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ABSTRACT

Wind directly forces inertial oscillations in themixed layer.Where these currents hit the coast, the no-normal-

flow boundary condition leads to vertical velocities that pump both the base of the mixed layer and the free

surface, producing offshore-propagating near-inertial internal and surface waves, respectively. The internal

waves directly transport wind work downward into the ocean’s stratified interior, where it may provide me-

chanical mixing. The surface waves propagate offshore where they can scatter over rough topography in a

process analogous to internal-tide generation. Here, we estimate mixed layer currents from observed winds

using a damped slab model. Then, we estimate the pressure, velocity, and energy flux associated with coastally

generated near-inertial waves at a vertical coastline. These results are extended to coasts with arbitrary across-

shore topography and examined using numerical simulations. At the New Jersey shelfbreak, comparisons be-

tween the slab model, numerical simulations, and moored observations are ambiguous. Extrapolation of the

theoretical results suggests that O(10%) of global wind work (i.e., 0.03 of 0.31 TW) is transferred to coastally

generated barotropic near-inertial waves.

1. Introduction

Windwork supplies 0.3–1.5 TW to near-inertial motion

to the surface boundary layer (Alford et al. 2016). Where

these currents converge and diverge they pump the sea

surface and base of the mixed layer generating near-

inertial waves. Near-inertial waves are ubiquitous in

the deep ocean (e.g., Alford andWhitmont 2007), on the

continental shelf (e.g., Shearman 2005), and in the

Laurentian Great Lakes (e.g., Choi et al. 2012; Austin

2013). Several mechanisms produce near-inertial mixed

layer pumping, including propagating storms (e.g., Price

1983; Gill 1984), latitudinal variation in the inertial fre-

quency (i.e., the b effect; D’Asaro 1989; D’Asaro et al.

1995; Moehlis and Llewellyn Smith 2001), interactions

with mesoscale features (e.g., Weller 1982; Young and

Ben Jelloul 1997), and coastlines (e.g., Pettigrew 1980;

Millot and Crépon 1981; Kundu et al. 1983). The rela-

tive importance of each process is unknown, although

understanding them is critical for predicting near-inertial

currents and estimating wind-driven mixing (e.g., Alford

et al. 2016).

Here we investigate the generation of near-inertial waves

at a coast (Fig. 1). Coastal near-inertial waves (CNIWs)

arise as the transient response to shifting wind at a

coast. The simplest models involve small-amplitude mo-

tions in two-layer or continuous stratification that are

forced by a sudden wind over a flat ocean bounded on

one side by straight coastline (Pettigrew 1980; Millot and

Crépon 1981; Csanady 1982; Kundu et al. 1983; Kundu

1984; Baines 1986). A linear damping term is typically

added to prevent singular resonance at the inertial fre-

quency (Millot and Crépon 1981; Kundu et al. 1983). The

resulting motion is simultaneously narrowband (i.e.,

peaked near the inertial frequency) and transient, so both

time-domain and frequency-domain analyses are useful.

Solutions in the time domain are readily obtained by

Laplace transform (Pettigrew 1980; Millot and Crépon
1981; Csanady 1982; Kundu et al. 1983; Kundu 1984). In

general, the solutions have (i) an offshore compo-

nent associated with directly forced mixed layer cur-

rents, (ii) a coastal-trapped component associated with

slowly evolving upwelling or downwelling, and (iii) a

transient component associated with offshore radiat-

ing near-inertial waves. Despite many simplifying as-

sumptions, these theoretical solutions compare well

with observations (Pettigrew 1980; Millot and Crépon
1981; Shearman 2005).

Existing theories identify a mechanism for CNIW

generation, however they do not (i) provide estimates

of CNIWs in the presence of continuous observed winds,

(ii) address the effects of variable cross-shore coastalCorresponding author: Samuel M. Kelly, smkelly@d.umn.edu
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bathymetry, or (iii) assess the global relevance of CNIW

generation as an energy pathway from the surface mixed

layer to the stratified interior. Here, we reformulate

Kundu et al.’s (1983) theory by separating forced and

wave components (section 2) and derive the forced

(section 3) and wave (section 4) solutions for contin-

uous observed winds. Next, we use numerical simu-

lations to examine the role of variable cross-shelf

bathymetry (section 5). The paper concludes by estimating

the global relevance of CNIW generation (section 6)

and summarizing the results (section 7).

For simplicity, this paper retains Kundu et al.’s

(1983) assumptions of uniform wind stress and inertial

frequency, straight coastlines, and small-amplitude mo-

tions. Relaxing the first three assumptions would lead

to open-water near-inertial wave generation (Gill 1984;

D’Asaro 1989; D’Asaro et al. 1995; Moehlis and Llewellyn

Smith 2001) and coastal-trapped waves (e.g., Brink

1991). Relaxing the small-amplitude assumption would

allow nonlinear interactions between the wave and

upwelling components of the solutions (Federiuk and

Allen 1996; Chant 2001).

2. Equations of motion

The linearized, Boussinesq, hydrostatic momentum,

continuity, and buoyancy equations,

›u

›t
1 f k̂3 u52=p1

›t

›z
, (1a)

052
›p

›z
1b , (1b)

= � u1 ›w

›z
5 0, and (1c)

›b

›t
1wN2 5 0, (1d)

respectively, describe small-amplitude motions. Here,

u5 ûi1 yĵ and w are horizontal and vertical velocity, and

f andN(z) are the inertial and buoyancy frequencies. The

buoyancy force b52gr/r0, pressure p, and viscous stress

t are normalized by a reference density r0. The term r is

the density perturbation and g is gravity. The boundary

conditions are a flat bottom at z5 2H, and a linear free

surface at z5 0. The surfacemixed layer (N25 0) extends

to z 5 2Hmix (Fig. 1).

a. Separating forced and wave motion

We define the ‘‘forced response’’ as the velocity that

balances the stress divergence in the absence of a

pressure gradient:

›u

›t
1 f k̂3 u5

›t

›z
. (2a)

Subtracting the forced velocity from the full equations

of motion yields the ‘‘wave response,’’

›u0

›t
1 f k̂3 u0 52=p0 , (3a)

›

›t

�
›

›z

�
21

N2

›p

›z

��
1= � u0 52= � u , (3b)

where w and b have been eliminated, the primes denote

wave velocities, and pressure is entirely associated with

the wave response (i.e., p 5 p0). Divergences in forced

velocities produce waves through the term on the right-

hand side of (3b). In general, these divergences could

be driven by horizontal variability in wind, stratification,

or inertial frequency. Boundary conditions also produce

waves by requiring no normal velocity at the coast (i.e.,

u? 5 0, which is equivalent to u0
? 52u?).

b. Projection onto vertical modes

Over a flat bottom, velocity and pressure are sums of

uncoupled vertical modes,

u(x, y, z, t)5 �
‘

n50

u
n
(x, y, t)f

n
(z), (4a)

p(x, y, z, t)5 �
‘

n50

p
n
(x, y, t)f

n
(z), (4b)

where the modes fn and eigenspeeds cn are determined

by an eigenvalue problem with linear free-surface and

flat-bottom boundary conditions (e.g., Wunsch 2015)

FIG. 1. Wind stress forces mixed layer currents that lift the sea

surface or depress the base of the mixed layer when they impinge on

the coast. Oscillating (i.e., near-inertial) mixed layer currents then

generate offshore propagating surface and internal waves.
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d

dz

�
1

N2

df
n

dz

�
1

1

c2n
f
n
5 0, (5a)

df
n

dz
52

N2

g
f
n

at z5 0, and (5b)

df
n

dz
5 0 at z52H , (5c)

and the orthogonality/normalization condition

1

H

ð0
2H

f
m
f

n
dz5 d

mn
. (6)

Our sign convention is fn . 0 at z 5 0. Note that fn is

constant in the mixed layer, where N2 5 0.

To proceed, we must parameterize the vertical profile

of stress divergence. For simplicity, we assume uniform

stress divergence in the mixed layer and zero divergence

below (i.e., there is no bottom drag). Integrating (2a)

over the mixed layer produces

›U

›t
1 f k̂3U5 tj

0
2 tj

2Hmix
, (7)

whereU5Hmixu ismixed layer transport.We parameterize

interfacial stress as tj2Hmix
52rU, where r is a damping

parameter with empirical values of r21 5 2–5 days

(Plueddemann and Farrar 2006). Wind stress is tj0,
hereafter written as simply t.

Incorporating the stress parameterization and pro-

jecting the wave response onto vertical modes yields

�
›

›t
1 r

�
U1 f k̂3U5 t , (8a)

›u0
n

›t
1 f k̂3 u0

n 52=p0
n, and (8b)

›p0
n

›t
1 c2n= � u0

n 52c2nwn
, (8c)

where wn 5= �Ufnj0/H forces the waves. Note, that wn

has units of per second, consistent with the convention

of Kelly (2016).

c. Relation to other formulations

The preceding decomposition is more complicated than

simply projecting wind stress onto each vertical mode

(see, e.g., Pollard and Millard 1970; Kundu et al. 1983;

Gill 1984), but the decomposition has two benefits. First,

the damping parameterization is more flexible, allowing

forced motions and low-mode internal waves to be dis-

sipated at different rates. In fact, the formulation here

only deviates from Kundu et al. (1983) in that damping

is selectively applied to forced motion as opposed to

all motion. As a result, mixed layer energy is bounded

by viscous effects, while internal-wave energy is only

bounded by inviscid offshore radiation.

The second benefit of the decomposition is that the

resulting equations are familiar. The equation describ-

ing forced motion (8a) is the slab model introduced

by Pollard (1970), which is mathematically equivalent

to a simple harmonic oscillator. Slab models compare well

with observed mixed layer currents (e.g., Plueddemann

and Farrar 2006) and are convenient for estimating wind

work (e.g., D’Asaro 1985; Alford 2001, 2003; Watanabe

and Hibiya 2002; Jiang et al. 2005). The equations de-

scribing wave motion [(8b) and (8c)] are identical to

the those derived by Llewellyn Smith and Young

(2002) and Kelly et al. (2016) to describe topographic

internal-tide generation, except that tidal forcing is

wn 5 u0 � =Hfnj2H, where u0 is the surface tide. Thus, a

wide range of analytical and numerical tools are imme-

diately available to solve the equations.

The decomposition presented here has a notable draw-

back: the slab model is not a complete mixed layer model

because directly integrating the full momentum equations

over the mixed layer would add an additional term rep-

resenting internal-wave drag (i.e., the term 2Hmix=p
0j0).

In general, mixed layer currents are damped by both tur-

bulence and internal-wave radiation. The latter effect

likely dominates in the open ocean (e.g., Moehlis and

Llewellyn Smith 2001), but is nonexistent in the idealized

setting considered here, where there is no internal-wave

generation except at the coast. Thus, tuning r to achieve

reasonable forced velocities is effectively parameterizing

both unresolved turbulence and offshore internal-wave

radiation from the mixed layer. In some sense, the pro-

cedure is analogous to parameterizing wave drag in a

surface-tide model (e.g., Jayne and St. Laurent 2001) and

then using the resulting surface-tide velocities to force an

internal-tide model.

d. Energy balances

The energy equation for forced motion, obtained by

multiplying (8a) by U/Hmix, is

›

›t

1

2
jUj2

H
mix

0
B@

1
CA5

t �U
H

mix

2
rjUj2

H
mix

, (9)

where the left-hand side is the rate of change in kinetic

energy and the right-hand side is the rate of wind work

minus the rate of energy dissipation.

The energy equation for the wave response, obtained

by multiplying (8b) by Hu0
n, (8c) by Hp0

n and summing is
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›

›t

�
H

2
ju0

nj
2
1

H

2

p02
n

c2n

�
1= � (Hu0

np
0
n)5C

w
, (10)

where the first term on the left-hand side is the rate of

change of kinetic and potential energy, and the second

term is energy flux divergence (energy flux in eachmode

is Fn 5Hu0
np

0
n). The term on the right hand side is wind-

driven wave generation Cw 52Hwnp
0
n or, equivalently,

Cw 52= �Up0
nfnj0.

For perfectly periodic motions, averaging these

equations over a wave period reduces them to a steady-

state balance between energy sources and sinks (e.g.,

wind work equals viscous dissipation, or wave genera-

tion equals energy-flux divergence). However, aver-

aging transient near-inertial motions over an inertial

period smooths, but does not eliminate, the energy

tendency terms.

These energy balances hold for the decomposed

equations of motion presented above. However, the

forced motion and wave response are not orthogonal,

so the total energy equation contains additional cross

terms. The importance of these cross terms is a matter

of perspective. Here we ignore them because they do

not provide useful information about the wave re-

sponse. For example, an oscillating wind stress does

work directly on the waves (i.e., t � u0), but, on aver-

age, this work is balanced by energy-flux divergence

associated with the cross terms (i.e., up0), so we ignore

both terms.

3. Forced dynamics

a. Solution

Defining the complex number, Z(t)5U1 iV, allows

us to rewrite (8a) as

dZ

dt
1 (r1 if )Z5T , (11a)

or

d2Z

dt2
1 2r

dZ

dt
1 ( f 21 r2n)Z5

�
d

dt
1 r2 if

�
T , (11b)

where T 5 tx 1 ity. The second form of the equation

emphasizes that the system is a damped forced harmonic

oscillator with natural frequency v0 5 sgn(f )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1 r2

p
,

damped frequency f, and quality factor Q 5 jf j/(2r). A
large quality factor indicates a weakly damped system

prone to sharp resonance. Specifically, the quality factor

is related to the bandwidth of the resonant peak byDv’
jfj/(2Q)5 r. In the time domain, an unforced oscillation

decays by a factor of e after 2Q radians. At midlatitude,

mixed layer inertial oscillations have Q 5 10–20, con-

sistent with damping time scales of r21 5 2–5 days.1

Defining the Fourier and inverse Fourier transforms as

Ẑ(v)5

ð‘
2‘

Z(t)e2ivt dt , (12a)

Z(t)5
1

2p

ð‘
2‘

Ẑ(v)eivt dv , (12b)

respectively, the transfer function for (11a) or (11b) is

(Alford 2003)

Ẑ

T̂
5

r2 i( f 2v)

r2 1 ( f 2v)2
. (13)

The function is asymmetric with respect to the origin

and has a resonant peak at f, but not 2f. The resonant

frequency is slightly higher than that of a prototypical

forced oscillator because the right-hand side of (11b)

includes a time derivative. Increasing the damping flat-

tens the resonant peak and lowers Q.

The Laplace transform,

L[Z(t)]5
ð‘
0

Z(t)e2st dt5Z(s) , (14)

yields Z(t) directly from the time series of recent wind

stress. Substituting s 5 iv in (13) leads to the Laplace

transfer function

Z(s)

T (s)
5

(s1 r)2 if

(s1 r)2 1 f 2
, (15)

where we have assumed zero initial velocity and accel-

eration (i.e., Z5 0 and dZ/dt5 0 at t5 0). The ‘‘weight

function’’ is the inverse transform of the transfer function,

W(t)5L21[Z(s)/T ]5 e2(r1if )t . (16)

Since Z(s)5W(s)T (s) is now the product of two func-

tions with known inverse transforms [W(t), T(t)], the

Laplace transform convolution theorem yields

Z(t)5

ð t
0

W(t0)T(t2 t0) dt0 , (17)

where t0 is a time lag. This integral weights the previous

windmeasurements to provide an optimal estimate of the

present transport. The weight of the wind measurements

1 For reference, Carwright and Ray (1991) reported similar

quality factors for the M2 barotropic tide, but see also Garrett and

Munk (1971).
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decreases exponentially as the time lag increases (the

e-folding time is 1/r) and oscillates at the inertial frequency,

so bursts of wind may either reinforce or diminish pre-

existing velocities depending on their precise timing and

duration. Steady winds produce weak time-averaged ve-

locities because they are multiplied by both positive and

negative weights. Using the standard properties of Laplace

transforms, these solutions are easily extended to account

for preexisting velocities, which are sometimes crucial for

explaining observations (Plueddemann and Farrar 2006).

b. Application to the New Jersey shelf

The above solution provides an estimate of mixed

layer transport on the New Jersey shelf during the

Shallow Water 2006 experiment (SW06; see Tang et al.

2007) using wind stress from the Navy Operational

Global Atmospheric Prediction System (NOGAPS;

hycom.org; Fig. 2). Between 1August and 10 September

2006, wind stress reaches a maximum value of about

0.5 Pa during Tropical Storm Ernesto on 3 September

(Fig. 2a). Mixed layer transports, computed from (17)

with an inertial period of about 19 h (for 398N), and a

drag parameter of r21 5 3.5 days (a reasonable value,

but see Plueddemann and Farrar 2006), are near-inertial

and reach about 10m2 s21 during the storm (Fig. 2c).

The frequency-domain solution reveals that themixed

layer response to near-inertial wind stress is amplified by

the peak in the transfer function, which imparts a dis-

tinct inertial peak in the transport spectrum (Fig. 3).

However, wind stress Fourier coefficients are an order

of magnitude larger at low frequencies than the inertial

frequency, so low-frequency transport is also substantial

despite being nonresonant.

4. Wave dynamics

a. Solution

Here we consider waves generated at a vertical-wall

coastline at x5 0 in the absence of alongshore variability

(›/›y5 0). If wind stress and f are horizontally uniform,

open-ocean forcing due to wn is negligible and (8b) and

(8c) can be written as unforced Klein–Gordon equations

(e.g., Llewellyn Smith and Young 2002):

›2u0
n

›t2
1 f 2u0

n 5 c2n
›2u0

n

›x2
, (18a)

›2p0
n

›t2
1 f 2p0

n 5 c2n
›2p0

n

›x2
, (18b)

which are also known as ‘‘equations of telegraphy’’ (Cahn

1945) or the equations for an ‘‘elastically supported

string’’ (Morse 1948).

The no-normal-flow condition at the coast forces

the waves by requiring u0
n 52un at x 5 0, where

un 5Ufnj0/H. For pressure, this condition becomes

›2u
n

›t2
1 f 2u

n
5
›2p

n

›x›t
at x5 0. (19)

A second set of boundary conditions also requires

that waves propagate offshore or decay away from

the coast.

FIG. 2. (a) NOGAPS wind stress on the New Jersey shelf during 2006. (b) The weight

function is reversed on the time axis to illustrate how past winds are weighted in the calculation

of transport on 10 Sep. (c) Mixed layer transport occurs over a depth of Hmix ’ 10m.
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Fourier transforming the Klein–Gordon equations in

time reduces them to second-order ordinary differential

equations in x,

2a2v
2

c2n
û0
n 5

›2û0
n

›x2
, (20a)

2a2v
2

c2n
p̂0
n 5

›2p̂0
n

›x2
, (20b)

where the parameter a5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 f 2/v2

p
quantifies the role

of rotation. The inverse transformed solutions to (20)

are

u0
n(x, t)52

1

2p

ð‘
2‘

u
n
ei(knx2vt) dv , (21a)

p0
n(x, t)52

1

2p

ð‘
2‘

c
g,n
u
n
ei(knx2vt) dv, (21b)

where kn 5 av/cn is the wavenumber, and cg,n 5 acn is

the group speed. The solution comprises offshore

propagating waves (jvj . jfj) and coastally trapped

motions (jvj , jfj) when a is real or imaginary,

respectively.

The Laplace transform yields the wave response di-

rectly from the recent time series of mixed layer trans-

port. The Laplace transfer functions,

U
n
(s)

U
n

52e2
ffiffiffiffiffiffiffiffiffi
s21f 2

p
x/cn , (22a)

P
n
(s)

U
n

52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 1 f 2

p
s

e2
ffiffiffiffiffiffiffiffiffi
s21f 2

p
x/cn , (22b)

are found by Laplace transforming the wave equation

(18), solving the second-order differential equation in x

and applying the boundary conditions. The inverse

transforms of the transfer functions are the weight

functions (nondimensionalized by dividing by f )

Wu(t*, x*)52d(t*2 x*)1 x*
J
1
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t*2 2 x*2

p
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t*2 2 x*2
p , (23a)

Wp(t*, x*)52d(t*2 x*)1 t*
J
1
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t*2 2 x*2

p
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t*2 2 x*2
p

2

ðt*
x*
J
0
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0*2 2 x*2

p
) dt0* , (23b)

where d is the Dirac delta, nondimensional time and

distance are t* 5 ft and x* 5 x/ln, respectively, and the

Rossby radius is ln 5 cn/f. The weight functions are zero

when t*, x*, and Jm is themth-order Bessel function of

the first kind. Velocity and pressure are the convolutions,

u0
n(x, t)5

ðt
0

fWu(ft0, x/l
n
) u

n
(t2 t0) dt0, (24a)

p0
n(x, t)5 c

n

ðt
0

fWp(ft0, x/l
n
) u

n
(t2 t0) dt0. (24b)

The Dirac deltas in the weight functions provide the

classical solution to the nondispersive wave equation,

which describe disturbances that retain their shape as

they propagate offshore at speed cn.

The second term in each of the weight functions ac-

counts for dispersion due to rotation, which stretches the

wave as it propagates away from the coast. These terms

are zero until the nondispersive wavefront arrives, at

t 5 x/cn, and decay rapidly after.

The last term in Wp is associated with coastal up-

welling. This integral converges to a nonzero constant

at long lags near the coast (i.e., large t and small x), so

the complete history of wind forcing determines the

pressure associated with coastal upwelling. Numerical

evaluation of this integral confirms that the e-folding

distance of coastal upwelling is the Rossby radius,

that is,

FIG. 3. (a) Wind stress Fourier coefficients are multiplied by the

(b) transfer function to produce the (c) transport coefficients. The

Fourier coefficients have a spectral width of Df 5 f/12 and are

complex, but only their absolute value is plotted. Fourier co-

efficients are plotted to emphasize the simple algebraic relationship

in the frequency domain betweenwind stress, the transfer function,

and transport. Conventional plots of power spectral density would

have sharper inertial peaks.
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lim
t*/‘

ðt*
x*
J
0
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0*2 2 x*2

p
) dt0* 5 e2x/ln . (25)

The solutions given by (24) are equivalent to those

derived byKundu et al. (1983), except that they (i) apply

to arbitrary time series of wind stress instead of a sudden

impulse and (ii) incorporate mixed layer damping rather

than a vertical viscosity that applies to all components of

the flow. The solutions are identical for the inviscid response

to a sudden wind, but, for the same equivalent damping, the

wave pressure computed here is slightly larger than that of

Kundu et al. (1983) (Fig. 4). In practice, both dissipative

parameterizations are overly simplified to allow analytical

solutions, so it is sensible to select the parameterization

most convenient for a desired application.

A Hovmöller diagram of pressure illustrates both the

coastal-trapped response and offshore propagating

waves (Fig. 4d), indicating that Cw contributes to both a

positive nearshore energy tendency and flux divergence

associated with offshore wave radiation. The offshore

radiating wave is bounded by a front moving at the

nonrotating wave speed. Waves with slower group

speeds trail the front, but have faster phase speeds

(i.e., flatter slopes), consistent with the inertio-gravity

dispersion relation. If alongshore variability were in-

troduced, the coastal-trapped response would propa-

gate as a Kelvin wave, but this does not occur in our

idealized model.

Wave dispersionmakes it challenging to predict waves

far from shore. As the waves in the front separate, they

reveal the detailed structure of the front. As a result,

high temporal resolution boundary forcing is required to

specify the solution far from the coast. To see this, note

that the deformation terms depend on J1(z)/z, where

z5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t*2 2 x*2

p
. Because J1(z)/z is periodic and decays

rapidly as t* increases, accurate solutions should resolve

J1(z) with a minimum of, say, 20 boundary forcing

measurements between its first and third zeros (which

are spaced by Dz’ 6.3). Thus the boundary forcing (i.e.,

wind) should have at least

N
s
5 203 2p=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dz2 1 x*2

q
2 x*Þ (26)

measurements per inertial period. At the coast Ns 5 20,

at x*5 10 Rossby radiiNs 5 70, and at x*5 100 Rossby

radii Ns 5 634 measurements. Therefore, along coast-

lines where only hourly wind data are available, radiated

near-inertial waves can only be accurately specified a

few Rossby radii from the coast. Attempts to predict

waves at great distances will generate noise by aliasing

the weight functions.

b. Application to the New Jersey shelf

The above solution provides estimates of wave veloc-

ity, pressure, and energy flux on the New Jersey shelf

during the SW06 experiment (Fig. 5). The solution

FIG. 4. (a)–(c) The mode-1 pressure response to a sudden alongshore wind is computed from

(24b) (solid) and (12) from Kundu et al. (1983) (dashed) at different distances from shore.

(d) The full solution consists of increasing upwelling at the coast and offshore propagating

waves that are bounded by a front traveling at the nonrotating wave speed. This solution uses

t5 0:1̂jPa, f5 1024 s21,H5 250m,Hmix 5 25m,N5 1022 s21, and c1 5 0.78m s21. Viscosity

in Kundu et al.’s (1983) solution is n 5 0.02m2 s21, which is equivalent to r21 5 3.5 days.
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utilizes H 5 62.5m and observed stratification (Nash

et al. 2012a) with Hmix 5 10m. The solutions to the

vertical-mode eigenvalue problem (5) are constant in

the mixed layer and nearly sinusoidal below [Fig. 6; see

Kelly (2016) for the numerical method]. The eigens-

peeds decrease rapidly with increasing mode number

(i.e., c0 5 24.8m s21, c1 5 0.52m s21, etc.).

To isolate radiating waves and eliminate coastal-

trapped signals, mode-1 velocity and pressure are com-

puted at x* 5 5 Rossby radii from the coast (Fig. 5).

Wave velocities are about 0.05m s21 and wave pressure

is about 5Pa. Note that although mixed layer velocity

estimates are 0.5–1ms21 during Ernesto (section 3b), the

mode-1 velocities only reach about 0.05ms21, because

the mixed layer current projects onto manymodes (recall

un 5Ufnj0/H). Velocity and pressure are in phase, so

they produce an offshore (positive) energy flux that is

briefly greater than 50W (m coastline)21 (Fig. 5c).

Bandpass filtering is anothermethod of isolating near-

inertial waves. We use a Morlet wavelet transform with

16 voices per octave (see Johnston et al. 2015) to isolate

signals between 0.8f and 1.2f. Even at x*5 5 velocity and

pressure have a small low-frequency component that is

removed by the bandpass filter. The filter also slightly

attenuates the near-inertial oscillations and reduces

energy flux to about half the raw values (Fig. 5).

Mode-1 pressure spectra clearly separate the coastal-

trapped and radiating wave responses (Fig. 7). The

pressure response at subinertial frequencies decreases

by two orders of magnitude within x* 5 5 Rossby radii

of the coast. Conversely, the superinertial response is

identical at all distances from the coast. At the inertial

frequency, a peak in the mixed layer spectrum and

valley in the transfer function leads to a relatively

smooth (unpeaked) pressure spectrum. The slow roll-

off of superinertial pressure leads to significant energy

FIG. 5. Wind stress during the SW06 experiment is used to estimate the (a) velocity and

(b) pressure of a mode-1 wave generated at the coast (approximated as a vertical wall with

H5 62.5 m). (c) The baroclinic offshore energy flux Ftot 5�‘
n51Fn (smoothed over an inertial

period using a 19-h moving average) is estimated at five Rossby radii (x*5 5) from the coast

to ensure coastal-trapped signals have decayed. The barotropic (mode 0) energy flux F0 (not

shown) is about 50 times larger than Ftot because mode 0 has a much larger eigenspeed. The

mode-1 energy flux F1 (not shown) accounts for 70% of the total baroclinic energy flux Ftot.

Band passing the velocity and pressure between 0.8f and 1.2f slightly reduces their variance

and decreases energy flux by about 50%.
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flux out to about 2f, explaining why signals bandpassed

between 0.8f and 1.2f only capture half of the total

energy flux. Unfortunately, the spectrum between f and

2f is usually contaminated by nonstationary tides in the

coastal ocean (Nash et al. 2012b), so total energy flux is

typically unmeasurable. In this regard, observations of

near-inertial motions where tides are small, such as in

the Laurentian Great Lakes, are easier to analyze

(Choi et al. 2012; Austin 2013).

The depth-dependent velocity and pressure are the

sums of the modal solutions. Snapshots of these fields

reveal a downward propagating internal-wave beam

emanating from the coast (Fig. 8). These images em-

phasize that CNIW generation is a mechanism that

transports energy from the surface mixed layer to the

stratified interior, where it may drive diapycnal mixing,

sediment resuspension, etc.

5. Effects of cross-shore bathymetry

Most coastal bathymetry shoals gradually and is poorly

approximated by a vertical wall. In these locations, the

bottom shoals until it reaches the base of the mixed layer,

at which point the water is, by definition, unstratified, and

surface waves (i.e., barotropic waves or mode-0 waves)

are the only possible response to convergences in mixed

layer transport. Thus, mode-0 waves radiate offshore.

As these waves propagate to deeper stratified water

they conserve transport (in the long-wave limit) and,

like surface tides, scatter over topographic bumps.

Hopkins et al. (2014) qualitatively discussed near-inertial

topographic internal-wave generation, but the process, to

our knowledge, has not been examined in detail.

a. Numerical simulations

The standard expression for topographic internal-wave

generation is (Kelly 2016)

C
T
52�

‘

n51

=H � u0
0p

0
nfn

j
2H

, (27)

although it has not been previously applied to near-

inertial waves. In practice, it is difficult to observe the

mode-0 wave velocity because it destructively interferes

with the mode-0 mixed layer velocity within a fraction

of an inertial period (Shearman 2005). However, the

mode-0 wave response can be simulated using two

techniques:

1) One can run a realistic simulation with observed

wind forcing and topography, and a ‘‘twin’’ simu-

lation with observed wind forcing and a deep flat

bottom (with open boundaries). Subtracting the

flat-bottom solution from the realistic solution

isolates the topographically induced component

of the flow (i.e., the coastal response). Hall et al.

(2013) used a similar technique to separate inci-

dent and reflected internal waves at a topographic

slope.

FIG. 6. The observed profiles of (a) potential density and (b) stratification determine the

vertical modes and (c) eigenspeeds. The mixed layer depth varied throughout the SW06

experiment, but here we set N2 5 0 to a depth of Hmix 5 10m.
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2) One can estimate the flat-bottom response using a slab

model, and then simulate the coastal response by

prescribing the mode-0 boundary transports. In this

case, the coastal wall is replaced with an open

boundary (i.e., we truncate the New Jersey shelf at

the 62.5-m isobath). This technique is analogous to

boundary-forced simulations of internal-tide generation.

To quantify the effect of cross-shore bathymetry,

the MIT general circulation model (MITgcm; Marshall

et al. 1997) simulated near-inertial topographic internal-

wave generation at the New Jersey Shelbreak using

techniques 1 and 2. Bathymetry and stratification

were identical to Nash et al. (2012a), except that the

depth of the abyss was truncated at 1000m. The res-

olution was Dz5 2m, and Dx 5 250m in the region of

interest, but telescoped to Dx 5 5 km at the offshore

boundary. A flow-relaxation condition at the open

boundaries prevented the reflection of outgoing in-

ternal waves. Horizontal and vertical eddy viscosi-

ties of 1022 m2 s21 and 1023 m2 s21, respectively,

stabilized the simulations. The first two simulations

were forced with observed wind stress and either

observed topography or a flat bottom, in accordance

with technique 1. The third simulation was forced by

the barotropic (mode 0) wave transport [computed

from Eq. (24a)] prescribed at the open boundaries, in

accordance with technique 2.

Techniques 1 and 2 produces nearly identical flows

for the first few inertial periods (not shown), but the

solutions eventually diverged because technique 1

exhibited nonlinear responses during strong wind and

allowed standing waves to develop between the coast

and shelfbreak. Only the results of technique 2, which

cleanly isolate topographic internal-wave generation at

the shelfbreak, are further examined.

FIG. 8. Summing the modal wave solutions produces the (a) depth-dependent velocity and

(b) pressure fields. Both fields are bandpassed between 0.8f and 1.2f. Rays are drawn for fre-

quencies 1.02f, 1.05f (solid) and 1.10f.

FIG. 7. (a) Mode-1 mixed layer velocity Fourier coefficients are

multiplied by (b) the transfer function to produce (c) the pressure

coefficients. Subinertial pressure coefficients decrease with dis-

tance offshore, but superinertial coefficients are unaffected (all of

the lines overlap). The Fourier coefficients have a spectral width of

Df5 f/12 and are complex, but only their absolute value is plotted.
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The third simulation, which employed technique 2,

was integrated for 40 days starting on 1 August

2006. Snapshots of bandpassed velocity and pressure

on 5 September indicate internal-wave generation at

the shelfbreak reminiscent of internal-tide generation

(Fig. 9), but less energetic (near-inertial and semi-

diurnal transports are 4 and 20m2 s21, respectively; cf.

Fig. 10a and Zhang and Duda 2013). Part of the baro-

clinic response is also subinertial (not shown) and,

therefore, trapped to the shelfbreak because the mode-

0 velocity forcing contains both sub- and superinertial

frequency content (i.e., it is a combination of trapped

and radiating mode-0 waves).

Bandpassed topographic conversion at the shelfbreak

approximately balanced offshore near-inertial energy

flux in the simulation (Fig. 10c). Energy flux was O(1) W

(m coastline)21, except for a brief period right after

Ernesto, whenCT reached 10W (m coastline)21 (Fig. 10c).

Even after doubling the energy flux to account for signal

attenuation by the bandpass filter, the brief increase as-

sociated with Ernesto is still an order of magnitudeweaker

than local semidiurnal internal-tide generation (Nash et al.

2012a; Zhang and Duda 2013; Kelly and Lermusiaux

2016). Furthermore, CT is less than the mode-1 energy

flux predicted for a vertical-wall coastline atH5 62.5m

[50W (m coastline)21; Fig. 5c].

b. Observations at the New Jersey shelfbreak

Numerous moorings were deployed during SW06 that

revealed strong tidal and near-inertial variability (see

Tang et al. 2007; Shroyer et al. 2011; Nash et al. 2012a).

We analyzed sparse, but nearly full-depth, measure-

ments of temperature, salinity, and velocity at four shelf

moorings (SW29, SW30, SW32, and SW34) and three

shelfbreak moorings (SW40, SW42, and SW43). The

moorings are described in detail by Shroyer et al. (2011)

and Nash et al. (2012a).

Near-inertial velocities were highly coherent at all

seven moorings, suggesting a spatially uniform slab-like

response to local wind forcing (Shroyer et al. 2011). An

estimate of mixed layer transport is needed to compare

the observations with a slab model. The integral of

velocity from the base of the mixed layer to the sur-

face is the simplest estimate of mixed layer transport.

Unfortunately, near-surface velocity observations are

lacking and the moorings have insufficient vertical

resolution to determine the precise depth of the mixed

layer. A more robust estimate of mixed layer transport

is U5 u1H/f1j0, which relies on better-observed quanti-

ties: the mode shape f1, bottom depthH, and the mode-1

velocity amplitude

u
1
5

1

H

ð0
2H

u(z)f
1
(z) dz . (28)

Mixed layer transport at SW43 (H 5 480m) and that

predicted by (17) using NOGAPS wind stress have

similar character, but do not have identical amplitude

and phase, except around 25 August (Fig. 10a). Un-

certainty in the wind stress alone can explain the dis-

agreement. Theoretical transports computed from wind

at regional NDBC buoys 44004 and 44009 (not shown)

FIG. 9. Snapshots of bandpassed (a) cross-shore velocity and (b) baroclinic pressure from the

MITgcm simulations forced using technique 2 in section 5. The fields show internal wave beams

emanating from the shelfbreak. Rays are drawn for frequencies 1.02f, 1.05f (solid), and 1.10f.
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differed from each other and the observed transport,

indicating that wind stress in the near-inertial band is not

spatially coherent enough to predict mixed layer trans-

ports more than a few tens of kilometers from a wind

station. This finding directly contradicts our assumption

of spatially uniform wind stress and implicates a mech-

anism for open-water near-inertial wave generation that

is neglected in our analysis.

Mode-1 pressure at the farthest offshore mooring

(SW43,H5 480m) was estimated from temperature and

salinity following Waterhouse et al. (2018). Observed

mode-1 pressure was about 10 Pa, while mode-1 pres-

sure in theMITgcm simulation was only 3 Pa (Fig. 10b).

Therefore, topographic generation at the shelfbreak

cannot explain all observed near-inertial pressure.

Additional sources of near-inertial pressure could be

CNIWs propagating out from the coast (section 4),

near-inertial waves generated in open-water by off-

shore storms, or nonstationary internal tides leaking

into the inertial band. Observations of offshore energy

flux after Ernesto suggest CNIWs (cf. Figs. 5c and 10c),

while observations of onshore energy flux during August

suggest onshore propagating internal tides (see Nash

et al. 2012a; Kelly et al. 2016).

6. Global relevance

The preceding sections show that wind work in the

mixed layer can be transferred to offshore propagating

near-inertial waves. In most locations, gently sloping

coastal bathymetry only facilitates barotropic wave

generation at the coast, but these waves can scatter into

internal waves as they propagate over topographic fea-

tures in deeper stratified water. Regardless of howmuch

scattering occurs, the barotropic wave accounts for

nearly all of the offshore energy flux, that is, the calcu-

lations in section 4b indicate that the barotropic (mode

0) energy flux F0 is 50 times the baroclinic flux (Fig. 5).

Here, we make a global estimate of the offshore mode-0

energy flux.

FIG. 10. (a) Observed (gray) and predicted (black) mixed layer transport during SW06.

(b) Observed (gray) and simulated (black)mode-1 pressure at theNew Jersey Shelfbreak (H5
480m). The observations are from the SW43mooring. All signals are bandpassed between 0.8f

and 1.2f. (c) Observed (gray) and simulated (black) mode-1 energy flux (smoothed over an

inertial period using a 19 h moving average). Simulated topographic internal-wave generation

CT (dashed gray) in (c) is indistinguishable from simulated energy flux.
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Using the Fourier transfer function (13), the time-

averaged rate of work is

P5
r
0

2pH
mix

ð‘
2‘

S
TT
(v)

r

r2 1 (f 2v)2
dv , (29)

where STT(v) is the power spectral density of wind stress

and the factor of 2p arises from Parseval’s theorem.

Changing the variable of integration to g 5 (v 2 f)/r

yields

P5
r
0

2pH
mix

ð‘
2‘

S
TT
(f 1 rg)

1

11 g2
dg . (30)

As r goes to zero, the transfer function behaves like a

Dirac delta (multiplied by p), so that only near-inertial

wind stress contributes to the integral. The wind work

becomes

P’
r
0

2H
mix

S
TT
(f )(Wm22) . (31)

Perhaps surprisingly, this approximate formula only

depends on near-inertial wind stress, and is independent

of both the inertial frequency and linear damping co-

efficient (i.e., quality factor). Previous studies have

also noted that r has little effect on wind work, pro-

vided r � jfj (e.g., Alford 2003; Jing et al. 2017).

The depth-integrated time-averaged mode-0 energy

flux radiated to deep water is

F
0
5

r
0

2pH

ð‘
jf j
c
g,0
[S

ZZ
(2v)1 S

ZZ
(v)] dv, (32)

where SZZ(v) is the power spectral density of the cross-

shore mixed layer transport and both positive and neg-

ative frequencies contribute to energy flux. Even though

barotropic waves originate where the mixed layer

touches the bottom, (32) provides an estimate of the

energy flux radiated to the deep ocean (i.e., to an off-

shore depth H), because barotropic transport is con-

served in the long-wave limit. The H21 dependence in

(32) indicates that offshore energy flux decreases with

depth because the offshore-propagating wave is par-

tially reflected as the wave speed increases.

The calculation of F0 only depends on cross-shore

transport, but if the near-inertial wind stress is approx-

imately isotropic, then

S
ZZ

(v)’
1

2
S
TT
(v)

1

r2 1 (f 2v)2
. (33)

The transfer function is asymmetric and only peaked

atv5 f, so depending on the sign of f, either SZZ(2v) or

SZZ(v) can be neglected in (32). The group speed is

approximated as cg,0 ’ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(v2 jf j)/jf j

p
for v2 jfj � jfj

using the binomial expansion. Substituting the approx-

imate expressions for SZZ(v) and cg,0 into (32), ne-

glecting the nonpeaked side of the spectrum, and writing

the integral in terms of g 5 (v 2 jfj)/r yields

F
0
’

r
0

4pH

c
0

jf j

ffiffiffiffiffi
jf j
r

r ð‘
0

S
TT
[f 1 sgn( f )rg]

ffiffiffiffiffiffi
2g

p

11 g2
dg . (34)

Once again, the transfer function behaves like a Dirac

delta (multiplied by p) as r goes to zero, leading to

F
0
’

ffiffiffi
2

p
r
0

4H
l
0

ffiffiffiffiffi
Q

p
S
TT
(f )[W(mcoastline)21] , (35)

where l0 5
ffiffiffiffiffiffiffi
gH

p
/jf j is the barotropic Rossby radius and

Q 5 jf j/(2r) is the quality factor. Although the wave

solution is inviscid, F0 depends on damping (through the

quality factor Q) because r alters the bandwidth of the

forced velocities, which in turn alters the group speeds of

the resulting waves (i.e., group speed is a sensitive

function of v around v ’ f).

The global energy flux due to CNIWs could be esti-

mated by integrating (32) or (35) over the length of the

coastline, but this length can vary by several orders of

magnitude depending on the measurement precision

(Mandelbrot 1967). Instead, we divide F0 by P [the

time-averaged rate of wind work; Eq. (31)] to de-

termine the offshore extent of the coastal boundary

zoneD, where wind work is transferred to near-inertial

waves

D5 l
0

ffiffiffiffiffi
Q

2

r
H

mix

H
(m). (36)

We then estimate the global flux by integrating the

wind work that occurs where the local estimate of D is

greater than the distance to the nearest coast.2 The

coastal boundary zoneD is 10–500km at midlatitudes in

the deep ocean, where the barotropic Rossby radius is

l05 1500–3000km, the ratioHmix/H is 0%–5%, and the

near-inertial quality factor isQ5 10–20 (corresponding

to damping time scales of r21 5 2–5 days). As might be

expected, the length scale D is in reasonable agreement

with observations of the ‘‘coastal inhibition’’ of inertial

oscillations (e.g., Shearman 2005).

Global wind work and CNIW flux are estimated be-

tween 2.58 and 608 latitude during 2014–15 using (31)

and (36) with (i) 3-h winds on a 0.58 grid from the Navy

Global Environmental Model (NAVGEM; hycom.org),

2 The distance to the nearest coast converges with measurement

precision, unlike the length of the coastline.
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(ii) IFREMER mixed layer depths (de Boyer Montégut
et al. 2004), and (iii) global bathymetry (Smith and

Sandwell 1997). The total windwork is 0.31 TW(Fig. 11a),

which is comparable to other global models (Simmons

and Alford 2012; Alford et al. 2016). Wind work is

strongest [i.e., O(1) mWm22] along the storm tracks

between 308 and 608 latitude, and generally an order of

magnitude weaker at lower latitudes. However, indi-

vidual tropical cyclones enhance wind work so that

their tracks are visible in the 2-yr mean. Ten percent of

wind work, that is, 0.03 TW, occurs within the coastal

boundary zone defined by D and is, therefore, radiated

from the coast as barotropic near-inertial waves.

Individual estimates of F0 were computed from (32)

usingH and wind stress taken at the offshore limit of 989

continental slopes that are approximately 100km apart

(see Kelly et al. 2013). The 2-yr mean of F0 reaches

O(100) W (m coastline)21 on western boundaries and at

high latitudes, but isO(10) W (m coastline)21 elsewhere

(Fig. 11b). The global integral of F0, using 100-km

spacing, is 0.004 TW, about 10 times less than the esti-

mate based onD. However, the estimate using F0 omits

generation in several coastal seas and uses a global

coastline of 98 900 km, which is substantially less than

the 356 000km reported by the Central Intelligence

Agency (2018). While F0 is useful for examining geo-

graphic variability, its global integral is dubious.

Storms greatly enhance instantaneous energy fluxes

because F0 depends on wind speed to the fourth power

(the square of wind stress). At each continental slope,

the windiest month was identified from the maximum

wind stress variance over a 30-day moving window.

FIG. 11. (a) The average wind workP from 2014–15NAVGEMwinds has a global integral of

0.31 TW.Wind work within the coastal boundary regionD is 0.03 TW (black line). (b) The 2-yr

mean F0 is typically less than 100W (m coastline)21, while (c) the mean of F0 over the windiest

month can reach 1000W (m coastline)21.
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Energy fluxes averaged over the windiest month are an

order of magnitude greater than the 2-yr averages, for

example, F0 nearly reaches 1000W (m coastline)21 in

some locations, such as the east coast of North America

(Fig. 11c).

Beforemoving on, it is worth reiterating that the exact

fate of the radiated barotropic energy flux F0 is unclear.

The numerical simulation in section 5 indicated that

near-inertial barotropic waves can generate internal

waves at the shelfbreak, but the process was quite weak

[O(10) W (m coastline)21; Fig. 10c] even after a major

storm (Ernesto), suggesting that these waves may

propagate long distances before dissipating. Basin-scale

models are needed to determine whether coastally

generated near-inertial barotropic waves primarily dis-

sipate through bottom drag in shallow seas or topo-

graphic scattering in the deep ocean.

7. Summary and discussion

The results here detail how wind generates near-inertial

internal waves along coastlines. These results are consis-

tent with previous findings (e.g., Pettigrew 1980;Millot and

Crépon 1981; Csanady 1982; Kundu et al. 1983; Baines

1986; Shearman 2005), but emphasize some new points:

d Wind-driven coastal flows can be separated into forced

and wave motions, simplifying estimates of wind work

and wave radiation.
d Wave radiation is a continuous process driven by broad-

band wind forcing, rather than isolated adjustments to

wind impulses. Mixed layer velocities resonate at f, but

waves can and do radiate at all frequencies, leading to

highly intermittent flows. Bursts of wind may enhance or

suppress existing currents depending on their phase.
d Locations without a vertical-wall coastline only gen-

erate an offshore propagating barotropic wave, which

then scatters over topography as it propagates off-

shore. The typical expression for topographic gener-

ation (27) quantifies this scattering, but decomposing

the barotropic flow into forced and wave components

is nontrivial. Topographic scattering by coastally

generated barotropic waves is a potential source of

upward propagating near-inertial energy, which has

been observed in the deep ocean (Alford 2010).
d Offshore near-inertial energy fluxes are typically less

than 100W (m coastline)21. However, energy flux de-

pends on wind speed to the fourth power (the square of

wind stress), so that a few major storms (e.g., tropical

cyclones) can produce short periods of extreme energy

fluxes that dominate long-term averages. Globally,

we estimate that CNIWs radiate 0.03 TW of barotropic

energy flux (i.e., 10% of wind work) to the deep ocean.

The fate of this energy is completely unknown, al-

though it is available to generate near-inertial internal

waves through topographic scattering.

The application of this theory to the New Jersey

shelfbreak is somewhat disappointing because it does not

accurately predict observed near-inertial mixed layer

transport or mode-1 pressure. Further research is needed

to precisely quantify how the theory is hampered by

simplifying assumptions and input uncertainties (such as

wind stress). It also remains unclear whether the SW06

observations themselves are ‘‘contaminated’’ by remotely

generated near-inertial internal waves. Fortunately, some

of these problems can be avoided by analyzing realistic

regional simulations and observations of near-inertial

motions in an enclosed basin without tides. At present,

data from a 20-mooring array in Lake Superior are being

analyzed to further assess the theory presented here

(E. Green 2019, personal communication).
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