
Parameter tuning using asynchronous parallel pattern search
in sparse signal reconstruction

Omar DeGuchy and Roummel F. Marcia

University of California, Merced, 5200 N. Lake Road, Merced, CA 95343 USA

ABSTRACT

Parameter tuning is an important but often overlooked step in signal recovery problems. For instance, the
regularization parameter in compressed sensing dictates the sparsity of the approximate signal reconstruction.
More recently, there has been evidence that non-convex `p quasi-norm minimization, where 0 < p < 1, leads to
an improvement in reconstruction over existing models that use convex regularization. However, these methods
rely on good estimates of the value of not only p (the choice of norm) but also on the value of the penalty
regularization parameter. This paper describes a method for choosing suitable parameters.The method involves
creating a score to determine the effectiveness of the choice of parameters by partially reconstructing the signal.
We then efficiently search through different combinations of parameters using a pattern search approach that
exploits parallelism and asynchronicity to find the pair with the optimal score. We demonstrate the efficiency
and accuracy of the proposed method through numerical experiments.

Keywords: Sparsity, signal processing, cross validation, non-convex optimization, Poisson log-likelihood, asyn-
chronous parallel pattern search

1. INTRODUCTION

Parameter tuning in signal recovery problems involves judicious selection of parameters that influence not only
the problem model but the solution as well. For example, in compressed sensing and in general sparse signal
recovery problems, regularization parameters balance least-squares data fidelity terms with sparsity-promoting
penalty terms. More recently, there has been evidence that non-convex `p quasi-norm minimization, where
0 < p < 1, leads to an improvement in reconstruction over existing methods that use convex regularization. In
this paper, we propose a computationally efficient method for parameter tuning in a parallel but asynchronous
environment using derivative-free optimization. To demonstrate its effectiveness, we apply the proposed approach
to existing methods for photon-limited imaging.

Related methods. The problem of estimating multiple parameters arises in many other fields. For example,
kernel parameters of a support vector machine often have to be estimated.1–3 Hyper-parameter tuning arises
in stochastic gradient descent (SGD) methods for machine learning.4–6 Automatic parameter selection methods
have been previously proposed,7–9 and pattern search methods are well-known in literature.10–14 This paper
explores asynchronous parallel derivative-free approaches for parameter tuning.

2. POISSON PROBLEM FORMULATION

In this section we will motivate the need for parameter tuning within the context of photon-limited imaging.
Specifically, we will review the formulation of the Poisson reconstruction problem as the `p-norm penalized
Poisson log-likelihood function. This will provide the bases for the SPIRAL-`p algorithm.15

Photon-limited imaging describes the modality whereby measurements at the detector are corrupted by
Poisson noise. Under this regime the arrival of photons at the detector is typically modeled using a Poisson
distribution and the vector of observed photon counts is given by the inhomogeneous Poisson process

y ∼ Poisson(Af∗),

Further author information:
Omar DeGuchy.: E-mail: odeguchy@ucmerced.edu
Roummel F. Marcia.: E-mail: rmarcia@ucmerced.edu, Telephone: 1-209-228-4874



where y ∈ Zm+ , f∗ ∈ Rn+ is the true signal and Am×n
+ is the system matrix projecting the true signal to the

detector space.16 Our interest is in the recovery of f∗ and since the Poisson parameter is unknown, we use
the maximum likelihood principle to maximize the probability of observing the vector y. Specifically, if f∗ is
known to contain a few non-zero entries, we can use a sparsity promoting penalty term to regularize the Poisson
likelihood. The introduction of a penalty term such as the `1-norm17 or the `p-norm15 requires the tuning of
parameters prior to optimization in order to control the severity of the sparsity.

The generalized `p-norm sparsity-promoting Poisson reconstruction problem can be written as the following
constrained minimization problem:

f̂ = arg min
f∈Rn

Φ(f) ≡ F (f) + τ‖f‖pp (1)

subject to f � 0,

where

F (f) = 1
>Af −

m∑
i=1

yi log(e>i Af + β) (2)

is the negative Poisson log-likelihood function, 1 is the m-vector of ones, ei is the i-th column of the m × m
identity matrix and β > 0 (typically β � 1). We take particular note of the penalty term in (1). Here the
parameter τ > 0 serves to control the weight of the penalty and 0 < p < 1 acts as a bridge from the `0 counting
norm to the convex `1-norm. The solution to (1) is computed from a sequence of quadratic models using a
second-order Taylor approximation to F (f) at each iteration.15 However, the authors assume that p and τ are
known a priori.

3. METHODOLOGY

3.1 Cross-validation

In order to determine the pair of parameters p and τ which return the optimal f̂ that well approximates f∗, it is
necessary to define the criteria by which the optimal pair is chosen. This is difficult in the absence of information
about the true signal f∗. Typically the observation vector y ∈ Rm and the system matrix A ∈ Rm×n are known
elements of the problem. Our approach partitions y and A in the following manner:

y
m×1

=

[
ytrain

ytest

]
}r
}m−r and A

m×n
=

[
Atrain

Atest

]
}r
}m−r

where ytrain ∈ Rr, ytest ∈ Rm−r, Atrain ∈ Rr×n and Atest ∈ R(m−r)×n, with r < m. For a candidate pair of
parameters (p, τ), we use ytrain and Atrain to compute f̂test ∈ Rn using the SPIRAL-`p algorithm. The signal

reconstruction is then used to compute ŷtest = Atestf̂test. Finally, we compute

RMSEtest =
‖ŷtest − ytest‖2
‖ytest‖2

.

The choice of RMSEtest as a metric for choosing the parameters p and τ is motivated by the fact that it behaves
similarly to the RMSE(f̂) describing the difference between the true signal f∗ and the reconstruction f̂ (see Fig.
1). We formulate the parameter search as the following constrained optimization problem:

minimize
p,τ∈R

RMSEtest(p, τ)

subject to 0 < p < 1, (3)

bL ≤ τ ≤ bU ,

where RMSEtest(p, τ) is computed as previously stated for a given parameter pair and 0 < bL < bU are reasonable
lower(bL) and upper bounds(bU ) for the regularization parameter τ . This approach is based on cross-validation
techniques used in statistical inference and machine learning to test how well a predictive model performs.18



(a) (b)

Figure 1. A comparison of the behavior of (a) the RMSE for ŷtest (RMSEtest) and (b) the RMSE for f̂ (RMSE(f̂)) for
various combinations of the parameters p and τ . Note the near-consistent agreement between RMSEtest and RMSE(f̂).

Typically the data set used in these regimes is randomly divided into a test set and a validation set. In the
Poisson reconstruction model we must maintain the structure of the data y limiting the random nature of
traditional cross-validation. These techniques also involve input data used to train the model and output data
used to test the model. Our problem uses the observation vector y as both the input data and the output data.

3.2 Asynchronous parallel pattern search

Solving (3) using fast gradient-based optimization techniques is not practical because how to compute (or even
estimate) the gradient of RMSEtest(p, τ) is not clear. Instead, we propose using a derivative-free approach
to minimizing the problem. Instead of an exhaustive grid-search approach or even standard derivative-free
methods, we take advantage of the availability of multiple processors that asynchornously searches for the
optimal parameters. Initially we create a coarse grid of possible values for p and τ .19 As an alternative to
computing RMSEtest(p, τ) for every possible combination on the grid (which can be computationally exhaustive)
we randomly sample a percentage of combinations from the original grid (see Fig. 2) and compute RMSEtest(p, τ)
for the resultant candidates.20 We compare the RMSEtest values and choose the pairs (p,τ) with the lowest
associated values. The number of pairs chosen is based on the order of magnitude of the RMSEtest with a
minimum of 5 pairs and a maximum of 10. These candidates will be further refined as they form the initialization
points for the HOPSPACK framework, which we explain next.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

5

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

5

10

(a) (b)

Figure 2. Grid of potential parameter pairs (p,τ). (a) The full grid of 190 potential parameter values where 0 < p < 1
and 10−8 ≤ τ ≤ 10. (b) The reduction of candidates by randomly choosing 50% of the initial pairs.



a

b

c

d

e a c

d

f

g c

d

g

h

i

j

k

(a) (b) (c)

Figure 3. An illustration of an asynchronous parallel search implementation of the Generating Set Search method. (a) An
initial (parent) point a and points ({b, c, d, e}) within a trial step along the standard basis directions are generated. (b).
Suppose b and e required less time to evaluate than c and d and both b and e did not improve the objective function value
at a, then the trial step is decreased and new trial points f and g are generated while c and d continue to be evaluated.
(c) From the contour plots, the objective value at g is lower than at a; therefore g becomes the new parent and new trial
points are generated based on the current trial step.

HOPSPACK (Hybrid Optimization Parallel Search PACKage)21 is an open source frame work that enables
users to implement derivative-free algorithms in parallel.22–25 This paper takes advantage of its asynchronous
pattern search implementation of GSS (Generating Set Search).14 The GSS algorithm begins with an initial
point and step size and generates trial points along the available axes in the negative and positive direction. The
trial points are evaluated with two possible outcomes. If a trial point improves upon the value returned by the
parent (current best point), then it becomes the parent and the process is reimplemented. If a trial point does
worse, then the step size is decreased and a new trial point is determined. The algorithm terminates when the
step size in all directions has reached a user defined step tolerance. (See Fig. 3 for an illustration.)

Implementing GSS with the HOPSPACK framework provides us with two advantages. The first is that the
implementation is asynchronous, meaning that for a given iteration it does not wait for all of the trial point
evaluations to be completed. HOPSPACK allows the algorithm to continue testing trial points with a partial
set of results from the previous iteration. This characteristic makes the implementation ideal for parallelism and
beneficial in the case where function evaluations in certain regions take longer. The latter is of significant interest
when computing RMSEtest as the SPIRAL-`p algorithm computational time may vary based on the choice of
p and τ . The implementation will then continue to search for better trial points in the faster region while the
slower region computes its value. The second advantage is that the asynchronous implementation of GSS inherits
the properties of convergence of the synchronous implementation.14

Using the previously computed candidates from the randomized grid search as initial points in the HOPSPACK
implementation of GSS, we further refine our choice of parameters until we have the optimal pair (p, τ). The
pair is then used along with y and A in the SPIRAL-`p algorithm to compute the signal reconstruction f̂ .

4. NUMERICAL EXPERIMENTS

In this section we implement the previously discussed method for finding the optimal parameter pair (p, τ). We
perform 10 similar experiments where we generated measurements from 10 different signals and 10 different noise
realizations for each signal. In each experiment, the true signal f∗ has a length of 100,000 with 1,500 nonzero
entries and a mean intensity of 15,000. The observation vector y has a length of 40,000 with a mean intensity
much lower than that of f∗ (see Fig. 4 for an example of one Poisson realization of one particular signal).

The goal of each experiment is to construct the best approximation of the true signal f∗ from the observation
vector y. Specifically we seek to capture the support (number of non zeros and their location) of f∗ without any
prior information on f∗. We initialize the method by creating the vector ytrain using 90% of the length of y. This
results in the vector ytrain having a length of 36,000 and ytest having a length of 4,000. The initial coarse grid was
created using the bounds 0 < p < 1 and 1.0× 10−8 < τ < 1.0× 103. The grid points of p values were uniformly



0

5

10
10

5

0 1 2 3 4 5 6 7 8 9 10

10
4

0

50

100

150

0 0.5 1 1.5 2 2.5 3 3.5 4

10
4

(a) (b)

0

5

10
10

5

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

0 20 40 60 80 100 120 140 160 180 200

(c) (d)
Figure 4. Experimental setup: (a) True signal f∗ of size 100,000 with a mean intensity of 15,000. (b) Observation vector
y of size 40,000 corrupted with Poisson noise. (c) The first 200 entries of f∗. (d) The first 200 entries of y.

spaced in increments of .05 while the τ values were logarithmically spaced. The result was a grid of 285 possible
combinations. Fifty percent of the combinations were then randomly chosen. All computations were performed
on the MERCED Cluster which consists of 84 compute nodes with a total of 1876 cores at 2301 MHz with a total
capacity of approximately 60 TFLOPS. The RMSEtest values were computed using the MATLAB implementation
of the SPIRAL-`p algorithm. The best candidates from the coarse grid search were chosen by finding the pairs
with lowest RMSEtest values. The pairs with the same initial two significant digits were chosen resulting in
a group of 5-10 candidates that were used to initialize the HOPSPACK framework. Searches were performed
around each parameter pair by the HOPSPACK multi-threaded executable. Each computation was implemented
on a cluster node across 20 cores. The function calls (computation of RMSEtest) were passed to MATLAB and
the evaluations were parsed by the HOPSPACK framework. On average each node took approximately 10-
20 minutes of CPU time to perform approximately 70-90 function evaluations before converging to a solution.
Finally, the optimal pair from all nodes was determined and used to calculate f̂ .

In all 100 experiments the true support or location of the nonzero elements (1500) were recovered. In some
of the experiments slightly more nonzero elements than the support were also recovered. These extra entires
are reflected in the averages shown in Table 1. In the most extreme case 1510 nonzero entries were recovered
while most reconstructions captured the true support exactly. This consistency was exhibited across different
realizations as well as across different signals. Table 1 also shows the range of average RMSE values for f̂ .
These values are consistent with those presented in literature15 where the true signal f∗ was used to tune the
parameters. We also present in Table 1 the average computational times and the average number of pair (p, τ)
evaluations per experiment.

Exp. RMSE Non-zeros CPU Evals.
1 0.0600 1501.0 842.48 164.91
2 0.0602 1500.4 595.03 144.42
3 0.0602 1500.4 708.59 167.74
4 0.0602 1501.7 483.54 92.48
5 0.0604 1501.7 484.32 138.31
6 0.0611 1501.7 382.20 116.71
7 0.0597 1501.1 397.94 108.62
8 0.0600 1500.6 433.11 121.29
9 0.0602 1500.5 315.77 96.01
10 0.0600 1500.9 326.40 100.22

Table 1. Average RMSE (‖f∗ − f̂‖2/‖f∗‖), number of non-zeros, CPU time (in seconds), and number of pairs (p, τ)
evaluated for 10 different realizations of 10 different signals.



5. CONCLUSION

In this paper we created the metric RMSEtest as a means for validating the parameter choice in the `p-norm
Poisson reconstruction problem. The creation of RMSEtest is particularly useful in that it assumes that nothing is
known about the true signal f∗. This measure of parameter choice coupled with the asynchronous parallelization
of GSS implemented by HOPSPACK, accurately, efficiently and consistently produced the support of the true
signal and RMSE values comparable to those produced by manual tuning where information about the true
signal is known.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation Grant CMMI-1333326 and IIS-1741490. The authors
gratefully acknowledge computing time on the Multi-Environment Computer for Exploration and Discovery
(MERCED) cluster at UC Merced, which was funded by National Science Foundation Grant No. ACI-1429783.

REFERENCES

[1] Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S., “Choosing multiple parameters for support
vector machines,” Machine Learning 46(1), 131–159 (2002).

[2] Hastie, T., Rosset, S., Tibshirani, R., and Zhu, J., “The entire regularization path for the support vector
machine,” Journal of Machine Learning Research 5(Oct), 1391–1415 (2004).

[3] Wu, K.-P. and Wang, S.-D., “Choosing the kernel parameters for support vector machines by the inter-cluster
distance in the feature space,” Pattern Recognition 42(5), 710–717 (2009).

[4] Duchi, J. C., Hazan, E., and Singer, Y., “Adaptive subgradient methods for online learning and stochastic
optimization,” Journal of Machine Learning Research 12, 2121–2159 (2011).

[5] Kingma, D. P. and Ba, J., “Adam: A method for stochastic optimization,” CoRR abs/1412.6980 (2014).

[6] Zhang, S., Choromanska, A. E., and LeCun, Y., “Deep learning with elastic averaging SGD,” in [Advances
in Neural Information Processing Systems ], 685–693 (2015).

[7] Kohavi, R. and John, G. H., “Automatic parameter selection by minimizing estimated error,” in [Machine
Learning Proceedings 1995 ], 304–312 (1995).

[8] Yu, L. and Liu, H., “Feature selection for high-dimensional data: A fast correlation-based filter solution,”
in [Proceedings of the 20th International Conference on Machine Learning (ICML-03) ], 856–863 (2003).

[9] Loh, W.-Y., “Classification and regression trees,” Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery 1(1), 14–23 (2011).

[10] Hooke, R. and Jeeves, T. A., ““Direct Search” solutiton of numerical and statistical problems,” Journal of
the ACM 8.2, 212–229 (2010).

[11] Nelder, J. A. and Mead, R., “A simplex method for function minimization,” The Computer Journal 7.4,
308–313 (1965).

[12] Dennis Jr, J. E. and Torczon, V., “Direct search methods on parallel machines.,” SIAM Journal on Opti-
mization 1.4, 448–474 (1991).

[13] Torczon, V., “On the convergence of pattern search algorithms,” SIAM Journal on Optimization 7(1), 1–25
(1997).

[14] Kolda, T. G., Lewis, R. M., and Torczon, V., “Optimization by direct search: New perspectives on some
classical and modern methods,” SIAM Review 45.3, 385–482 (2003).

[15] Adhikari, L. and Marcia, R. F., “Nonconvex relaxation for poisson intensity reconstruction,” in [2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) ], 1483–1487 (April 2015).

[16] Snyder, D. L. and Miller, M., [Random Point Processes in Time and Space ], Springer (1991).

[17] Harmany, Z. T., Marcia, R. F., and Willett, R. M., “This is SPIRAL-TAP: Sparse Poisson intensity recon-
struction algorithms; theory and practice,” IEEE Trans. on Image Processing 21(3), 1084–1096 (2012).

[18] Kohavi, R., “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in
[Proceedings of the 14th International Joint Conference on Articial Intelligence - Volume 2 ], 1137–1143
(August 1995).



[19] Hsu, C., Chang, C., and Lin, C., “A practical guide to support vector classification,” tech. rep., Department
of Computer Science, National Taiwan University (2003).

[20] Bergstra, J. and Bengio, Y., “Random search for hyper-paramter optimization,” Journal of Machine Learn-
ing Research 9, 281–305 (2012).

[21] Plantenga, T. D., “HOPSPACK 2.0 User Manual,” Tech. Rep. SAND2009-6265, Sandia National Labora-
tories, Albuquerque, NM and Livermore, CA (October 2009).

[22] Hough, P. D., Kolda, T. G., and Torczon, V. J., “Asynchronous parallel pattern search for nonlinear
optimization,” SIAM Journal on Scientific Computing 23(1), 134–156 (2001).

[23] Kolda, T. G., “Revisiting asynchronous parallel pattern search for nonlinear optimization,” SIAM Journal
on Optimization 16(2), 563–586 (2005).

[24] Gray, G. A. and Kolda, T. G., “Algorithm 856: Appspack 4.0: Asynchronous parallel pattern search for
derivative-free optimization,” ACM Transactions on Mathematical Software (TOMS) 32(3), 485–507 (2006).

[25] Griffin, J. D., Kolda, T. G., and Lewis, R. M., “Asynchronous parallel generating set search for linearly-
constrained optimization,” SIAM Journal on Scientific Computing 30, 1892–1924 (2008).


	Introduction
	Poisson Problem Formulation
	Methodology
	Cross-validation
	Asynchronous parallel pattern search

	Numerical Experiments
	Conclusion

