3$; Plecoptera, $n = 3$; Trichoptera, $n = 6$), while terrestrial insect genomes span 15 orders
110 (Figure 1).

111 Given the total number of insect species that have been described (1,016,507 with mosquitoes
112 excluded) [1] and the number of described aquatic insects (~100,000) [2], if insect genomes were
113 sampled randomly, nine terrestrial insect genomes would be sequenced for every aquatic insect
114 genome. The reality, however, is that genomic efforts have been dramatically skewed towards
115 terrestrial species (P , Fisher’s exact test = 0.0003). To date, 24 unique terrestrial insect genomes have
116 been sequenced for every aquatic insect genome. In other words, if terrestrial insect genome
117 availability was held constant, 33 new aquatic insect genomes (an increase of ~265%) would need to
118 be made available to bring genomic resources between the groups into balance.

119 The disparity in genomic resources is even more dramatic when contiguity, our surrogate for
120 total genome *quality*, is considered. Only two aquatic insect genomes (both caddisflies, Order
121 Trichoptera) exceed our “highly contiguous” threshold of a contig N50 > 1 Mbp. This pales in
122 comparison to 56 highly contiguous terrestrial insect genomes spanning five orders (Coleoptera,
123 Diptera, Hemiptera, Hymenoptera, Lepidoptera). More broadly, among the 485 terrestrial insect
124 genomes, the mean contig N50 is nearly 1 Mbp [932.8 thousand base pairs (Kbp)]; for aquatic insects,
125 it’s just 258.5 Kbp. When only highly contiguous (contig N50 > 1 Mbp), chromosome-level assemblies
126 are considered, no aquatic insect genome hits both marks, yet 29 terrestrial insect genomes spanning
127 four orders do (Diptera, Hemiptera, Hymenoptera, Lepidoptera; Figure 1). However, it should be
128 noted that a more fragmented genome assembly does not necessarily mean that core genic regions
129 are also missing. For instance, among caddisfly genomes, an assembly for one species had a
130 comparable BUSCO score, a metric for assessing the completeness of a genome assembly using
131 benchmark single-copy orthologs [20], to several genomes that were roughly an order of magnitude
132 more contiguous [21].

133 Given the substantial contribution of aquatic insects to global insect biodiversity, their
134 importance to ecosystem health and biomonitoring, and the fundamental evolutionary questions
135 they raise, the lack of nuclear genome assemblies for the group is an unfortunate hindrance to
136 research progress in the field. For example, it is impossible to gain a mechanistic understanding of
137 how aquatic insects have repeatedly emerged across the insect Tree of Life until we have properly
138 sampled their genomic diversity.

139 Some might speculate that while aquatic insects are globally common, they are
140 underrepresented in genomic research because they are small, and therefore difficult to work with,
141 or they have large, unwieldy genomes. To the question of organismal size, given the 16 genomes
142 available for the generally tiny Collembola, including a highly contiguous assembly for *Folsomia*
143 *candida* [22]—which is just three mm long—organism size is clearly not a limiting factor. And, even
144 if size had historically been limiting, the fact that high-quality reference genomes can now be obtained
145 from single insects [e.g., a mosquito, 23], it certainly is no longer the case. Genome size, however, is
146 less straightforward. For instance, among amphibians, there is a reason that the first frog genome
147 [*Xenopus tropicalis*, 1.7 billion base pairs (Gbp)] [24] was reported ~8 years before the first salamander

148 genome (*Ambystoma mexicanum*, 32 Gbp) [25]; the latter genome is ~19x larger and massively more
149 complex. For all insects (including mosquitoes), the mean genome size in the Animal Genome Size
150 Database is 1077 Mbp ($n = 1,345$; accessed 13 July 2020) [26]. While aquatic insects are poorly
151 represented in the Animal Genome Size Database, sequencing-based reports of their genome sizes
152 include five taxonomic orders with a mean size of 600 Mbp ($n = 20$) [27-31]. Thus, there is no evidence
153 that aquatic insect genomes are particularly large and unwieldy when compared to their terrestrial
154 counterparts.

155 The solution to a lack of aquatic insect genomes is simple: *we should sequence more aquatic insect*
156 *genomes*. However, to make the best use of resources, we offer two recommendations. (1) Future
157 efforts should first focus on lineages that are relatively speciose for aquatic insects but lack genomic
158 representation. These include alderflies and dobsonflies (Order Megaloptera), aquatic beetles (Order
159 Coleoptera), aquatic true bugs (Order Hemiptera), and aquatic moths (Order Lepidoptera; Figure 1).
160 (2) Since all genome assemblies are not created equal, and contiguity is extremely important for
161 annotating genes and resolving genomic architecture, another focus should be on generating highly
162 contiguous (contig N50 > 1 Mbp), chromosome-level assemblies for aquatic insects, perhaps starting
163 with the five orders that are almost exclusively aquatic (Ephemeroptera, Plecoptera, Trichoptera,
164 Odonata, Megaloptera). Of those, a case can be made for prioritizing chromosome-level assemblies
165 for Odonata and Ephemeroptera given their basal phylogenetic position among winged insects. By
166 distributing genome sequencing efforts to more properly account for aquatic biodiversity, insect
167 genomics stands to gain considerable insight into the group's evolution and diversification while
168 simultaneously empowering future research.

169 4. Conclusions

170 When compared to terrestrial insect genomics, aquatic insects are dramatically
171 underrepresented in genomic research. This underrepresentation is consistent for both the total
172 quantity of available genomes and their quality. This lack of genomic resources is not due to any
173 practical limitation (e.g., body size or genome complexity) and rather appears to simply reflect a lack
174 of interest. We call for targeted efforts to generate more aquatic insect genomes, and particularly for
175 highly contiguous (contig N50 > 1 Mbp), chromosome-level assemblies to be produced. By expanding
176 the availability of aquatic insect genomes, insect and arthropod genome biology stands to gain
177 considerable new potential for research at both fundamental and applied scales.

178 **Supplementary Materials:** Table S1. A table of genome information for all insects used in this study.

179 **Author Contributions:** S.H. and P.B.F. conceived of the study, analyzed the data, and wrote the manuscript.
180 J.L.K. contributed to study design and manuscript preparation. All authors read and approved the final version
181 before submission.

182 **Funding:** S.H. and J.L.K. were supported by NSF award #OPP-1906015.

183 **Acknowledgments:** We thank the Kelley and Cornejo Labs at Washington State University, Ellie Armstrong,
184 and three anonymous reviewers for comments that improved the manuscript.

185 **Conflicts of Interest:** The authors declare no conflicts of interest.

186 References:

- 187 1. Zhang, Z.-Q. *Animal biodiversity: An outline of higher-level classification and survey of taxonomic*
188 *richness*; Magnolia press: 2011.
- 189 2. Dijkstra, K.-D.B.; Monaghan, M.T.; Pauls, S.U. Freshwater biodiversity and aquatic insect
190 diversification. *Annual Review of Entomology* **2014**, *59*.
- 191 3. Hotaling, S.; Kelley, J.L. The rising tide of high-quality genomic resources. *Molecular Ecology*
192 *Resources* **2020**, *19*, 567-569.
- 193 4. i5K Consortium. The i5K Initiative: advancing arthropod genomics for knowledge, human
194 health, agriculture, and the environment. *Journal of Heredity* **2013**, *104*, 595-600.

195 5. May, M.L. Odonata: who they are and what they have done for us lately: classification and
196 ecosystem services of dragonflies. *Insects* **2019**, *10*, 62.

197 6. Epanchin, P.N.; Knapp, R.A.; Lawler, S.P. Nonnative trout impact an alpine - nesting bird
198 by altering aquatic - insect subsidies. *Ecology* **2010**, *91*, 2406-2415.

199 7. Miguel, T.B.; Oliveira-Junior, J.M.B.; Ligeiro, R.; Juen, L. Odonata (Insecta) as a tool for the
200 biomonitoring of environmental quality. *Ecological Indicators* **2017**, *81*, 555-566.

201 8. Mauvisseau, Q.; Davy-Bowker, J.; Bulling, M.; Brys, R.; Neyrinck, S.; Troth, C.; Sweet, M.
202 Combining ddPCR and environmental DNA to improve detection capabilities of a critically
203 endangered freshwater invertebrate. *Scientific reports* **2019**, *9*, 1-9.

204 9. Balian, E.; Segers, H.; Lévéque, C.; Martens, K. The Freshwater Animal Diversity
205 Assessment: an overview of the results. *Hydrobiologia* **2008**, *595*, 627-637.

206 10. Toews, D.P.; Brelsford, A. The biogeography of mitochondrial and nuclear discordance in
207 animals. *Molecular ecology* **2012**, *21*, 3907-3930.

208 11. Rueda, L.M. Global diversity of mosquitoes (Insecta: Diptera: Culicidae) in freshwater. In
209 *Freshwater animal diversity assessment*, Springer: 2007; pp. 477-487.

210 12. Ha, Y.R.; Ryu, J.; Yeom, E.; Lee, S.J. Comparison of the tracheal systems of Anopheles
211 sinensis and Aedes togoi larvae using synchrotron X - ray microscopic computed
212 tomography (respiratory system of mosquito larvae using SR - μ CT). *Microscopy Research
213 and Technique* **2017**, *80*, 985-993.

214 13. Rhee, A.; McCarthy, S.A.; Fedrigo, O.; Damas, J.; Formenti, G.; Koren, S.; Uliano-Silva, M.;
215 Chow, W.; Fungtammasan, A.; Gedman, G.L. Towards complete and error-free genome
216 assemblies of all vertebrate species. *bioRxiv* **2020**.

217 14. Stork, N.E. How many species of insects and other terrestrial arthropods are there on Earth?
218 *Annual Review of Entomology* **2018**, *63*, 31-45.

219 15. Bennett, A.M. Global diversity of hymenopterans (Hymenoptera; Insecta) in freshwater. In
220 *Freshwater Animal Diversity Assessment*, Springer: 2007; pp. 529-534.

221 16. Del-Claro, K.; Guillermo, R. *Aquatic Insects: Behavior and Ecology*; Springer: 2019; pp. 438.

222 17. Mey, W.; Speidel, W. Global diversity of butterflies (Lepidoptera) in freshwater. In *Freshwater
223 Animal Diversity Assessment*, Springer: 2007; pp. 521-528.

224 18. Mound, L.A. The aquatic thrips Organothrips indicus Bhatti (Thysanoptera: Thripidae) in
225 Queensland, and a new species, O. wrighti, from tropical Australia. *Australian Journal of
226 Entomology* **2000**, *39*, 10-14.

227 19. Misof, B.; Liu, S.; Meusemann, K.; Peters, R.S.; Donath, A.; Mayer, C.; Frandsen, P.B.; Ware,
228 J.; Flouri, T.; Beutel, R.G., et al. Phylogenomics resolves the timing and pattern of insect
229 evolution. *Science* **2014**, *346*, 763-767, doi:10.1126/science.1257570.

230 20. Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO:
231 assessing genome assembly and annotation completeness with single-copy orthologs.
232 *Bioinformatics* **2015**, *31*, 3210-3212.

233 21. Heckenhauer, J.; Frandsen, P.B.; Gupta, D.K.; Paule, J.; Prost, S.; Schell, T.; Schneider, J.V.;
234 Stewart, R.J.; Pauls, S.U. Annotated draft genomes of two caddisfly species Plectrocnemia
235 conspersa CURTIS and Hydropsyche tenuis NAVAS (Insecta: Trichoptera). *Genome biology
236 and evolution* **2019**, *11*, 3445-3451.

237 22. Faddeeva-Vakhrusheva, A.; Kraaijeveld, K.; Derkx, M.F.; Anvar, S.Y.; Agamennone, V.;
238 Suring, W.; Kampfraath, A.A.; Ellers, J.; Le Ngoc, G.; van Gestel, C.A. Coping with living in
239 the soil: the genome of the parthenogenetic springtail Folsomia candida. *BMC genomics*
240 **2017**, *18*, 493.

241 23. Kingan, S.B.; Heaton, H.; Cudini, J.; Lambert, C.C.; Baybayan, P.; Galvin, B.D.; Durbin, R.;
242 Korlach, J.; Lawniczak, M.K. A high-quality de novo genome assembly from a single
243 mosquito using PacBio sequencing. *Genes* **2019**, *10*, 62.

244 24. Hellsten, U.; Harland, R.M.; Gilchrist, M.J.; Hendrix, D.; Jurka, J.; Kapitonov, V.;
245 Ovcharenko, I.; Putnam, N.H.; Shu, S.; Taher, L. The genome of the Western clawed frog
246 *Xenopus tropicalis*. *Science* **2010**, *328*, 633-636.

247 25. Nowoshilow, S.; Schloissnig, S.; Fei, J.-F.; Dahl, A.; Pang, A.W.; Pippel, M.; Winkler, S.;
248 Hastie, A.R.; Young, G.; Roscito, J.G. The axolotl genome and the evolution of key tissue
249 formation regulators. *Nature* **2018**, *554*, 50–55.

250 26. Gregory, T.R. Animal Genome Size Database. <http://www.genomesize.com> **2020**, Accessed 13
251 July 2020.

252 27. Macdonald, H.C.; Cunha, L.; Bruford, M.W. Development of genomic resources for four
253 potential environmental bioindicator species: *Isoperla grammatica*, *Amphinemura*
254 *sulcicollis*, *Oniscus asellus* and *Baetis rhodani*. *BioRxiv* **2016**.

255 28. Luo, S.; Tang, M.; Frandsen, P.B.; Stewart, R.J.; Zhou, X. The genome of an underwater
256 architect, the caddisfly *Stenopsyche tienmushanensis* Hwang (Insecta: Trichoptera).
257 *GigaScience* **2018**, *7*, giy143.

258 29. Hotaling, S.; Kelley, J.L.; Weisrock, D.W. Nuclear and mitochondrial genomic resources for
259 the meltwater stonefly (Plecoptera: Nemouridae), *Lednia tumana* (Ricker, 1952). *Aquatic*
260 *Insects* **2019**, *40*, 362–369.

261 30. Almudi, I.; Vizueta, J.; Wyatt, C.D.; de Mendoza, A.; Marlétaz, F.; Firbas, P.N.; Feuda, R.;
262 Masiero, G.; Medina, P.; Alcaina-Caro, A. Genomic adaptations to aquatic and aerial life in
263 mayflies and the origin of insect wings. *Nature communications* **2020**, *11*, 1–11.

264 31. Sayers, E.W.; Cavanaugh, M.; Clark, K.; Ostell, J.; Pruitt, K.D.; Karsch-Mizrachi, I. GenBank.
265 *Nucleic acids research* **2020**, *48*, D84–D86.

266

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).