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Abstract— Forecasting patients’ disease progressions
with rich longitudinal clinical data has drawn much at-
tention in recent years due to its impactful application in
healthcare and the medical field. Researchers have tackled
this problem by leveraging traditional machine learning,
statistical techniques and deep learning based models.
However, existing methods suffer from either deterministic
internal structures or over-simplified stochastic compo-
nents, failing to deal with complex uncertain scenarios
such as progression uncertainty (i.e., multiple possible tra-
jectories) and data uncertainty (i.e., imprecise observations
and misdiagnosis). To overcome these major uncertainty is-
sues, we propose a hovel deep generative model, Stochas-
tic Disease Forecasting Model (STOCAsST), along with an
associated neural network architecture STOCASTNET, that
can be trained efficiently via stochastic optimization tech-
niques. Our STOCAST model uses internal stochastic com-
ponents to deal with departures of observed data from
patients’ true health states, and more importantly, is able to
produce a comprehensive estimate of future disease pro-
gression trajectories. Based on two public datasets related
to Alzheimer’s disease and Parkinson’s disease, we demon-
strate how our STOCAST model achieves robust and supe-
rior performance than deterministic baseline approaches,
and conveys richer information that can potentially assist
doctors to make decisions with greater confidence in a
complex uncertain scenario.

Index Terms— Disease Forecasting, Deep Generative
Models, Progression Uncertainty, Neural Networks

[. INTRODUCTION

Thanks to the rapid development of modern healthcare
systems, Electronic Health Records (EHR) have been exten-

Manuscript received on October 14, 2019; revised on March 1, 2020
and May 12, 2020; Accepted on June 23, 2020. This work was funded in
part by the grants from the PICSO Lab, including NSF Grants #1739413
and #2027713, DARPA and AFOSR awards. Any opinions, findings,
and conclusions or recommendations expressed in this material do not
necessarily reflect the views of the funding sources.

X. Teng is with School of Computing and Information, University of
Pittsburgh, Pennsylvanian, PA 15213 USA (e-mail: xian.teng@pitt.edu).

S. Pei is with Mailman School of Public Health, Columbia University,
New York, NY 10032 USA. (e-mail: sp3449@cumc.columbia.edu).

tCorresponding: Y.-R. Lin is with School of Computing and Informa-
tion, University of Pittsburgh, Pennsylvanian, PA 15213 USA (e-mail:
yurulin@pitt.edu).

*Data used in preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or provided data
but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

sively used in smart healthcare applications. EHR data contain
longitudinal health information, such as clinical tests, cognitive
assessments, medication and procedures, allowing for tracking
patient health status at each specific time throughout their
medical history. With such rich EHR data, one important
question is how to model patients’ disease progressions and
to effectively forewarn their future health states, so that early
interventions may be undertaken to cope with chronic illness.
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Fig. 1. A schematic illustration for predicting disease progression given
a patient’s prior information (e.g., patient profile and historic medical
records). (a) Deterministic methods typically learn a parametric function
that maps prior information to a unimodal outcome with an optimal point
estimate, which fails to express a complex uncertain scenario where
the output is multimodal and is often unable to inform a decision with
confidence. (b) We propose STOCAST that learn a generative model
to predict the distribution over multiple possible outcomes to effectively
capture the disease progression.

Until recent years, most of the techniques for disease predic-
tion are traditional machine learning and statistical techniques.
One paradigm of prior works have tackled this question by
formulating a regression or classification problem!, and the
key idea can be illustrated in Fig. 1(a). From a probabilistic
perspective, those models attempt to learn a deterministic
parametric function that maps historic records into future
outcomes through maximum likelihood — minimizing a loss
function that captures the distance between the predictions and
the observations. Examples in this paradigm include Wang et
al. [1] and Xu et al. [2], where regression models are used to
predict multiple cognitive scores from neuroimaging features

'We particularly focus on those classification models that learn a parametric
function to estimate the conditional class probabilities.
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for early recognition of Alzheimer’s disease. Deep learning
techniques, such as recurrent neural networks (RNNs) and
convolutional neural networks (CNNs), have been introduced
to predict disease progression [3]-[9]. These neural networks
are designed to recognize a patient’s sequential patterns and
use temporal patterns to predict future probable scenarios
such as diagnosis and prescriptions. Generally, these methods
have advantages in modeling long-term temporal dependency
and learning distributed representations; however they are still
deterministic in nature since a specific mapping function is
usually learned in the training process. Another line of effort
is using statistical techniques to model the temporal progres-
sion of diseases [10]-[15]. A straightforward approach is to
utilize Hidden Markov Model (HMM) to capture disease state
transition and to predict state progression. Even though these
approaches contain internally stochastic units (i.e., Markov
chains over hidden variables), they often make strong assump-
tions about data generation process, have simplified discrete
hidden state and are expensive to compute.

We argue that it is difficult to directly apply those prior
approaches to address complex uncertain scenarios often seen
in chronic and progressive diseases. We characterize two
challenging aspects. (i) Progression uncertainty: multiple
outcomes are possible as the diseases progress, in other words,
the space of plausible outputs is multimodal. Take Parkinson’s
disease (PD) for example, it is generally characterized by dif-
ferent stages, ranging from mild to the most severe. However,
ambiguities exit in determining the clinical stages due to the
heterogeneity of symptoms and patient conditions, and thus
multiple outcomes are possible. An internally deterministic
model is unable to deal with such uncertainty because it
assumes a unimodal output space and the source of uncertainty
simply comes from the local conditional output distribution.
A Markov chain based model might also fail this challenge
due to its over-simplified internal stochastic structure. (ii)
Data uncertainty: patient medical records are often high-
dimensional and sometimes subject to errors (e.g., clinical
assessments with errors, misdiagnosis), raising acute concern
in such complicated progressive disease. Prior deterministic
approaches that assume a Gaussian conditional distribution to
account for measurement noises, or that presume all patients
are correctly diagnosed, lack robustness to tolerate outliers
[16], thus yielding undesired results.

Problem. Given these uncertainty issues, we argue that a
more relevant and challenging question to ask is: what is the
probability distribution of a patient’s health trajectory in the
future? That is, we seek to provide a comprehensive ensemble
of future progression possibilities (Fig. 1 (b)), rather than
extrapolating a single point estimate.

Method. To answer this, we propose a novel method, called
Stochastic Disease Forecasting Model (STOCAST). Motivated
from a generative perspective, we assume that future data
is produced through a two-step generative procedure that
involves an intermediate latent variable (see Fig. 2). The latent
variable can specifically address the uncertainty challenge by
acting as a stochastic bridge — its prior distribution conditioned
on currently available information is used to express internal
stochasticity, and a generation procedure conditioned on the

latent variable is used to produce an ensemble of forecasts.
On the other hand, the generative procedure can address
the issue of data uncertainty, as the model allows potential
departures of observed data from patients’ true health states
(or health “manifold”) by generating output from a distribution
conditioned on a latent variable. The objective for learning
such a stochastic model is generally intractable — to overcome
this, we leverage variational Bayesian approach and reformu-
late a tractable variational objective. Furthermore, we utilize
reparameterization strategy to obtain an unbiased Monte Carlo
estimator of the variational objective, which can be optimized
efficiently by stochastic optimization techniques.

Neural Network Structure. We introduce a new neural net-
work structure, called STOCASTNET, based on our STOCAST
model. We use neural networks as a way to model it because
it possesses powerful capabilities including nonlinearity, long-
term dependency, distributed representation and easy to be
trained. Specifically, the nonlinearity property enables us to
learn complex nonlinear mapping functions, the long-term
dependency is particularly useful since we need to leverage
patients’ past information to do prediction at a present time,
the distributed representation is central for summarizing pa-
tients’ health data into rich compact vectors, and the training
can be done through stochastic gradient descent as neural
networks are typically designed to be differentiable. The
STOCASTNET, comprising three major components — a prior
network, a generation network and a posterior network, is
differentiable everywhere; therefore it can be trained end-to-
end via stochastic optimization techniques.

The main contributions of this paper include:

o« We formulate the problem of disease progression pre-
diction from a novel generative perspective to account
for progression uncertainty. Rather than producing a
single point prediction under the unimodal assumption,
we attempt to approximate the overall distribution of
future disease progressions.

e We propose a deep generative model, called STOCAST,
to solve the above problem. In contrary to deterministic
approaches, our model consists of internal stochastic
components, which makes it able to handle progression
uncertainty, and robust to data distortion.

e We provide a neural network STOCASTNET based on the
proposed model that can be trained efficiently end-to-end
using stochastic optimization techniques.

e We conduct a set of comprehensive experiments on two
benchmark datasets - Alzheimer’s Disease Neuroimaging
Initiative (ADNI) data and Parkinson’s Progression Mark-
ers Initiative (PPMI) data. Our results demonstrate that
STOCAST is able to achieve robust and superior perfor-
mance compared to deterministic baselines approaches.

This paper is organized as follows. Section II reviews related
works; Section III presents problem formulation; Section IV
describes our proposed approach and technical details; Section
V provides data descriptions and experimental results, and
Section VI concludes this paper.
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[I. RELATED WORK

We first briefly review existing literature for the task of
disease progression forecasting, with special focus on this
work’s significance by accounting for uncertainty. We then
introduce some basic knowledge about generative models and
variational autoencoder.

A. Disease Progression Forecasting

The accumulation of EHR data has triggered great efforts
of researchers in disease prediction [17]-[22]. Many existing
works formulate the challenge of disease progression predic-
tion as a regression or classification problem [1], [2], [23].
For example, to help identify Alzheimer’s disease (AD) at an
early stage, Xu et al. [2] propose a low-rank structured sparse
regression model to foresee patients’ cognitive scores based
on current neuroimaging features, Wang et al. [1] develop
a nonlinear Multi-layer Multi-target Regression (MMR) to
achieve a similar goal. Recent years have witnessed the success
of deep learning in various domains (e.g., public health and
social crisis [24]-[26]), researchers have been applying these
techniques to address disease prediction issues [5], [27]-[29].
Those methods’ effectiveness is often attributed to the ability
of neural networks to learn nonlinear and distribution repre-
sentation of data, as well as to capture long-term dependency
in sequences. For instance, Doctor Al [7] is a RNNs-based
approach that assesses medical history of a patient to predict
the next visit time as well as subsequent diagnosis. Deep-
Care [28] is built upon Long Short Term Memory (LSTM)
units, meanwhile incorporating additional temporal decay and
attention mechanisms to account for temporal irregularity
and importance variation in hospital visits. Nevertheless, a
major limitation in those methods is the deterministic internal
structure, lacking considerations of progression uncertainties
in disease forecasting. Besides, there have been active research
in modeling the temporal disease progressions using machine
learning and statistical techniques [10]-[12], [30]. For exam-
ple, Wang et al [10] build an unsupervised probabilistic model
that has a Markov Jump Process to characterize continuous-
time disease state transitions and a set of Markov chains to
capture the relations between disease states and comorbidity
onsets. Jackson et al [11] develop a multistate Hidden Markov
Model (HMM) to estimate disease state transition rates. Xiao
et al [12] modifies HMM restricted by demographic data to
model patient health trajectories. Unfortunately, such methods
are typically limited by linear state transitions, over-simplified
discrete hidden states and computational scalability [7]. In this
paper, we solve the disease prediction task with consideration
of progression uncertainty, and propose a novel STOCAST
model that contains internal stochasticity to approximate the
distribution of future health states. Meanwhile, our model
is build on neural networks, thus inherits most powerful
capabilities of deep learning techniques.

B. Generative Models and Variational Autoencoder

Generative modeling is one type of unsupervised learning
that deals with complicated data distributions. It could be

interpreted as learning a generative process by which the
observation data arose [31]. That implies, if we had learned a
representative generative model M for a set of data points &
distributed according to some unknown distribution p(z), we
can draw new samples from the model to obtain a distribution
pu(z) that is similar to the true distribution. Training gen-
erative models, particularly for complicated high-dimensional
data, is a challenging task: it might require strong assump-
tions about data, or have to adopt computationally expensive
inference process like Markov Chain Monte Carlo. Recently,
some progress has been made by leveraging neural networks
into training generative models. One of the most popular deep
generative networks is Variational Autoencoder (VAE) [32]. It
has weak assumptions about generative process of data, and
can be trained through stochastic optimization techniques in an
efficient way. An extension of VAE is Conditional Variational
Autoencoder (CVAE), which takes additional knowledge as
extra inputs and builds the generative process conditioned on
such inputs [33]. The proposed STOCAST model is inspired by
CVAE in the way that it learns a generative model conditioned
on patients’ medical history and profile information to forecast
a set of future predictions.

[1l. RESEARCH PROBLEM

We use a running example to explain our research problem.
As shown in Fig. 1, a patient k has visited hospital from time to
time irregularly. During each hospital visit at a certain date, his
clinical data shall be collected, such as lab tests and symptoms
(i.e., features) and diagnosis (i.e., labels). Given the sequence
of his medical records, we might be curious about: what are the
possible health progressions for patient k in the near future?
Is his health condition getting better or worse? To formally
define our research problem, we let H* = (.'sz,y;C ,t?)\ Jj=
1,...,T"} be the sequence of hospital visits for k, where
xé‘ represents the feature vector, yf represents the diagnosis
vector, t¥ is the timestamp of the j-th visit, and T* is the
total number of visits. The irregular time interval between two
consecutive visits is denoted by 5‘? = t;? — t;‘ffl. Additionally,
the patient k’s profile information, such as demographic data,
family disease history and gene information, is represented by

a profile vector u”.

Problem. Given a population of patients, denoted as IC, with
data {(u*,H*)|k € K} that comprise both static profiles and
longitudinal clinical observations H% ; = {(z%,y%,t%)|j < i},
our question is: What is the overall distribution of the patient’s
possible health states at a future time point t¥? In other words,
the goal is to predict, for each patient k, the distribution of
possible health states at a future time point t¥ (often the next
hospital visit), i.e., p(z¥, y¥|HE, ub).

Unlike existing approaches that seek to find an optimal
. k* k:* .
point (7 ,y¥") in the space of future health states, our
proposed question requires to estimate the overall distribution
of all possible of future health states p(z¥,y¥|H~;, u*). Such
distribution conveys richer information that helps doctors to
make decisions with greater confidence in a complex uncertain

scenario, such as distribution modality (e.g., unimodal or
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multimodal), the most likely future health states, and the extent
of the credible regions for an estimate.

V. METHOD

This section presents our proposed method,
Stochastic Disease Forecasting Model (STOCAST).

namely

— + prior
- generation
-+=-» posterior

k
z;,Y;

Fig. 2. A schematic illustration of the proposed STOCAST approach. (i)
The future observation (mk, y’“) is generated according to a generative
procedure corresponding to a particular latent variable (zk) ) The
latent variable (2¥) is drawn from a prior distribution condmoned on
the previously available information (’;‘-L’c ,uk). (i) The distribution
of the latent variable is inferred from prewously avallable information
(H% ;,u*) and newly observed data.

A. Two-Step Generative Procedure

In order to tackle the progression and data uncertainty
issues, we approach the problem from a generative perspective.
As shown in Fig. 2, we model the generative procedure of
future health data conditioned on currently available informa-
tion through two steps: (i) a latent variable z¥ is drawn from
the prior distribution pp(2¥|H",,u*) conditioned on current
knowledge (’H’;Z, ) (dashed arrow); (ii) the output is gener-
ated by sampling from the distribution pg(zF,y%|2F, HE , u*)
conditioned on both current knowledge (’H’ii,uk) and the
latent variable zf (line arrow). The 6 represents generative
parameters. In our scenario, the health-related data could be
of high-dimensional and involve complicated dependencies
between the dimensions, while latent variable zf lies in a
hidden subspace of much lower dimensionality than that of
the data space. The latent variable 2 is introduced to allow
a generally complicated distribution (over observed data) to
be constructed through a simpler conditional distribution. Its
role is two-folds: (a) it captures the internal stochasticity from
the data, through which the model can produce an ensemble of
predictions as possible outcomes at a future time point; (b) the
output generated at the second step, based on the distribution
conditioned on the latent variable, offers greater flexibility in
modeling the departure of data from the true health states.

B. (Variational) Objective Function

Given the two-step generative procedure, we shall be able to
learn the parameters € using maximum likelihood estimation
(MLE):

0= gy 3 o [ [potatutiah 2 ut)

generation
ey

u®) |dzF.
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X po(z k‘rH<z’
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However, the marginalization of z¥ is generally intractable
for complicated prior and generation functions (e.g., those

described by neural networks). A widely-adopted strategy
dealing with such intractability is variational Bayesian method,
i.e., to derive a variational lower bound to approximate the
logarithm of the marginal probability of the observation. The
derivation is as follows:

1ng9( zayz |H<m )

pﬂ( 7y ) k|H< ) )
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2)

where the inequality can be obtained using Jensen’s inequality.
Here £¥(0,¢) is a single variational lower bound term for
patient & at time t¥. Particularly, the lower bound £F(6,¢)
involves a new probability g4 (2¥|z¥,y¥, HE, u*) expressed
by parameter ¢. It is the variational distribution, or proxy
posterior, introduced to approximate the intractable true poste-
rior pg(2¥|zk, y¥, 1%, u”). This proxy posterior is associated
with the posterior process in Fig. 2 (dotted arrow), that the
distribution of latent variable can be inferred by combining
available information and newly observed data. It follows
that the KL divergence of the proxy posterior from the true
posterior distribution is equal to the the difference between the
original log likelihood and the variational lower bound:

KL g5 (2} 2yl HE 0" po (2 oy, HE uh)|
7]EQ¢|:10gq¢( k‘zz’yzﬂH<zv )i|

3
Eq¢|:logp9( zayzv k|H<zv )i| ( )

+1ngg( z’yz |H<’L’ )
k kjgk ok

= 7£i (07¢) + 1ng9($i 'Y |H<i’u )
Equation (2) holds if and only if g4 is equal to the true
posterior distribution, i.e., their KL divergence is zero. Thus,
we leverage a fractable proxy posterior g4 to approximate
the intractable true posterior, so as to rewrite the intractable
objective function in (1) into a tractable variational objective
function in (2). Then, the objective can be re-expressed as:

0.¢= arg%;xg;£?(0,¢). )

C. Solving Variational Objective Function

We present our solution to the optimization problem ex-
pressed in (4). In particular, we shall differentiate and optimize
the variational objective function with respect to both parame-
ters 0, @. However, according to (2), the lower bound £¥(8, ¢)
contains two terms: the first term is the expected log joint
probability, and the second term is the entropy of the proxy
posterior. Both terms depends on gg, making the gradient with
respect to ¢ a little problematic. Following the prior works
[32], [34], we employ reparameterization to obtain Monte
Carlo gradients of Ef (0,¢) with respect to both parameters
0, ¢. Reparameterization and Monte Carlo Gradients. The
reparameterization trick expresses the latent variable z¥ as an
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invertible function of another set of random variables € that
does not depend on parameter ¢, i.e., & = g4(e, ), where
we use the black dot e to indicate all condmonal elements
{zk,yk, HE, u*}. In this way, the expectation with respect
to the proxy posterior g4 of any function of 2k, denoted as
f(2F), can be expressed as:

Eq, [f(2)] = Epe) [/ (96(e. % > Fge(e,0)),
l

®)
where we can randomly draw L samples () ~ p(e) to ap-

proximate the true expectation value. Accordingly, the gradient
with respect to ¢ can be pushed into the expectation, yielding:

Vol [f(25)] = Epe) [V o (g0(e,0))]

R U
l

h

Following (5) and substituting f(2%) by the terms inside the
expectation in £¥(8,¢), we obtain an unbiased Monte Carlo
estimator as follows,

1
2. [logpo( R T
l

Dbyl HE ’“)},

wherezk( - g¢(€(l), °), el ~ p(e).

Ef(ev(p) = ‘H<w

— log q¢( 0

Similarly, we can push the gradient operator /g ¢ into expec-
tation to obtain Monte Carlo estimates of the gradients with
respect to 6, ¢, as:

1 @
ZZ[V9¢Ing0( 77yza k ‘H<za )
l

— Vo.¢1og qp(2F

VoLl (0.¢) =

Ok, 1 b)),
(®)

In this way, we are able to use traditional stochastic opti-
mization (e.g., standard gradient ascent or Adagrad) to update
the parameters 6, ¢ until their convergence. It has been shown
that the Monte Carlo gradients obtained via reparameterization
exhibit relatively low variance [34], and typically only one
sample (i.e., L = 1) is needed to estimate a noisy gradient,
making the algorithms very efficient [32], [34].

D. STOCAST Neural Network: STOCASTNET

So far, we have presented our solution to maximize the
variational objective function £¥(8, ¢) by stochastic optimiza-
tion techniques, here we present STOCASTNET, a novel neural
network architecture based on our STOCAST framework. We
decompose the unbiased Monte Carlo estimator in 7 into four
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Fig. 3. Training-time STOCASTNET structure. (a) An auxiliary RNN
summarizing history data into a representation. (b) Three major com-
ponents in STOCAST structure: (i) prior, (ii) generation, (iii) posterior. A
reparameterization layer in between posterior and generation is used to
guarantee data flow as continuous.

parts, yielding:

)
L;(0,9) = Z[logpe z; |z HE  ub)
!
®
l l
+log pe (¥ 125 1, u) + log pe (25 [HE,, uh)

@ ®
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Fig. 3(b) illustrates the overall training-time STOCASTNET
architecture that produces the above four parts as outputs from
three networks - prior, generative, posterior. We additionally
introduce an auxiliary RNN network parameterized by
that maps a patient’s medical history H’il into a summary
representation h’ii (Fig. 3(a)). Besides, we restrict the latent
variable to be a multivariate Gaussian distribution, thus its
posterior should also follow the same distribution. We further
assume the output distribution of features to be Gaussian, and
the distribution of discrete diagnosis Categorical. Below, we
discuss three main networks: prior, generation and posterior.

Prior Network. The prior network should construct a
multivariate Gaussian distribution over the latent variable
conditioned on history and profile data. Therefore, it takes
the concatenation of history representation and profile vector
as input, and outputs two prior parameter vectors, i.e., the
mean vector as well as the standard deviation vector for prior
Gaussian distribution (Fig. 3(b)):

yfzk _ Mgrlor([hli“ ]) O'Ok 7a_§)r10r([h<“ ])’

(10)

prior prior

where p, and o, are two deterministic functions built
by feed-forward neural networks with parameter 6.
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Posterior Network. The proxy posterior g4 is used to
approximate the intractable true posterior of latent variable.
Thus the posterior network shall take existing knowledge and
also newly observed data as input, and outputs two posterior
parameter vectors, i.e., the mean vector and the standard
deviation vector for posterior Gaussian distribution (Fig. 3(b)):

por = py” (B0 27 y]),
Uz’? = apOSt([hgz’uk7mi ’yi})7

(11)

post post

where By and o4 are posterior functions described by
feed- forward neural networks parameterized by ¢. If we di-
rectly draw samples z¥ K0 from posterior Gaussian distribution
N (p,x,0,x), which is a non-continuous operation and thus
has no gradient, it would result in an unwanted scenario that
we cannot back-propagate errors through this layer. This is
exactly where reparameterization should come into play. As
shown in Fig. 3(b), we first draw samples for the auxiliary
variable (V) from a standard Gaussian distribution A/(0,1),
and then rely on the following reparameterization transforma-
tion to obtain a set of samples,

A0}

Z;

~N(0,1), (12)

where ® indicates element-wise multiplication. In this way, we
can guarantees smooth data flow from the posterior network
to the generation network.

Generation Network. Given zf(l) samples, we concate-
nate it with medical history and profile vector to generate
features and diagnosis. The outputs comprise three parameter
vectors, i.e., the mean vector and the standard deviation vector
Gaussian distribution, and the Tyk for Categorical distribution
(Fig. 3(b)), yielding

(l) en
4 hiw ]) Oy k —Ug ([z hlizv D

gen([zk(l hk

7Ty’“ —1[‘0 <i U })7

=+ 0,00 E(l), wheree®

“zk - .U'gen ([

where pg™", 05™" and w3™" are generative functions described

by feed-forward neural networks with parameter 8. Putting
all together, the STOCASTNET in Fig. 3(b) takes the inputs
{e®, HE, uk z¥ y¥} and produces the four outputs {(D) —
@} corresponding to the four parts in (4):

@ log/\/(xf;uzk,a k) zlogpg(xﬂz ® JhEub),

@: logClykim,) = logpa(yllzt " hE . ub),

®: 1ogfv<z,’?< ;uzk,agk) log pe (2 ’@“\h@ 5,

@ : ogN(2F" pr,0,0) = log gp (28" 2k B ub).

(13)
We note that the entire STOCASTNET is continuous and dif-
ferentiable, thus it can be trained end-to-end using stochastic
optimization techniques. We present the minibatch training
process in Algorithm 1. Specifically, in each iteration, we can
estimate the Monte Carlo gradients in terms of all population
KC, denoted as /g 4L(6, ), using the randomly sampled
minibatch of patients X', yielding:

Tk
Vo.sL(0,¢) ~ g::; T kzz; > VoL 0.6).
6 /

%

(14)

Algorithm 1 Minibatch training of the STOCAST network.

. Initialize parameters 6, ¢

repeat
Draw a batch of patients K" from all population K
Draw a set of samples ) from A/(0,1)
Compute Monte Carlo gradients V9,¢£~(07 ¢) following
14

6:  Update 6, ¢ using the above gradients

7. until convergence of parameters 0, ¢

A

&
k > ~k
h; ) T;
k L | gk
u g Yi
3

Fig. 4. The forecasting procedure based on trained STOCASTNET.

E. Forecasting based on Trained Network

After the STOCASTNET has been trained, we want to
use it to predict the distribution of a patient’s future health
condition. Here we note that, although we cannot give an
explicitly analytical expression in terms of the distribution, we
can produce a set of forecasts to approximate the distribution

p(xr,y¥|HE,;, u"). As shown in Fig. 4, at prediction time we
only need the trained prior and generation networks to produce
forecasts {:i:f@f }, corresponding to the two-step generative
procedure discussed in Fig. 2. We use the prior network to get
the mean and standard deviation vectors, then draw a set of
samples Z z , and ﬁnally use the generation network to produce
a set of forecasts & 4.

V. EXPERIMENTS

We evaluate our proposed models using two public datasets
from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database?, and Parkinson’s Progression Markers Initiative
(PPMI) database’.

A. Datasets

1) ANDI Dataset: Alzheimer’s disease (AD) is a chronic
neurodegenerative disease that usually causes problems with
memory, thinking and behaviors. ADNI is a longitudinal
multi-center study that aims to develop clinical, imaging,
genetic, and biochemical biomarkers for the early detection
and tracking of AD. The study has three phases*: an initial
5-year study from 2004 (ADNI-1), a 2-year extended study
from 2009 (ADNI-GO), and a 5-year study started from 2011
(ADNI-2). New participants were recruited during each phase

2
3

www.adni-info.org
www.ppmi-info.org

4According to the new updates, the 4th phase has started from 2016, but
our experiment does not use data from this phase.
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of the study, and they are followed and reassessed over time
to track the pathology of the disease as it progresses. ADNI
data contain a rich set of heterogeneous features, including
demographics, clinical assessments, cognitive scores, genomic,
neuroimaging biomarkers and biospecimen. In addition, it also
includes diagnosis labels assigned by doctors, including Con-
trol Normal (CN), Mild Cognitive Impairment (MCI) and AD.
The three levels of diagnosis indicate how severe a patient’s
AD symptoms have progressed. A merged ADNI 1/GO/2 data
package, called “ADNIMERGE”, has been developed which is
downloadble from ADNI data archive. It loads all ADNI data
(except genetic data), documentation, and analysis vignettes’.
Our experiments depend on a unified dataset in this package,
called “adnimerge”, that contains a diversity of commonly
used variables. Table I lists the detailed ADNI features we
have used in our experiment.

2) PPMI Dataset.: Parkinson’s disease (PD) is a long-term
degenerative disorder of the central nervous system that mainly
affects motor system. PPMI is a 5-year landmark observational
clinical study aimed at comprehensively evaluating cohorts of
significant interest (e.g., patients with PD, people with high
risk, and those who are healthy) using advanced imaging,
biologic sampling and clinical and behavioral assessments to
identify biomarkers of Parkinson’s disease progression. The
PPMI study takes places at clinical sites sites throughout the
Unites States, Europe, Israel and Australia, and have collected
data in a standardized manner under strict protocols developed
by the steering committee. Because PPMI data do not provide
per-visit diagnosis, we consider Hoehn and Yahr (NHY) score
as a proxy label in our experiments. NHY is a widely used
system for the purpose of describing how the symptoms of PD
progress, with discrete scores ranging from O to 5. We recode
score 0 into Control Normal (CN) label, score 1 into Unilateral
Involvement (UI) label representing minimal or no functional
disability (movement disorder is limited to one side of the
body), and scores 2-5 into Bilateral Involvement (BI) label
corresponding to severe PD symptoms (movement disorder
affects both sides of the body). Table II lists the explanations
of diagnosis labels.

3) Data Preprocessing: As patients might be given different
tests in different hospital visits, there are missing values at the
feature level. To prepare the data for further experiment, we
first discard sparse features with a missing rate larger than
50% (since imputation might introduce undesirable bias), and
then exclude patient sequences that contain no more than three
hospital visits. Then we employ different imputation strategies
to fill in missing data found in diagnosis as well as features: (a)
Considering that the two diseases are irreversible progressive
brain disorders, we do diagnosis imputation following the
procedure: (i) if a patient’s last diagnosis is the same as the
next diagnosis, we replace the current missing point with the
diagnosis; (ii) if a patient has already been diagnosed to be
AD/PD, we carry forward such diagnosis and replace missing
data thereafter; (iii) if a patient’s first observed diagnosis is
healthy, we carry backward such diagnosis and replace missing
data prior to this visit. (b) For feature imputation, we employ

SReferring to https://adni.bitbucket.io/index.html for more information

the last occurrence carried forward and mean imputation.
Specifically, if a missing record occurs in a patient’s follow-up
hospital visit, we impute it with the most recently observed
value from the patient’s history; if the records of a specific
feature in a patient’s medical history are all missing, we choose
to use the mean value of that feature calculated from the cohort
of patients having same diagnosis to impute it. Table III reports
a series of data statistics after preprocessing.

B. Baseline Methods

We compare our STOCAST with three state-of-the-art deep
learning approaches in healthcare domain, as well as three
widely-used classifiers.

o Doctor Al [7] is a temporal predictive model built on
recurrent neural networks (RNNs). Given longitudinal
time stamped EHR data, it is able to predict the diagnosis
and medication codes for a subsequent visit. In our
experiment, we implement this baseline based on LSTM
units.

e T-LSTM [9], also called “Time-Aware LSTM”, is a
LSTM networks augmented with a temporal decay mech-
anism to handle irregular time intervals in longitudinal
patient records. In particular, the memory cell is decom-
posed into short- and long-term memories and the former
one is adjusted in a way that longer the elapsed time, the
smaller the effect of the previous memory to the current
output.

« RETAIN [8] is an interpretable predictive model for
healthcare based on reverse time attention mechanism.
It learns to allocate attentions to individual hospital visits
and clinical variables, so as to interpret importance of
these factors in prediction task.

o Logistic Regression (LR) is a discriminative probabilis-
tic model that uses a logistic (or softmax) function to
model the class probabilities given feature variables. Due
to its simplicity and effectiveness, LR has been widely
applied in a diversity of domains.

o Decision Tree (D-Tree) is a commonly used non-
parametric machine learning technique. In classification,
it makes sequential and hierarchical decisions about the
outcomes variable based on input data.

o K-Nearest Neighbors (KNN) is also a non-paremetric
method that attempt to classify a data point by a plurality
vote of its k nearest neighbors, with the data point being
assigned to the class most common along its neighbors.

In particular, the deep learning based approaches take the
entire longitudinal medical records along with patient profile
as inputs and are trained by minimizing the distance between
prediction and observation (i.e., continuous features and dis-
crete labels). In contrast, the classifiers cannot capture long-
term temporal dependency in disease modeling, therefore we
only consider the current hospital visit along with patient
profile data as inputs. Since the outputs of these classification
methods are restricted to be discrete labels, we ignore the
prediction of features in the training process of such classifiers.

2168-2194 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on July 15,2020 at 11:51:24 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.3006719, IEEE Journal of

Biomedical and Health Informatics

8 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2017
TABLE |
DIAGNOSIS LABELS AND FEATURE CATEGORIES OF ADNI DATA AND PPMI DATA IN OUR EXPERIMENT.
ADNI Data PPMI Data
Category | Features Category | Features
Profile ‘ Age, gender, education, race, marital state Profile ‘ Age, gender, race, family history, education
AD Assessment Scale (ADAS) Benton Judgment of Line Orientation Test
ADAS Delayed Word Recall (ADASQ4) Hopkins Verbal Learning Test
Mini-Mental State Examination (MMSE) Letter Number Sequencing Test
Clinical Dementia Rating Scale (CDR) Montreal Cognitive Assessment (MoCA)
Everyday Cognition Participant Self Report Symbol Digit Modalities Test
Neuropsychological | Everyday Cognition Subject Partner Report Geriatric Depression Scale
Rey’s Auditory Verbal Learning Test Non-motor The Questionnaire for Impulsive-Compulsive
Logical Memory-Delayed Recall Disorders in Parkinson’s Disease (QUIP)
Montreal Cognitive Assessment (MoCA) State-Trait Anxiety Inventory (STAI))
Digit Symbol Substitution Scales For Outcomes In PD (SCOPA-AUT)
Preclinical Alzheimer’s Cognitive Composite UPenn Smell Identification Test (UPSIT)
REM Sleep Behavior Disorder Questionnaire
Epworth Sleepiness Scale (ESS))
Unified PD Rating Scale (MDS-UPDRS)
Imaging-related FDG-PET, PIB SUVR, MRI measurements Motor Daily Living Scale (ADL)
Physical Activity Scale for the Elderly (PASE)
Biospecimen ‘ Genetics, CSF biomarkers Biospecimen ‘ CSF biomarkers, Genetics

TABLE I
DIAGNOSIS EXPLANATION.

Diagnosis | Explanation

CN Control normal

MCI Mild cognitive impairment in AD

AD Alzheimer’s disease

Ul Unilateral involvement (PD affects one side of the body)

BI Bilateral Involvement (PD affects both sides)

TABLE Il
DATA STATISTICS AFTER PREPROCESSING.

Statistics \ ADNI PPMI
Number of subjects 1,574 1,093
Number of total visits 11,474 9,421
Feature/label dimension 42/3 56/3
Mean/max sequence length 7.29/19 visits 8.62/17 visits
Mean time interval 5.96 months 5.27 months
Label imbalance 32%,42%,26%  27%,20%,53%

C. Evaluation Metrics

In realistic scenario, people are more concerned about a
patient’s diagnosis in the future, the high-level indicator of
health condition. Therefore, we will particularly focus on the
prediction results of diagnosis, and examine the performances
of distinct approaches. Here we stress that baseline methods
output single point predictions, whereas our STOCAST would
produce an ensemble of forecasts for each test case (100
predictions in our experiments). To facilitate a fair comparison
of STOCAST and baselines, we replicate the ground truth
label for 100 times to match it with each prediction point
of STOCAST. In this way, some commonly used classification
metrics can be applied in our scenario, including accuracy,
precision, recall, F1 score and Area Under the Receiver
Operating Characteristic Curve (ROC AUC). In particular, they
evaluate different aspects of a model: accuracy is calculated

as the fraction of correct classifications with respect to the
total test cases, precision measures the ability of a model to
identify only the relevant data points, recall assesses the ability
of a model to find all the relevant cases within a dataset,
F1 score can be interpreted as a weighted harmonic mean
of the precision and recall, and ROC AUC is a performance
measurement for classification problem at various threshold
settings. As seen in Table III, the three labels in our datasets
are not balanced, i.e., CN: 32%, MCI: 42%, AD: 26% in
ADNI data, and CN: 27%, UI: 20%, BI: 53% in PPMI data.
Therefore, under such imbalanced multiclass circumstance, we
calculate a micro-average value and a weighted-average value
for each of these metrics, including precision, recall, F1 and
AUC. A micro-average will aggregate the contributions of all
classes to compute the average metric, whereas a weighted-
average will compute the metric independently for each class
and then take the average by accounting for class imbalance.
Besides, we also compute a single ROC AUC value for each
of the classes.

D. Experimental Setting

Neural network structure. In our implementation of STO-
CAST, all mapping functions - Gaussian means and standard
deviations - in the prior, posterior and generative are three-
layered feed-forward neural networks. The standard deviations
have softplus output layer to ensure non-negativity. Besides,
we note that the deep generative models used in our work
have “latent variable collapse” problem, i.e., the posterior is
very close to the prior thus does not actually listen to the
input data, making it unable to learn a faithful representation
of observation data. To avoid such pitfall, we implement a
“skip” version of STOCASTNET by adding connections that
attach latent variables to multiple layers in the generation
network [35], forcing the generation network to maintain a
strong connection between latent variables and observation
data. In terms of deep learning based baselines, we construct
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TABLE IV
PERFORMANCE COMPARISON IN DISEASE FORECASTING EVALUATED ON DIAGNOSIS USING ADNI DATA.

Methods | Accuracy ROC AUC Precision Recall F1

| CN MCI AD Weighted  Micro  Weighted  Micro ~ Weighted ~ Micro  Weighted = Micro
STOCAST | 0.9163 0.9913  0.9625 0.9804 0.9764 0.9808 0.9164 0.9163 0.9163 0.9163 0.9162 0.9163
Doctor AL 0.8645 0.9757 0.9304 0.9791 0.9577 0.9648 0.8676 0.8645 0.8645 0.8645 0.8651 0.8645
RETAIN 0.8360 09576  0.9042 0.9766 0.9403 0.9488 0.8365 0.8360 0.8360 0.8360 0.8362 0.8360
T-LSTM 0.8458 0.9662 09153 0.9801 0.9486 0.9574 0.8460 0.8458 0.8458 0.8458 0.8458 0.8458
LR 0.8589 09760 0.9313  0.9800 0.9587 0.9643 0.8590 0.8589 0.8589 0.8589 0.8578 0.8589
D-Tree 0.7973 0.8741  0.7917  0.8847 0.8426 0.8482 0.7969 0.7973 0.7973 0.7973 0.7970 0.7973
KNN 0.7659 0.8960 0.8169  0.9485 0.8768 0.8898 0.7680 0.7659 0.7659 0.7659 0.7653 0.7659

TABLE V
PERFORMANCE COMPARISON IN DISEASE FORECASTING EVALUATED ON DIAGNOSIS USING PPMI DATA.

Methods | Accuracy ROC AUC Precision Recall F1

| CN Ul BI Weighted  Micro  Weighted  Micro ~ Weighted  Micro = Weighted  Micro
STOCAST | 0.7968 0.9876  0.8054 0.8975 0.9030 0.9385 0.7759 0.7968 0.7968 0.7968 0.7779 0.7968
Doctor Al 0.7725 0.9807 0.7253  0.8769 0.8739 0.8913 0.6260 0.7725 0.7725 0.7725 0.6877 0.7725
RETAIN 0.7590 09775 0.7434  0.8657 0.8708 0.8962 0.7341 0.7590 0.7590 0.7590 0.7162 0.7590
T-LSTM 0.7672 09791 0.6762  0.8623 0.8558 0.8700 0.6219 0.7672 0.7672 0.7672 0.6829 0.7672
LR 0.7178 09733  0.7631 0.8787 0.8806 0.8957 0.7507 0.7178 0.7178 0.7178 0.7279 0.7178
D-Tree 0.6722 0.8911  0.5580  0.7153 0.7305 0.7552 0.6720 0.6722 0.6722 0.6722 0.6721 0.6722
KNN 0.6946 0.9436  0.6286  0.8083 0.8081 0.8510 0.6651 0.6946 0.6946 0.6946 0.6744 0.6946

output layers to generate Gaussian mean and standard devia-
tion vectors for feature prediction, and Categorical parameter
vector for diagnosis prediction.

Training details® The data is shuffled and splitted into
training and validation sets, then we train the model on training
and keep track of loss function on validation. The training
process will be stopped early if there are 10 consecutive steps
not showing any loss reduction. Both STOCAST and deep
learning baselines are implemented by tensorflow’, using the
same Adam optimizer [36] with the same configurations, i.e.,
the dimension of latent variable is 32; the dimension of hidden
state is 32; the batch size is 32; and the total number of epochs
is 150. The traditional classifiers are implemented by scikit-
learn® package, where we use optimized parameters:“newton-
cg” optimization solver for logistic regression, the number of
neighbors is 5 for KNN.

E. Performance Evaluation

1) Performance in Next-Step Prediction.: Tables IV and V
report the performance comparison of STOCAST and baselines
in the next-visit prediction evaluated by different metrics for
ADNI data and PPMI data, respectively. The best performance
is marked in bold. We can see that our STOCAST outperforms
baseline approaches across distinct metrics for both datasets,
suggesting that our STOCAST method is a promising and
robust approach in disease forecasting. In addition, we can
see that deep learning methods achieves relatively better
performance than traditional classifiers, potentially due to
their capabilities such as distributed representation, long-term

6Source code downloadable at https:/github.com/picsolab/StoCast
https://www.tensorflow.org/
Shttps://scikit-learn.org/stable/

dependency and non-linearity. Our STOCAST naturally inherits
such capabilities as it is built based on neural networks,
meanwhile it is able to capture internal uncertainty in disease
evolution, making it a more effective approach.
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Fig. 5. Performance comparison on two groups of patients within

(a) ADNI and (b) PPMI. Performance is evaluated on diagnosis. TR
and NoTR are for the subset of patients with diagnosis transitions
and without any transitions. The y-axis indicates performance score of
different metrics.

2) Performance on Different User Groups.: To provide a
comprehensive comparison for different approaches, we ex-
amine the performance of STOCAST on different user groups
within each of the two datasets. We divide the population into
two groups — a TR group corresponding to the patients who
have exhibited diagnosis transitions (approximately 33% for
ADNI, and 32% for PPMI), and a NoTR group associated
with the people who do not shown any diagnosis transitions.
Such investigation can help understand the robustness of our
model. Fig. 5 shows that our STOCAST outperforms baselines
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Fig. 6. Performance comparison in multi-step forward prediction for (a)
ADNI and (b) PPMI. Performance is evaluated on diagnosis. The x-axis
indicates forward step d (1-4), and y-axis indicates performance score.

accuracy

090" o
0.85 gﬁé
0.80 |X g
+X
0.75 —+—_>}<__>‘<_
1234

0.90
0.85

o ] 080 we

0.75 gaﬁ&
0.70 zzv

\AY%

1234

on both TR and NoTR groups evaluated by different metrics
for both ADNI and PPMI datasets. We note that, compared
to the NoTR group, i.e., those with stable health condition,
the prediction task for the TR group, i.e., those with unstable
health conditions, is generally more challenging — in terms
of obtaining better scores. The results demonstrate that our
STOCAST is able to effectively and robustly capture both
the stable and unstable disease trajectories, potentially as it
listens to observation data and also maintains certain internal
stochasticity.

3) Performance in Multi-Step Forward Prediction.: We fur-
ther examine whether STOCAST can maintain such superior
performance if we conduct multi-step forward prediction tasks
- to predict a patient’s diagnosis in the next d-th visit. Fig.
6 shows the performance of different methods as a function
of forward step d assessed by different metrics. It can be
seen that STOCAST can still maintain its superior position
in the near future, validating the effectiveness of our method.
The decreasing trend in STOCAST’s performance implies that
disease forecasting becomes harder as we foresee a farther
future. Here we note that baseline approaches exhibits some
fluctuations in their performances tested on PPMI data. It can
be explained by their biased tendency towards the prevailing
label (i.e., BI) in the dataset. We will offer more concrete
interpretations by showing examples in the next subsection.

F. Qualitative Examination

Here we show qualitative results to provide a detailed case
study about the difference between STOCAST and baseline
method (taking Doctor Al as an example). Fig. 7 displays
three patients’ disease trajectories per dataset, i.e., the plots
(a-c) are ADNI examples, and (d-f) are PPMI examples.
The x-axis records a patient’s longitudinal diagnostic labels
assigned by doctors in each visit, and the y-axis indicates the
predicted probabilities for different labels. We use violin plots
to describes the distributions of the ensemble of predictions
outputted by STOCAST, and use individual markers to indicate
the baseline’s single-point predictions. Hues and background
colors indicate the diagnosis labels assigned by doctors.

PPMI trajectories

ADNI trajectories
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Fig. 7. Examples of patient disease trajectories described by diagnosis
labels from (a,b,c) ADNI and (d,e,f) PPMI (better to view in color). The
x-axis is longitudinal diagnosis assigned by doctors (background color
also indicates doctor’s diagnosis), and y-axis is predicted probabilities
of different labels. Upper row (violins) shows STOCAST’s prediction en-
semble and lower row (points) shows baseline’s single-point prediction.
The black dot in violins represents median and the thin line represents
5%-95% percentile.

Fig. 7(a) corresponds to a patient who has a relatively stable
MCI state, but the baseline incorrectly predicts that this patient
would recover to CN state in the 4th and 5th visit. In contrast,
our STOCAST gives correct predictions at every step, and
even successfully detect the fluctuations of this patient’s health
states in the 4th and 5th visits, as shown in the shape variations
of violin plots. Fig. 7(b) plots a normal person’s trajectory who
has certain risk of developing AD as doctors assigned MCI in
the 5th and 10th visits. For most of the visits, our STOCAST
makes correct decisions confidently (indicated by the shape of
CN’s violins - they are densely clustered around 1.0), except
for the 5th visit after doctors assigning a MCI label, where
the violins of CN and MCI are stretched and overlap heavily.
We point out that this is the critical time that a confident
forecast decision is difficult to make, as the doctor has changed
the diagnosis from MCI back to CN in the subsequent five
visits. In contrary, the baseline starts giving a series of wrong
predictions — it keeps predicting MCI in subsequent visits.
Fig. 7(c) is a patient who exhibits a degenerating health trend
towards developing AD. Our STOCAST method is able to
closely capture such deterioration inclination (as CN’s violin
is moving downwards and MCI’s violin is rising upwards), but
baseline’s outputs maintain to be a constant MCI state, failing
to forewarn that this patient’s health is deteriorating.

We can obtain similar observations in Fig. 7(d-f) based
on PPMI data, among which two patients exhibit gradual
transition from UI to BI (Fig. 7 (d), (e)), and one maintains a
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relatively stable UI state (Fig. 7 (f)). Based on the results in
Fig. 7 (d), (e), we see that our STOCAST is able to well capture
the two patients’ health trends from UI to BI, as BI’s violin is
rising upwards while UI’s is going downwards. By contrast,
the baseline produces incorrect BI predictions long before
when doctors give such BI diagnosis. Similar to Fig. 7(b),
the example in Fig. 7(f) contains an “unexpected” diagnosis
CN in the 6th visit after several visits with UI diagnosis.
It is probability a misdiagnosis or at least an ambiguous
diagnosis. The two examples in Fig. 7(b)(f) demonstrate that
our approach is more robust in handling data uncertainty
whereas deterministic baseline fail to tolerant such potential
misdiagnosis. Overall, we find that baseline approach exhibits
a tendency to output BI label across all hospital visits in
PPMI data, contrary to doctors’ diagnosis. This might be
because BI accounts for the majority of diagnosis labels in
the data (approximately 53% as shown in Table III), therefore
the baseline is trained to be biased towards BI label due to
such imbalanced distribution. This phenomenon can to some
extent explain our observation in Fig. 6(b) that baselines
display fluctuations in their performances in multi-step for-
ward prediction task. As we increases d (farther prediction),
a biased prediction of BI might become a “good” prediction
because patients would gradually enter into the most severe
BI stage. However, such biased prediction results are not what
we expect in realistic application. Therefore, susceptibility to
data imbalance is another disadvantage that prevents determin-
istic baselines from achieving good prediction performances.
In contrary, STOCAST demonstrates a superior prediction
capability: (i) it can successfully identify patients’ disease
progressions through the smooth movements of violin plots
overtime; (ii) it can offer insights regards the level of difficulty
in prediction tasks through the relative positions of violin plots
for distinct labels (i.e., the closer the harder), and the level
of forecast confidence through the shapes of violins (i.e., the
more compact the more confident).

VI. DISCUSSION

We developed a novel generative model named STOCAST to
address the problem of disease prediction formulated in an un-
certain context that considers progression uncertainty and data
uncertainty. Application of this method to two longitudinal
clinical datasets - ADNI and PPMI - shows that it achieves su-
perior and robust performance across different scenarios (e.g.,
different sub-populations and multi-step forward predictions)
assessed by various evaluation metrics.

This work has some limitations. First, it demands a complete
longitudinal data which unfortunately might not be met in
reality: missingness can take different types (e.g., missing at
random, missing systematically) due to many reasons (e.g.,
patients drop out studies, data is collected improperly). With-
out consideration of missing data types, our preprocessing
procedure might introduce bias or affect the representativeness
of the results. To address this issue, future research is needed
to develop methods that take full account of incomplete data
without relying heavily on data preprocessing or imputation.
Second, our analysis are based on two datasets that are

processed through sophisticated study design and standardized
data acquisition and quality control, which might not be
representative for the poor quality problem in many real
health data. Besides, we only examine the effectiveness of
our method based on two particular progressive irreversible
brain diseases. One future extension would be to test the
generalizability of this method on a broader range of diseases
(e.g., diseases with recurrent states, with a large number of
potential diagnosis labels) and a variety of noisy data. Third,
this research adopted traditional evaluation metrics to assess
the performance of disease prediction in an uncertain context.
Related studies used the minimum distance of the closest
forecast to the ground truth [37], or estimated the likelihood of
ground truth within the predicted distribution [38]. However,
both criteria are flawed because the former unfairly selects the
best guess among all predictions while the latter is hard to be
applied to the case of single point prediction. Therefore, we
call for the research community to address this open challenge
in designing better criteria to compare methods with stochastic
nature to deterministic algorithms.

Among the related research of disease prediction using
ADNI/PPMI data [1], [2], [39], [40], the major contribution of
this research is its focus on addressing progression uncertainty
and data uncertainty, advocating further efforts towards this
direction. Our work has important clinical implications as it
provides richer information for doctors to make decisions with
greater confidence in a complex uncertain scenario, which is
critical in offering patients earlier and more tailored treatments
to defer their health deterioration.
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