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for early recognition of Alzheimer’s disease. Deep learning

techniques, such as recurrent neural networks (RNNs) and

convolutional neural networks (CNNs), have been introduced

to predict disease progression [3]–[9]. These neural networks

are designed to recognize a patient’s sequential patterns and

use temporal patterns to predict future probable scenarios

such as diagnosis and prescriptions. Generally, these methods

have advantages in modeling long-term temporal dependency

and learning distributed representations; however they are still

deterministic in nature since a specific mapping function is

usually learned in the training process. Another line of effort

is using statistical techniques to model the temporal progres-

sion of diseases [10]–[15]. A straightforward approach is to

utilize Hidden Markov Model (HMM) to capture disease state

transition and to predict state progression. Even though these

approaches contain internally stochastic units (i.e., Markov

chains over hidden variables), they often make strong assump-

tions about data generation process, have simplified discrete

hidden state and are expensive to compute.

We argue that it is difficult to directly apply those prior

approaches to address complex uncertain scenarios often seen

in chronic and progressive diseases. We characterize two

challenging aspects. (i) Progression uncertainty: multiple

outcomes are possible as the diseases progress, in other words,

the space of plausible outputs is multimodal. Take Parkinson’s

disease (PD) for example, it is generally characterized by dif-

ferent stages, ranging from mild to the most severe. However,

ambiguities exit in determining the clinical stages due to the

heterogeneity of symptoms and patient conditions, and thus

multiple outcomes are possible. An internally deterministic

model is unable to deal with such uncertainty because it

assumes a unimodal output space and the source of uncertainty

simply comes from the local conditional output distribution.

A Markov chain based model might also fail this challenge

due to its over-simplified internal stochastic structure. (ii)

Data uncertainty: patient medical records are often high-

dimensional and sometimes subject to errors (e.g., clinical

assessments with errors, misdiagnosis), raising acute concern

in such complicated progressive disease. Prior deterministic

approaches that assume a Gaussian conditional distribution to

account for measurement noises, or that presume all patients

are correctly diagnosed, lack robustness to tolerate outliers

[16], thus yielding undesired results.

Problem. Given these uncertainty issues, we argue that a

more relevant and challenging question to ask is: what is the

probability distribution of a patient’s health trajectory in the

future? That is, we seek to provide a comprehensive ensemble

of future progression possibilities (Fig. 1 (b)), rather than

extrapolating a single point estimate.

Method. To answer this, we propose a novel method, called

Stochastic Disease Forecasting Model (STOCAST). Motivated

from a generative perspective, we assume that future data

is produced through a two-step generative procedure that

involves an intermediate latent variable (see Fig. 2). The latent

variable can specifically address the uncertainty challenge by

acting as a stochastic bridge – its prior distribution conditioned

on currently available information is used to express internal

stochasticity, and a generation procedure conditioned on the

latent variable is used to produce an ensemble of forecasts.

On the other hand, the generative procedure can address

the issue of data uncertainty, as the model allows potential

departures of observed data from patients’ true health states

(or health “manifold”) by generating output from a distribution

conditioned on a latent variable. The objective for learning

such a stochastic model is generally intractable – to overcome

this, we leverage variational Bayesian approach and reformu-

late a tractable variational objective. Furthermore, we utilize

reparameterization strategy to obtain an unbiased Monte Carlo

estimator of the variational objective, which can be optimized

efficiently by stochastic optimization techniques.

Neural Network Structure. We introduce a new neural net-

work structure, called STOCASTNET, based on our STOCAST

model. We use neural networks as a way to model it because

it possesses powerful capabilities including nonlinearity, long-

term dependency, distributed representation and easy to be

trained. Specifically, the nonlinearity property enables us to

learn complex nonlinear mapping functions, the long-term

dependency is particularly useful since we need to leverage

patients’ past information to do prediction at a present time,

the distributed representation is central for summarizing pa-

tients’ health data into rich compact vectors, and the training

can be done through stochastic gradient descent as neural

networks are typically designed to be differentiable. The

STOCASTNET, comprising three major components – a prior

network, a generation network and a posterior network, is

differentiable everywhere; therefore it can be trained end-to-

end via stochastic optimization techniques.

The main contributions of this paper include:

• We formulate the problem of disease progression pre-

diction from a novel generative perspective to account

for progression uncertainty. Rather than producing a

single point prediction under the unimodal assumption,

we attempt to approximate the overall distribution of

future disease progressions.

• We propose a deep generative model, called STOCAST,

to solve the above problem. In contrary to deterministic

approaches, our model consists of internal stochastic

components, which makes it able to handle progression

uncertainty, and robust to data distortion.

• We provide a neural network STOCASTNET based on the

proposed model that can be trained efficiently end-to-end

using stochastic optimization techniques.

• We conduct a set of comprehensive experiments on two

benchmark datasets - Alzheimer’s Disease Neuroimaging

Initiative (ADNI) data and Parkinson’s Progression Mark-

ers Initiative (PPMI) data. Our results demonstrate that

STOCAST is able to achieve robust and superior perfor-

mance compared to deterministic baselines approaches.

This paper is organized as follows. Section II reviews related

works; Section III presents problem formulation; Section IV

describes our proposed approach and technical details; Section

V provides data descriptions and experimental results, and

Section VI concludes this paper.
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II. RELATED WORK

We first briefly review existing literature for the task of

disease progression forecasting, with special focus on this

work’s significance by accounting for uncertainty. We then

introduce some basic knowledge about generative models and

variational autoencoder.

A. Disease Progression Forecasting

The accumulation of EHR data has triggered great efforts

of researchers in disease prediction [17]–[22]. Many existing

works formulate the challenge of disease progression predic-

tion as a regression or classification problem [1], [2], [23].

For example, to help identify Alzheimer’s disease (AD) at an

early stage, Xu et al. [2] propose a low-rank structured sparse

regression model to foresee patients’ cognitive scores based

on current neuroimaging features, Wang et al. [1] develop

a nonlinear Multi-layer Multi-target Regression (MMR) to

achieve a similar goal. Recent years have witnessed the success

of deep learning in various domains (e.g., public health and

social crisis [24]–[26]), researchers have been applying these

techniques to address disease prediction issues [5], [27]–[29].

Those methods’ effectiveness is often attributed to the ability

of neural networks to learn nonlinear and distribution repre-

sentation of data, as well as to capture long-term dependency

in sequences. For instance, Doctor AI [7] is a RNNs-based

approach that assesses medical history of a patient to predict

the next visit time as well as subsequent diagnosis. Deep-

Care [28] is built upon Long Short Term Memory (LSTM)

units, meanwhile incorporating additional temporal decay and

attention mechanisms to account for temporal irregularity

and importance variation in hospital visits. Nevertheless, a

major limitation in those methods is the deterministic internal

structure, lacking considerations of progression uncertainties

in disease forecasting. Besides, there have been active research

in modeling the temporal disease progressions using machine

learning and statistical techniques [10]–[12], [30]. For exam-

ple, Wang et al [10] build an unsupervised probabilistic model

that has a Markov Jump Process to characterize continuous-

time disease state transitions and a set of Markov chains to

capture the relations between disease states and comorbidity

onsets. Jackson et al [11] develop a multistate Hidden Markov

Model (HMM) to estimate disease state transition rates. Xiao

et al [12] modifies HMM restricted by demographic data to

model patient health trajectories. Unfortunately, such methods

are typically limited by linear state transitions, over-simplified

discrete hidden states and computational scalability [7]. In this

paper, we solve the disease prediction task with consideration

of progression uncertainty, and propose a novel STOCAST

model that contains internal stochasticity to approximate the

distribution of future health states. Meanwhile, our model

is build on neural networks, thus inherits most powerful

capabilities of deep learning techniques.

B. Generative Models and Variational Autoencoder

Generative modeling is one type of unsupervised learning

that deals with complicated data distributions. It could be

interpreted as learning a generative process by which the

observation data arose [31]. That implies, if we had learned a

representative generative model M for a set of data points xxx

distributed according to some unknown distribution p(xxx), we

can draw new samples from the model to obtain a distribution

pM (xxx) that is similar to the true distribution. Training gen-

erative models, particularly for complicated high-dimensional

data, is a challenging task: it might require strong assump-

tions about data, or have to adopt computationally expensive

inference process like Markov Chain Monte Carlo. Recently,

some progress has been made by leveraging neural networks

into training generative models. One of the most popular deep

generative networks is Variational Autoencoder (VAE) [32]. It

has weak assumptions about generative process of data, and

can be trained through stochastic optimization techniques in an

efficient way. An extension of VAE is Conditional Variational

Autoencoder (CVAE), which takes additional knowledge as

extra inputs and builds the generative process conditioned on

such inputs [33]. The proposed STOCAST model is inspired by

CVAE in the way that it learns a generative model conditioned

on patients’ medical history and profile information to forecast

a set of future predictions.

III. RESEARCH PROBLEM

We use a running example to explain our research problem.

As shown in Fig. 1, a patient k has visited hospital from time to

time irregularly. During each hospital visit at a certain date, his

clinical data shall be collected, such as lab tests and symptoms

(i.e., features) and diagnosis (i.e., labels). Given the sequence

of his medical records, we might be curious about: what are the

possible health progressions for patient k in the near future?

Is his health condition getting better or worse? To formally

define our research problem, we let Hk = {(xxxk
j , yyy

k
j , t

k
j )|j =

1, ..., T k} be the sequence of hospital visits for k, where

xxxk
j represents the feature vector, yyykj represents the diagnosis

vector, tkj is the timestamp of the j-th visit, and T k is the

total number of visits. The irregular time interval between two

consecutive visits is denoted by δkj = tkj − tkj−1
. Additionally,

the patient k’s profile information, such as demographic data,

family disease history and gene information, is represented by

a profile vector uuuk.

Problem. Given a population of patients, denoted as K, with

data {(uuuk,Hk)|k ∈ K} that comprise both static profiles and

longitudinal clinical observations Hk
<i = {(xxxk

j , yyy
k
j , t

k
j )|j < i},

our question is: What is the overall distribution of the patient’s

possible health states at a future time point tki ? In other words,

the goal is to predict, for each patient k, the distribution of

possible health states at a future time point tki (often the next

hospital visit), i.e., p(xxxk
i , yyy

k
i |H

k
<i,uuu

k).

Unlike existing approaches that seek to find an optimal

point (xxxk
i

∗

, yyyki
∗

) in the space of future health states, our

proposed question requires to estimate the overall distribution

of all possible of future health states p(xxxk
i , yyy

k
i |H

k
<i,uuu

k). Such

distribution conveys richer information that helps doctors to

make decisions with greater confidence in a complex uncertain

scenario, such as distribution modality (e.g., unimodal or
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of the study, and they are followed and reassessed over time

to track the pathology of the disease as it progresses. ADNI

data contain a rich set of heterogeneous features, including

demographics, clinical assessments, cognitive scores, genomic,

neuroimaging biomarkers and biospecimen. In addition, it also

includes diagnosis labels assigned by doctors, including Con-

trol Normal (CN), Mild Cognitive Impairment (MCI) and AD.

The three levels of diagnosis indicate how severe a patient’s

AD symptoms have progressed. A merged ADNI 1/GO/2 data

package, called “ADNIMERGE”, has been developed which is

downloadble from ADNI data archive. It loads all ADNI data

(except genetic data), documentation, and analysis vignettes5.

Our experiments depend on a unified dataset in this package,

called “adnimerge”, that contains a diversity of commonly

used variables. Table I lists the detailed ADNI features we

have used in our experiment.

2) PPMI Dataset.: Parkinson’s disease (PD) is a long-term

degenerative disorder of the central nervous system that mainly

affects motor system. PPMI is a 5-year landmark observational

clinical study aimed at comprehensively evaluating cohorts of

significant interest (e.g., patients with PD, people with high

risk, and those who are healthy) using advanced imaging,

biologic sampling and clinical and behavioral assessments to

identify biomarkers of Parkinson’s disease progression. The

PPMI study takes places at clinical sites sites throughout the

Unites States, Europe, Israel and Australia, and have collected

data in a standardized manner under strict protocols developed

by the steering committee. Because PPMI data do not provide

per-visit diagnosis, we consider Hoehn and Yahr (NHY) score

as a proxy label in our experiments. NHY is a widely used

system for the purpose of describing how the symptoms of PD

progress, with discrete scores ranging from 0 to 5. We recode

score 0 into Control Normal (CN) label, score 1 into Unilateral

Involvement (UI) label representing minimal or no functional

disability (movement disorder is limited to one side of the

body), and scores 2-5 into Bilateral Involvement (BI) label

corresponding to severe PD symptoms (movement disorder

affects both sides of the body). Table II lists the explanations

of diagnosis labels.

3) Data Preprocessing: As patients might be given different

tests in different hospital visits, there are missing values at the

feature level. To prepare the data for further experiment, we

first discard sparse features with a missing rate larger than

50% (since imputation might introduce undesirable bias), and

then exclude patient sequences that contain no more than three

hospital visits. Then we employ different imputation strategies

to fill in missing data found in diagnosis as well as features: (a)

Considering that the two diseases are irreversible progressive

brain disorders, we do diagnosis imputation following the

procedure: (i) if a patient’s last diagnosis is the same as the

next diagnosis, we replace the current missing point with the

diagnosis; (ii) if a patient has already been diagnosed to be

AD/PD, we carry forward such diagnosis and replace missing

data thereafter; (iii) if a patient’s first observed diagnosis is

healthy, we carry backward such diagnosis and replace missing

data prior to this visit. (b) For feature imputation, we employ

5Referring to https://adni.bitbucket.io/index.html for more information

the last occurrence carried forward and mean imputation.

Specifically, if a missing record occurs in a patient’s follow-up

hospital visit, we impute it with the most recently observed

value from the patient’s history; if the records of a specific

feature in a patient’s medical history are all missing, we choose

to use the mean value of that feature calculated from the cohort

of patients having same diagnosis to impute it. Table III reports

a series of data statistics after preprocessing.

B. Baseline Methods

We compare our STOCAST with three state-of-the-art deep

learning approaches in healthcare domain, as well as three

widely-used classifiers.

• Doctor AI [7] is a temporal predictive model built on

recurrent neural networks (RNNs). Given longitudinal

time stamped EHR data, it is able to predict the diagnosis

and medication codes for a subsequent visit. In our

experiment, we implement this baseline based on LSTM

units.

• T-LSTM [9], also called “Time-Aware LSTM”, is a

LSTM networks augmented with a temporal decay mech-

anism to handle irregular time intervals in longitudinal

patient records. In particular, the memory cell is decom-

posed into short- and long-term memories and the former

one is adjusted in a way that longer the elapsed time, the

smaller the effect of the previous memory to the current

output.

• RETAIN [8] is an interpretable predictive model for

healthcare based on reverse time attention mechanism.

It learns to allocate attentions to individual hospital visits

and clinical variables, so as to interpret importance of

these factors in prediction task.

• Logistic Regression (LR) is a discriminative probabilis-

tic model that uses a logistic (or softmax) function to

model the class probabilities given feature variables. Due

to its simplicity and effectiveness, LR has been widely

applied in a diversity of domains.

• Decision Tree (D-Tree) is a commonly used non-

parametric machine learning technique. In classification,

it makes sequential and hierarchical decisions about the

outcomes variable based on input data.

• K-Nearest Neighbors (KNN) is also a non-paremetric

method that attempt to classify a data point by a plurality

vote of its k nearest neighbors, with the data point being

assigned to the class most common along its neighbors.

In particular, the deep learning based approaches take the

entire longitudinal medical records along with patient profile

as inputs and are trained by minimizing the distance between

prediction and observation (i.e., continuous features and dis-

crete labels). In contrast, the classifiers cannot capture long-

term temporal dependency in disease modeling, therefore we

only consider the current hospital visit along with patient

profile data as inputs. Since the outputs of these classification

methods are restricted to be discrete labels, we ignore the

prediction of features in the training process of such classifiers.
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TABLE I

DIAGNOSIS LABELS AND FEATURE CATEGORIES OF ADNI DATA AND PPMI DATA IN OUR EXPERIMENT.

ADNI Data PPMI Data

Category Features

Profile Age, gender, education, race, marital state

Neuropsychological

AD Assessment Scale (ADAS)
ADAS Delayed Word Recall (ADASQ4)
Mini-Mental State Examination (MMSE)
Clinical Dementia Rating Scale (CDR)
Everyday Cognition Participant Self Report
Everyday Cognition Subject Partner Report
Rey’s Auditory Verbal Learning Test
Logical Memory-Delayed Recall
Montreal Cognitive Assessment (MoCA)
Digit Symbol Substitution
Preclinical Alzheimer’s Cognitive Composite

Imaging-related FDG-PET, PIB SUVR, MRI measurements

Biospecimen Genetics, CSF biomarkers

Category Features

Profile Age, gender, race, family history, education

Non-motor

Benton Judgment of Line Orientation Test
Hopkins Verbal Learning Test
Letter Number Sequencing Test
Montreal Cognitive Assessment (MoCA)
Symbol Digit Modalities Test
Geriatric Depression Scale
The Questionnaire for Impulsive-Compulsive
Disorders in Parkinson’s Disease (QUIP)
State-Trait Anxiety Inventory (STAI))
Scales For Outcomes In PD (SCOPA-AUT)
UPenn Smell Identification Test (UPSIT)
REM Sleep Behavior Disorder Questionnaire
Epworth Sleepiness Scale (ESS))

Motor
Unified PD Rating Scale (MDS-UPDRS)
Daily Living Scale (ADL)
Physical Activity Scale for the Elderly (PASE)

Biospecimen CSF biomarkers, Genetics

TABLE II

DIAGNOSIS EXPLANATION.

Diagnosis Explanation

CN Control normal
MCI Mild cognitive impairment in AD
AD Alzheimer’s disease
UI Unilateral involvement (PD affects one side of the body)
BI Bilateral Involvement (PD affects both sides)

TABLE III

DATA STATISTICS AFTER PREPROCESSING.

Statistics ADNI PPMI

Number of subjects 1,574 1,093
Number of total visits 11,474 9,421
Feature/label dimension 42/3 56/3
Mean/max sequence length 7.29/19 visits 8.62/17 visits
Mean time interval 5.96 months 5.27 months
Label imbalance 32%,42%,26% 27%,20%,53%

C. Evaluation Metrics

In realistic scenario, people are more concerned about a

patient’s diagnosis in the future, the high-level indicator of

health condition. Therefore, we will particularly focus on the

prediction results of diagnosis, and examine the performances

of distinct approaches. Here we stress that baseline methods

output single point predictions, whereas our STOCAST would

produce an ensemble of forecasts for each test case (100

predictions in our experiments). To facilitate a fair comparison

of STOCAST and baselines, we replicate the ground truth

label for 100 times to match it with each prediction point

of STOCAST. In this way, some commonly used classification

metrics can be applied in our scenario, including accuracy,

precision, recall, F1 score and Area Under the Receiver

Operating Characteristic Curve (ROC AUC). In particular, they

evaluate different aspects of a model: accuracy is calculated

as the fraction of correct classifications with respect to the

total test cases, precision measures the ability of a model to

identify only the relevant data points, recall assesses the ability

of a model to find all the relevant cases within a dataset,

F1 score can be interpreted as a weighted harmonic mean

of the precision and recall, and ROC AUC is a performance

measurement for classification problem at various threshold

settings. As seen in Table III, the three labels in our datasets

are not balanced, i.e., CN: 32%, MCI: 42%, AD: 26% in

ADNI data, and CN: 27%, UI: 20%, BI: 53% in PPMI data.

Therefore, under such imbalanced multiclass circumstance, we

calculate a micro-average value and a weighted-average value

for each of these metrics, including precision, recall, F1 and

AUC. A micro-average will aggregate the contributions of all

classes to compute the average metric, whereas a weighted-

average will compute the metric independently for each class

and then take the average by accounting for class imbalance.

Besides, we also compute a single ROC AUC value for each

of the classes.

D. Experimental Setting

Neural network structure. In our implementation of STO-

CAST, all mapping functions - Gaussian means and standard

deviations - in the prior, posterior and generative are three-

layered feed-forward neural networks. The standard deviations

have softplus output layer to ensure non-negativity. Besides,

we note that the deep generative models used in our work

have “latent variable collapse” problem, i.e., the posterior is

very close to the prior thus does not actually listen to the

input data, making it unable to learn a faithful representation

of observation data. To avoid such pitfall, we implement a

“skip” version of STOCASTNET by adding connections that

attach latent variables to multiple layers in the generation

network [35], forcing the generation network to maintain a

strong connection between latent variables and observation

data. In terms of deep learning based baselines, we construct
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relatively stable UI state (Fig. 7 (f)). Based on the results in

Fig. 7 (d), (e), we see that our STOCAST is able to well capture

the two patients’ health trends from UI to BI, as BI’s violin is

rising upwards while UI’s is going downwards. By contrast,

the baseline produces incorrect BI predictions long before

when doctors give such BI diagnosis. Similar to Fig. 7(b),

the example in Fig. 7(f) contains an “unexpected” diagnosis

CN in the 6th visit after several visits with UI diagnosis.

It is probability a misdiagnosis or at least an ambiguous

diagnosis. The two examples in Fig. 7(b)(f) demonstrate that

our approach is more robust in handling data uncertainty

whereas deterministic baseline fail to tolerant such potential

misdiagnosis. Overall, we find that baseline approach exhibits

a tendency to output BI label across all hospital visits in

PPMI data, contrary to doctors’ diagnosis. This might be

because BI accounts for the majority of diagnosis labels in

the data (approximately 53% as shown in Table III), therefore

the baseline is trained to be biased towards BI label due to

such imbalanced distribution. This phenomenon can to some

extent explain our observation in Fig. 6(b) that baselines

display fluctuations in their performances in multi-step for-

ward prediction task. As we increases d (farther prediction),

a biased prediction of BI might become a “good” prediction

because patients would gradually enter into the most severe

BI stage. However, such biased prediction results are not what

we expect in realistic application. Therefore, susceptibility to

data imbalance is another disadvantage that prevents determin-

istic baselines from achieving good prediction performances.

In contrary, STOCAST demonstrates a superior prediction

capability: (i) it can successfully identify patients’ disease

progressions through the smooth movements of violin plots

overtime; (ii) it can offer insights regards the level of difficulty

in prediction tasks through the relative positions of violin plots

for distinct labels (i.e., the closer the harder), and the level

of forecast confidence through the shapes of violins (i.e., the

more compact the more confident).

VI. DISCUSSION

We developed a novel generative model named STOCAST to

address the problem of disease prediction formulated in an un-

certain context that considers progression uncertainty and data

uncertainty. Application of this method to two longitudinal

clinical datasets - ADNI and PPMI - shows that it achieves su-

perior and robust performance across different scenarios (e.g.,

different sub-populations and multi-step forward predictions)

assessed by various evaluation metrics.

This work has some limitations. First, it demands a complete

longitudinal data which unfortunately might not be met in

reality: missingness can take different types (e.g., missing at

random, missing systematically) due to many reasons (e.g.,

patients drop out studies, data is collected improperly). With-

out consideration of missing data types, our preprocessing

procedure might introduce bias or affect the representativeness

of the results. To address this issue, future research is needed

to develop methods that take full account of incomplete data

without relying heavily on data preprocessing or imputation.

Second, our analysis are based on two datasets that are

processed through sophisticated study design and standardized

data acquisition and quality control, which might not be

representative for the poor quality problem in many real

health data. Besides, we only examine the effectiveness of

our method based on two particular progressive irreversible

brain diseases. One future extension would be to test the

generalizability of this method on a broader range of diseases

(e.g., diseases with recurrent states, with a large number of

potential diagnosis labels) and a variety of noisy data. Third,

this research adopted traditional evaluation metrics to assess

the performance of disease prediction in an uncertain context.

Related studies used the minimum distance of the closest

forecast to the ground truth [37], or estimated the likelihood of

ground truth within the predicted distribution [38]. However,

both criteria are flawed because the former unfairly selects the

best guess among all predictions while the latter is hard to be

applied to the case of single point prediction. Therefore, we

call for the research community to address this open challenge

in designing better criteria to compare methods with stochastic

nature to deterministic algorithms.

Among the related research of disease prediction using

ADNI/PPMI data [1], [2], [39], [40], the major contribution of

this research is its focus on addressing progression uncertainty

and data uncertainty, advocating further efforts towards this

direction. Our work has important clinical implications as it

provides richer information for doctors to make decisions with

greater confidence in a complex uncertain scenario, which is

critical in offering patients earlier and more tailored treatments

to defer their health deterioration.
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