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COMPUTATIONALLY EFFICIENT DECOMPOSITIONS OF
OBLIQUE PROJECTION MATRICES*

JOHANNES J. BRUSTT, ROUMMEL F. MARCIA, AND COSMIN G. PETRAS

Abstract. Oblique projection matrices arise in problems in weighted least squares, signal pro-
cessing, and optimization. While these matrices can be potentially very large, their low-rank structure
can be exploited for efficient computation. We propose fast and scalable algorithms for computing
their eigendecomposition and singular value decomposition (SVD). Numerical experiments that com-
pare our proposed approaches to existing methods, including randomized SVD, are presented. In
addition, we test their accuracy on linear systems from equality constrained optimization problems.

Key words. Oblique projection matrices, Eigendecomposition, Singular value decomposition,
SVD, Randomized singular value decomposition, projections
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1. Introduction. An oblique projection matrix W € R"*" is defined by the
properties

(1.1) WW=W and W#W'.
Such matrices arise, for example, in weighted least-squares problems of the form

(1.2) b* = arg min ||D1/2(yobS — Xb)Hg,
beR™

where D € R"*" is a diagonal matrix with positive diagonal entries, X € R™*" has
full column rank, and yons € R™ is a known vector of data observations (see [6]).

The projection of the solution is given by Xb* = Wy, where W is the oblique
projection matrix

(1.3) W =X(X"DX) !X 'D.
In this paper, we consider the more general oblique projection
(1.4) W=X(Y'X)" YT,

where we assume X,Y € R™*™ have full column rank and Y "X is invertible. Such
oblique projections appear, for example, in block quasi-Newton matrices from opti-
mization (see [3]). We present the eigendecomposition of oblique (non-symmetric)
projection matrices and develop efficient algorithms to compute their singular values
and singular vectors.
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2 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

1.1. Related Work. Oblique projection matrices arise in contexts such as sys-
tems of linear inequalities, constrained optimization, and signal processing [1, 2, 4].
Stewart [14] and O’Leary [13] proposed bounds on the spectral norm of the oblique
projection in (1.3). In [1], Behrens and Scharf considered related oblique projections,
which are defined by a matrix Z, whose columns form a basis for the nullspace of
W. In particular, W in [1] is represented as W = X(XPX) !X TP, where P is
the orthogonal projection onto the orthogonal complement of the range space of Z
(i.e., PZ = 0). Instead of bounding the spectral norm of W, Behrens and Scharf
showed a general procedure how to compute the singular values of W. However, how
to compute the singular values of the oblique complement W =I- W remains open.

In this article, we derive the expressions for the singular values of V/\\/', and com-
putationally efficient expressions for the ones of W. We derive the singular values
under the assumption that Y "X may not be symmetric. In addition, we develop
explicit formulas for singular vectors and propose efficient methods for computing a
SVD, even for large n.

In numerical experiments, we compare our methods on matrices with general
Y "X to the symmetric cases of Stewart and O’Leary and Behrens and Scharf. For
large values of n, we compare our proposed algorithms to the randomized singular
value decomposition (see [9] for probabilistic algorithms), which is often used for
approximating the SVD of large matrices. Finally, we apply our factorizations to
decompose block BFGS quasi-Newton matrices from large-scale optimization (see [3]).

2. Eigendecomposition. In this section, we describe an eigendecomposition of
W and of its oblique complement, W, which is defined as

(2.1) W=I-W=I-X(Y'X)"'Y".

While Range(W) = Range(X) and Null(W) = Null(Y "), in contrast, Range(\/ﬁ)
= Null(Y") and Null(\/ﬂ\/') = Range(X). Note that W is also an oblique projection
matrix. Subsequently, observe that WX = (X(YTX)*lYT)X = X, which implies
that Range(X) is the eigenspace of W that corresponds to the eigenvalue 1. Next we
derive an expression for the remaining eigenvectors of W.

Let X = QR be the “thin” QR factorization of X, where Q) € R™*™ has
orthonormal columns and R € R™*™ is upper triangular and nonsingular. Let

Q. € R™(™=™) be a matrix whose columns are orthonormal (i.e., QIQJ_ =1) and
are orthogonal to the columns of Q|| (i.e., Q[ Q) =0). Let Q =[ Q Q.] so that

(2:2) I=QQ" =QQ +Q.Q].
In this section, we will show that the columns of the matrix
(2.3) S=[X I-XXY'X)'Y"Q.]

are eigenvectors of W. First, we show how to express its inverse explicitly through
the following lemma.

LEMMA 2.1. The square matriz S in (2.4) has the explicit inverse

(2.4) S1= { (YT)(;);YT ] .

This manuscript is for review purposes only.
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Proof. Using the expressions Q1 Q| = (I - Q D from (2.2) and XR[1 =Qy
from the QR factorization of X and labeling the right hand side in (2.4) as S™, we
see that

SS™ =X(Y'X)"'YT+ (I-X(Y'X)"'Y"Q.Q]
= XY X)T'YT+ (I-X(Y'X)'YT)(I-QQ))
=1-QQ +X(Y'X)'Y'QQ/
=1-QQ +X(Y'X)'Y'XR;'Qf
=1
Thus, the expression in (2.4) is the inverse of S in (2.3). |

Having defined S and its inverse, we can now express an eigendecomposition of W
and W.

THEOREM 2.2. The oblique projection matriz W = X(Y TX)"YY T has an eigen-
decomposition of the form

(2.5) W =SAS™,
where S and S~ are defined in (2.3) and (2.4), respectively, and

(2.6) A= {Im On_m} .

Moreover, the obliqgue complement W =I1-W has an eigendecomposition of the form

2.7) vszs[Om . }sl.

Proof. The proof follows from straightforward computations. 0

Note that the decompositions from Theorem 2.2 are not unique because replacing
Q. by, say Q Uq, where Uq € R(=m)x(n=m) ig any orthogonal matrix, yields an
eigendecomposition with different eigenvectors.

3. Singular Value Decomposition. In this section, we first describe how to
obtain the singular values of W and W. Then given the singular values, we demon-
strate how singular vectors can be computed. Finally, we show the relationships

between the singular vectors of W and W. Throughout the article we will assume
that (n —m) > m.

3.1. Singular Values of W and W. To compute the singular values of W and
W, we will use the matrix

(3.1) Q=Q/wWQ,
where ©Q € R™*("=™) "and whose singular value decomposition is
(3.2) Q =Uql'Vy,

with Ug € R™*X™ and Vg € R—m)x(n=—m) 4.0 orthogonal and T' € Rmx(n—m) g
rectangular diagonal with diagonal entries v > v2 > -+ > 7, > 0. We now explicitly
define the singular values of W and W.
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THEOREM 3.1. The singular values of the oblique projection matrix W from (1.4)
are

(3.3)

1++2 1<i<m,
g; =
otherwise,

while the singular values of the oblique complement W=I-W from (2.1) are

\/1—&—7 1<i<m,

(3.4) 0, = m+1<i<n-—-m

0 otherwise,

where the ;s in (3.3) and (3.4) are the non-zero singular values of Q from (3.2).

Proof. First, note that Q wQ = QTX(YTX) 1YTXRH_ = I since Q) =

XRT. Then, using the orthogonal matrix Qo = [QUa QiVa], we have
L, I E 0 -T
(3.5) QLWQq = { o 0 } and QLWQgq = [ o L. ] )

Because eigenvalues are invariant with respect to orthogonal transformations, we de-
duce that the nonzero eigenvalues of WW T are the diagonal elements of the diagonal
matrix I, + TT . Similarly, the non-zero eigenvalues of W W are the diagonal ele-
ments of I,,_,,, + T'' . It follows that the non-zero singular values of W are /1 + ~7,
for 1 <4 < m, and the non-zero singular values of W are /142, for 1 < i < m,
and 1 with multiplicity n — 2m, which completes the proof. 0
Note that the proof from Theorem 3.1 explicitly defines the orthogonal matrix Qg
and is consistent with the analysis in [11, Problem 2.6.P.18].

Observe that Theorem 3.1 shows that W and W share the non-zero singular
values o; = /1 +~7, for 1 <i < m, which implies that

Wiz =01 = /147 = [[W],

but
K (W) 9 9y (W),
1 Om
where k(-) is the condition number of a matrix.

3.2. Singular Vectors. In addition to the singular values, we also develop repre-
sentations of the singular vectors of oblique projections. Let ¥ = diag({c;}) € R™*™
be the diagonal matrix of the singular values of W, where o; is defined in (3.3).

Singular vectors of W and W are given by the following theorems.

THEOREM 3.2. A reduced singular value decomposition of W in (1.4) is given as

(3.6) W=UxXV',
where
(3.7) U=QUq and V=Y(X'Y)'XTQUax",

with U,V € Rvm,
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Proof. Note that U'U = UgQ,/ Q| Ug =1, and from (3.5)
V'V = Z70LQWW'QUeE ™ = Z7'I+TTHE™! = L

Therefore, U and V have orthonormal columns. Then, using the expressions in (3.7),
we obtain

USV! = Q[ X(Y' X)7'YT =X(Y'X)7'Y' =W

since X = Q| R, which demonstrates the desired result. ]

We note that by the definition of U and V in (3.7), the columns of U form an
orthonormal basis for Range(X) and the columns of V form an orthonormal basis for
Range(Y). In addition, we observe that

USV =W =WW=UXZV'UZV',
which means that
(3.8) Viu=x"1=U"V.

A singular value decomposition of W is given as follows. We assume that singular
vectors U and V of W are available (cf. Theorem 3.2).

THEOREM 3.3. A full singular value decomposition of\/ﬂ\f in (2.1) is given as

o o > 2
(3.9) W=USV =[0, 0; V| L, om vi |,
Ome UT
where
(3.10a) U, = (V="' -U)D !, U, =Qu,
(310b) vl = (V - Uzil)Dia {}2 - QLa
with ﬁ = [ ﬁl ﬁz ] S Rnx(nfm% ‘Af = [ Vl {\/2 ] € Rnx(nfm)’ and g] =

diag(%, 1, _om) € RO=m)x(n=m) " 4nd where QL € R (n=2m) 4o o matriz whose col-
umns form an orthonormal basis for the orthogonal complement of the space spanned
by the columns of X and Y. The diagonal matriz D € R™*™ satisfies

D2=1, -2

Proof. We first verify that U and V have orthonormal columns. Since the columns
of U and V form an orthonormal basis for Range(X) and Range(Y), respectively, it
follows that

U/U,=D ' (= 'vT-UuNHQ, =0,
V/V,=D (VT —x"'u"HQ, =0,

from the definition of QL. Now, recall VI U = 7! = UTV from (3.8). Therefore,

UG, =D (= 'VI —U)(VvE'1-UD ' =D (-2 4+D)D ! =1,
VIiVi=D 'V - U )(Vv-Us )D '=D (I-2%D' =1

This manuscript is for review purposes only.
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Since, by definition, U] Uy = VIV, = QI Q. = I, we conclude that UTU =T and
ViV=L A - ~

Noting that I = V1V1'— + QJ_QI +UUT, and using the definition of U; and V;
n (3.10a) and (3.10b), respectively, we have

08V = 0,597 + Q.Q]

=U; =V, +1-UUT -V, V]

=I1-UU" +(U;= - V)V/

=I-UU" +((V-UZ)—(V-UZH) D}V -x"'UT)

=1-UU'-US(I-=23)D?(V -x7'U")

=1-UxV'

=W,
which is the desired result. ]
We note that in practice, we do not explicitly compute ﬁg = \72 = Q 1 because they
are large n x (n — 2m) matrices.

3.3. Practical implementation. In our implementation for computing the sin-
gular value decomposition of W and W, we do not compute the matrix € in (3.1)
because it requires explicitly computing the orthogonal complement matrix Q. In-
stead, to obtain the singular values, we compute the following. First, we perform the
Cholesky factorization of X "X to obtain R since

(3.11) X'X=R[Q QR =R|Ry.
Next, by noting that
QWW'Q =R(Y'X) "(Y'Y)X"Y) 'R/,

we can obtain the matrix of singular values X from the eigendecomposition of the
small m x m matrix

R (Y X)"(Y'Y)X'Y) 'R = UaZ?Uy,

Algorithm 3.1 describes our approach (Reduced Oblique Singular Value Decomposi-
tion) for computing a reduced SVD of W in (3.6). In particular, we compute singular

vectors of W using (3.7) from Theorem 3.2 by noting that Q| = XRH_1. Algorithm

3.1 can be used to efficiently compute a reduced SVD of W using (3.10a) and (3.10b)
from Theorem 3.3. Excluding the singular vectors in Q 1, Algorithm 3.2 describes
our approach for computing a reduced SVD of W. Algorithm 3.2 does not compute
ﬁg = Q 1= \72 because this matrix is large and potentially very expensive to com-
pute. Instead, note that the SVD of W in Theorem 3.3 is defined by the orthogonal
projection Q n Q 1= U2V2 , which we describe how to economically compute in Sec.
4.2.

4. Numerical Experiments. This section describes five sets of numerical ex-
periments that compare our proposed algorithms to existing methods:
1. Singular values of W from [1].

2. Singular value decomposition of W and W =1 — W from [1].

This manuscript is for review purposes only.
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Algorithm 3.1 Reduced Oblique Singular Value Decomposition (RObSVD) of W

1: Tnput:X € R"™*™, Y € R,

2: R Ry = X"X; {Cholesky factorization}

3 UgX?Uy, = R (YTX)*l(YTY)(XTY)’lRR; {Eigendecomposition }
4 U= XRFUQ;

5 V=YX'Y)'X"Uux}

Algorithm 3.2 Reduced Oblique Singular Value Decomposition (RObSVD) of W

Input:X € R**™ Y € R"*™;

Compute U, X and V using Algorithm 3.1;
D=+I-27%

U, =(VE!1-U)D~

1.
Vi=(V-Uz"')D

3. Comparisons with the randomized singular value decomposition [9].
4. Comparisons of the spectral norm ||[W/||z with the bound from [14] and [13].
5. Eigendecomposition and SVD of block quasi-Newton matrices from [3].

The algorithms are implemented in MATLAB and have been tested in MAT-
LAB R2014a (64 bit) and MATLAB R2018b. The codes are available at https://
github.com/johannesbrust/AOP. The numerical experiments are carried out on a
Dell Precision T1700 desktop computer with Intel i5-4590 CPU @ 3.30GHz x 4 pro-
cessors, 8 GB RAM, and Linux Ubuntu 14.04, 64-bit, and a Mac Book Pro laptop
with Intel Core i7 CPU @ 2.6 GHz processor, 32 GB RAM, and MacOS High Sierra
operating system.

4.1. Experiment I. This experiment compares the performance of our proposed
method (Alg. 3.1), the built-in MATLAB function, svds (W,m), which computes the m
largest singular values of W, and an approach developed by Behrens and Scharf [1],
which we describe in Appendix A.

We compare the performance of our proposed Oblique SVD approach (Alg. 3.1)
with the original Behrens and Scharf approach (Alg. A.1) and the modified Behrens
and Scharf approach (Alg. A.2) on randomly generated matrices with various dimen-
sions. In the experiments, the full rank matrices X € R**™ and Z € R"*("=") are
generated by randomly drawing from a zero-mean normal distribution. Moreover,
Y = (I-Z(Z"2)7'Z")X is computed as an input for Alg. 3.1 and Alg. A.2. The
test matrices have rank m = 150 and dimensions n ranging from 800 to 5,000. For
each n, the experiment was performed 10 times with different randomly generated
matrices each time. To compare the accuracy of the three approaches, we define the
measure

(4.1)

where the o}’s are the singular values computed using the built-in svds MATLAB
function and the o;’s are the singular values computed using the various algorithms.
The results of the experiment are reported in Tables 1 and 2.
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Time (in sec.)
n Behrens Modified MATLAB
RObSVD and Scharf Beh-Sch svds
800 0.0278 0.6636 0.0266 1.8371
1000 0.0284 0.8991 0.0269 2.5957
2000 0.0304 2.2598 0.0277 9.9797
3000 0.0325 3.9002 0.0291 18.4856
4000 0.0346 5.7370 0.0304 31.4324
5000 0.0376 7.9405 0.0316 46.4987

Table 1: Experiment I. Computational times (in seconds) of our proposed Reduced
Oblique SVD approach (Alg. 3.1), Behrens and Scharf’s approach in Alg. A.1, the
modified Behrens and Scharf (Modified Beh-Sch) approach in Alg. A.2; and the built-
in MATLAB svds function for computing the singular values of W. For each n, the
experiment was performed 10 times with different randomly generated matrices each
time. The average computational times among the 10 experiments are reported. Note
that Alg. 3.1 and Alg. A.2 compute the singular values the fastest while the built-in
MATLAB function takes the longest.

Average Error Maximum Error
n Behrens Modified Behrens Modified
RODSVD | ,11d Scharf | Beh-Sch | ROPSVD | 414 Scharf | Beh-Sch
800 | 6.865e-11 | 4.383e-06 | 8.988e-11 | 2.830e-10 | 3.450e-05 | 4.164e-10
1000 | 8.058e-07 | 6.661e-04 | 1.888e-06 | 6.438e-06 | 5.271e-03 | 1.509e-05
2000 | 4.906e-11 1.306e-06 | 9.044e-11 1.982e-10 | 5.929e-06 | 5.058e-10
3000 | 9.923e-10 | 9.226e-04 | 3.434e-09 | 7.386e-09 | 7.334e-03 | 2.690e-08
4000 | 6.672e-11 | 5.758e-06 | 3.905e-11 | 4.456e-10 | 4.065e-05 | 2.457e-10
5000 | 2.724e-09 | 6.964e-06 1.041e-09 | 2.148e-08 | 5.037e-05 | 7.483e-09

Table 2: Experiment I. Comparison using the error metric in (4.1) between our pro-
posed Reduced Oblique SVD approach (Alg. 3.1), Behrens and Scharf’s approach in
Alg. A.1, and the modified Behrens and Scharf (Modified Beh-Sch) approach in Alg.
A.2 for computing the singular values of W. We use the singular values from the
built-in MATLAB function svds as the benchmark values. For each n, the experi-
ment was performed 10 times with different randomly generated matrices each time.
The average and maximum error values (among the 10 experiments) are reported.
Note that the singular values computed from Alg. 3.1 and Alg. A.2 are closer to the
benchmark than those from Alg. A.1.

4.2. Experiment II. In this experiment, we compute reduced SVD factoriza-
tions of W and W using Algorithms 3.1 and 3.2, respectively. For comparisons we
relate them also to the built-in MATLAB function svds. The matrices X € R"*™ and
Y € R™™*™ are drawn randomly from a zero-mean normal distribution. To compute
the error for W, we use the metric

(4.2) Error = |[W —UXV' ||,

where the matrices U, 3, and V are computed using Alg. 3.1. To compute the error
for W, we use the metric

(4.3) Error = |[W — (U1 SV] + U, V]|,

This manuscript is for review purposes only.
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n Time Average Error Maximum Error
RObSVD svds RObSVD svds RObSVD svds

800 0.0079 0.3712 | 4.834e-09 | 3.769e-12 | 1.870e-08 | 1.370e-11
1000 0.0076 0.6582 | 4.612e-08 | 4.499e-12 | 1.873e-07 | 1.629e-11
2000 0.0086 3.4918 | 9.858e-08 | 6.898e-12 | 4.996e-07 | 1.599%e-11
3000 0.0092 7.9335 | 1.564e-06 | 6.259e-11 | 1.218e-05 | 1.519e-10
4000 0.0098 14.1811 | 1.823e-07 | 2.383e-10 | 1.417e-06 | 1.590e-09
5000 0.0099 21.2731 | 9.427e-09 | 6.250e-11 | 2.288e-08 | 3.195e-10

Table 3: Experiment II.A. Comparison of the performance of our proposed Reduced
Oblique SVD (RObSVD) approach (Alg. 3.1) to the built-in MATLAB function svds
for computing an SVD of W, on moderately-sized matrices (m = 150 and 800 < n <
5,000). For each n, the experiment was performed 10 times with different randomly
generated matrices each time. The average computational times, average error values,
and maximum error values (among the 10 experiments) are reported, where the error
is measured using (4.2). Note that our proposed approach uses significantly less time
than svds.

from the SVD of W in Theorem 3.3 (see (3.9)). Since Alg. 3.2 does not compute Q.,
we need a way of forming the matrix UsVy = Q. QI, which is the projection matrix

onto the space orthogonal to span of the columns of X and Y. Thus, we define the
matrix G = [ X Y | € R"*2™ and note that

U,V), =Q.Q] =1-G(G'G)'G".

Experiment II is divided into two sub-experiments: Experiment II.A is for mod-
erately sized matrices (m = 150 and 800 < n < 5,000), while Experiment II.B is for
large-scale matrices (m = 150 and 7,500 < n < 300,000). For each n, we repeated the
experiment 10 times with different randomly generated matrices each time and report
the average and maximum errors. The results for Experiment II.A for W and W
are reported in Tables 3 and 4, respectively. For Experiment I1.B, since W € R™*"
does not fit into MATLAB’s memory when its dimension becomes large, we modify
our metric for computing errors. In particular, a fixed random number of columns,
7, is used in the comparisons of the form |[UXV T — W||r, instead of comparing all
columns. Specifically, the errors are computed by the modified metric

(4.4) Error = ||(UEV' — W)E, ||,

where the columns of the matrix E,, € R"*" are r randomly selected columns of I,
and where the matrices U, 3, and V are computed using Alg. 3.1 for W and Alg.
3.2 for W. The results of the experiments are reported in Table 5.

4.3. Experiment III. In this experiment we compare our proposed algorithms
to the randomized SVD (r-SVD) from Halko et al. [9] described in Appendix B.
In particular we use an implementation available in the public domain [12]. The
experiment is divided into two parts. In Experiment III.A we compare Algorithms
3.1 and 3.2 to the built-in MATLAB function svds and the r-SVD function rsvd. The
problems in Experiment III.A are moderately sized (m = 20 and 800 < n < 5000).
We use deterministic test matrices from Higham [10]. In particular we select the first

This manuscript is for review purposes only.
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n Time Average Error Maximum Error

RObSVD svds RObSVD svds RObSVD svds
800 0.0243 0.0587 | 4.837e-09 | 3.315e-12 | 1.871e-08 | 1.049e-11
1000 0.0289 0.1051 | 4.615e-08 | 1.103e-11 | 1.874e-07 | 6.119e-11
2000 0.0594 2.2020 | 9.861e-08 | 7.077e-12 | 4.998e-07 | 1.828e-11
3000 0.1060 9.0947 | 1.565e-06 | 8.491e-11 | 1.219e-05 | 6.012e-10
4000 0.1836 22.4527 | 1.824e-07 | 1.229e-11 | 1.418e-06 | 5.489e-11
5000 0.2556 44 . 7147 | 9.428e-09 | 8.417e-12 | 2.290e-08 | 2.200e-11

Table 4: Experiment II.A. Comparison of the performance of our proposed Reduced
Oblique SVD (RObSVD) approach (Alg. 3.2) to the built-in MATLAB function svds
for computing an SVD of ‘/7\\7, on moderately sized matrices (m = 150 and 800 < n <
5,000). For each n, the experiment was performed 10 times with different randomly
generated matrices each time. The average computational times, average error values,
and maximum error values (among the 10 experiments) are reported, where the error
is measured using (4.2). Note that our proposed approach uses significantly less time
than svds.

n RObSVD(W) RObSVD(W)
Time Avg. Err. Max. Err. Time Avg. Err. Max. Err.
7500 | 0.0204 | 1.009e-07 | 8.013e-07 | 0.0350 | 9.750e-08 | 7.741e-07
10000 | 0.0228 | 2.195e-10 | 8.584e-10 | 0.0418 | 2.228e-10 | 8.825e-10
50000 | 0.0753 | 5.688e-10 | 2.130e-09 | 0.1562 | 5.711e-10 | 2.161e-09
100000 | 0.1395 | 5.637e-10 | 2.541e-09 | 0.2963 | 5.634e-10 | 2.543e-09
200000 | 0.2606 | 9.443e-10 | 3.320e-09 | 0.5756 | 9.471e-10 | 3.343e-09
300000 | 0.3764 | 2.625e-10 | 9.264e-10 | 0.8654 | 2.610e-10 | 9.211e-10

Table 5: Experiment.II.B. The performance of our proposed Reduced Oblique S\//P
(RObSVD) approaches (Alg. 3.1) and (Alg. 3.2) for computing an SVD of W and W,
repectively, on large-scale problems (m = 150 and 7,500 < n < 300, 000). For each n,
the experiment was performed 10 times with different randomly generated matrices
each time. The average computational times and average and maximum error values
using (4.4) are reported. The errors are computed by comparing r = 8 randomly
selected columns of W and \/7\V, respectively with the factorizations from Alg. 3.1 and
Alg. 3.2. Note that the factorizations are obtained within one second and the average
errors are relatively small.

m columns of a Chebyshev Vandermonde-like matrix defined by

(i-1)( - 1>w> |

A;; = cos
n

In MATLAB R2018b this matrix is generated via the command A=gallery(‘orthog’,
n,-1). Subsequently, we define X = A[ e; e --- e, |, where e; are columns of
the identity matrix. Y is defined as DX, where the elements of the diagonal matrix D
are the reciprocals of the squared row lengths of X. The results of the factorizations
of W and W for moderately sized problems are summarized in Table 6 and Table 7,
respectively.

In Experiment I11.B we compare Algorithms 2 and 3 to the r-SVD on large-
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n Time (in sec.) Error
RObSVD svds r-SVD RObSVD svds r-SVD

800 0.0555 0.2732 | 0.0284 | 2.6322e-12 | 6.5832e-12 | 6.7252e-13
1000 0.0042 0.0453 | 0.0046 | 1.6636e-12 | 5.0556e-13 | 1.1908e-12
2000 0.0006 0.3521 | 0.0135 | 1.2446e-12 | 3.4958e-11 7.388e-13
3000 0.0007 0.8625 | 0.0216 | 2.5664e-12 | 8.4791e-12 6.771e-13
4000 0.0028 1.1939 | 0.0375 | 3.3174e-12 | 5.9945e-11 | 8.3006e-13
5000 0.0007 2.3692 | 0.0588 | 1.8405e-12 | 6.0833e-11 | 6.2313e-13

11

Table 6: Experiment III.A. Comparison of the performance of our proposed Reduced
Oblique SVD (RObSVD) approach (Alg. 3.1) to the built-in MATLAB function svds
and the randomized SVD (1-SVD) for computing the SVD of W on moderately-sized
matrices (m = 20 and 800 < n < 5,000). The test matrices are deterministically
generated from columns of a Chebyshev Vandermonde-like matrix. The parameter
for the r-SVD is set to p = m = 20. The svds function takes the longest computational
times while all errors are all comparably small.

n Time (in sec.) Error
RObSVD svds r-SVD RObSVD svds r-SVD

800 0.0638 0.0549 0.4494 | 2.6320e-12 | 7.1624e-13 | 1.4599e-12
1000 0.0086 0.1215 0.7673 | 1.6668e-12 | 7.8639e-13 | 1.4513e-12
2000 0.0102 2.2008 8.8362 | 1.2580e-12 | 1.4958e-12 | 2.0955e-12
3000 0.0214 8.9106 33.4525 2.5619e-12 | 1.0375e-12 | 1.8820e-12
4000 0.0444 18.4744 83.9922 3.3205e-12 | 9.6857e-13 | 2.0762e-12
5000 0.0913 44.4121 | 165.4607 | 1.8421e-12 | 1.0600e-12 | 2.2228e-12

Table 7: Experiment III.A. Comparison of the performance of our proposed Reduced
Oblique SVD (ObSVD) approach (Alg. 3.2) to the built-in MATLAB function svds
and the randomized SVD (r-SVD) for computing the SVD of W on moderately-sized
matrices (m = 20 and 800 < n < 5,000). The test matrices are deterministically
generated from columns of a Chebyshev Vandermonde-like matrix. The parameter
for the r-SVD is set to p = n — m. In this experiment the computational times of
the r-SVD significantly increases because the parameter p becomes relatively large. In
contrast, the computational times for our proposed method remain consistently low.

scale problems (m = 20 and 7500 < n < 1000000). For these problems, the built-
in MATLAB function cannot be used because of out-of-memory errors and excessive
compute times, which is why it is omitted in the comparisons. The matrices X and
Y are generated by drawing randomly from a zero-mean normal distribution. The
experiments are repeated 10 /‘Eimes and average values are reported. The results of
the factorizations of W and W for large problems are summarized Table 8 and Table
9, respectively.

4.4. Experiment IV. Stewart [14] and O’Leary [13] analyzed the spectral norm
of the oblique projection in (1.3) and proposed the following bound:

(4.5) |X(XTDX)'X D[, <p! = ( min inf, (UI))_l,
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n Time (in sec.) Average Error Maximum Error
RObSVD | r-SVD | RObSVD r-SVD RObSVD r-SVD

7500 0.0007 0.0093 | 2.966e-10 | 1.638e-13 | 2.359e-09 | 5.673e-13
10000 0.0006 0.0105 | 9.112e-12 | 2.461e-13 | 2.863e-11 | 6.565e-13
50000 0.0046 0.0770 | 1.054e-12 | 6.416e-14 | 3.53be-12 | 1.197e-13
100000 0.0108 0.1761 | 1.672e-12 | 1.5567e-13 | 5.234e-12 | 2.616e-13
200000 0.0211 0.3694 | 8.609e-12 | 2.461e-13 | 3.700e-11 | 7.098e-13
300000 0.0320 0.5885 | 7.610e-10 | 4.227e-13 | 4.493e-09 | 1.482e-12
500000 0.0515 1.1112 | 6.238e-12 | 1.788e-13 | 2.168e-11 | 3.098e-13
1000000 0.0900 2.5642 | 7.095e-13 | 9.671e-14 | 2.210e-12 | 2.750e-13

Table 8: Experiment III.B. Comparison of the performance of our proposed Reduced
Oblique SVD (RObSVD) approach (Alg. 3.1) to the randomized SVD (1-SVD) for
computing the SVD of W on large-scale matrices (m = 20 and 7500 < n < 1000000).
For each n, the experiment was performed 10 times with different randomly generated
matrices each time. The errors are computed using (4.4) by comparing r = 8 randomly
selected columns of W. The parameter for the r-SVD is set to p = m = 20. The
average and maximum errors for r-SVD are slightly lower than those for ObSVD.
However, the computational times for r-SVD are significantly higher.

n Time (in sec.) Average Error Maximum Error

RObSVD | r-SVD | RObSVD r-SVD RObSVD r-SVD
7500 0.0021 0.0119 | 3.032e-10 | 3.406e+00 | 2.412e-09 | 3.473e+00
10000 0.0021 0.0134 | 9.169e-12 | 3.460e+00 | 2.900e-11 | 3.570e+00
50000 0.0172 0.0937 | 1.052e-12 | 3.453e+00 | 3.512e-12 | 3.605e+00
100000 0.0390 0.2230 | 1.675e-12 | 3.529e+00 | 5.244e-12 | 3.716e+00
200000 0.0756 0.4593 | 8.603e-12 | 3.441e+00 | 3.699e-11 | 3.536e+00
300000 0.1171 0.7279 | 7.614e-10 | 3.454e+00 | 4.497e-09 | 3.581e+00
500000 0.1943 1.4901 | 6.236e-12 | 3.462e+00 | 2.167e-11 | 3.556e+00
1000000 0.5561 3.1999 | 7.105e-13 | 3.432e+00 | 2.211e-12 | 3.575e+00

Table 9: Experiment ITI.B. Comparison of the performance of our proposed Reduced
Oblique SVD (RObSVD) approach (Alg. 3.2) to the randomized SVD (1-SVD) for
computing the SVD of \/7\V, on large-scale matrices (m = 20 and 7500 < n < 1000000).
For each n, the experiment was performed 10 times with different randomly generated
matrices each time. The errors are computed using (4.4) by comparing » = 8 randomly
selected columns of W. The parameter for the r-SVD is set to p = m = 20. The
computational times for r-SVD are slightly higher than those for our proposed method.
However, the average and maximum errors for r-SVD are significantly higher because

pkLn—m.

where infy (Uj) symbolizes the smallest non-zero singular value of any submatrix
Uj; of an orthonormal basis U € R™ ™ to X. In this experiment, we compute the
largest singular value oy obtained from Alg. 3.1 and compare it to the bound in (4.5).
Obtaining p explicitly is computationally intensive because the SVD for all possible
submatrices U; are computed. For this reason the size n of the matrices used in
the comparisons is limited to small dimensions. However note that computing the
spectral norm for large dimensions of n can be practically done with Alg. 3.1 (see
Experiment I). The results of the experiment are reported in Table 10.
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n | m p o1 o1 |o1 — 71

6 2 5.8085e+01 1.1265e+00 | 1.1265e+00 | 2.2204e-16
7 2 1.7034e+02 1.1395e+00 1.1395e+00 | 2.2204e-16
8 2 6.9771e+01 1.4313e+00 1.4313e+00 | 4.4409e-16
9 3 5.9314e+03 | 1.1560e+00 | 1.1560e+00 | 0.0000e+00
10 3 3.0740e+02 | 1.6386e+00 | 1.6386e+00 | 0.0000e+00
11 3 8.7337e+03 1.9385e+00 1.9385e+00 1.1102e-15
12 4 1.5304e+03 | 1.5533e+00 | 1.5533e+00 | 2.2204e-16
20 6 1.6388e+06 | 1.3767e+00 | 1.3767e+00 | 0.0000e+00

Table 10: Experiment IV. Comparison of the bound p from (4.5) with the spectral
norm o7 from Alg. 3.1 and the built-in svd MATLAB function (61). For each pair
(n,m), the experiments are repeated 10 times, and one representative result is re-
ported. We note that the bound p is generally not tight.

4.5. Experiment V. In this experiment we compute an eigendecomposition and
an SVD of block BFGS quasi-Newton matrices found in [3] and described in Appendix
C. The data matrices X and Y correspond to the matrices Sy and Yy, respectively,
in (2.1) and the scalar v corresponds to ~; in (3.12) in [3]. In this experiment,
X,Y, and v in the definition of H; from (C.1) are generated by the optimization
algorithm LTRSC-LEC (cf. Brust et al. [2]), which is available in the public domain:
https://github.com/johannesbrust/LTR_LEC. The optimization algorithm is ap-
plied to 53 large-scale problems from the CUTEst problem collection of Gould et al.
[8] and stopped after k = 10 iterations to store the matrices X = S1p and Y = Y9
and the scalar v = 719. In order to compute the products Q LQI we use the same
approach as in Sec. 4.2. The results of the experiments are reported in Table 11.
The error is computed like in (4.3) using Q1 Q], and the pairs (n,m) vary for each
problem between 50 < n < 10000 and 1 < m < 5.

Eigendecomposition SVD
Problem " m Time Error Time Error

ARWHEAD 5000 1 0.0444 2.7763e-13 0.0470 5.5634e-13
BDQRTIC 5000 1 0.0498 1.9232e-12 0.0510 1.7542e-12
BOX 10000 1 0.0233 1.2860e-09 0.0095 1.0288e-09
BROYDNT7D 5000 4 0.0477 4.1295e-11 0.0398 4.1270e-11
BRYBND 5000 4 0.0523 2.0564e-10 0.0638 2.0463e-10
CRAGGLVY 5000 4 0.0510 9.4554e-10 0.0602 9.3106e-10
CURLY10 10000 4 0.0111 8.0504e-11 0.0114 4.7789%e-11
CURLY?20 10000 5 0.0065 2.9187e-08 0.0011 1.0684e-08
CURLY30 10000 4 0.0039 8.3556e-08 0.0008 6.8244e-08
DIXMAANE 3000 4 0.0224 1.1637e-13 0.0252 4.1552e-14
DIXMAANF 3000 4 0.0246 5.3705e-13 0.0221 3.9153e-13
DIXMAANG 3000 5 0.0200 1.3656e-11 0.0214 1.3645e-11
DIXMAANH 3000 5 0.0201 9.52b1e-12 0.0213 9.5145e-12
DIXMAANI 3000 4 0.0197 1.7801e-13 0.0218 1.5156e-13
DIXMAANJ 3000 4 0.0199 4.1461e-12 0.0209 4.2514e-12
DIXMAANK 3000 4 0.0191 1.9109e-10 0.0204 1.9144e-10
DIXMAANL 3000 5 0.0203 2.1932e-11 0.0208 2.1928e-11
DIXON3DQ 10000 4 0.0097 0.0000e-00 0.0078 0.0000e-00

Continued on next page
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Eigendecomposition SVD

Problem " m Time Error Time Error
DQDRTIC 5000 2 0.0446 4.3788e-12 0.0455 5.2888e-13
DQRTIC 5000 4 0.0485 3.7456e-05 0.0464 1.4585e-05
EDENSCH 2000 4 0.0200 5.2502e-11 0.0206 5.2442e-11
EIGENALS 2550 4 0.0196 8.1763e-10 0.0199 5.9582e-11
EIGENBLS 2550 4 0.0156 4.0069e-12 0.0176 4.1260e-12
ENGVALI1 5000 3 0.0444 2.2560e-11 0.0492 2.2534e-11
EXTROSNB 1000 3 0.0147 3.4905e-12 0.0117 3.3191e-12
FLETCHCR 1000 2 0.0012 1.4978e-10 0.0015 4.4783e-12
FMINSRF2 5625 5 0.0037 1.7530e-13 0.0023 2.4287e-14
FREUROTH 5000 3 0.0388 3.4666e-08 0.0410 3.4687e-08
GENHUMPS 5000 4 0.0486 6.4212e-11 0.0568 4.5296e-11
JIMACK 3549 5 0.0395 1.2783e-09 0.0438 1.2778e-09
LIARWHD 5000 1 0.0644 1.1383e-09 0.0623 6.4407e-11
MSQRTALS 1024 4 0.0168 3.0400e-11 0.0164 2.3044e-11
MSQRTBLS 1024 4 0.0032 1.4819e-11 0.0017 1.4756e-11
NCB20 5010 5 0.0034 4.2942e-12 0.0023 4.0284e-12
NCB20B 5000 4 0.0390 3.0889e-10 0.0377 2.0352e-10
NONCVXU2 5000 4 0.0484 8.6949e-13 0.0532 8.4630e-13
NONCVXUN 5000 5 0.0495 1.3930e-11 0.0611 1.3625e-11
NONDIA 5000 1 0.0503 1.7467e-06 0.0575 1.1639e-06
NONDQUAR 5000 2 0.0506 9.9618e-14 0.0557 7.8464e-14
POWELLSG 5000 2 0.0477 5.4592e-13 0.0551 2.1225e-13
POWER 10000 3 0.0091 3.4627e-01 0.0104 3.8937e-03
QUARTC 5000 4 0.0408 3.7456e-05 0.0500 1.4585e-05
SCHMVETT 5000 4 0.0497 2.0139%e-12 0.0594 1.9257e-12
SINQUAD 5000 1 0.0492 4.9521e-11 0.0567 9.0686e-11
SPARSINE 5000 5 0.0493 7.9502e-07 0.0580 3.9332e-07
SPARSQUR 10000 4 0.0396 2.0341e-11 0.0105 1.9669e-11
SPMSRTLS 4999 5 0.1937 2.5457e-10 0.0527 2.5444e-10
SROSENBR 5000 1 0.0473 8.3040e-12 0.0617 8.1919e-12
TESTQUAD 5000 4 0.0499 1.7930e-04 0.0591 1.6347e-07
TQUARTIC 5000 1 0.0470 9.7513e-12 0.0554 7.7932e-12
TRIDIA 5000 5 0.0482 4.0554e-07 0.0596 1.5046e-07
VAREIGVL 50 5 0.0078 4.4573e-11 0.0089 4.4563e-11
WOODS 4000 2 0.0387 3.0907e-09 0.0426 2.3302e-09

Table 11: Experiment V (continued). Computational time and error for computing
the eigendecomposition and SVD of H from 53 problems of the CUTEst optimization
problem collection using our proposed methods, Alg. C.1 and Alg. C.2. Note that our
proposed approaches compute the factorizations quickly and accurately.

5. Conclusions. In this article we develop eigenvalue and singular value decom-
positions of oblique projection matrices. Algorithms for efficiently computing these
factorizations are proposed, and their implementations are tested and compared on
moderately and large-scale matrices. The proposed methods compare well with both
standard deterministic factorizations as well as with randomized methods. We apply
the factorizations to decompose block quasi-Newton matrices arising in 53 large-scale
problems from a benchmarking collection of optimization problems. The numerical
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experiments show that our proposed approaches are fast, efficient, and accurate.

Appendix A. The approach of Behrens and Scharf. In [1], Behrens and
310 Scharf proposed an approach for computing the singular values of W = X(Y "X)1Y |}
for a specific choice of Y, namely Y = P X:

(A1) W=XX"PX)'X'P,

where P is matrix that projects onto the orthogonal complement of Range(Z) and Z €
R™*¢ has full-column rank. In particular, if Q € R"** is a matrix whose columns form

315 an orthonormal basis for Range(Z), then P =1—Z(ZTZ)"'ZT =1—-QQ". Behrens
and Scharf use the principal angles between Q) (from the “thin” QR factorization
X =QRy) and Q. Specifically, if QH—Q =UXVT is the SVD of QH—Q and g; is the
i*® singular value in 3, then the principal angles, «;, are defined by cos(«;) = &; (see
[7]). Observe that W from (A.1) satisfies

320 WW' =X(X"PX)" !XT
=Q(QPQ)~'Q]
= QU -5)07)'qf
-QUI-=°)'U7q],

325 so that the singular values of W are given by

1 1
- 1 — ~,2 -1 f— f— .
7i (1=a7) 1—cos?(ey;)  sin(oy)

Algorithm A.1 describes the approach of Behrens and Scharf for computing the sin-
gular values of W.

Algorithm A.1 Singular Values of W (Behrens and Scharf)

Input:X c Rnxm7 7 c Rnx(n—m);

RWRH = X X; {Cholesky factorization}
R'R = Z"Z; {Cholesky factorization}
Q= XRF;
Q ~=~ZR71;

Uxv' = N; {Singular value decomposition}

72 = (I-%°) 1,

Note that Alg. A.1 requires computing both Q| and Q. Because forming Q
330 can be computationally expensive when the nullspace of W in (A.1) is large, we
propose a modification of the Behrens and Scharf approach, which does not require
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the computation of Q. Specifically, consider

X' YR* -Q/ YR, !
= Q[PTXR[1
= Q[(I-QQ"XR;"
=1-Q[QQ'Q
—U(1-H07.

Ry

Taking the inverse of both sides yields
Ry(X"Y) 'R =UI - 10T = U207,

and therefore, the singular values of W are efficiently computed from an eigendecom-
position of the small m x m matrix R;(XTY)~ IRW Algorithm A.2 describes this
modifed approach of Behrens and Scharf for computing the singular values of W.

Algorithm A.2 Singular Values of W (Modified Behrens and Scharf)
1: Tnput:X € R™™ Y = (I - Z(Z7Z)~127)X € R,
22 R Ry = XTX {Cholesky factorization}
3 UR?UT = R |(XTY)™ 1R {Eigendecomposition}

Appendix B. Randomized SVD. An alternative way to approximately factor
large matrices is the randomized Singular Value Decomposition (r-SVD) from, among
others, Halko et al. [9]. These probabilistic factorizations are based on two stages. In
the first stage an approximate orthonormal basis to the range of the target matrix,
say W € R™ " is computed. This is achieved through a technique called sampling
(sketching). The sampling technique is based on a ‘small’ random (possibly normally
distributed) matrix, € R™ P with p < n. First, a matrix B € R™*P whose
columns lie in the range of W, is formed as

B =WQ.

Second, an approximate orthonormal basis of the range of W is constructed via, e.g.,
a QR factorization of B:

B = QR,

where Q € R™*P has orthonormal columns and R € RP*P is upper triangular. Then
an SVD of the p x n matrix QT W is computed:

QW=USVT,

where U, € RP*? and V € R"%P. An approximate randomized SVD of W is
computed as o
W~QQ'W=(QU)ZV'.

Appendix C. Block BFGS Matrices. For optimization problems or systems
of non-linear equations, quasi-Newton matrices are effective ways to approximate
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derivatives of multivariate functions [5]. The most widely used quasi-Newton matrix
is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) matrix. In [3], Byrd et al. propose
recursive block-BFGS formulas of the form

(C1) Hy=I-XY'X)'YHHI-YX'Y)"'X")+XXTY) X,

where X,Y € R™"*". The matrix H is often defined as H = ~I. Using our previous
notation for W in (1.4) and W in (2.1), the block BFGS formula takes the form

H, = WHW +WXXTY)'X"TW"
—4US2UT + UV XXTY)'XTVvEUT
(C.2) =~Us?U" + USMZU',

where we used the factorizations of W = UXVT and W = USV T from Theorems
3.2 and 3.3, and where

(C.3) M=V'XX'Y) !XTV,

and M € R™*". We present an eigendecomposition of H in the following theorem.

THEOREM C.1. Consider an eigendecomposition of the 2m X 2m matriz

2
1E°+EME EM | _ CAC,
-3 0
where M is from (C.3). Let W =[ U V |, and let
S, =¥C and S{ =C (¥ ¥) '@,

Then the eigendecomposition of Hy from (C.2) is

- QT
(C.4) H+:{Sl QL}{A AL ][(%IT],
n—im 1

where QJ_ e R™*(n=2m) s from Theorem 3.3, i.e., QJ_ is a matriz whose columns
form an orthonormal basis for the orthogonal complement of the space spanned by the
columns of U and V.

Proof. By the definition of QJ_, we have UTQJ_ = 0. In addition, from Theorem
3.3, it holds that

o UT | -~ D HEZ'VT —UN] & 0
UTQllﬁir]QL[ ( a7 )}QL{I].

Thus

R PN o R 2
(C.5) H,Q, =(UE*UT+UZM=EU")Q, =1U [ 0 } { 0

Therefore the columns of Q 1 form an orthonormal basis for eigenvectors associated
with the eigenvalue ~, which has multiplicity (n — 2m).
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Recalling from (3.10a) that U; = (VE~! — U)D™!, where D2 = I — %2, and
that UTV = X! from (3.8), we observe that

N o7
U'w = ng (U V]
U2
D Y="VTU-1) D H(Z-UTV)
| 0 0
[-D o
|l o0 o0

Next, we note that

H,¥ = {US?U' + USM=U " }¥

0 0
= —U,D[ ¥ 0]4+USMZE[I ]

=[U V]{'y{_zl_l}[EQ 0]+{H2M2[1 2—1]}

=4[ U 62][22 IH_D 0}+U2M2UT[U V]

2
(C.6) :\I,[fyz +IMS EM]

-3 0
Subsequently, we obtain

72? + TME =M

H+S:H+\IIC:lII{ I )

]C:\IICA:SA.

Therefore S contains eigenvectors associated to the eigenvalues in A. Finally, note
that

BIEXSE

C1(eTe) e TwC Cl(qﬁ\y)lqﬁQL] 1

Ql¥C QlQ.
since QI® = Q[ U V] =0, which completes the proof. 0
Next, we present a singular value decomposition of Hy in the following theorem.
THEOREM C.2. Let ¥ = [ U V |, and consider the Cholesky factorization

O & =RTR. Furthermore, consider the singular value decomposition

2 e
g[ 1 HEME SM o gsyr

-3 0
and let (Uy); = WRIU € R™2™ gnd (Vy), = WRIV € R"™2™_ A singular
value decomposition of Hy in (C.2) is given as

~ > V)T
(C.7) H =U,3,V, = {(U+)1 QJ_} [ I] [( A+'I')1]
Y Q.
where QJ_ e R"*(n=2m) s from Theorem 3.3, i.e., QJ_ 18 a matriz whose columns
form an orthonormal basis for the orthogonal complement of the space spanned by the
columns of U and V.
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Proof. 1t can easily be verified that UIU+ =TI and VIV+ = I from how

(U1, (V4)1, and Q. are defined. Next we demonstrate that U[H,V, =X,.
First, using (C.6), we have that

(Up){Hi (Vi) = (Uy)H RV

2
B [ AS2EEME SM | oo
_(U+)1\p{ g )[RV
2 o~
_ (U+)1T\IIR1R{ 7 _*éME 2(1)‘4 ] RV

(PR1U)T PR (fjiﬁﬂ) \%
>

Next, note that from (C.5), QIH+QL = ~I,_2,. Finally, since H+QJ_ = v(fh_
from (C.5) and $TQ, = 0 by definition of Q,, we have that (U.)JH,Q, =
fyﬁTR_T\IITQL = 0. Similarly, QIH+(V+)1 = ’yQI\IIR_lv = 0. Therefore, we
conclude that

>
v [* |

which is equivalent to (C.7) . d

We present two practical algorithms to compute an eigendecomposition and a singular
value decomposition of block BFGS matrices, corresponding to the eigenvalues and
singular values other than ~.

Algorithm C.1 Eigendecomposition of H

Input:X € R"*™ Y € R"*™ ~ € R;

Compute U, X, and V using Algorithm 3.1 and form ¥ =[U V |;
M =V X(XTY) !XTV, {Intermediate matrix}

CAC-! — 22+ IME M

—Y 2 0
§1 = W¥C;
S, =w(¢'w)'c T,

; {Eigendecomposition}

Algorithm C.2 Singular value decomposition of H

Input:X € R®*™ Y € R""™ ~ € R;

Compute U, X, and V using Algorithm 3.1 and form ¥ =[U V |;
M= VTX(XTY) 'XTV; {Intermediate matrix}

R'R=v"y, {(;holesky factorization}

e V2L EMS EM] L,

UV’ =R s o | R {SVD}

(Uy)1 = ¥RIT;

(Vi) =PRIV,
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