
COMPUTATIONALLY EFFICIENT DECOMPOSITIONS OF
OBLIQUE PROJECTION MATRICES∗

JOHANNES J. BRUST† , ROUMMEL F. MARCIA‡ , AND COSMIN G. PETRA§

Abstract. Oblique projection matrices arise in problems in weighted least squares, signal pro-
cessing, and optimization. While these matrices can be potentially very large, their low-rank structure5
can be exploited for efficient computation. We propose fast and scalable algorithms for computing
their eigendecomposition and singular value decomposition (SVD). Numerical experiments that com-
pare our proposed approaches to existing methods, including randomized SVD, are presented. In
addition, we test their accuracy on linear systems from equality constrained optimization problems.

Key words. Oblique projection matrices, Eigendecomposition, Singular value decomposition,10
SVD, Randomized singular value decomposition, projections

AMS subject classifications. 65F15, 65F30, 15B99

1. Introduction. An oblique projection matrix W ∈ Rn×n is defined by the
properties

(1.1) WW = W and W 6= W>.15

Such matrices arise, for example, in weighted least-squares problems of the form

(1.2) b∗ = arg min
b∈Rm

‖D1/2(yobs −Xb)‖22,

where D ∈ Rn×n is a diagonal matrix with positive diagonal entries, X ∈ Rn×m has
full column rank, and yobs ∈ Rn is a known vector of data observations (see [6]).
The projection of the solution is given by Xb∗ = Wyobs, where W is the oblique20

projection matrix

(1.3) W = X(X>DX)−1X>D.

In this paper, we consider the more general oblique projection

(1.4) W = X(Y>X)−1Y>,

where we assume X,Y ∈ Rn×m have full column rank and Y>X is invertible. Such25

oblique projections appear, for example, in block quasi-Newton matrices from opti-
mization (see [3]). We present the eigendecomposition of oblique (non-symmetric)
projection matrices and develop efficient algorithms to compute their singular values
and singular vectors.

∗Submitted to the editors DATE.
Funding: This work was supported by the U.S. Department of Energy, Office of Science, Ad-

vanced Scientific Computing Research, under Contract DE-AC02-06CH11357 at Argonne National
Laboratory through the Project “Multifaceted Mathematics for Complex Energy Systems.” R. Mar-
cia’s research is partially supported by NSF Grant IIS 1741490. C. Petra acknowledges the support
from the LDRD Program of Lawrence Livermore National Laboratory under the projects 16-ERD-025
and 17-SI-005.
†Argonne National Laboratory, Mathematics and Computer Science Division, Lemont, IL

(jbrust@anl.gov).
‡Department of Applied Mathematics, University of California, Merced, CA (rmar-

cia@ucmerced.edu).
§Lawrence Livermore National Laboratory, Center for Applied Scientific Computing, Livermore,

CA (petra1@llnl.gov).

1

This manuscript is for review purposes only.

mailto:jbrust@anl.gov
mailto:rmarcia@ucmerced.edu
mailto:rmarcia@ucmerced.edu
mailto:petra1@llnl.gov

2 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

1.1. Related Work. Oblique projection matrices arise in contexts such as sys-30

tems of linear inequalities, constrained optimization, and signal processing [1, 2, 4].
Stewart [14] and O’Leary [13] proposed bounds on the spectral norm of the oblique
projection in (1.3). In [1], Behrens and Scharf considered related oblique projections,
which are defined by a matrix Z, whose columns form a basis for the nullspace of
W. In particular, W in [1] is represented as W = X(X>PX)−1X>P, where P is35

the orthogonal projection onto the orthogonal complement of the range space of Z
(i.e., PZ = 0). Instead of bounding the spectral norm of W, Behrens and Scharf
showed a general procedure how to compute the singular values of W. However, how

to compute the singular values of the oblique complement Ŵ = I−W remains open.

In this article, we derive the expressions for the singular values of Ŵ, and com-40

putationally efficient expressions for the ones of W. We derive the singular values
under the assumption that Y>X may not be symmetric. In addition, we develop
explicit formulas for singular vectors and propose efficient methods for computing a
SVD, even for large n.

In numerical experiments, we compare our methods on matrices with general45

Y>X to the symmetric cases of Stewart and O’Leary and Behrens and Scharf. For
large values of n, we compare our proposed algorithms to the randomized singular
value decomposition (see [9] for probabilistic algorithms), which is often used for
approximating the SVD of large matrices. Finally, we apply our factorizations to
decompose block BFGS quasi-Newton matrices from large-scale optimization (see [3]).50

2. Eigendecomposition. In this section, we describe an eigendecomposition of

W and of its oblique complement, Ŵ, which is defined as

(2.1) Ŵ = I−W = I−X(Y>X)−1Y>.

While Range(W) = Range(X) and Null(W) = Null(Y>), in contrast, Range(Ŵ)

= Null(Y>) and Null(Ŵ) = Range(X). Note that Ŵ is also an oblique projection55

matrix. Subsequently, observe that WX =
(
X(Y>X)−1Y>

)
X = X, which implies

that Range(X) is the eigenspace of W that corresponds to the eigenvalue 1. Next we
derive an expression for the remaining eigenvectors of W.

Let X = Q‖R‖ be the “thin” QR factorization of X, where Q‖ ∈ Rn×m has
orthonormal columns and R‖ ∈ Rm×m is upper triangular and nonsingular. Let60

Q⊥ ∈ Rn×(n−m) be a matrix whose columns are orthonormal (i.e., Q>⊥Q⊥ = I) and
are orthogonal to the columns of Q‖ (i.e., Q>⊥Q‖ = 0). Let Q = [Q‖ Q⊥] so that

(2.2) I = QQ> = Q‖Q
>
‖ + Q⊥Q>⊥.

In this section, we will show that the columns of the matrix

(2.3) S =
[

X
(
I−X(Y>X)−1Y>

)
Q⊥

]
65

are eigenvectors of W. First, we show how to express its inverse explicitly through
the following lemma.

Lemma 2.1. The square matrix S in (2.4) has the explicit inverse

(2.4) S−1 =

[
(Y>X)−1Y>

Q>⊥

]
.

This manuscript is for review purposes only.

DECOMPOSITIONS OF OBLIQUE PROJECTION MATRICES 3

Proof. Using the expressions Q⊥Q>⊥ =
(
I−Q‖Q

>
‖
)

from (2.2) and XR−1‖ = Q‖70

from the QR factorization of X and labeling the right hand side in (2.4) as Sinv, we
see that

SSinv = X(Y>X)−1Y> +
(
I−X(Y>X)−1Y>

)
Q⊥Q>⊥

= X(Y>X)−1Y> +
(
I−X(Y>X)−1Y>

)(
I−Q‖Q

>
‖
)

= I−Q‖Q
>
‖ + X(Y>X)−1Y>Q‖Q

>
‖75

= I−Q‖Q
>
‖ + X(Y>X)−1Y>XR−1‖ Q>‖

= I.

Thus, the expression in (2.4) is the inverse of S in (2.3).

Having defined S and its inverse, we can now express an eigendecomposition of W

and Ŵ.80

Theorem 2.2. The oblique projection matrix W = X(Y>X)−1Y> has an eigen-
decomposition of the form

(2.5) W = SΛS−1,

where S and S−1 are defined in (2.3) and (2.4), respectively, and

(2.6) Λ =

[
Im

0n−m

]
.85

Moreover, the oblique complement Ŵ = I−W has an eigendecomposition of the form

(2.7) Ŵ = S

[
0m

In−m

]
S−1.

Proof. The proof follows from straightforward computations.

Note that the decompositions from Theorem 2.2 are not unique because replacing90

Q⊥ by, say Q⊥UQ, where UQ ∈ R(n−m)×(n−m) is any orthogonal matrix, yields an
eigendecomposition with different eigenvectors.

3. Singular Value Decomposition. In this section, we first describe how to

obtain the singular values of W and Ŵ. Then given the singular values, we demon-
strate how singular vectors can be computed. Finally, we show the relationships95

between the singular vectors of W and Ŵ. Throughout the article we will assume
that (n−m) ≥ m.

3.1. Singular Values of W and Ŵ. To compute the singular values of W and

Ŵ, we will use the matrix

(3.1) Ω = Q>‖WQ⊥,100

where Ω ∈ Rm×(n−m), and whose singular value decomposition is

(3.2) Ω = UΩΓV>Ω,

with UΩ ∈ Rm×m and VΩ ∈ R(n−m)×(n−m) are orthogonal and Γ ∈ Rm×(n−m) is
rectangular diagonal with diagonal entries γ1 ≥ γ2 ≥ · · · ≥ γm > 0. We now explicitly

define the singular values of W and Ŵ.105

This manuscript is for review purposes only.

4 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

Theorem 3.1. The singular values of the oblique projection matrix W from (1.4)
are

(3.3) σi =

{√
1 + γ2i 1 ≤ i ≤ m,+1− 1

0 otherwise,

while the singular values of the oblique complement Ŵ = I−W from (2.1) are

(3.4) σ̂i =


√

1 + γ2i 1 ≤ i ≤ m,
1 m+ 1 ≤ i ≤ n−m,
0 otherwise,

110

where the γi’s in (3.3) and (3.4) are the non-zero singular values of Ω from (3.2).

Proof. First, note that Q>‖WQ‖ = Q>‖ X(Y>X)−1Y>XR−1‖ = I since Q‖ =

XR−1‖ . Then, using the orthogonal matrix QΩ = [Q‖UΩ Q⊥VΩ], we have

(3.5) Q>ΩWQΩ =

[
Im Γ
0 0

]
and Q>ΩŴQΩ =

[
0 −Γ
0 In−m

]
.

Because eigenvalues are invariant with respect to orthogonal transformations, we de-115

duce that the nonzero eigenvalues of WW> are the diagonal elements of the diagonal

matrix Im + ΓΓ>. Similarly, the non-zero eigenvalues of Ŵ>Ŵ are the diagonal ele-
ments of In−m +Γ>Γ. It follows that the non-zero singular values of W are

√
1 + γ2i ,

for 1 ≤ i ≤ m, and the non-zero singular values of Ŵ are
√

1 + γ2i , for 1 ≤ i ≤ m,
and 1 with multiplicity n− 2m, which completes the proof.120

Note that the proof from Theorem 3.1 explicitly defines the orthogonal matrix QΩ

and is consistent with the analysis in [11, Problem 2.6.P.18].

Observe that Theorem 3.1 shows that W and Ŵ share the non-zero singular
values σi =

√
1 + γ2i , for 1 ≤ i ≤ m, which implies that

‖W‖2 = σ1 =
√

1 + γ21 = ‖Ŵ‖2,125

but

κ
(
Ŵ
)

=
σ1
1
≥ σ1
σm

= κ (W) ,

where κ(·) is the condition number of a matrix.

3.2. Singular Vectors. In addition to the singular values, we also develop repre-
sentations of the singular vectors of oblique projections. Let Σ = diag({σi}) ∈ Rm×m130

be the diagonal matrix of the singular values of W, where σi is defined in (3.3).

Singular vectors of W and Ŵ are given by the following theorems.

Theorem 3.2. A reduced singular value decomposition of W in (1.4) is given as

(3.6) W = UΣV>,

where135

(3.7) U = Q‖UΩ and V = Y(X>Y)−1X>Q‖UΩΣ−1,

with U,V ∈ Rn×m.

This manuscript is for review purposes only.

DECOMPOSITIONS OF OBLIQUE PROJECTION MATRICES 5

Proof. Note that U>U = U>ΩQ>‖ Q‖UΩ = I, and from (3.5)

V>V = Σ−1U>ΩQ>‖WW>Q‖UΩΣ−1 = Σ−1(I + ΓΓ>)Σ−1 = I.

Therefore, U and V have orthonormal columns. Then, using the expressions in (3.7),
we obtain

UΣV> = Q‖Q
>
‖ X(Y>X)−1Y> = X(Y>X)−1Y> = W140

since X = Q‖R‖, which demonstrates the desired result.

We note that by the definition of U and V in (3.7), the columns of U form an
orthonormal basis for Range(X) and the columns of V form an orthonormal basis for
Range(Y). In addition, we observe that

UΣV> = W = WW = UΣV>UΣV>,145

which means that

(3.8) V>U = Σ−1 = U>V.

A singular value decomposition of Ŵ is given as follows. We assume that singular
vectors U and V of W are available (cf. Theorem 3.2).

Theorem 3.3. A full singular value decomposition of Ŵ in (2.1) is given as150

(3.9) Ŵ = ÛΣ̂V̂> =
[

Û1 Û2 V
] Σ

In−2m
0m×m

 V̂>1
V̂>2
U>

 ,
where

Û1 = (VΣ−1 −U)D−1, Û2 = Q̂⊥,(3.10a)

V̂1 = (V −UΣ−1)D−1, V̂2 = Q̂⊥,(3.10b)155

with Û = [Û1 Û2] ∈ Rn×(n−m), V̂ = [V̂1 V̂2] ∈ Rn×(n−m), and Σ̂ =

diag(Σ, In−2m) ∈ R(n−m)×(n−m), and where Q̂⊥ ∈ Rn×(n−2m) is a matrix whose col-
umns form an orthonormal basis for the orthogonal complement of the space spanned
by the columns of X and Y. The diagonal matrix D ∈ Rm×m satisfies

D2 = Im −Σ−2.160

Proof. We first verify that Û and V̂ have orthonormal columns. Since the columns
of U and V form an orthonormal basis for Range(X) and Range(Y), respectively, it
follows that

Û>1 Û2 = D−1(Σ−1V> −U>)Q̂⊥ = 0,

V̂>1 V̂2 = D−1(V> −Σ−1U>)Q̂⊥ = 0,165

from the definition of Q̂⊥. Now, recall V>U = Σ−1 = U>V from (3.8). Therefore,

Û>1 Û1 = D−1(Σ−1V> −U>)(VΣ−1 −U)D−1 = D−1(−Σ−2 + I)D−1 = I,

V̂>1 V̂1 = D−1(V> −Σ−1U>)(V −UΣ−1)D−1 = D−1(I−Σ−2)D−1 = I.

This manuscript is for review purposes only.

6 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

Since, by definition, Û>2 Û2 = V̂>2 V̂2 = Q̂>⊥Q̂⊥ = I, we conclude that Û>Û = I and

V̂>V̂ = I.170

Noting that I = V̂1V̂
>
1 + Q̂⊥Q̂>⊥ + UU>, and using the definition of Û1 and V̂1

in (3.10a) and (3.10b), respectively, we have

ÛΣ̂V̂> = Û1ΣV̂>1 + Q̂⊥Q̂>⊥

= Û1ΣV̂>1 + I−UU> − V̂1V̂
>
1

= I−UU> + (Û1Σ− V̂1)V̂>1175

= I−UU> +
(
(V −UΣ)− (V −UΣ−1)

)
D−2(V> −Σ−1U>)

= I−UU> −UΣ
(
I−Σ−2

)
D−2

(
V> −Σ−1U>

)
= I−UΣV>

= Ŵ,

which is the desired result.180

We note that in practice, we do not explicitly compute Û2 = V̂2 = Q̂⊥ because they
are large n× (n− 2m) matrices.

3.3. Practical implementation. In our implementation for computing the sin-

gular value decomposition of W and Ŵ, we do not compute the matrix Ω in (3.1)
because it requires explicitly computing the orthogonal complement matrix Q⊥. In-185

stead, to obtain the singular values, we compute the following. First, we perform the
Cholesky factorization of X>X to obtain R‖ since

(3.11) X>X = R>‖ Q>‖ Q‖R‖ = R>‖ R‖.

Next, by noting that

Q>‖WW>Q‖ = R‖(Y
>X)−1(Y>Y)(X>Y)−1R>‖ ,

we can obtain the matrix of singular values Σ from the eigendecomposition of the
small m×m matrix

R‖(Y
>X)−1(Y>Y)(X>Y)−1R>‖ = UΩΣ2U>Ω.

Algorithm 3.1 describes our approach (Reduced Oblique Singular Value Decomposi-
tion) for computing a reduced SVD of W in (3.6). In particular, we compute singular190

vectors of W using (3.7) from Theorem 3.2 by noting that Q‖ = XR−1‖ . Algorithm

3.1 can be used to efficiently compute a reduced SVD of Ŵ using (3.10a) and (3.10b)

from Theorem 3.3. Excluding the singular vectors in Q̂⊥, Algorithm 3.2 describes

our approach for computing a reduced SVD of Ŵ. Algorithm 3.2 does not compute
Û2 = Q̂⊥ = V̂2 because this matrix is large and potentially very expensive to com-195

pute. Instead, note that the SVD of Ŵ in Theorem 3.3 is defined by the orthogonal
projection Q̂⊥Q̂>⊥ = Û2V̂

>
2 , which we describe how to economically compute in Sec.

4.2.

4. Numerical Experiments. This section describes five sets of numerical ex-
periments that compare our proposed algorithms to existing methods:200

1. Singular values of W from [1].

2. Singular value decomposition of W and Ŵ = I−W from [1].

This manuscript is for review purposes only.

DECOMPOSITIONS OF OBLIQUE PROJECTION MATRICES 7

Algorithm 3.1 Reduced Oblique Singular Value Decomposition (RObSVD) of W

1: Input:X ∈ Rn×m, Y ∈ Rn×m;
2: R>‖ R‖ = X>X; {Cholesky factorization}
3: UΩΣ2U>Ω = R‖(Y

>X)−1(Y>Y)(X>Y)−1R>‖ ; {Eigendecomposition}
4: U = XR−1‖ UΩ;

5: V = Y(X>Y)−1X>UΣ−1;

Algorithm 3.2 Reduced Oblique Singular Value Decomposition (RObSVD) of Ŵ

1: Input:X ∈ Rn×m, Y ∈ Rn×m;
2: Compute U,Σ and V using Algorithm 3.1;

3: D =
√

I−Σ−2;
4: Û1 = (VΣ−1 −U)D−1;

5: V̂1 = (V −UΣ−1)D−1;

3. Comparisons with the randomized singular value decomposition [9].
4. Comparisons of the spectral norm ‖W‖2 with the bound from [14] and [13].
5. Eigendecomposition and SVD of block quasi-Newton matrices from [3].205

The algorithms are implemented in Matlab and have been tested in Mat-
lab R2014a (64 bit) and Matlab R2018b. The codes are available at https://

github.com/johannesbrust/AOP. The numerical experiments are carried out on a
Dell Precision T1700 desktop computer with Intel i5-4590 CPU @ 3.30GHz x 4 pro-
cessors, 8 GB RAM, and Linux Ubuntu 14.04, 64-bit, and a Mac Book Pro laptop210

with Intel Core i7 CPU @ 2.6 GHz processor, 32 GB RAM, and MacOS High Sierra
operating system.

4.1. Experiment I. This experiment compares the performance of our proposed
method (Alg. 3.1), the built-in Matlab function, svds(W,m), which computes the m
largest singular values of W, and an approach developed by Behrens and Scharf [1],215

which we describe in Appendix A.
We compare the performance of our proposed Oblique SVD approach (Alg. 3.1)

with the original Behrens and Scharf approach (Alg. A.1) and the modified Behrens
and Scharf approach (Alg. A.2) on randomly generated matrices with various dimen-
sions. In the experiments, the full rank matrices X ∈ Rn×m and Z ∈ Rn×(n−m) are220

generated by randomly drawing from a zero-mean normal distribution. Moreover,
Y = (I − Z(Z>Z)−1Z>)X is computed as an input for Alg. 3.1 and Alg. A.2. The
test matrices have rank m = 150 and dimensions n ranging from 800 to 5, 000. For
each n, the experiment was performed 10 times with different randomly generated
matrices each time. To compare the accuracy of the three approaches, we define the225

measure

(4.1) Error =
1

n

√√√√ m∑
i=1

(σi − σ∗i)2,

where the σ∗i ’s are the singular values computed using the built-in svds Matlab
function and the σi’s are the singular values computed using the various algorithms.
The results of the experiment are reported in Tables 1 and 2.230

This manuscript is for review purposes only.

8 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

n
Time (in sec.)

RObSVD
Behrens Modified Matlab

and Scharf Beh-Sch svds

800 0.0278 0.6636 0.0266 1.8371

1000 0.0284 0.8991 0.0269 2.5957

2000 0.0304 2.2598 0.0277 9.9797

3000 0.0325 3.9002 0.0291 18.4856

4000 0.0346 5.7370 0.0304 31.4324

5000 0.0376 7.9405 0.0316 46.4987

Table 1: Experiment I. Computational times (in seconds) of our proposed Reduced
Oblique SVD approach (Alg. 3.1), Behrens and Scharf’s approach in Alg. A.1, the
modified Behrens and Scharf (Modified Beh-Sch) approach in Alg. A.2, and the built-
in Matlab svds function for computing the singular values of W. For each n, the
experiment was performed 10 times with different randomly generated matrices each
time. The average computational times among the 10 experiments are reported. Note
that Alg. 3.1 and Alg. A.2 compute the singular values the fastest while the built-in
Matlab function takes the longest.

n
Average Error Maximum Error

RObSVD
Behrens Modified

RObSVD
Behrens Modified

and Scharf Beh-Sch and Scharf Beh-Sch

800 6.865e-11 4.383e-06 8.988e-11 2.830e-10 3.450e-05 4.164e-10

1000 8.058e-07 6.661e-04 1.888e-06 6.438e-06 5.271e-03 1.509e-05

2000 4.906e-11 1.306e-06 9.044e-11 1.982e-10 5.929e-06 5.058e-10

3000 9.923e-10 9.226e-04 3.434e-09 7.386e-09 7.334e-03 2.690e-08

4000 6.672e-11 5.758e-06 3.905e-11 4.456e-10 4.065e-05 2.457e-10

5000 2.724e-09 6.964e-06 1.041e-09 2.148e-08 5.037e-05 7.483e-09

Table 2: Experiment I. Comparison using the error metric in (4.1) between our pro-
posed Reduced Oblique SVD approach (Alg. 3.1), Behrens and Scharf’s approach in
Alg. A.1, and the modified Behrens and Scharf (Modified Beh-Sch) approach in Alg.
A.2 for computing the singular values of W. We use the singular values from the
built-in Matlab function svds as the benchmark values. For each n, the experi-
ment was performed 10 times with different randomly generated matrices each time.
The average and maximum error values (among the 10 experiments) are reported.
Note that the singular values computed from Alg. 3.1 and Alg. A.2 are closer to the
benchmark than those from Alg. A.1.

4.2. Experiment II. In this experiment, we compute reduced SVD factoriza-

tions of W and Ŵ using Algorithms 3.1 and 3.2, respectively. For comparisons we
relate them also to the built-in Matlab function svds. The matrices X ∈ Rn×m and
Y ∈ Rn×m are drawn randomly from a zero-mean normal distribution. To compute
the error for W, we use the metric235

(4.2) Error = ‖W −UΣV>‖F ,

where the matrices U, Σ, and V are computed using Alg. 3.1. To compute the error

for Ŵ, we use the metric

(4.3) Error = ‖Ŵ − (Û1ΣV̂>1 + Û2V̂
>
2)‖F ,

This manuscript is for review purposes only.

DECOMPOSITIONS OF OBLIQUE PROJECTION MATRICES 9

n
Time Average Error Maximum Error

RObSVD svds RObSVD svds RObSVD svds

800 0.0079 0.3712 4.834e-09 3.769e-12 1.870e-08 1.370e-11

1000 0.0076 0.6582 4.612e-08 4.499e-12 1.873e-07 1.629e-11

2000 0.0086 3.4918 9.858e-08 6.898e-12 4.996e-07 1.599e-11

3000 0.0092 7.9335 1.564e-06 6.259e-11 1.218e-05 1.519e-10

4000 0.0098 14.1811 1.823e-07 2.383e-10 1.417e-06 1.590e-09

5000 0.0099 21.2731 9.427e-09 6.250e-11 2.288e-08 3.195e-10

Table 3: Experiment II.A. Comparison of the performance of our proposed Reduced
Oblique SVD (RObSVD) approach (Alg. 3.1) to the built-in Matlab function svds

for computing an SVD of W, on moderately-sized matrices (m = 150 and 800 ≤ n ≤
5, 000). For each n, the experiment was performed 10 times with different randomly
generated matrices each time. The average computational times, average error values,
and maximum error values (among the 10 experiments) are reported, where the error
is measured using (4.2). Note that our proposed approach uses significantly less time
than svds.

from the SVD of Ŵ in Theorem 3.3 (see (3.9)). Since Alg. 3.2 does not compute Q̂⊥,

we need a way of forming the matrix Û2V̂
>
2 = Q̂⊥Q̂>⊥, which is the projection matrix

onto the space orthogonal to span of the columns of X and Y. Thus, we define the
matrix G = [X Y] ∈ Rn×2m and note that

Û2V̂
>
2 = Q̂⊥Q̂>⊥ = I−G(G>G)−1G>.

Experiment II is divided into two sub-experiments: Experiment II.A is for mod-240

erately sized matrices (m = 150 and 800 ≤ n ≤ 5, 000), while Experiment II.B is for
large-scale matrices (m = 150 and 7, 500 ≤ n ≤ 300, 000). For each n, we repeated the
experiment 10 times with different randomly generated matrices each time and report

the average and maximum errors. The results for Experiment II.A for W and Ŵ
are reported in Tables 3 and 4, respectively. For Experiment II.B, since W ∈ Rn×n245

does not fit into Matlab’s memory when its dimension becomes large, we modify
our metric for computing errors. In particular, a fixed random number of columns,
r, is used in the comparisons of the form ‖UΣV> −W‖F , instead of comparing all
columns. Specifically, the errors are computed by the modified metric

(4.4) Error = ‖(UΣV> −W)Er‖F ,250

where the columns of the matrix Er ∈ Rn×r are r randomly selected columns of I,
and where the matrices U, Σ, and V are computed using Alg. 3.1 for W and Alg.

3.2 for Ŵ. The results of the experiments are reported in Table 5.

4.3. Experiment III. In this experiment we compare our proposed algorithms
to the randomized SVD (r-SVD) from Halko et al. [9] described in Appendix B.255

In particular we use an implementation available in the public domain [12]. The
experiment is divided into two parts. In Experiment III.A we compare Algorithms
3.1 and 3.2 to the built-in MATLAB function svds and the r-SVD function rsvd. The
problems in Experiment III.A are moderately sized (m = 20 and 800 ≤ n ≤ 5000).
We use deterministic test matrices from Higham [10]. In particular we select the first260

This manuscript is for review purposes only.

10 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

n
Time Average Error Maximum Error

RObSVD svds RObSVD svds RObSVD svds

800 0.0243 0.0587 4.837e-09 3.315e-12 1.871e-08 1.049e-11

1000 0.0289 0.1051 4.615e-08 1.103e-11 1.874e-07 6.119e-11

2000 0.0594 2.2020 9.861e-08 7.077e-12 4.998e-07 1.828e-11

3000 0.1060 9.0947 1.565e-06 8.491e-11 1.219e-05 6.012e-10

4000 0.1836 22.4527 1.824e-07 1.229e-11 1.418e-06 5.489e-11

5000 0.2556 44.7147 9.428e-09 8.417e-12 2.290e-08 2.200e-11

Table 4: Experiment II.A. Comparison of the performance of our proposed Reduced
Oblique SVD (RObSVD) approach (Alg. 3.2) to the built-in Matlab function svds

for computing an SVD of Ŵ, on moderately sized matrices (m = 150 and 800 ≤ n ≤
5, 000). For each n, the experiment was performed 10 times with different randomly
generated matrices each time. The average computational times, average error values,
and maximum error values (among the 10 experiments) are reported, where the error
is measured using (4.2). Note that our proposed approach uses significantly less time
than svds.

n
RObSVD(W) RObSVD(Ŵ)

Time Avg. Err. Max. Err. Time Avg. Err. Max. Err.

7500 0.0204 1.009e-07 8.013e-07 0.0350 9.750e-08 7.741e-07

10000 0.0228 2.195e-10 8.584e-10 0.0418 2.228e-10 8.825e-10

50000 0.0753 5.688e-10 2.130e-09 0.1562 5.711e-10 2.161e-09

100000 0.1395 5.637e-10 2.541e-09 0.2963 5.634e-10 2.543e-09

200000 0.2606 9.443e-10 3.320e-09 0.5756 9.471e-10 3.343e-09

300000 0.3764 2.625e-10 9.264e-10 0.8654 2.610e-10 9.211e-10

Table 5: Experiment.II.B. The performance of our proposed Reduced Oblique SVD

(RObSVD) approaches (Alg. 3.1) and (Alg. 3.2) for computing an SVD of W and Ŵ,
repectively, on large-scale problems (m = 150 and 7, 500 ≤ n ≤ 300, 000). For each n,
the experiment was performed 10 times with different randomly generated matrices
each time. The average computational times and average and maximum error values
using (4.4) are reported. The errors are computed by comparing r = 8 randomly

selected columns of W and Ŵ, respectively with the factorizations from Alg. 3.1 and
Alg. 3.2. Note that the factorizations are obtained within one second and the average
errors are relatively small.

m columns of a Chebyshev Vandermonde-like matrix defined by

Aij = cos

(
(i− 1)(j − 1)π

n

)
.

In MATLAB R2018b this matrix is generated via the command A=gallery(‘orthog’,

n,-1). Subsequently, we define X = A [e1 e2 · · · em], where ei are columns of
the identity matrix. Y is defined as DX, where the elements of the diagonal matrix D265

are the reciprocals of the squared row lengths of X. The results of the factorizations

of W and Ŵ for moderately sized problems are summarized in Table 6 and Table 7,
respectively.

In Experiment III.B we compare Algorithms 2 and 3 to the r-SVD on large-

This manuscript is for review purposes only.

DECOMPOSITIONS OF OBLIQUE PROJECTION MATRICES 11

n
Time (in sec.) Error

RObSVD svds r-SVD RObSVD svds r-SVD

800 0.0555 0.2732 0.0284 2.6322e-12 6.5832e-12 6.7252e-13

1000 0.0042 0.0453 0.0046 1.6636e-12 5.0556e-13 1.1908e-12

2000 0.0006 0.3521 0.0135 1.2446e-12 3.4958e-11 7.388e-13

3000 0.0007 0.8625 0.0216 2.5664e-12 8.4791e-12 6.771e-13

4000 0.0028 1.1939 0.0375 3.3174e-12 5.9945e-11 8.3006e-13

5000 0.0007 2.3692 0.0588 1.8405e-12 6.0833e-11 6.2313e-13

Table 6: Experiment III.A. Comparison of the performance of our proposed Reduced
Oblique SVD (RObSVD) approach (Alg. 3.1) to the built-in Matlab function svds

and the randomized SVD (r-SVD) for computing the SVD of W on moderately-sized
matrices (m = 20 and 800 ≤ n ≤ 5, 000). The test matrices are deterministically
generated from columns of a Chebyshev Vandermonde-like matrix. The parameter
for the r-SVD is set to p = m = 20. The svds function takes the longest computational
times while all errors are all comparably small.

n
Time (in sec.) Error

RObSVD svds r-SVD RObSVD svds r-SVD

800 0.0638 0.0549 0.4494 2.6320e-12 7.1624e-13 1.4599e-12

1000 0.0086 0.1215 0.7673 1.6668e-12 7.8639e-13 1.4513e-12

2000 0.0102 2.2008 8.8362 1.2580e-12 1.4958e-12 2.0955e-12

3000 0.0214 8.9106 33.4525 2.5619e-12 1.0375e-12 1.8820e-12

4000 0.0444 18.4744 83.9922 3.3205e-12 9.6857e-13 2.0762e-12

5000 0.0913 44.4121 165.4607 1.8421e-12 1.0600e-12 2.2228e-12

Table 7: Experiment III.A. Comparison of the performance of our proposed Reduced
Oblique SVD (ObSVD) approach (Alg. 3.2) to the built-in Matlab function svds

and the randomized SVD (r-SVD) for computing the SVD of Ŵ on moderately-sized
matrices (m = 20 and 800 ≤ n ≤ 5, 000). The test matrices are deterministically
generated from columns of a Chebyshev Vandermonde-like matrix. The parameter
for the r-SVD is set to p = n − m. In this experiment the computational times of
the r-SVD significantly increases because the parameter p becomes relatively large. In
contrast, the computational times for our proposed method remain consistently low.

scale problems (m = 20 and 7500 ≤ n ≤ 1000000). For these problems, the built-270

in Matlab function cannot be used because of out-of-memory errors and excessive
compute times, which is why it is omitted in the comparisons. The matrices X and
Y are generated by drawing randomly from a zero-mean normal distribution. The
experiments are repeated 10 times and average values are reported. The results of

the factorizations of W and Ŵ for large problems are summarized Table 8 and Table275

9, respectively.

4.4. Experiment IV. Stewart [14] and O’Leary [13] analyzed the spectral norm
of the oblique projection in (1.3) and proposed the following bound:

(4.5)
∥∥X(X>DX)−1X>D

∥∥
2
≤ ρ−1 ≡

(
min
I

inf+ (UI)
)−1

,

This manuscript is for review purposes only.

12 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

n
Time (in sec.) Average Error Maximum Error

RObSVD r-SVD RObSVD r-SVD RObSVD r-SVD

7500 0.0007 0.0093 2.966e-10 1.638e-13 2.359e-09 5.673e-13

10000 0.0006 0.0105 9.112e-12 2.461e-13 2.863e-11 6.565e-13

50000 0.0046 0.0770 1.054e-12 6.416e-14 3.535e-12 1.197e-13

100000 0.0108 0.1761 1.672e-12 1.557e-13 5.234e-12 2.616e-13

200000 0.0211 0.3694 8.609e-12 2.461e-13 3.700e-11 7.098e-13

300000 0.0320 0.5885 7.610e-10 4.227e-13 4.493e-09 1.482e-12

500000 0.0515 1.1112 6.238e-12 1.788e-13 2.168e-11 3.098e-13

1000000 0.0900 2.5642 7.095e-13 9.671e-14 2.210e-12 2.750e-13

Table 8: Experiment III.B. Comparison of the performance of our proposed Reduced
Oblique SVD (RObSVD) approach (Alg. 3.1) to the randomized SVD (r-SVD) for
computing the SVD of W on large-scale matrices (m = 20 and 7500 ≤ n ≤ 1000000).
For each n, the experiment was performed 10 times with different randomly generated
matrices each time. The errors are computed using (4.4) by comparing r = 8 randomly
selected columns of W. The parameter for the r-SVD is set to p = m = 20. The
average and maximum errors for r-SVD are slightly lower than those for ObSVD.
However, the computational times for r-SVD are significantly higher.

n
Time (in sec.) Average Error Maximum Error

RObSVD r-SVD RObSVD r-SVD RObSVD r-SVD

7500 0.0021 0.0119 3.032e-10 3.406e+00 2.412e-09 3.473e+00

10000 0.0021 0.0134 9.169e-12 3.460e+00 2.900e-11 3.570e+00

50000 0.0172 0.0937 1.052e-12 3.453e+00 3.512e-12 3.605e+00

100000 0.0390 0.2230 1.675e-12 3.529e+00 5.244e-12 3.716e+00

200000 0.0756 0.4593 8.603e-12 3.441e+00 3.699e-11 3.536e+00

300000 0.1171 0.7279 7.614e-10 3.454e+00 4.497e-09 3.581e+00

500000 0.1943 1.4901 6.236e-12 3.462e+00 2.167e-11 3.556e+00

1000000 0.5561 3.1999 7.105e-13 3.432e+00 2.211e-12 3.575e+00

Table 9: Experiment III.B. Comparison of the performance of our proposed Reduced
Oblique SVD (RObSVD) approach (Alg. 3.2) to the randomized SVD (r-SVD) for

computing the SVD of Ŵ, on large-scale matrices (m = 20 and 7500 ≤ n ≤ 1000000).
For each n, the experiment was performed 10 times with different randomly generated
matrices each time. The errors are computed using (4.4) by comparing r = 8 randomly

selected columns of Ŵ. The parameter for the r-SVD is set to p = m = 20. The
computational times for r-SVD are slightly higher than those for our proposed method.
However, the average and maximum errors for r-SVD are significantly higher because
p� n−m.

where inf+ (UI) symbolizes the smallest non-zero singular value of any submatrix280

UI of an orthonormal basis U ∈ Rn×m to X. In this experiment, we compute the
largest singular value σ1 obtained from Alg. 3.1 and compare it to the bound in (4.5).
Obtaining ρ explicitly is computationally intensive because the SVD for all possible
submatrices UI are computed. For this reason the size n of the matrices used in
the comparisons is limited to small dimensions. However note that computing the285

spectral norm for large dimensions of n can be practically done with Alg. 3.1 (see
Experiment I). The results of the experiment are reported in Table 10.

This manuscript is for review purposes only.

DECOMPOSITIONS OF OBLIQUE PROJECTION MATRICES 13

n m ρ σ1 σ̂1 |σ1 − σ̂1|
6 2 5.8085e+01 1.1265e+00 1.1265e+00 2.2204e-16

7 2 1.7034e+02 1.1395e+00 1.1395e+00 2.2204e-16

8 2 6.9771e+01 1.4313e+00 1.4313e+00 4.4409e-16

9 3 5.9314e+03 1.1560e+00 1.1560e+00 0.0000e+00

10 3 3.0740e+02 1.6386e+00 1.6386e+00 0.0000e+00

11 3 8.7337e+03 1.9385e+00 1.9385e+00 1.1102e-15

12 4 1.5304e+03 1.5533e+00 1.5533e+00 2.2204e-16

20 6 1.6388e+06 1.3767e+00 1.3767e+00 0.0000e+00

Table 10: Experiment IV. Comparison of the bound ρ from (4.5) with the spectral
norm σ1 from Alg. 3.1 and the built-in svd Matlab function (σ̂1). For each pair
(n,m), the experiments are repeated 10 times, and one representative result is re-
ported. We note that the bound ρ is generally not tight.

4.5. Experiment V. In this experiment we compute an eigendecomposition and
an SVD of block BFGS quasi-Newton matrices found in [3] and described in Appendix
C. The data matrices X and Y correspond to the matrices Sk and Yk, respectively,290

in (2.1) and the scalar γ corresponds to γk in (3.12) in [3]. In this experiment,
X,Y, and γ in the definition of H+ from (C.1) are generated by the optimization
algorithm LTRSC-LEC (cf. Brust et al. [2]), which is available in the public domain:
https://github.com/johannesbrust/LTR LEC. The optimization algorithm is ap-
plied to 53 large-scale problems from the CUTEst problem collection of Gould et al.295

[8] and stopped after k = 10 iterations to store the matrices X = S10 and Y = Y10

and the scalar γ = γ10. In order to compute the products Q̂⊥Q̂>⊥ we use the same
approach as in Sec. 4.2. The results of the experiments are reported in Table 11.
The error is computed like in (4.3) using Q̂⊥Q̂>⊥, and the pairs (n,m) vary for each
problem between 50 ≤ n ≤ 10000 and 1 ≤ m ≤ 5.300

Problem n m
Eigendecomposition SVD
Time Error Time Error

ARWHEAD 5000 1 0.0444 2.7763e-13 0.0470 5.5634e-13

BDQRTIC 5000 1 0.0498 1.9232e-12 0.0510 1.7542e-12

BOX 10000 1 0.0233 1.2860e-09 0.0095 1.0288e-09

BROYDN7D 5000 4 0.0477 4.1295e-11 0.0398 4.1270e-11

BRYBND 5000 4 0.0523 2.0564e-10 0.0638 2.0463e-10

CRAGGLVY 5000 4 0.0510 9.4554e-10 0.0602 9.3106e-10

CURLY10 10000 4 0.0111 8.0504e-11 0.0114 4.7789e-11

CURLY20 10000 5 0.0065 2.9187e-08 0.0011 1.0684e-08

CURLY30 10000 4 0.0039 8.3556e-08 0.0008 6.8244e-08

DIXMAANE 3000 4 0.0224 1.1637e-13 0.0252 4.1552e-14

DIXMAANF 3000 4 0.0246 5.3705e-13 0.0221 3.9153e-13

DIXMAANG 3000 5 0.0200 1.3656e-11 0.0214 1.3645e-11

DIXMAANH 3000 5 0.0201 9.5251e-12 0.0213 9.5145e-12

DIXMAANI 3000 4 0.0197 1.7801e-13 0.0218 1.5156e-13

DIXMAANJ 3000 4 0.0199 4.1461e-12 0.0209 4.2514e-12

DIXMAANK 3000 4 0.0191 1.9109e-10 0.0204 1.9144e-10

DIXMAANL 3000 5 0.0203 2.1932e-11 0.0208 2.1928e-11

DIXON3DQ 10000 4 0.0097 0.0000e-00 0.0078 0.0000e-00

Continued on next page

This manuscript is for review purposes only.

14 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

Problem n m
Eigendecomposition SVD
Time Error Time Error

DQDRTIC 5000 2 0.0446 4.3788e-12 0.0455 5.2888e-13

DQRTIC 5000 4 0.0485 3.7456e-05 0.0464 1.4585e-05

EDENSCH 2000 4 0.0200 5.2502e-11 0.0206 5.2442e-11

EIGENALS 2550 4 0.0196 8.1763e-10 0.0199 5.9582e-11

EIGENBLS 2550 4 0.0156 4.0069e-12 0.0176 4.1260e-12

ENGVAL1 5000 3 0.0444 2.2560e-11 0.0492 2.2534e-11

EXTROSNB 1000 3 0.0147 3.4905e-12 0.0117 3.3191e-12

FLETCHCR 1000 2 0.0012 1.4978e-10 0.0015 4.4783e-12

FMINSRF2 5625 5 0.0037 1.7530e-13 0.0023 2.4287e-14

FREUROTH 5000 3 0.0388 3.4666e-08 0.0410 3.4687e-08

GENHUMPS 5000 4 0.0486 6.4212e-11 0.0568 4.5296e-11

JIMACK 3549 5 0.0395 1.2783e-09 0.0438 1.2778e-09

LIARWHD 5000 1 0.0644 1.1383e-09 0.0623 6.4407e-11

MSQRTALS 1024 4 0.0168 3.0400e-11 0.0164 2.3044e-11

MSQRTBLS 1024 4 0.0032 1.4819e-11 0.0017 1.4756e-11

NCB20 5010 5 0.0034 4.2942e-12 0.0023 4.0284e-12

NCB20B 5000 4 0.0390 3.0889e-10 0.0377 2.0352e-10

NONCVXU2 5000 4 0.0484 8.6949e-13 0.0532 8.4630e-13

NONCVXUN 5000 5 0.0495 1.3930e-11 0.0611 1.3625e-11

NONDIA 5000 1 0.0503 1.7467e-06 0.0575 1.1639e-06

NONDQUAR 5000 2 0.0506 9.9618e-14 0.0557 7.8464e-14

POWELLSG 5000 2 0.0477 5.4592e-13 0.0551 2.1225e-13

POWER 10000 3 0.0091 3.4627e-01 0.0104 3.8937e-03

QUARTC 5000 4 0.0408 3.7456e-05 0.0500 1.4585e-05

SCHMVETT 5000 4 0.0497 2.0139e-12 0.0594 1.9257e-12

SINQUAD 5000 1 0.0492 4.9521e-11 0.0567 9.0686e-11

SPARSINE 5000 5 0.0493 7.9502e-07 0.0580 3.9332e-07

SPARSQUR 10000 4 0.0396 2.0341e-11 0.0105 1.9669e-11

SPMSRTLS 4999 5 0.1937 2.5457e-10 0.0527 2.5444e-10

SROSENBR 5000 1 0.0473 8.3040e-12 0.0617 8.1919e-12

TESTQUAD 5000 4 0.0499 1.7930e-04 0.0591 1.6347e-07

TQUARTIC 5000 1 0.0470 9.7513e-12 0.0554 7.7932e-12

TRIDIA 5000 5 0.0482 4.0554e-07 0.0596 1.5046e-07

VAREIGVL 50 5 0.0078 4.4573e-11 0.0089 4.4563e-11

WOODS 4000 2 0.0387 3.0907e-09 0.0426 2.3302e-09

Table 11: Experiment V (continued). Computational time and error for computing
the eigendecomposition and SVD of H+ from 53 problems of the CUTEst optimization
problem collection using our proposed methods, Alg. C.1 and Alg. C.2. Note that our
proposed approaches compute the factorizations quickly and accurately.

5. Conclusions. In this article we develop eigenvalue and singular value decom-
positions of oblique projection matrices. Algorithms for efficiently computing these
factorizations are proposed, and their implementations are tested and compared on
moderately and large-scale matrices. The proposed methods compare well with both
standard deterministic factorizations as well as with randomized methods. We apply305

the factorizations to decompose block quasi-Newton matrices arising in 53 large-scale
problems from a benchmarking collection of optimization problems. The numerical

This manuscript is for review purposes only.

DECOMPOSITIONS OF OBLIQUE PROJECTION MATRICES 15

experiments show that our proposed approaches are fast, efficient, and accurate.

Appendix A. The approach of Behrens and Scharf. In [1], Behrens and
Scharf proposed an approach for computing the singular values of W = X(Y>X)−1Y>310

for a specific choice of Y, namely Y = P>X:

(A.1) W = X(X>PX)−1X>P,

where P is matrix that projects onto the orthogonal complement of Range(Z) and Z ∈
Rn×` has full-column rank. In particular, if Q̃ ∈ Rn×` is a matrix whose columns form
an orthonormal basis for Range(Z), then P = I−Z(Z>Z)−1Z> = I− Q̃Q̃>. Behrens315

and Scharf use the principal angles between Q‖ (from the “thin” QR factorization

X = Q‖R‖) and Q̃. Specifically, if Q>‖ Q̃ = ŨΣ̃Ṽ> is the SVD of Q>‖ Q̃ and σ̃i is the

ith singular value in Σ̃, then the principal angles, αi, are defined by cos(αi) = σ̃i (see
[7]). Observe that W from (A.1) satisfies

WW> = X(X>PX)−1X>320

= Q‖(Q
>
‖ PQ‖)

−1Q>‖

= Q‖(Ũ(I− Σ̃
2
)Ũ>)−1Q>‖

= Q‖Ũ(I− Σ̃
2
)−1Ũ>Q>‖ ,

so that the singular values of W are given by325

σi =
√

(1− σ̃2
i)−1 =

√
1

1− cos2(αi)
=

1

sin(αi)
.

Algorithm A.1 describes the approach of Behrens and Scharf for computing the sin-
gular values of W.

Algorithm A.1 Singular Values of W (Behrens and Scharf)

1: Input:X ∈ Rn×m, Z ∈ Rn×(n−m);
2: R>‖ R‖ = X>X; {Cholesky factorization}
3: R̃>R̃ = Z>Z; {Cholesky factorization}
4: Q‖ = XR−1‖ ;

5: Q̃ = ZR̃−1;
6: ŨΣ̃Ṽ> = Q>‖ ; {Singular value decomposition}

7: Σ2 = (I− Σ̃
2
)−1;

Note that Alg. A.1 requires computing both Q‖ and Q̃. Because forming Q̃
can be computationally expensive when the nullspace of W in (A.1) is large, we330

propose a modification of the Behrens and Scharf approach, which does not require

This manuscript is for review purposes only.

16 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

the computation of Q̃. Specifically, consider

R−>‖ X>YR−1‖ = Q>‖ YR−1‖

= Q>‖ P>XR−1‖

= Q>‖ (I− Q̃Q̃>)XR−1‖335

= I−Q>‖ Q̃Q̃>Q‖

= Ũ(I− Σ̃
2
)Ũ>.

Taking the inverse of both sides yields

R‖(X
>Y)−1R>‖ = Ũ(I− Σ̃

2
)−1Ũ> = ŨΣ2Ũ>,

and therefore, the singular values of W are efficiently computed from an eigendecom-340

position of the small m ×m matrix R‖(X
>Y)−1R>‖ . Algorithm A.2 describes this

modifed approach of Behrens and Scharf for computing the singular values of W.

Algorithm A.2 Singular Values of W (Modified Behrens and Scharf)

1: Input:X ∈ Rn×m, Y = (I− Z(Z>Z)−1Z>)X ∈ Rn×m;
2: R>‖ R‖ = X>X {Cholesky factorization}
3: ŨΣ2Ũ> = R‖(X

>Y)−1R>‖ {Eigendecomposition}

Appendix B. Randomized SVD. An alternative way to approximately factor
large matrices is the randomized Singular Value Decomposition (r-SVD) from, among
others, Halko et al. [9]. These probabilistic factorizations are based on two stages. In345

the first stage an approximate orthonormal basis to the range of the target matrix,
say W ∈ Rn×n, is computed. This is achieved through a technique called sampling
(sketching). The sampling technique is based on a ‘small’ random (possibly normally
distributed) matrix, Ω ∈ Rn×p, with p � n. First, a matrix B ∈ Rn×p, whose
columns lie in the range of W, is formed as350

B = WΩ.

Second, an approximate orthonormal basis of the range of W is constructed via, e.g.,
a QR factorization of B:

B = QR,

where Q ∈ Rn×p has orthonormal columns and R ∈ Rp×p is upper triangular. Then
an SVD of the p× n matrix Q>W is computed:

Q>W = ŨΣ̃Ṽ>,

where Ũ, Σ̃ ∈ Rp×p and Ṽ ∈ Rn×p. An approximate randomized SVD of W is
computed as

W ≈ QQ>W = (QŨ)Σ̃Ṽ>.

Appendix C. Block BFGS Matrices. For optimization problems or systems355

of non-linear equations, quasi-Newton matrices are effective ways to approximate

This manuscript is for review purposes only.

DECOMPOSITIONS OF OBLIQUE PROJECTION MATRICES 17

derivatives of multivariate functions [5]. The most widely used quasi-Newton matrix
is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) matrix. In [3], Byrd et al. propose
recursive block-BFGS formulas of the form

(C.1) H+ = (I−X(Y>X)−1Y>)H(I−Y(X>Y)−1X>) + X(X>Y)−1X>,360

where X,Y ∈ Rn×m. The matrix H is often defined as H = γI. Using our previous

notation for W in (1.4) and Ŵ in (2.1), the block BFGS formula takes the form

H+ = ŴHŴ> + WX(X>Y)−1X>W>

= γÛΣ̂2Û> + UΣV>X(X>Y)−1X>VΣU>

≡ γÛΣ̂2Û> + UΣMΣU>,(C.2)365

where we used the factorizations of W = UΣV> and Ŵ = ÛΣ̂V̂> from Theorems
3.2 and 3.3, and where

(C.3) M ≡ V>X(X>Y)−1X>V,

and M ∈ Rm×m. We present an eigendecomposition of H+ in the following theorem.370

Theorem C.1. Consider an eigendecomposition of the 2m× 2m matrix[
γΣ2 + ΣMΣ ΣM
−γΣ 0

]
= CΛC−1,

where M is from (C.3). Let Ψ ≡ [U V], and let

S1 ≡ ΨC and Ŝ>1 ≡ C−1(Ψ>Ψ)−1Ψ>.

Then the eigendecomposition of H+ from (C.2) is

(C.4) H+ =
[

S1 Q̂⊥

] [Λ
γIn−2m

] [
Ŝ>1
Q̂>⊥

]
,

where Q̂⊥ ∈ Rn×(n−2m) is from Theorem 3.3, i.e., Q̂⊥ is a matrix whose columns375

form an orthonormal basis for the orthogonal complement of the space spanned by the
columns of U and V.

Proof. By the definition of Q̂⊥, we have U>Q̂⊥ = 0. In addition, from Theorem
3.3, it holds that

Û>Q̂⊥ =

[
Û>1
Û>2

]
Q̂⊥ =

[
D−1(Σ−1V> −U>)

Q̂>⊥

]
Q̂⊥ =

[
0
I

]
.380

Thus

(C.5) H+Q̂⊥ = (γÛΣ̂2Û> + UΣMΣU>)Q̂⊥ = γÛ

[
Σ2 0
0 I

] [
0
I

]
= γQ̂⊥.

Therefore the columns of Q̂⊥ form an orthonormal basis for eigenvectors associated
with the eigenvalue γ, which has multiplicity (n− 2m).

This manuscript is for review purposes only.

18 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

Recalling from (3.10a) that Û1 = (VΣ−1 −U)D−1, where D2 = I − Σ−2, and385

that U>V = Σ−1 from (3.8), we observe that

Û>Ψ =

[
Û>1
Û>2

]
[U V]

=

[
D−1(Σ−1V>U− I) D−1(Σ−1 −U>V)

0 0

]
=

[
−D 0
0 0

]
.

Next, we note that390

H+Ψ = {γÛΣ̂2Û> + UΣMΣU>}Ψ

= γ[Û1 Û2]

[
Σ2

I

] [
−D 0
0 0

]
+ UΣMΣU>[U V]

= −γÛ1D[Σ2 0] + UΣMΣ[I Σ−1]

= [U V]

{
γ

[
I

−Σ−1

]
[Σ2 0] +

[
I
0

]
ΣMΣ[I Σ−1]

}
= Ψ

[
γΣ2 + ΣMΣ ΣM
−γΣ 0

]
.(C.6)395

Subsequently, we obtain

H+S = H+ΨC = Ψ

[
γΣ2 + ΣMΣ ΣM
−γΣ 0

]
C = ΨCΛ = SΛ.

Therefore S1 contains eigenvectors associated to the eigenvalues in Λ. Finally, note
that[

Ŝ>1
Q̂>⊥

] [
S1 Q̂⊥

]
=

[
C−1(Ψ>Ψ)−1Ψ>ΨC C−1(Ψ>Ψ)−1Ψ>Q̂⊥

Q̂>⊥ΨC Q̂>⊥Q̂⊥

]
= I

since Q̂>⊥Ψ = Q̂>⊥[U V] = 0, which completes the proof.

Next, we present a singular value decomposition of H+ in the following theorem.

Theorem C.2. Let Ψ ≡ [U V], and consider the Cholesky factorization
Ψ>Ψ = R>R. Furthermore, consider the singular value decomposition

R

[
γΣ2 + ΣMΣ ΣM
−γΣ 0

]
R−1 = ŨΣ̃Ṽ>,

and let (U+)1 = ΨR−1Ũ ∈ Rn×2m and (V+)1 = ΨR−1Ṽ ∈ Rn×2m. A singular
value decomposition of H+ in (C.2) is given as

(C.7) H+ = U+Σ+V>+ =
[
(U+)1 Q̂⊥

] [
Σ̃

γI

] [
(V+)>1

Q̂>⊥

]
400

where Q̂⊥ ∈ Rn×(n−2m) is from Theorem 3.3, i.e., Q̂⊥ is a matrix whose columns
form an orthonormal basis for the orthogonal complement of the space spanned by the
columns of U and V.

This manuscript is for review purposes only.

DECOMPOSITIONS OF OBLIQUE PROJECTION MATRICES 19

Proof. It can easily be verified that U>+U+ = I and V>+V+ = I from how

(U+)1, (V+)1, and Q̂⊥ are defined. Next we demonstrate that U>+H+V+ = Σ+.405

First, using (C.6), we have that

(U+)>1 H+(V+)1 = (U+)>1 H+ΨR−1Ṽ

= (U+)>1 Ψ

[
γΣ2 + ΣMΣ ΣM
−γΣ 0

]
R−1Ṽ

= (U+)>1 ΨR−1R

[
γΣ2 + ΣMΣ ΣM
−γΣ 0

]
R−1Ṽ

= (ΨR−1Ũ)>ΨR−1
(
ŨΣ̃Ṽ>

)
Ṽ410

= Σ̃.

Next, note that from (C.5), Q̂>⊥H+Q̂⊥ = γIn−2m. Finally, since H+Q̂⊥ = γQ̂⊥
from (C.5) and Ψ>Q̂⊥ = 0 by definition of Q̂⊥, we have that (U+)>1 H+Q̂⊥ =

γŨ>R−>Ψ>Q̂⊥ = 0. Similarly, Q̂>⊥H+(V+)1 = γQ̂>⊥ΨR−1Ṽ = 0. Therefore, we
conclude that

U>+H+V+ =

[
Σ̃

γIn−2m

]
,

which is equivalent to (C.7) .

We present two practical algorithms to compute an eigendecomposition and a singular
value decomposition of block BFGS matrices, corresponding to the eigenvalues and
singular values other than γ.

Algorithm C.1 Eigendecomposition of H+

Input:X ∈ Rn×m, Y ∈ Rn×m, γ ∈ R;
Compute U,Σ, and V using Algorithm 3.1 and form Ψ = [U V];
M = V>X(X>Y)−1X>V; {Intermediate matrix}

CΛC−1 =

[
γkΣ2 + ΣMΣ ΣM
−γkΣ 0

]
; {Eigendecomposition}

S1 = ΨC;
Ŝ1 = Ψ(Ψ>Ψ)−1C−>;

415

Algorithm C.2 Singular value decomposition of H+

Input:X ∈ Rn×m, Y ∈ Rn×m, γ ∈ R;
Compute U,Σ, and V using Algorithm 3.1 and form Ψ = [U V];
M = V>X(X>Y)−1X>V; {Intermediate matrix}
R>R = Ψ>Ψ; {Cholesky factorization}

ŨΣ̃Ṽ> = R

[
γΣ2 + ΣMΣ ΣM
−γΣ 0

]
R−1; {SVD}

(U+)1 = ΨR−1Ũ;

(V+)1 = ΨR−1Ṽ;

This manuscript is for review purposes only.

20 J. J. BRUST, R. F. MARCIA, AND C. G. PETRA

Acknowledgments. We thank the editor and referee for the careful reading of
the manuscript which improved the article and enabled a simplified proof of Theo-
rem 3.1.

REFERENCES420

[1] R. T. Behrens and L. L. Scharf, Signal processing applications of oblique projection op-
erators, IEEE Transactions on Signal Processing, 42 (1994), https://doi.org/10.1109/78.
286957.

[2] J. J. Brust, R. F. Marcia, and C. G. Petra, Large-scale quasi-newton trust-region methods
with low-dimensional linear equality constraints, Computational Optimization and Appli-425
cations, (2019), https://doi.org/10.1007/s10589-019-00127-4.

[3] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representations of quasi-Newton matrices
and their use in limited-memory methods, Math. Program., 63 (1994), pp. 129–156, https:
//doi.org/10.1007/BF01582063.

[4] Y. Censor and T. Elfving, Block-iterative algorithms with diagonally scaled oblique projec-430
tions for the linear feasibility problem, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 40–58,
https://doi.org/10.1137/S089547980138705X.

[5] J. Dennis and J. Moré, Quasi-Newton methods, motivation and theory, SIAM Review, 19
(1977), pp. 46–89, https://doi.org/10.1137/1019005.

[6] G. Golub and C. van Loan, An analysis of the total least squares problem, SIAM Journal on435
Numerical Analysis, 17 (1980), pp. 883–893, https://doi.org/10.1137/0717073.

[7] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, Maryland, third ed., 1996.

[8] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr and SifDec: A constrained and uncon-
strained testing environment, revisited, ACM Trans. Math. Software, 29 (2003), pp. 373–440
394, https://doi.org/10.1145/962437.962439.

[9] N. Halko, P. Martinsson, and J. Tropp, Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions, SIAM Review, 53 (2011),
pp. 217–288, https://doi.org/10.1137/090771806.

[10] N. J. Higham, Algorithm 694: A collection of test matrices in MATLAB, ACM Transactions on445
Mathematical Software, 17 (1991), pp. 289–305, https://doi.org/10.1145/114697.116805.

[11] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, USA, 2nd ed.,
2012.

[12] A. Liutkus, Software: randomized Singular Value Decomposi-
tion, 2014, https://www.mathworks.com/matlabcentral/fileexchange/450
47835-randomized-singular-value-decomposition. Version 1.0.0.0, retrieved Oct.
2018.

[13] P. O’Leary, On bounds for scaled projections and pseudoinverses, Linear Algebra and its
Applications, 132 (1990), pp. 115–117, https://doi.org/10.1016/0024-3795(90)90056-I.

[14] G. Stewart, On scaled projections and pseudoinverses, Linear Algebra and its Applications,455
112 (1989), pp. 189–193, https://doi.org/10.1016/0024-3795(89)90594-6.

This manuscript is for review purposes only.

https://doi.org/10.1109/78.286957
https://doi.org/10.1109/78.286957
https://doi.org/10.1109/78.286957
https://doi.org/10.1007/s10589-019-00127-4
https://doi.org/10.1007/BF01582063
https://doi.org/10.1007/BF01582063
https://doi.org/10.1007/BF01582063
https://doi.org/10.1137/S089547980138705X
https://doi.org/10.1137/1019005
https://doi.org/10.1137/0717073
https://doi.org/10.1145/962437.962439
https://doi.org/10.1137/090771806
https://doi.org/10.1145/114697.116805
https://www.mathworks.com/matlabcentral/fileexchange/47835-randomized-singular-value- decomposition
https://www.mathworks.com/matlabcentral/fileexchange/47835-randomized-singular-value- decomposition
https://www.mathworks.com/matlabcentral/fileexchange/47835-randomized-singular-value- decomposition
https://doi.org/10.1016/0024-3795(90)90056-I
https://doi.org/10.1016/0024-3795(89)90594-6

	Introduction
	Related Work

	Eigendecomposition
	Singular Value Decomposition
	Singular Values of W and W"0362W
	Singular Vectors
	Practical implementation

	Numerical Experiments
	Experiment I
	Experiment II
	Experiment III
	Experiment IV
	Experiment V

	Conclusions
	Appendix A. The approach of Behrens and Scharf
	Appendix B. Randomized SVD
	Appendix C. Block BFGS Matrices
	Acknowledgments
	References

