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ABSTRACT

Wind directly forces inertial oscillations in the mixed layer. Where these currents hit the coast, the no-normal-
flow boundary condition leads to vertical velocities that pump both the base of the mixed layer and the free
surface, producing offshore-propagating near-inertial internal and surface waves, respectively. The internal
waves directly transport wind work downward into the ocean’s stratified interior, where it may provide me-
chanical mixing. The surface waves propagate offshore where they can scatter over rough topography in a
process analogous to internal-tide generation. Here, we estimate mixed layer currents from observed winds
using a damped slab model. Then, we estimate the pressure, velocity, and energy flux associated with coastally
generated near-inertial waves at a vertical coastline. These results are extended to coasts with arbitrary across-
shore topography and examined using numerical simulations. At the New Jersey shelfbreak, comparisons be-
tween the slab model, numerical simulations, and moored observations are ambiguous. Extrapolation of the
theoretical results suggests that O(10%) of global wind work (i.e., 0.03 of 0.31 TW) is transferred to coastally

generated barotropic near-inertial waves.

1. Introduction

Wind work supplies 0.3-1.5 TW to near-inertial motion
to the surface boundary layer (Alford et al. 2016). Where
these currents converge and diverge they pump the sea
surface and base of the mixed layer generating near-
inertial waves. Near-inertial waves are ubiquitous in
the deep ocean (e.g., Alford and Whitmont 2007), on the
continental shelf (e.g., Shearman 2005), and in the
Laurentian Great Lakes (e.g., Choi et al. 2012; Austin
2013). Several mechanisms produce near-inertial mixed
layer pumping, including propagating storms (e.g., Price
1983; Gill 1984), latitudinal variation in the inertial fre-
quency (i.e., the B effect; D’Asaro 1989; D’Asaro et al.
1995; Moehlis and Llewellyn Smith 2001), interactions
with mesoscale features (e.g., Weller 1982; Young and
Ben Jelloul 1997), and coastlines (e.g., Pettigrew 1980;
Millot and Crépon 1981; Kundu et al. 1983). The rela-
tive importance of each process is unknown, although
understanding them is critical for predicting near-inertial
currents and estimating wind-driven mixing (e.g., Alford
et al. 2016).

Here we investigate the generation of near-inertial waves
at a coast (Fig. 1). Coastal near-inertial waves (CNIWs)
arise as the transient response to shifting wind at a
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coast. The simplest models involve small-amplitude mo-
tions in two-layer or continuous stratification that are
forced by a sudden wind over a flat ocean bounded on
one side by straight coastline (Pettigrew 1980; Millot and
Crépon 1981; Csanady 1982; Kundu et al. 1983; Kundu
1984; Baines 1986). A linear damping term is typically
added to prevent singular resonance at the inertial fre-
quency (Millot and Crépon 1981; Kundu et al. 1983). The
resulting motion is simultaneously narrowband (i.e.,
peaked near the inertial frequency) and transient, so both
time-domain and frequency-domain analyses are useful.
Solutions in the time domain are readily obtained by
Laplace transform (Pettigrew 1980; Millot and Crépon
1981; Csanady 1982; Kundu et al. 1983; Kundu 1984). In
general, the solutions have (i) an offshore compo-
nent associated with directly forced mixed layer cur-
rents, (ii) a coastal-trapped component associated with
slowly evolving upwelling or downwelling, and (iii) a
transient component associated with offshore radiat-
ing near-inertial waves. Despite many simplifying as-
sumptions, these theoretical solutions compare well
with observations (Pettigrew 1980; Millot and Crépon
1981; Shearman 2005).

Existing theories identify a mechanism for CNIW
generation, however they do not (i) provide estimates
of CNIWs in the presence of continuous observed winds,
(ii) address the effects of variable cross-shore coastal
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FIG. 1. Wind stress forces mixed layer currents that lift the sea
surface or depress the base of the mixed layer when they impinge on
the coast. Oscillating (i.e., near-inertial) mixed layer currents then
generate offshore propagating surface and internal waves.

bathymetry, or (iii) assess the global relevance of CNIW
generation as an energy pathway from the surface mixed
layer to the stratified interior. Here, we reformulate
Kundu et al.’s (1983) theory by separating forced and
wave components (section 2) and derive the forced
(section 3) and wave (section 4) solutions for contin-
uous observed winds. Next, we use numerical simu-
lations to examine the role of variable cross-shelf
bathymetry (section 5). The paper concludes by estimating
the global relevance of CNIW generation (section 6)
and summarizing the results (section 7).

For simplicity, this paper retains Kundu et al.’s
(1983) assumptions of uniform wind stress and inertial
frequency, straight coastlines, and small-amplitude mo-
tions. Relaxing the first three assumptions would lead
to open-water near-inertial wave generation (Gill 1984;
D’Asaro 1989; D’Asaro et al. 1995; Moehlis and Llewellyn
Smith 2001) and coastal-trapped waves (e.g., Brink
1991). Relaxing the small-amplitude assumption would
allow nonlinear interactions between the wave and
upwelling components of the solutions (Federiuk and
Allen 1996; Chant 2001).

2. Equations of motion

The linearized, Boussinesq, hydrostatic momentum,
continuity, and buoyancy equations,

Ju A ik
— +fkXu=-Vp+— 1
o Hkxu P (1a)
ap
0=—2X+bh 1b
L +b, (1b)
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respectively, describe small-amplitude motions. Here,
u=ui+ vj and w are horizontal and vertical velocity, and
fand N(z) are the inertial and buoyancy frequencies. The
buoyancy force b = —gp/py, pressure p, and viscous stress
T are normalized by a reference density py. The term p is
the density perturbation and g is gravity. The boundary
conditions are a flat bottom at z = —H, and a linear free
surface at z = 0. The surface mixed layer (N> = 0) extends
to z = — Hpix (Fig. 1).

a. Separating forced and wave motion

We define the “‘forced response’” as the velocity that
balances the stress divergence in the absence of a
pressure gradient:

ou - orT
—+fkXu=—. 2a
ot f 0z (22)

Subtracting the forced velocity from the full equations

of motion yields the ‘““wave response,”

ow’ .
— +fkxXu' =-Vp',
o fkXu P

ala (—1ap
= ——X)|+V.d=-V-1u
at[az (N2 az)] " v

where w and b have been eliminated, the primes denote
wave velocities, and pressure is entirely associated with
the wave response (i.e., p = p’). Divergences in forced
velocities produce waves through the term on the right-
hand side of (3b). In general, these divergences could
be driven by horizontal variability in wind, stratification,
or inertial frequency. Boundary conditions also produce
waves by requiring no normal velocity at the coast (i.e.,
u, = 0, which is equivalent to u/, = —,).

(3a)

(3b)

b. Projection onto vertical modes

Over a flat bottom, velocity and pressure are sums of
uncoupled vertical modes,

%

u(x,y,z,0) = ;un (x,y,00,(2), (4a)
p(x,y,z,1) = gopn(x,y, 0, (2), (4b)

where the modes ¢,, and eigenspeeds c,, are determined
by an eigenvalue problem with linear free-surface and
flat-bottom boundary conditions (e.g., Wunsch 2015)
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d(1do 1
—=—n) 4+ =
dz <N2 dz) c,zld)" 0, (5a)
d 2
LZ” = —N?(ﬁn at z=0, and (5b)
d
CZ”—O at z=-H, (5¢)
and the orthogonality/normalization condition
1 0
HJ_Hd)md)n dZ = 6mn : (6)

Our sign convention is ¢,, > 0 at z = 0. Note that ¢,, is
constant in the mixed layer, where N> = 0.

To proceed, we must parameterize the vertical profile
of stress divergence. For simplicity, we assume uniform
stress divergence in the mixed layer and zero divergence
below (i.e., there is no bottom drag). Integrating (2a)
over the mixed layer produces

O fhxT=1), -1/, . )
where U = H,, 1 is mixed layer transport. We parameterize
interfacial stress as 7|_, = —rU, where r is a damping
parameter with empirical values of r~' = 2-5 days
(Plueddemann and Farrar 2006). Wind stress is 7|o,
hereafter written as simply 7.

Incorporating the stress parameterization and pro-
jecting the wave response onto vertical modes yields

9 .
(5+r)U+ﬂ(><U=7, (8a)
3% I / /
Py +fkXw, =—-Vp,, and (8b)
a /
(;Dt” +c2V-u, = —Czwn, (8¢)

where w, =V - Ug,|/H forces the waves. Note, that w,
has units of per second, consistent with the convention
of Kelly (2016).

¢. Relation to other formulations

The preceding decomposition is more complicated than
simply projecting wind stress onto each vertical mode
(see, e.g., Pollard and Millard 1970; Kundu et al. 1983;
Gill 1984), but the decomposition has two benefits. First,
the damping parameterization is more flexible, allowing
forced motions and low-mode internal waves to be dis-
sipated at different rates. In fact, the formulation here
only deviates from Kundu et al. (1983) in that damping
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is selectively applied to forced motion as opposed to
all motion. As a result, mixed layer energy is bounded
by viscous effects, while internal-wave energy is only
bounded by inviscid offshore radiation.

The second benefit of the decomposition is that the
resulting equations are familiar. The equation describ-
ing forced motion (8a) is the slab model introduced
by Pollard (1970), which is mathematically equivalent
to a simple harmonic oscillator. Slab models compare well
with observed mixed layer currents (e.g., Plueddemann
and Farrar 2006) and are convenient for estimating wind
work (e.g., D’Asaro 1985; Alford 2001, 2003; Watanabe
and Hibiya 2002; Jiang et al. 2005). The equations de-
scribing wave motion [(8b) and (8c)] are identical to
the those derived by Llewellyn Smith and Young
(2002) and Kelly et al. (2016) to describe topographic
internal-tide generation, except that tidal forcing is
W, =wg - VHe,|_,;, where uy is the surface tide. Thus, a
wide range of analytical and numerical tools are imme-
diately available to solve the equations.

The decomposition presented here has a notable draw-
back: the slab model is not a complete mixed layer model
because directly integrating the full momentum equations
over the mixed layer would add an additional term rep-
resenting internal-wave drag (i.e., the term — H,,;,Vp'|o).
In general, mixed layer currents are damped by both tur-
bulence and internal-wave radiation. The latter effect
likely dominates in the open ocean (e.g., Moehlis and
Llewellyn Smith 2001), but is nonexistent in the idealized
setting considered here, where there is no internal-wave
generation except at the coast. Thus, tuning 7 to achieve
reasonable forced velocities is effectively parameterizing
both unresolved turbulence and offshore internal-wave
radiation from the mixed layer. In some sense, the pro-
cedure is analogous to parameterizing wave drag in a
surface-tide model (e.g., Jayne and St. Laurent 2001) and
then using the resulting surface-tide velocities to force an
internal-tide model.

d. Energy balances

The energy equation for forced motion, obtained by
multiplying (8a) by U/Hy, is

102 —
o (32U - T AOP o)
a\H | "H_ H_

mix mix mix

where the left-hand side is the rate of change in kinetic
energy and the right-hand side is the rate of wind work
minus the rate of energy dissipation.

The energy equation for the wave response, obtained
by multiplying (8b) by Hu,, (8c) by Hp/, and summing is
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§<?|“;| +?g +V- (Hu,p,)=C,,

(10)
where the first term on the left-hand side is the rate of
change of kinetic and potential energy, and the second
term is energy flux divergence (energy flux in each mode
is F, = Hu/p!). The term on the right hand side is wind-
driven wave generation C,, = —Hw,p), or, equivalently,
Cy ==V -Up,d,

For perfectly periodic motions, averaging these
equations over a wave period reduces them to a steady-
state balance between energy sources and sinks (e.g.,
wind work equals viscous dissipation, or wave genera-
tion equals energy-flux divergence). However, aver-
aging transient near-inertial motions over an inertial
period smooths, but does not eliminate, the energy
tendency terms.

These energy balances hold for the decomposed
equations of motion presented above. However, the
forced motion and wave response are not orthogonal,
so the total energy equation contains additional cross
terms. The importance of these cross terms is a matter
of perspective. Here we ignore them because they do
not provide useful information about the wave re-
sponse. For example, an oscillating wind stress does
work directly on the waves (i.e., 7 - u’), but, on aver-
age, this work is balanced by energy-flux divergence
associated with the cross terms (i.e., Up’), so we ignore
both terms.

3. Forced dynamics
a. Solution

Defining the complex number, Z(¢) = U + iV, allows
us to rewrite (8a) as

az +(r+if)Z=T, (11a)
dt
or
d*z dzZ ) 2 d .
T (PP =(=+r-
i Zrdt (f~+r)z (dt r lf)T, (11b)

where T = 7, + ir,. The second form of the equation
emphasizes that the system is a damped forced harmonic
oscillator with natural frequency wg = sgn(f)+/f? + r2,
damped frequency f, and quality factor Q = |f|/(2r). A
large quality factor indicates a weakly damped system
prone to sharp resonance. Specifically, the quality factor
is related to the bandwidth of the resonant peak by Aw ~
IfI/(2Q) = r. In the time domain, an unforced oscillation
decays by a factor of e after 20 radians. At midlatitude,
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mixed layer inertial oscillations have QO = 10-20, con-
sistent with damping time scales of r~! = 2-5 days.!
Defining the Fourier and inverse Fourier transforms as

0

Zw) = LZ(t)e*iwf dt, (12a)

0

1 A .
Z(t) = —J Z(w)e'" dw, (12b)
27 o
respectively, the transfer function for (11a) or (11b) is
(Alford 2003)

Z_ r—i(f — )

T P+(f-w) (13)

The function is asymmetric with respect to the origin
and has a resonant peak at f, but not —f. The resonant
frequency is slightly higher than that of a prototypical
forced oscillator because the right-hand side of (11b)
includes a time derivative. Increasing the damping flat-
tens the resonant peak and lowers Q.

The Laplace transform,

C[2(t)] = J:za)e*“ dt = Z(s), (14)

yields Z(#) directly from the time series of recent wind
stress. Substituting s = iw in (13) leads to the Laplace
transfer function

Z(s) _ (str)—if
T(s) (s+r)+f2

(15)

where we have assumed zero initial velocity and accel-
eration (i.e., Z = 0 and dZ/dt = 0 at t = 0). The “weight
function” is the inverse transform of the transfer function,

(16)

Since Z(s) = W(s)7 (s) is now the product of two func-
tions with known inverse transforms [W(z), T(¢)], the
Laplace transform convolution theorem yields

W)= L Z(s)T]=e ",

Z(t) = J;W(I')T(I —)dt, 17)

where ¢’ is a time lag. This integral weights the previous

wind measurements to provide an optimal estimate of the
present transport. The weight of the wind measurements

'For reference, Carwright and Ray (1991) reported similar
quality factors for the M, barotropic tide, but see also Garrett and
Munk (1971).
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FIG. 2. (a) NOGAPS wind stress on the New Jersey shelf during 2006. (b) The weight
function is reversed on the time axis to illustrate how past winds are weighted in the calculation
of transport on 10 Sep. (c) Mixed layer transport occurs over a depth of Hy,;x =~ 10 m.

decreases exponentially as the time lag increases (the
e-folding time is 1/r) and oscillates at the inertial frequency,
so bursts of wind may either reinforce or diminish pre-
existing velocities depending on their precise timing and
duration. Steady winds produce weak time-averaged ve-
locities because they are multiplied by both positive and
negative weights. Using the standard properties of Laplace
transforms, these solutions are easily extended to account
for preexisting velocities, which are sometimes crucial for
explaining observations (Plueddemann and Farrar 2006).

b. Application to the New Jersey shelf

The above solution provides an estimate of mixed
layer transport on the New Jersey shelf during the
Shallow Water 2006 experiment (SW06; see Tang et al.
2007) using wind stress from the Navy Operational
Global Atmospheric Prediction System (NOGAPS;
hycom.org; Fig. 2). Between 1 August and 10 September
2006, wind stress reaches a maximum value of about
0.5Pa during Tropical Storm Ernesto on 3 September
(Fig. 2a). Mixed layer transports, computed from (17)
with an inertial period of about 19h (for 39°N), and a
drag parameter of ' = 3.5 days (a reasonable value,
but see Plueddemann and Farrar 2006), are near-inertial
and reach about 10m?s ™! during the storm (Fig. 2c).

The frequency-domain solution reveals that the mixed
layer response to near-inertial wind stress is amplified by
the peak in the transfer function, which imparts a dis-
tinct inertial peak in the transport spectrum (Fig. 3).
However, wind stress Fourier coefficients are an order
of magnitude larger at low frequencies than the inertial

frequency, so low-frequency transport is also substantial
despite being nonresonant.

4. Wave dynamics
a. Solution

Here we consider waves generated at a vertical-wall
coastline at x = 0 in the absence of alongshore variability
(9/dy = 0). If wind stress and f are horizontally uniform,
open-ocean forcing due to w, is negligible and (8b) and
(8¢c) can be written as unforced Klein—-Gordon equations
(e.g., Llewellyn Smith and Young 2002):

P, o 297U,
Fra +fou, =c; PR (18a)
°p, ’’p,
v +fp,=c, o2’ (18b)

which are also known as “‘equations of telegraphy” (Cahn
1945) or the equations for an ‘‘elastically supported
string”” (Morse 1948).

The no-normal-flow condition at the coast forces
the waves by requiring u, = —u, at x = 0, where

u, = Ud,|/H. For pressure, this condition becomes

0’ a%p
n o Zﬁ — n
ar fa, dxat

at x=0. (19)

A second set of boundary conditions also requires
that waves propagate offshore or decay away from
the coast.
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FIG. 3. (a) Wind stress Fourier coefficients are multiplied by the
(b) transfer function to produce the (c) transport coefficients. The
Fourier coefficients have a spectral width of Af = f/12 and are
complex, but only their absolute value is plotted. Fourier co-
efficients are plotted to emphasize the simple algebraic relationship
in the frequency domain between wind stress, the transfer function,
and transport. Conventional plots of power spectral density would
have sharper inertial peaks.

Fourier transforming the Klein-Gordon equations in
time reduces them to second-order ordinary differential
equations in x,

2 82

207 un
— gun = P (20a)

2 25/

207 9 Pn
—?=p = 20b
a C%pn axz ’ ( )

where the parameter @ = /1 — f2/w? quantifies the role
of rotation. The inverse transformed solutions to (20)
are

1 ;
u,(x,t) = _EJ ﬁne’(knx"‘”) dw, (21a)

1 ;
pu(x.0) = _2_J € nﬁnel(k"rw[) do, (21b)
) . &

where k, = aw/c, is the wavenumber, and ¢, ,, = ac, is
the group speed. The solution comprises offshore
propagating waves (Jw| > |f]) and coastally trapped
motions (Jo| < |f]) when « is real or imaginary,
respectively.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 49

The Laplace transform yields the wave response di-
rectly from the recent time series of mixed layer trans-
port. The Laplace transfer functions,

U /2 .
Zi/[(s) = V¥ +f7x/cn, (223)

n

Pn(s) __V §? +f207\/52+f2x/c”
u s ’

n

(22b)

are found by Laplace transforming the wave equation
(18), solving the second-order differential equation in x
and applying the boundary conditions. The inverse
transforms of the transfer functions are the weight
functions (nondimensionalized by dividing by f)

I (=%
W (e, 1) = (e — x%) 4+ ol ) o
Ve
J (T2
Wo (e, x#) = —3(c% — x¥) 4 Pt T )
s
—J IRy ar", (23b)
ok

where 6 is the Dirac delta, nondimensional time and
distance are * = ft and x* = x/A,,, respectively, and the
Rossby radius is A,, = ¢,,/f. The weight functions are zero
when r* < x*, and J,,, is the mth-order Bessel function of
the first kind. Velocity and pressure are the convolutions,

u (x,t) = j;fW“(ft’,x//\n) u (t—1r)dr, (24a)

t
ph(x, 1) = an FWP(ft ,xIN ) a, (t —t')dr. (24b)
0

The Dirac deltas in the weight functions provide the
classical solution to the nondispersive wave equation,
which describe disturbances that retain their shape as
they propagate offshore at speed c,,.

The second term in each of the weight functions ac-
counts for dispersion due to rotation, which stretches the
wave as it propagates away from the coast. These terms
are zero until the nondispersive wavefront arrives, at
t = x/c,, and decay rapidly after.

The last term in W? is associated with coastal up-
welling. This integral converges to a nonzero constant
at long lags near the coast (i.e., large ¢t and small x), so
the complete history of wind forcing determines the
pressure associated with coastal upwelling. Numerical
evaluation of this integral confirms that the e-folding
distance of coastal upwelling is the Rossby radius,
that is,
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FI1G. 4. (a)—(c) The mode-1 pressure response to a sudden alongshore wind is computed from
(24b) (solid) and (12) from Kundu et al. (1983) (dashed) at different distances from shore.
(d) The full solution consists of increasing upwelling at the coast and offshore propagating
waves that are bounded by a front traveling at the nonrotating wave speed. This solution uses
7=01jPa,f=10"*s"1, H=250m, Hpy =25m, N =10"2s"}, and ¢, = 0.78 ms ' Viscosity
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in Kundu et al.’s (1983) solution is v = 0.02m*s~

1%
limJ IRy d = e, (25)
F—oo ok

The solutions given by (24) are equivalent to those
derived by Kundu et al. (1983), except that they (i) apply
to arbitrary time series of wind stress instead of a sudden
impulse and (ii) incorporate mixed layer damping rather
than a vertical viscosity that applies to all components of
the flow. The solutions are identical for the inviscid response
to a sudden wind, but, for the same equivalent damping, the
wave pressure computed here is slightly larger than that of
Kundu et al. (1983) (Fig. 4). In practice, both dissipative
parameterizations are overly simplified to allow analytical
solutions, so it is sensible to select the parameterization
most convenient for a desired application.

A Hovmoller diagram of pressure illustrates both the
coastal-trapped response and offshore propagating
waves (Fig. 4d), indicating that C,, contributes to both a
positive nearshore energy tendency and flux divergence
associated with offshore wave radiation. The offshore
radiating wave is bounded by a front moving at the
nonrotating wave speed. Waves with slower group
speeds trail the front, but have faster phase speeds
(i.e., flatter slopes), consistent with the inertio-gravity
dispersion relation. If alongshore variability were in-
troduced, the coastal-trapped response would propa-
gate as a Kelvin wave, but this does not occur in our
idealized model.

! which is equivalent to ! = 3.5 days.

Wave dispersion makes it challenging to predict waves
far from shore. As the waves in the front separate, they
reveal the detailed structure of the front. As a result,
high temporal resolution boundary forcing is required to
specify the solution far from the coast. To see this, note
that the deformation terms depend on J,({)/{, where
{=V1t?—x"2. Because J{({)/{ is periodic and decays
rapidly as #* increases, accurate solutions should resolve
J1(¢) with a minimum of, say, 20 boundary forcing
measurements between its first and third zeros (which
are spaced by A ~ 6.3). Thus the boundary forcing (i.e.,
wind) should have at least

N, =20x 27/ (\/AZ +x2 — x*) (26)

measurements per inertial period. At the coast Ng = 20,
atx* = 10 Rossby radii Ny = 70, and at x* = 100 Rossby
radii Ny = 634 measurements. Therefore, along coast-
lines where only hourly wind data are available, radiated
near-inertial waves can only be accurately specified a
few Rossby radii from the coast. Attempts to predict
waves at great distances will generate noise by aliasing
the weight functions.

b. Application to the New Jersey shelf

The above solution provides estimates of wave veloc-
ity, pressure, and energy flux on the New Jersey shelf
during the SW06 experiment (Fig. 5). The solution
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FIG. 5. Wind stress during the SW06 experiment is used to estimate the (a) velocity and
(b) pressure of a mode-1 wave generated at the coast (approximated as a vertical wall with
H = 62.5m). (c) The baroclinic offshore energy flux Fiot = Y., F,, (smoothed over an inertial
period using a 19-h moving average) is estimated at five Rossby radii (x* = 5) from the coast
to ensure coastal-trapped signals have decayed. The barotropic (mode 0) energy flux Fy (not
shown) is about 50 times larger than Fi,, because mode 0 has a much larger eigenspeed. The
mode-1 energy flux F; (not shown) accounts for 70% of the total baroclinic energy flux Fior.
Band passing the velocity and pressure between 0.8f and 1.2f slightly reduces their variance

and decreases energy flux by about 50%.

utilizes H = 62.5m and observed stratification (Nash
et al. 2012a) with H;x = 10m. The solutions to the
vertical-mode eigenvalue problem (5) are constant in
the mixed layer and nearly sinusoidal below [Fig. 6; see
Kelly (2016) for the numerical method]. The eigens-
peeds decrease rapidly with increasing mode number
(i.e.,co=248ms ', ¢, =0.52ms !, etc.).

To isolate radiating waves and eliminate coastal-
trapped signals, mode-1 velocity and pressure are com-
puted at x* = 5 Rossby radii from the coast (Fig. 5).
Wave velocities are about 0.05ms ™! and wave pressure
is about 5Pa. Note that although mixed layer velocity
estimates are 0.5-1 ms ™' during Ernesto (section 3b), the
mode-1 velocities only reach about 0.05ms™', because
the mixed layer current projects onto many modes (recall
i, = Ud,|/H). Velocity and pressure are in phase, so
they produce an offshore (positive) energy flux that is
briefly greater than S0 W (m coastline) ' (Fig. 5c).

Bandpass filtering is another method of isolating near-
inertial waves. We use a Morlet wavelet transform with
16 voices per octave (see Johnston et al. 2015) to isolate
signals between 0.8fand 1.2f. Even at x* = 5 velocity and
pressure have a small low-frequency component that is
removed by the bandpass filter. The filter also slightly
attenuates the near-inertial oscillations and reduces
energy flux to about half the raw values (Fig. 5).

Mode-1 pressure spectra clearly separate the coastal-
trapped and radiating wave responses (Fig. 7). The
pressure response at subinertial frequencies decreases
by two orders of magnitude within x* = 5 Rossby radii
of the coast. Conversely, the superinertial response is
identical at all distances from the coast. At the inertial
frequency, a peak in the mixed layer spectrum and
valley in the transfer function leads to a relatively
smooth (unpeaked) pressure spectrum. The slow roll-
off of superinertial pressure leads to significant energy
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FI1G. 6. The observed profiles of (a) potential density and (b) stratification determine the
vertical modes and (c) eigenspeeds. The mixed layer depth varied throughout the SW06
experiment, but here we set N*=0toa depth of H,;x = 10m.

flux out to about 2f, explaining why signals bandpassed
between 0.8f and 1.2f only capture half of the total
energy flux. Unfortunately, the spectrum between fand
2fis usually contaminated by nonstationary tides in the
coastal ocean (Nash et al. 2012b), so total energy flux is
typically unmeasurable. In this regard, observations of
near-inertial motions where tides are small, such as in
the Laurentian Great Lakes, are easier to analyze
(Choi et al. 2012; Austin 2013).

The depth-dependent velocity and pressure are the
sums of the modal solutions. Snapshots of these fields
reveal a downward propagating internal-wave beam
emanating from the coast (Fig. 8). These images em-
phasize that CNIW generation is a mechanism that
transports energy from the surface mixed layer to the
stratified interior, where it may drive diapycnal mixing,
sediment resuspension, etc.

5. Effects of cross-shore bathymetry

Most coastal bathymetry shoals gradually and is poorly
approximated by a vertical wall. In these locations, the
bottom shoals until it reaches the base of the mixed layer,
at which point the water is, by definition, unstratified, and
surface waves (i.e., barotropic waves or mode-0 waves)
are the only possible response to convergences in mixed
layer transport. Thus, mode-0 waves radiate offshore.
As these waves propagate to deeper stratified water
they conserve transport (in the long-wave limit) and,

like surface tides, scatter over topographic bumps.
Hopkins et al. (2014) qualitatively discussed near-inertial
topographic internal-wave generation, but the process, to
our knowledge, has not been examined in detail.

a. Numerical simulations

The standard expression for topographic internal-wave
generation is (Kelly 2016)

C,=—2 VH -wp.b | ., (27)
n=1

although it has not been previously applied to near-
inertial waves. In practice, it is difficult to observe the
mode-0 wave velocity because it destructively interferes
with the mode-0 mixed layer velocity within a fraction
of an inertial period (Shearman 2005). However, the
mode-0 wave response can be simulated using two
techniques:

1) One can run a realistic simulation with observed
wind forcing and topography, and a “‘twin’’ simu-
lation with observed wind forcing and a deep flat
bottom (with open boundaries). Subtracting the
flat-bottom solution from the realistic solution
isolates the topographically induced component
of the flow (i.e., the coastal response). Hall et al.
(2013) used a similar technique to separate inci-
dent and reflected internal waves at a topographic
slope.
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FIG. 7. (a) Mode-1 mixed layer velocity Fourier coefficients are
multiplied by (b) the transfer function to produce (c) the pressure
coefficients. Subinertial pressure coefficients decrease with dis-
tance offshore, but superinertial coefficients are unaffected (all of
the lines overlap). The Fourier coefficients have a spectral width of
Af = f/12 and are complex, but only their absolute value is plotted.

2) One can estimate the flat-bottom response using a slab
model, and then simulate the coastal response by
prescribing the mode-0 boundary transports. In this
case, the coastal wall is replaced with an open
boundary (i.e., we truncate the New Jersey shelf at

(a) baroclinic cross-shore velocity [m/s] on 5 Sep 2006
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the 62.5-m isobath). This technique is analogous to
boundary-forced simulations of internal-tide generation.

To quantify the effect of cross-shore bathymetry,
the MIT general circulation model (MITgcm; Marshall
et al. 1997) simulated near-inertial topographic internal-
wave generation at the New Jersey Shelbreak using
techniques 1 and 2. Bathymetry and stratification
were identical to Nash et al. (2012a), except that the
depth of the abyss was truncated at 1000 m. The res-
olution was Az = 2m, and Ax = 250 m in the region of
interest, but telescoped to Ax = Skm at the offshore
boundary. A flow-relaxation condition at the open
boundaries prevented the reflection of outgoing in-
ternal waves. Horizontal and vertical eddy viscosi-
ties of 10 ?m?s ' and 10 °m?s™', respectively,
stabilized the simulations. The first two simulations
were forced with observed wind stress and either
observed topography or a flat bottom, in accordance
with technique 1. The third simulation was forced by
the barotropic (mode 0) wave transport [computed
from Eq. (24a)] prescribed at the open boundaries, in
accordance with technique 2.

Techniques 1 and 2 produces nearly identical flows
for the first few inertial periods (not shown), but the
solutions eventually diverged because technique 1
exhibited nonlinear responses during strong wind and
allowed standing waves to develop between the coast
and shelfbreak. Only the results of technique 2, which
cleanly isolate topographic internal-wave generation at
the shelfbreak, are further examined.
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FIG. 8. Summing the modal wave solutions produces the (a) depth-dependent velocity and
(b) pressure fields. Both fields are bandpassed between 0.8f and 1.2f. Rays are drawn for fre-
quencies 1.02f, 1.05f (solid) and 1.10f.
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FIG. 9. Snapshots of bandpassed (a) cross-shore velocity and (b) baroclinic pressure from the
MITgcm simulations forced using technique 2 in section 5. The fields show internal wave beams
emanating from the shelfbreak. Rays are drawn for frequencies 1.02f, 1.05f (solid), and 1.10f.

The third simulation, which employed technique 2,
was integrated for 40 days starting on 1 August
2006. Snapshots of bandpassed velocity and pressure
on 5 September indicate internal-wave generation at
the shelfbreak reminiscent of internal-tide generation
(Fig. 9), but less energetic (near-inertial and semi-
diurnal transports are 4 and 20m?*s~!, respectively; cf.
Fig. 10a and Zhang and Duda 2013). Part of the baro-
clinic response is also subinertial (not shown) and,
therefore, trapped to the shelfbreak because the mode-
0 velocity forcing contains both sub- and superinertial
frequency content (i.e., it is a combination of trapped
and radiating mode-0 waves).

Bandpassed topographic conversion at the shelfbreak
approximately balanced offshore near-inertial energy
flux in the simulation (Fig. 10c). Energy flux was O(1) W
(m coastline) ', except for a brief period right after
Ernesto, when Crreached 10 W (m coastline) ! (Fig. 10c).
Even after doubling the energy flux to account for signal
attenuation by the bandpass filter, the brief increase as-
sociated with Ernesto is still an order of magnitude weaker
than local semidiurnal internal-tide generation (Nash et al.
2012a; Zhang and Duda 2013; Kelly and Lermusiaux
2016). Furthermore, Cr is less than the mode-1 energy
flux predicted for a vertical-wall coastline at H = 62.5m
[SOW (m coastline) *; Fig. 5c].

b. Observations at the New Jersey shelfbreak

Numerous moorings were deployed during SW06 that
revealed strong tidal and near-inertial variability (see
Tang et al. 2007; Shroyer et al. 2011; Nash et al. 2012a).

We analyzed sparse, but nearly full-depth, measure-
ments of temperature, salinity, and velocity at four shelf
moorings (SW29, SW30, SW32, and SW34) and three
shelfbreak moorings (SW40, SW42, and SW43). The
moorings are described in detail by Shroyer et al. (2011)
and Nash et al. (2012a).

Near-inertial velocities were highly coherent at all
seven moorings, suggesting a spatially uniform slab-like
response to local wind forcing (Shroyer et al. 2011). An
estimate of mixed layer transport is needed to compare
the observations with a slab model. The integral of
velocity from the base of the mixed layer to the sur-
face is the simplest estimate of mixed layer transport.
Unfortunately, near-surface velocity observations are
lacking and the moorings have insufficient vertical
resolution to determine the precise depth of the mixed
layer. A more robust estimate of mixed layer transport
is U =1u;H/¢,|,, which relies on better-observed quanti-
ties: the mode shape ¢4, bottom depth H, and the mode-1
velocity amplitude

1

u = EJ_Hﬁ(Z)d)l(Z) dz.

(28)

Mixed layer transport at SW43 (H = 480 m) and that
predicted by (17) using NOGAPS wind stress have
similar character, but do not have identical amplitude
and phase, except around 25 August (Fig. 10a). Un-
certainty in the wind stress alone can explain the dis-
agreement. Theoretical transports computed from wind
at regional NDBC buoys 44004 and 44009 (not shown)
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FIG. 10. (a) Observed (gray) and predicted (black) mixed layer transport during SWO06.

(b) Observed (gray) and simulated (black) mode-1 pressure at the New Jersey Shelfbreak (H =
480 m). The observations are from the SW43 mooring. All signals are bandpassed between 0.8f
and 1.2f. (c) Observed (gray) and simulated (black) mode-1 energy flux (smoothed over an
inertial period using a 19 h moving average). Simulated topographic internal-wave generation

Cr (dashed gray) in (c) is indistinguishable from simulated energy flux.

differed from each other and the observed transport,
indicating that wind stress in the near-inertial band is not
spatially coherent enough to predict mixed layer trans-
ports more than a few tens of kilometers from a wind
station. This finding directly contradicts our assumption
of spatially uniform wind stress and implicates a mech-
anism for open-water near-inertial wave generation that
is neglected in our analysis.

Mode-1 pressure at the farthest offshore mooring
(SW43, H = 480 m) was estimated from temperature and
salinity following Waterhouse et al. (2018). Observed
mode-1 pressure was about 10 Pa, while mode-1 pres-
sure in the MITgem simulation was only 3 Pa (Fig. 10b).
Therefore, topographic generation at the shelfbreak
cannot explain all observed near-inertial pressure.
Additional sources of near-inertial pressure could be
CNIWs propagating out from the coast (section 4),
near-inertial waves generated in open-water by off-
shore storms, or nonstationary internal tides leaking
into the inertial band. Observations of offshore energy

flux after Ernesto suggest CNIWs (cf. Figs. 5c and 10c),
while observations of onshore energy flux during August
suggest onshore propagating internal tides (see Nash
et al. 2012a; Kelly et al. 2016).

6. Global relevance

The preceding sections show that wind work in the
mixed layer can be transferred to offshore propagating
near-inertial waves. In most locations, gently sloping
coastal bathymetry only facilitates barotropic wave
generation at the coast, but these waves can scatter into
internal waves as they propagate over topographic fea-
tures in deeper stratified water. Regardless of how much
scattering occurs, the barotropic wave accounts for
nearly all of the offshore energy flux, that is, the calcu-
lations in section 4b indicate that the barotropic (mode
0) energy flux Fj is 50 times the baroclinic flux (Fig. 5).
Here, we make a global estimate of the offshore mode-0
energy flux.
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Using the Fourier transfer function (13), the time-
averaged rate of work is

Py
27THm.

sdw, (29)

liw Sro(® )2‘+(f w)’

where S7r(w) is the power spectral density of wind stress
and the factor of 27 arises from Parseval’s theorem.
Changing the variable of integration to y = (0 — f)/r
yields

Py
27THmix

J_mSTT(f + ry)l+iy2 dy. (30)

As r goes to zero, the transfer function behaves like a
Dirac delta (multiplied by ), so that only near-inertial
wind stress contributes to the integral. The wind work
becomes

al 3 Srr(HWm ™).

P%
2H .

B

Perhaps surprisingly, this approximate formula only
depends on near-inertial wind stress, and is independent
of both the inertial frequency and linear damping co-
efficient (i.e., quality factor). Previous studies have
also noted that r has little effect on wind work, pro-
vided r < |f] (e.g., Alford 2003; Jing et al. 2017).

The depth-integrated time-averaged mode-0 energy
flux radiated to deep water is

Py
2mH

r (S, (—0) £ S, (@do,  (32)

where Sz () is the power spectral density of the cross-
shore mixed layer transport and both positive and neg-
ative frequencies contribute to energy flux. Even though
barotropic waves originate where the mixed layer
touches the bottom, (32) provides an estimate of the
energy flux radiated to the deep ocean (i.e., to an off-
shore depth H), because barotropic transport is con-
served in the long-wave limit. The H~' dependence in
(32) indicates that offshore energy flux decreases with
depth because the offshore-propagating wave is par-
tially reflected as the wave speed increases.

The calculation of F, only depends on cross-shore
transport, but if the near-inertial wind stress is approx-
imately isotropic, then

§,/(0) 38 1, (@) (33)

1
P e
The transfer function is asymmetric and only peaked
at o = f, so depending on the sign of f, either S zz(—w) or
Szz(w) can be neglected in (32). The group speed is
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approximated as ¢, =~ co\/2(w — |f|)/|f| for o — |f| < |f]

using the binomial expansion. Substituting the approx-
imate expressions for S;z(w) and ¢, into (32), ne-
glecting the nonpeaked side of the spectrum, and writing
the integral in terms of y = (w — |f])/r yields

¢ JIfl

~_Po_ szd
0 4HV\ v

j Syl + sen(Fryls (34)

Once again, the transfer function behaves like a Dirac
delta (multiplied by ) as r goes to zero, leading to

F,~ fpo

A \/_STT(f)[W(m coastline) '], (35)
where Ao = \/gH/|f| is the barotropic Rossby radius and

= |f|/(2r) is the quality factor. Although the wave
solution is inviscid, Fy depends on damping (through the
quality factor Q) because r alters the bandwidth of the
forced velocities, which in turn alters the group speeds of
the resulting waves (i.e., group speed is a sensitive
function of @ around w =~ f).

The global energy flux due to CNIWs could be esti-
mated by integrating (32) or (35) over the length of the
coastline, but this length can vary by several orders of
magnitude depending on the measurement precision
(Mandelbrot 1967). Instead, we divide Fy by P [the
time-averaged rate of wind work; Eq. (31)] to de-
termine the offshore extent of the coastal boundary
zone D, where wind work is transferred to near-inertial
waves

QHmix
2 H

D=, (m).

(36)

We then estimate the global flux by integrating the
wind work that occurs where the local estimate of D is
greater than the distance to the nearest coast.”> The
coastal boundary zone D is 10-500 km at midlatitudes in
the deep ocean, where the barotropic Rossby radius is
Ao = 1500-3000 km, the ratio H ;x/H is 0%-5%, and the
near-inertial quality factor is Q = 10-20 (corresponding
to damping time scales of 7' = 2-5 days). As might be
expected, the length scale D is in reasonable agreement
with observations of the “‘coastal inhibition” of inertial
oscillations (e.g., Shearman 2005).

Global wind work and CNIW flux are estimated be-
tween 2.5° and 60° latitude during 2014-15 using (31)
and (36) with (i) 3-h winds on a 0.5° grid from the Navy
Global Environmental Model (NAVGEM; hycom.org),

2 The distance to the nearest coast converges with measurement
precision, unlike the length of the coastline.
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FIG. 11. (a) The average wind work P from 2014-15 NAVGEM winds has a global integral of
0.31 TW. Wind work within the coastal boundary region D is 0.03 TW (black line). (b) The 2-yr
mean F, is typically less than 100 W (m coastline) !, while (c) the mean of F; over the windiest

month can reach 1000 W (m coastline) .

(i) IFREMER mixed layer depths (de Boyer Montégut
et al. 2004), and (iii) global bathymetry (Smith and
Sandwell 1997). The total wind work is 0.31 TW (Fig. 11a),
which is comparable to other global models (Simmons
and Alford 2012; Alford et al. 2016). Wind work is
strongest [i.e., O(1) mW m 2] along the storm tracks
between 30° and 60° latitude, and generally an order of
magnitude weaker at lower latitudes. However, indi-
vidual tropical cyclones enhance wind work so that
their tracks are visible in the 2-yr mean. Ten percent of
wind work, that is, 0.03 TW, occurs within the coastal
boundary zone defined by D and is, therefore, radiated
from the coast as barotropic near-inertial waves.
Individual estimates of F, were computed from (32)
using H and wind stress taken at the offshore limit of 989
continental slopes that are approximately 100 km apart

(see Kelly et al. 2013). The 2-yr mean of F, reaches
O(100) W (m coastline) ' on western boundaries and at
high latitudes, but is ©(10) W (m coastline) ! elsewhere
(Fig. 11b). The global integral of Fj, using 100-km
spacing, is 0.004 TW, about 10 times less than the esti-
mate based on D. However, the estimate using F, omits
generation in several coastal seas and uses a global
coastline of 98900km, which is substantially less than
the 356000km reported by the Central Intelligence
Agency (2018). While F is useful for examining geo-
graphic variability, its global integral is dubious.
Storms greatly enhance instantaneous energy fluxes
because F, depends on wind speed to the fourth power
(the square of wind stress). At each continental slope,
the windiest month was identified from the maximum
wind stress variance over a 30-day moving window.
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Energy fluxes averaged over the windiest month are an
order of magnitude greater than the 2-yr averages, for
example, F,, nearly reaches 1000 W (m coastline) ! in
some locations, such as the east coast of North America
(Fig. 11c).

Before moving on, it is worth reiterating that the exact
fate of the radiated barotropic energy flux Fj is unclear.
The numerical simulation in section 5 indicated that
near-inertial barotropic waves can generate internal
waves at the shelfbreak, but the process was quite weak
[O(10) W (m coastline) '; Fig. 10c] even after a major
storm (Ernesto), suggesting that these waves may
propagate long distances before dissipating. Basin-scale
models are needed to determine whether coastally
generated near-inertial barotropic waves primarily dis-
sipate through bottom drag in shallow seas or topo-
graphic scattering in the deep ocean.

7. Summary and discussion

The results here detail how wind generates near-inertial
internal waves along coastlines. These results are consis-
tent with previous findings (e.g., Pettigrew 1980; Millot and
Crépon 1981; Csanady 1982; Kundu et al. 1983; Baines
1986; Shearman 2005), but emphasize some new points:

o Wind-driven coastal flows can be separated into forced
and wave motions, simplifying estimates of wind work
and wave radiation.

o Wave radiation is a continuous process driven by broad-
band wind forcing, rather than isolated adjustments to
wind impulses. Mixed layer velocities resonate at f, but
waves can and do radiate at all frequencies, leading to
highly intermittent flows. Bursts of wind may enhance or
suppress existing currents depending on their phase.

o Locations without a vertical-wall coastline only gen-
erate an offshore propagating barotropic wave, which
then scatters over topography as it propagates off-
shore. The typical expression for topographic gener-
ation (27) quantifies this scattering, but decomposing
the barotropic flow into forced and wave components
is nontrivial. Topographic scattering by coastally
generated barotropic waves is a potential source of
upward propagating near-inertial energy, which has
been observed in the deep ocean (Alford 2010).

 Offshore near-inertial energy fluxes are typically less
than 100W (m coastline) '. However, energy flux de-
pends on wind speed to the fourth power (the square of
wind stress), so that a few major storms (e.g., tropical
cyclones) can produce short periods of extreme energy
fluxes that dominate long-term averages. Globally,
we estimate that CNIWs radiate 0.03 TW of barotropic
energy flux (i.e., 10% of wind work) to the deep ocean.
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The fate of this energy is completely unknown, al-
though it is available to generate near-inertial internal
waves through topographic scattering.

The application of this theory to the New Jersey
shelfbreak is somewhat disappointing because it does not
accurately predict observed near-inertial mixed layer
transport or mode-1 pressure. Further research is needed
to precisely quantify how the theory is hampered by
simplifying assumptions and input uncertainties (such as
wind stress). It also remains unclear whether the SW06
observations themselves are “‘contaminated” by remotely
generated near-inertial internal waves. Fortunately, some
of these problems can be avoided by analyzing realistic
regional simulations and observations of near-inertial
motions in an enclosed basin without tides. At present,
data from a 20-mooring array in Lake Superior are being
analyzed to further assess the theory presented here
(E. Green 2019, personal communication).
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