May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

To appear in Optimization Methods € Software
Vol. 00, No. 00, Month 20XX, 1-23

Trust-Region Algorithms for Training Responses:
Machine Learning Methods Using Indefinite Hessian Approximations

Jennifer B. Erway®*, Joshua Griffin®, Roummel F. Marcia®, and Riadh Omheni”

*Wake Forest University, Winston-Salem, NC;
bSAS, Cary, NC; ¢ University of California, Merced, Merced, CA

(December, 2017)

Machine learning (ML) problems are often posed as highly nonlinear and nonconvex un-
constrained optimization problems. Methods for solving ML problems based on stochastic
gradient descent are easily scaled for very large problems but may involve fine-tuning many
hyper-parameters. Quasi-Newton approaches based on the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update typically do not require manually tuning hyper-parameters
but suffer from approximating a potentially indefinite Hessian with a positive-definite matrix.
Hessian-free methods leverage the ability to perform Hessian-vector multiplication without
needing the entire Hessian matrix, but each iteration’s complexity is significantly greater
than quasi-Newton methods. In this paper we propose an alternative approach for solving
ML problems based on a quasi-Newton trust-region framework for solving large-scale opti-
mization problems that allow for indefinite Hessian approximations. Numerical experiments
on a standard testing data set show that with a fixed computational time budget, the pro-
posed methods achieve better results than the traditional limited-memory BFGS and the
Hessian-free methods.

Keywords: Large-scale optimization, non-convex, machine learning, trust-region methods,
quasi-Newton methods, limited-memory symmetric rank-one update

AMS Subject Classification: 90C53; 15A06; 90C06; 65K05; 65K10; 49M15

1. Introduction

Machine learning problems, such as text classification and speech recognition, are often
nonlinear and nonconvex unconstrained problems of the form

min f(w) £ 3 filw), (1)

weR™
i=1

where f; is a function of the ith observation in a training data set {(x;,y;)} with z; € R¢
and y; € R°. In the literature (see e.g., [7, 65]), (1) is often referred to as the empirical
risk. Generally speaking, these problems have several features that make traditional
optimization algorithms ineffective. First, both m and n are very large (e.g., typically
m,n > 10%). Second, there is a special type of redundancy that is present in (1) due to
similarity between data points; namely, if Z is a random subset of indices of {1,2,...,n},

*Corresponding author. Email: rmarcia@ucmerced.edu

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

then provided T is large enough, but |Z| < n (e.g., n = 10? and |Z| = 10°), then

Flu) 2 G2 3) ~ 3 filw).)
=1

€T

The underlying goal during the optimization phase in machine learning is to find the
“best” set of model parameters w so that the chosen model function p(z,w) : R x R™ —
R predicts the observed target variable y € R° as accurately as possible. The most
popular approaches in machine learning include (i) stochastic gradient descent method,
(ii) limited-memory BFGS, and (iii) Hessian-free methods. Here we briefly describe each
approach and describe their advantages and disadvantages.

(i) Stochastic gradient descent (SGD) methods. The stochastic gradient descent
(SGD) method [54] is one of the most popular types of methods for solving machine learn-
ing problems. For this iterative method, an index j is randomly chosen from {1,2,...n}
at each iteration and w is updated as follows:

w=w—n;Vfj(w),

where V f; denotes the gradient of f;. The parameter 7); is referred to as the learning rate
in machine learning. SGD is a very attractive algorithm for machine learning for several
reasons. First, it naturally exploits data set redundancy described in (2); moreover, the
iteration complexity is independent of n. In contrast, classical optimization algorithms
are explicitly dependent on n and become much more unstable when attempting exploit
cheaper stochastic approximations of the gradient [7, 12, 18, 19, 31, 48, 58]. Second, the
algorithm comes with attractive convergence theory [7]. Third, the SGD algorithm readily
responds to an on-line learning environment (i.e., data is available in a sequential order
instead of all-at-once) where data observations may never repeat. A fourth advantage
occurs in the nonconvex setting where the stochastic nature of SGD makes it much less
likely to converge to inferior local minimums [13, 34, 57] than non-stochastic methods.

There are several important disadvantages associated with using SGD. To enhance
the performance of SGD in practice, developers must fine-tune many hyper-parameters—
leading to many variations of SGD, (e.g., see [1, 23, 33, 35, 63, 67, 68]). One set of
hyper-parameter users must choose is a learning rate sequence (i.e., {n;}). If the learning
rate is too small, the algorithm may stall; on the other hand, if the learning rate is too
large the algorithm may not converge. In practice, finding an effective sequence {n;} can
require solving the same problem many times to find the best sequence. This dilemma
has led to a resurgence of interest in auto-tune algorithms that can aid the SGD user
in this search [2, 4-6, 22, 37, 40, 60, 61]. A second disadvantage with SGD is that it is
inherently sequential, making it difficult to parallelize [21, 37, 44, 53].

(ii) Limited-memory BFGS (L-BFGS). One of the most popular classical algorithms
in machine learning is the L-BFGS algorithm, which falls into the class of limited memory
quasi-Newton algorithms. Like SGD, quasi-Newton algorithms require only first-order
(gradient) information. Quasi-Newton methods generate a sequence of iterates using the
rule

W1 = Wy + kpr, where pp 2 =B 'V f(wy), (3)

By, is a quasi-Newton matrix that is updated at each iteration using gradient information,

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

and 7y, is a suitably-defined step length (learning rate). The update to By is defined using
sequences of vectors {s;} and {y;}, which are given as

85 & Wjp1 — wj and yj = Vf(wjs1) — VF(w;), (4)

for j =0,...,k — 1. The Broyden class of updates, parametrized by ¢ € R, is the most
widely-used updating rule for Bj:

1 1
Bjy1 = By, — TinSksgBk + Tykyg + ¢(5£Bk5k)UkUkTa (5)
53, Bsy Y Sk
where
Yk By sg
VE -

- T T :
Y Sk Sp, Brsk

In practice, By is usually taken to be a positive scalar multiple of the identity. In large-
scale optimization, limited-memory quasi-Newton methods are used to bound storage
requirements and promote efficiency. In this case, only the r most-recently computed
pairs {(sj,y;)} are used to build By, i.e., only the most up-to-date information is used
to model the Hessian matrix. The value of r is typically very small so that r < n.

While the matrices in the sequence {B;} are symmetric by construction, different
choices of ¢ lead to sequences of matrices with different properties. The most well-
known member of the Broyden class of updates is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update, which is obtained by setting ¢ = 0. Provided By is positive definite and
y;-fsi > 0 for each ¢ = 0,...,k — 1, then the BFGS update generates a sequence of
symmetric positive-definite matrices. (The condition le s; > 0 for each ¢ can be enforced
using a Wolfe line search to compute 7 in (3).) One reason why the BFGS update is
the preferred update is that there is an efficient way to solve linear systems with By,
making the computation of p; in (3) affordable [49]. It is worth noting that of all the
quasi-Newton updates available, the limited-memory BFGS (L-BFGS) update has been
used almost exclusively by researchers in machine learning.

L-BFGS has several advantages in the machine learning setting. First, the computation
of Vf(w) benefits from a parallel-programming environment. Second, while there are
only a few hyper-parameters that the user may tune, such as the number of weights (m)
used and the scaling for the initial matrix By, there are known standard initializations
and values used by the optimization community; that is, L-BFGS does not require manual
tuning.

L-BFGS has a number of disadvantages for solving problems in machine learning, es-
pecially in deep learning, where the network is composed of multiple cascading lay-
ers. First, it cannot be used in an on-line learning environment without significant
modifications that limit its scalability to arbitrarily large data sets. (This has given
rise to recent research into stochastic L-BFGS variations that have thus far been un-
able to maintain the robustness of classical L-BFGS in a stochastic mini-batch environ-
ment [7, 12, 18, 19, 31, 48, 58].) A third disadvantage of L-BFGS occurs if one tries to
enforce positive definiteness of the L-BFGS matrices in a nonconvex setting. In this case,
L-BFGS has the difficult task of approximating an indefinite matrix (the true Hessian)
with a positive-definite matrix By, which can result in the generation of nearly-singular
matrices { By }. Numerically, this creates need for heuristics such as periodically reinitial-
izing B} to a multiple of the identity, effectively generating a steepest-descent direction

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

in the next iteration. This can be a significant disadvantage for neural network problems
where model quality is highly correlated with the quality of initial steps [43].

(iii) Hessian-free (HF) methods. A third family of algorithms of interest come from
classical algorithms that can leverage the ability to perform Hessian-vector multiplies
without needing the entire Hessian matrix itself [20, 41-43]; for this reason, as in [41,
43], we will refer to this class as Hessian-free algorithms. These algorithms perform
approximate updates of the form

W1 = Wy +nkpr with V2 f(wi)pr = =V f(wy), (6)

where pj is an approximate Newton direction obtained computed using a conjugate-
gradient-like (CG-like) algorithm and 7y is the step length. Traditional CG algorithms
assume V2 f(wy) is positive definite and solve for pj, in (6) using only matrix-vector prod-
ucts, and thus, are applicable in large problems in machine learning. Because V?2f(wy)
may be indefinite in deep learning problems, modified variants are needed to adapt for lo-
cal nonconvexity; we refer to such approaches as modified conjugate-gradient algorithms
(MCG).

Remarkably, Martens [41], was able to show that Hessian-free methods were able to
achieve out-of-the-box competitive results compared to manually-tuned SGD on deep
learning problems. Moreover, Pearlmutter [52] was able to show that matrix-vector prod-
ucts could be computed at a computational cost on the order of a gradient evaluation.
However, since multiple matrix-vector products can be required to solve (6), the iteration
complexity of MCG is significantly greater than L-BFGS. Thus, despite its allure of being
a tune-free approach to deep learning, Hessian-free methods are for the most part unused
and unexplored in practice.

Contributions of the proposed method. While the BFGS update is the most widely-
used type of quasi-Newton method for general optimization as well as general machine
learning, it enjoys certain benefits (given by guaranteed positive-definite Hessian approx-
imations) that may actually hinder it in solving large nonconvex optimization problems.
Our proposed approach is based on a different quasi-Newton update, namely the sym-
metric rank-1 (SR1) update, which allows for indefinite Hessian approximation. We use
a trust-region framework (see e.g., [17]) because this framework can accommodate indefi-
nite Hessian approximations more easily (see [50]). We also present a stochastic extension
of our proposed approach, which improves computational time because it does not com-
pute the full gradient at each iteration.

2. L-SR1 trust-region methods

We begin by discussing the SR1 update and trust-region methods for large-scale opti-
mization.

2.1 The SR1 update

The SR1 update is the unique rank-one update in the Broyden class satisfying the so-
called secant condition:

Bry15k = Yk

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

This update occurs by setting ¢ =y sp/(yi s — st Bgsy) in (5); in this case,

Bpy1 = Bp+ (yx — Brsi)(yr — Brsi)T, (7)

sT(yx — Bysr)

where s and y, are defined in (4). At each iteration, we assume (yx — Bysg)” sp # 0,
i.e., all of the updates are well-defined; the update is skipped otherwise (see [50, Sec.
6.2]). This update has the distinction of being the only rank-one update in the Broyden
class of updates. Moreover, this update is self-dual: The recursion (7) can be used to
generate Bk_il by interchanging y; and s;, everywhere in (7) and initializing with B, L
Thus, linear systems with SR1 matrices can be solved efficiently. An important aspect of
the SR1 update is that regardless of the sign of yiT s; for each 4, this update generates a
sequence of matrices that may be indefinite. It is precisely this property of SR1 matrices
that makes them attractive in applications like deep learning where f is nonconvex.

Decreasing the index by 1 in (7), the SR1 update can be written recursively and com-
pactly using the outer product representation

[M) [v]
By = Bo+ |0y (8)

where By = I for some v #£ 0, Uy, is an n X k matrix and My, is a k x k matrix. In the
literature, (8) is referred to as the compact formulation of an SR1 matrix. In particular,
Byrd et al. [10] show that for SR1 matrices,

U, =Yy —BoS, and My, = (D+L+LE—SIByS;,) ™1 (9)

with Sy é[So S1 S22 Skp—1] S %nXk, and Y}, é[y(] Yir Y2 o Yk—1] S §Rn><k,
and Ly is the strictly lower triangular part, Uy, is the strictly upper triangular part, and
Dy is the diagonal part of S,{Yk = L + Dy 4+ Ug. In our proposed approach, we use a
limited-memory SR1 (L-SR1) update, where only r of the most recent pairs {s;,y;} are
stored, where the value of r is typically very small so that r <« n.

While SR1 updates are one of many updates proven to theoretically converge to the
Hessian matrix at a minimizer, there is some evidence that in practice SR1 updates have
superior convergence properties [16].

The SR1 advantage: Historically, the SR1 update fell out of favor when it appeared to
suffer from more algorithmic breakdowns and instabilities than the BFGS update; how-
ever, simple safeguards are now used to adequately prevent instabilities and breakdowns
[50, p.145]. Over the last several decades, the SR1 update has reemerged as the subject
of much research; in fact, in [29, p.118], Gould states: “[SR1] has now taken its place
alongside the BFGS method as the pre-eminent updating formula”

For machine learning, the SR1 update offers distinct advantages over the BFGS update:
(i) In machine learning problems, Wolfe line searches to enforce y} s, > 0 in BFGS meth-
ods are too computationally expensive to use which has led to the popular solution of
skipping BFGS updates, possibly degrading the quality of the Hessian approximation [50,
p.146]; (ii) SR1 matrices exhibit better convergence to the true Hessian (e.g., see the dis-
cussion on convergence in Section 2.1); and (iii) if one tries to generate a sequence of
positive-definite L-BFGS matrices when modeling an indefinite Hessian, the matrices in
this sequence may become nearly singular (i.e., highly ill-conditioned) with the smallest

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

eigenvalue of this sequence of matrices becoming close to zero. Since machine learning
problems are nonconvex, it is worth noting that (ii) and (iii) suggest that SR1 matri-
ces may generate more accurate approximations than positive-definite L-BFGS matrices
of the true Hessian. Moreover, when (iii) occurs, the search direction obtained from a
BFGS method may be of poor quality, hindering convergence of the overall method. In
fact, research on SR1 methods have produced comparable, if not better, results to BFGS
methods [15, 16] on general optimization problems.

2.2 Large-scale trust-region methods

Trust-region methods minimize a function f by modeling changes in the objective func-
tion using quadratic models. Each iteration requires approximately solving a trust-region
subproblem. Specifically, at the kth iteration, the kth trust-region subproblem is given
by

*

) 1)
p* = argmin Qu(p) £ g{p+5p Bip subject to [pll <o, (10)
pERn

where g £ Vf(wg), Br = V2f(wy), and & is a given positive trust-region radius. Basic
trust-region methods update the current approximate minimizer for f only if the ratio
between the actual and predicted change in function value is sufficiently large. If the
ratio is sufficiently large, the update is accepted and wgy1 < wi + p*. When this is not
the case, J; is reduced and the trust-region subproblem is resolved. The solution of the
trust-region subproblem is the computational bottleneck of most trust-region methods.
The primary advantage of using a trust-region method is that By does not have to be a
positive-definite matrix; in particular, it may be a limited-memory SR1 matrix.

Trust-region methods for general large scale optimization use an iterative method to
solve the trust-region subproblem. It is well known that when the two-norm is used
to define the subproblem (10), we can completely characterize a global solution of the
subproblem. The optimality conditions for the trust-region subproblem defined using the
two-norm are due to Gay [28] and Moré and Sorensen [47]:

Theorem: Let § be a given positive constant. A vector p* is a global solution of the
trust-region problem (10) if and only if ||p*||2 < ¢ and there exists a unique o* > 0 such
that By + o*I is positive semidefinite with

(B, +0*)p* = —g, and o* (6 — ||p*|l2) = 0. (11)
Moreover, if By + o*1 is positive definite, then the global minimizer is unique.

Most iterative methods for solving the trust-region subproblem assume it is possible to
compute matrix-vector products with the true Hessian, but matrix factorizations are
too computationally expensive to perform. Examples of such methods include Steihaug’s
method [62], Toint’s method [64], the GLTR method [30], phased-SSM [25], Hager’s SSM
method [32], Erway and Gill’s SSM method [24], and the LSTRS method [55, 56]. In many
machine learning applications, these methods are too computationally expensive for use
on the full data set.

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

2.3 Solving the L-SR1 trust-region subproblem

Solving the trust-region subproblem (10) is generally the computational bottleneck of
trust-region methods. In recent work by the authors [8], an efficient algorithm for solving
the trust-region subproblem (10) is proposed, where By, is the SR1 quasi-Newton update.
To efficiently solve the subproblems, we exploit the structure of the L-SR1 matrix to
obtain global solutions to high accuracy. We summarize this approach here.

To begin, we transform the optimality equations (11) using the spectral decomposition
of By, which we outline here (see [8] for more details). Given the compact formulation
of By, By, = By + YM¥T and the “thin” QR factorization of ¥, ¥ = QR, then Bj, =
vl + QRMRTQT, where By = ~I and v > 0 (see [9, 26]). Since RMRT is a small
k x k matrix, its spectral decomposition VAVT can be quickly computed. Then, letting
H2[QV (QV)*] € R such that TI"II = IITI” = I, the spectral decomposition of
By is given by

Bk_.HAHT,whaeAmﬁ[Al O} _[(12)

A+~I 0
0 A» ’

0 ~I

where A; = diag(A A7 A2+ Ak +7) € R¥¥F and Ay = vI,,_j. Using the spectral
decomposition of By, the optimality equations (11) become

(A + o*T)w* = —IIy (13a)

o™ (6 — [[v*[l2) = 0, (13b)

for some scalar o* > 0 and v* = II”p*, where p* is the global solution to (10). The
Lagrange multiplier o* can be obtained by substituting the expression

k T,\2 T 2

P * =177 (12 (II"g); a2 ((QV)) gl
|5 =[|(A+o"T) 11 = 40)+ 14
lo*]12 = II() g2 ngrpy) CE L (14)

from (13a) into (13b) and finding the largest solution ¢* to the secular equation
1 1

= - =0 15
M= ool 8 1

using Newton’s method. Once ¢* is obtained, v* can be computed from (13a) and as
well as the solution p* = ITv* to the original trust-region subproblem (10). Note that in
only one special case, the so-called hard case [17, 46], the above method will not work
because the computed ||p*|| will not lie on the boundary of the trust region. In this case,
the global solution to the trust-region subproblem is given by p* = p* + aumin, Where
p* = —(B+0*I)Tg, tmin is a column of P and is an eigenvector associated with the most
negative eigenvalue of By and can be computed from the partial spectral decomposition
outlined above, and a = +4/6% — ||p*||2 is a scalar to ensure that p* lies on the boundary.

(See [8] for details on the hard case.)

2.4 Proposed approach

The proposed L-SR1 Trust-Region Method (L-SR1-TR) is outlined in Algorithm 1, and the
trust-region subproblem solver is described in Algorithm 2. For details on the subproblem

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

solver and all related computations, see [8, Algorithm 1].

Algorithm 1 L-SR1 Trust-Region (L-SR1-TR) Method

Require: zp € R", §p >0, e>0, >0, 0<7 <7m<0b5<m<l,
O<m<m<05<m<lsny, a=1
1. Compute go
2: for k=0,1,2,... do
if ||gx|| < € then
4 return
5. end if
6: Choose at most m pairs {s;,y;}
7. Compute p* using Algorithm 2
8
9

o

Compute step-size o with Wolfe line-search on p*. Set p* = ap™.
. Compute the ratio p = (f(wy +p*) — f(wk))/Qk(p)
100 Wiyl = Wi+ DF
11: Compute gxi1, Sk, Yk, and g
12: if Pr < T2 then

13: Ok+1 = min (910, 72||sk2)

14: else

15: if Pk > T3 and ||5kH2 > 7735k then
16: Okt1 = Nalk

17: else

18: 5k+1 = 5k

19: end if

20: end if
21: end for

2.5 Stochastic extension

In this section, we describe how to improve the efficiency of L-SR1-TR by incorporating
approximate gradient calculations derived from random sampling of the training data.
The use of mini-batches can be motivated by considering (2), which suggests a (po-
tentially significantly smaller) subset may be sufficient to obtain a meaningful descent
direction for the true objective function. Mini-batching refers to the process whereby a
subset of training data is used to approximate the full gradient calculation each iteration.
That is, instead of using gi the gradient is approximated by

. 1
gk 2 = Y Vfi(wy) ~ Vf(wp), (16)
’Ik‘ i€Zy,
where Zj, C {1,2,...,n}. Obviously as |Zj| decreases the savings in computational cost

must be weighed against the resulting degradation in progress. Remarkably first-order
algorithms like SGD function behave quite well even if Z; consists of only a single ob-
servation at each iteration. The reason is that the gradient error can be shown to cancel
itself out in the expected value sense. However, for higher-order approaches such as quasi-
Newton methods, the batch size typically needs to be larger. Further, batch sizes need not
be fixed—strategies for dynamically increasing batch size have been studied in [11, 45, 59].
In our experience, we have found robustness in starting with an arbitrarily small batch

May 29, 2019 Optimization Methods & Software GOMS-2018-0117'FINAL

Algorithm 2 Orthonormal Basis SR1 Method

1: Compute the Cholesky factor R of T,

2. Compute the spectral decomposition RMRT = UAUT (with M<e < j\k),
3: Let Ay = A+’y];

4: Let Apin = min{A1,v}, and let r be its algebraic multiplicity;

5: Define g 2 (VR™U)Tg;

6: if Apin > 0 and ¢(0) > 0 [the unconstrained minimizer is feasible] then
7. ¢* =0 and compute p* = —Bk_lgk;

8: else if A\pin <0 and ¢(—Apin) > 0 then

9: of = —Amin;

10: Solve (By + o*I)p* = —gx;

11: if Apin < 0 [the hard case| then

12: Compute o and u; ;

13: p* = pF+atul;

14: end if

15: else

16: Use Newton’s method to find ¢*, a root of ¢, in (max{—Anin, 0}, 00);
17: Solve (Bg + o*I)p* = —g;

18: end if

size and increasing the batch size whenever progress towards the minimizer appears to
stagnate.

For this work, we use overlapping training samples [3], requiring that at each iteration
the mini-batch Z; is formed using a prescribed percentage of overlap with the previous
mini-batch. That is, at the kth iteration, the overlap Z, N Z;_q is predetermined. Using
overlapping mini-batches and (16), the quasi-Newton pairs {(sx_1,yx—1)} are computed
as

Sp—1=wg —wg—1 and Y1 = G — Gr—1.

As with SGD, there is inherent noise in the search direction due to using (16) instead of
the true gradient. A common approach to mitigate the effects of this noise is to use the
principles of momentum, which is the exponential averaging of recent steps. Specifically,
in our approach we add the following momentum term at the end of each iteration:

v = pg—1 + (W — wi—_1).

The most commonly-used value for the momentum parameter is 1 = .9 (see e.g., [63]).
The momentum step vy, is grafted into the trust-region solution p* from (10) as follows:

)
Vg < {4 min (1.0, k) Vg, (17a)
[o]
k : k k
p* < min | 1.0, > P4 vg), 17b
(10 gy 0 40 e

where), denotes the current trust-region radius (see Algorithm 1). Note that if p = 0,
then the trust-region step p* would be left unchanged by the above transformation. We
call this approach Limited-Memory Stochastic SR1 Trust-Region (L-SSR1-TR), and it dif-
fers from Alg. 1 (L-SR1-TR) in three specific places: Line 1, which uses the approximate

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

gradient gg instead the exact initial gradient gg; Line 7, which incorporates the momen-
tum step vg into the trust-region subproblem solution p*; and Line 11, which uses the
approximate gradient gi11 instead the exact initial gradient gi+1 and would compute y
using the approximate gradient, i.e., yr = grp+1 — gr- L-SSR1-TR is outlined in Algorithm
3.

L-SSR1-TR requires the use of two new hyper-parameters (the momentum parameter
and the mini-batch overlap parameter). Unlike SGD where convergence is very sensitive to
the learning rate, we have found that convergence of the proposed method is not adversely
affected by small changes in these hyper-parameters. In fact, we have found that these
parameters are no more sensitive to tuning than the existing quasi-Newton parameters
such as memory size and the trust-region expansion and contraction parameters (see 17;
and 7y in Algorithm 1).

Algorithm 3 Limited-Memory Stochastic SR1 Trust-Region (L-SSR1-TR) Method
Require: 2 € R, §p >0, e>0, >0, 0< 1 <71 <0b<m3<1,
O<m<m<05<m<l<ma=1p=09
1: Compute initial batch Zy and g
2. for k=0,1,2,... do
if ||gk|| < € then
4 return
5. end if
6: Choose at most m pairs {s;, y;}
7. Compute p* using Algorithm 2
8
9

w

v = pp—1 + (W — wi_1)

: Vi — umin(l.O,ék/Hka)vk
10: p* =min(1.0,0/||p* + vi|)(p* + vi)
11: Compute step-size v with Wolfe line-search on p*. Set p* = ap™.
12: Compute the ratio pr = (f(wg + p*) — f(wg))/Qr(p*)
13: Wiy = Wk +pF
14: Compute §i+1, Sk, Yk, and g
15: if pp < 7 then

16: Ok-+1 = min (110k, 12|sk|2)

17: else

18: if pp > 73 and ||sg||2 > n3dx then
19: Ok+1 = N4k

20: else

21: 5k+1 = 5k

22; end if

23: end if
24: Compute batch Zy ;1 in accordance with Assumption 4
25: end for

2.5.1 Line-search analysis

Here, we demonstrate that under some mild assumptions, the line-search step in Algo-
rithm 3 is guaranteed to a step length that sufficiently decreases f(w). We first state
these assumptions.

Assumption 1 Let the mini-batch set of observations Z; be sampled randomly with

10

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

np = |Zx|. Then there exists a positive function v : R — R such that:

H{‘Ilk‘) Ww)} Vi (w)

€Ly,

< 7(np) (18)

oo

where v(np) — 0 as ny — n.
This assumption suggests that as |Zj| increases, g in (16) approaches V f(w).

Assumption 2 The line search in Algorithm 3 is performed only on the sampled function

fw).

This assumption requires that the line search uses the same batch that was used to define
the trust-region subproblem.

Assumption 3 Algorithm 3 negates the search direction whenever g(w)?p* > 0, where
p* is from (17b).

Next, we make the following assumption to ensure that we are making progress in de-
creasing the full empirical risk f(w).

Assumption 4 The objective f is fully evaluated every J > 1 iterations (say, at iterates
Wy, Wy, Wi,, ..., where 0 < Jop < J and J = J; — Jg = Jo — J; = ---) and nowhere else
in the algorithm. The batch size n; is monotonically increased whenever

f(ng) > f(wJe—l) -7

for some 7 > 0.

This assumption states that if progress is not made in decreasing f, the batch size is
increased to reduce the noise associated with using a subsampled surrogate function f.

Given Assumptions 1 through 4, we now present convergence results for L-SR1-TR. The
theorem below asserts the trust-region radius update will always succeed.

THEOREM 2.1 At iteration k, given the batch Iy, the line-search step in Algorithm 3
can never fail. That is, there exists o > 0 such that the strong-Wolfe conditions hold:

(1) f(wy+ap*) < fwg) + c1aV f(wy)
(2) |V f(wy, + ap*)Tp*| < ea|V f (wi) ¥

Proof. Because each f;(w) is smooth, the function f(w) is likewise smooth. Thus because
the search direction is a descent direction for f (w), the result follows. Because of As-
sumption 2 and smoothness assumptions on elements f;(w), classical line-search proofs
hold so long as the batch Z; is held constant and not resampled during this stage. []

THEOREM 2.2 If the momentum parameter u — 0, then either

liminf |V f(wg)|| =0 or liminf f(wg) = —oc. (19)
k—o0 k—00

Proof. For simplicity of notation, we will define w; = w,. By Assumption 4, the objective
function must monotonically reduce over the subsequence {w;} or ny — n. Suppose the

11

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

objective function is decreased ¢j, times over the subsequence {u;}¥_,. Then

Assuming nj, - n, then as k — oo, ¢, — oo, and (19) holds. If n, — n, we reduce to a
classic line-search approach whose convergence is assured via the trust-region algorithm
that makes sufficient progress at each iteration (see e.g., [51]). [|

2.6 Initial matrix Bg

In this section we borrow terminology defined in Section 2.3. For simplicity in this section
we will assume that By = I and analyze the impact of v on various scenarios. We will
show in this section that the choice of v plays a critical role in a trust-region approach. We
start by proving a brief lemma summarizing how directions of negative curvature present
in By affects the trust-region solution, a variation of which may also be found in [66].
We will denote the smallest and largest eigenvalues of By by Amin(Bk) and Amax(Bk),
respectively.

LEMMA 2.3 If B, # 0, as the trust-region radius 6 increases, the trust-region solution,

*

p*, asymptotically becomes parallel to the eigenspace corresponding to Amin(By). That is,

lim M =1.
61— [tmin]|[|p* |

where upmin i an eigenvector corresponding to Amin(Bk).

Proof. Without loss of generality, we assume that the Apin(Bg) has multiplicity one for
ease of presentation. (For how to handle the general case, the notation in [8] can be
used.) Let Amin(Br) = A1 < A2 < --- < A\, and let 7; be the i*® column of II in the
eigendecomposition of By, in (12). Using this notation, tmyin = m1. Then we can define

~ _ (7l gp)?
Ip(o)|* = |(Bi + o)~ gi|* = ITT(A + 1) 1HT9HIZZZ<&+U)>2>

i=1

(20)

provided o # —\; for 1 < i < n. To prove the lemma, we consider two cases: (i) 71 gi, # 0
and (i) n¥ gy = 0.
Case (i): If w1 g, # 0, then rearranging (20) yields

1 B 1 (7L gr)?
BT~ T (up<o->u2 -y el 0)2),

min i=2

since Amin(Bg) = A1 and Ui, = 7. Moreover, as 0 — —Apin(Bg) ™, then ||p(o)|| — oo
and lim,_,_y . (g,)+ ¢(c) = —1/6 (see (15)). Since ¢(c*) = 0 and ¢(o) is continuous on
the interval (—Amin (B), 00), the optimal Lagrange multiplier o* satisfies 0* > —Apin(Bk)

12

May 29, 2019 Optimization Methods & Software GOMS-2018-0117'FINAL

see Fig. 2.6(a)). us, the solution p*™ = —(Bg + 0™ 1)™ " gi, satisiies
(see Fig. 2.6(a)). Thus, the solution p* (B *[)~1 isfi

T 1 UhinGk
UinD” = ~Uigin (B + 0" 1) g = T Lot
At the optimal Lagrange multiplier ¢*, the trust-region subproblem solution p(c*) lies
on the boundary, i.e., ||p(c™)|| = dx and since ||umin|| = ||71]|| = 1, we have
ul T
lim mlnp* ‘ _ lim Unin9k ‘
Se—00 || umin || |p*]| =00 (Amin + %) 0k
1
n 1
. (] Qk 2 1
= lim A
Jim (522 ()
= 1.

Case (ii): Suppose 71 g = 0. For any o* > —\pn, the vector p* given by

7Tz‘Tgk
5 N+ o*

)

p* = —(By + g*)Tgk -

satisfies the first optimality condition (Bg+0*)p* = —gg. Now the length of p* is bounded
since 0* > —X\; > —\; for all ¢ > 2. Thus, for sufficiently large d, |[p*]| < 0k, and the
trust-region subproblem solution is given by

* Ak
p =D + QUnin,

where « is chosen such that ||p*|| = i (see Sec. 2.3). (Note that this is precisely the hard
case (see Fig. 2.6(b).) Since ul. p* = 0 (see [8]),

gmp*| . |04| T 6]%_“15*”2

lim — — = Jim —— = lim — =1,
dk=00 [[umin|[[P*]| dx—o0 [[p*]| o0 Ok

which completes the proof. []

Lemma 2.3 shows the importance for By to capture curvature information correctly
since the trust-region subproblem solution, p*, becomes more parallel to the eigenvector
corresponding to the most negative eigenvalue of Bjy. We next prove conditions that
highlight how the choice of v affects By.

LEMMA 2.4 Suppose By = I and that X denotes the smallest eigenvalue of the gener-
alized eirgenvalue problem

(Dy+Li+LY)u = ASESyu.

Further assume that Uy and Si are full rank. Then if A > 0, we have the following
properties:

(1) By is positive definite if 0 < v < A.
(2) As vy — A from below, Amax(Bj) — 00 and cond(Bj) — oo

13

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

Figure 1. Graph of ¢(o) when By # 0. (a) When Trng # 0, the optimal Lagrange multiplier satisfies o* >
—Amin(Bg)- (b) As § — 00, ¢(0) behaves as in the hard case: If 7T1T9k =0 and limdﬁi)\min(Bk)Jr ¢(o) > 0, then

p* = —(Br + cr*)Tgk has length ||p*|| < 0k, where 0* = —Apin. In this case, p* = p* + Qumin, where umi, is an
eigenvector of By, corresponding to Amin(Bj) and « is chosen so that ||p*|| = dk.

(3) As -~y — X from above, Apin(By) — —o0.

Proof. Recall from (8) and (9) that By, = ~I + \IJkMk\I'k, Where Uy =Y, — 7Sk and
Mk_1 = Dk—i—Lk—i—LT fySkSk Note if 0 < v <)\ then M > 0, and consequently,
My, » 0. Hence By, > 0. By assumption we have

M = (A —7)SE Spu.

Forming the QR factorization of Si = Qr Ry and letting z = Rpu, we have that S,?Sk =
RT Ry, and R,;TMl;lnglz = (5\ — 7)z. Consequently,

RkMkRgz = Z.

(A=")

Let Z be the min-two norm solution to \Ifgé = 2. Then we have that
P 2, 2
Bz = v|I2|I* + || I

The results then follow since 2 and z are constant and nonzero as v changes.]

Lemma 2.4 shows that not choosing « judiciously in relation to A can have deleterious
effects. In particular, if v is too close to 4 from below, then By becomes ill-conditioned.
If ~ is too close to 4 from above, then the smallest eigenvalue of By becomes negatively
large arbitrarily.

Next, we analyze the relationship between the choice of v and the conditions un-
der which we can expect A > 0. First, we note that the predicted reduction Q(p*) =
V f (wi)Tp* + %p*Tka* is always less for a descent direction p* if p* is also a direction
of negative curvature. Moreover, from Lemma 2.3, we see that p* tends to be parallel
to the eigenvector of Bj corresponding to its smallest eigenvalue. However, it is desir-
able to avoid the situation where p* is a false direction of negative curvature, meaning

*TVQf(wk)p > 0 while p*Tka < 0. The followmg lemma shows that in the limit, we
can select v so that 0 < v <), i.e., in the limit, A > 0 unless the true underlying Hessian
is either indefinite or Slngular.

14

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

LEMMA 2.5 Suppose that f is twice-continuously differentiable, that the matriz Sy re-
mains full-rank, and that wy, — w*, where V2 f(w*) = 0. Then A corresponding to By, is
positive in the limit.

Proof. We observe that each (s;,y;) pair satisfy y; = V f(w;+s;) —V f(z;). Using Taylor
expansion, we have that

Viw* —w* +w;+s;) = Vfw*)+Vf(w*) (w;j —w* +s;)+t
Viw* —w* +wj) = Vfw")+ V2 f(w)(wj —w)+1;

where the components of ¢j41 and t; are O(||w; — w* + 5;]|?) and O(||w; — w*||?), respec-
tively. Combining these two equations yields

= V2 f(w*)sj + (tjr1 — t;). (21)

We must prove that there exists a K > 0 and 8 > 0 such that for all k£ > K,

T T
)\:minv (Lk-i-Dk—l-Lk)v
v UTSgSkU

> f.
For simplicity let us define Ay = Ly + Dy + L{ such that

T . .
. 55 Yj fori>j
(Ak)z—i-ld‘f‘l - { 5?%’ otherwise.

Note from (21) we have that

S?yj = S;TFVQf()53 + 8 (tj+1 - tj)

and thus
v (Ly + Dy + Li)v = TSkTVQf(w*)Skv +
k-1 k-1 k—1
2 Z ZS tiy1 —t)vip1vi41 + Z s1 (tj41 — tj)v2 1.
j=k—ri=j j=k—r

Since s; = wj+1 — wj, as w; converges to w*, both ¢;41 and ¢; tend to 0. Thus

v (L, + Dy + LT)v T STV f(w*) Sk
li k — 1 k >)\min 2 *
koo VST S O, T AT = (V) >0
by assumption. [

In the next lemma, we show that selecting v > A can result in a false curvature
prediction. To simplify the proof we show that the result holds for a quadratic function.
A more general proof simply uses Taylor expansions and asymptotic limit properties.

LEMMA 2.6 Suppose we apply Algorithm 1 to a quadratic objective function f(w) =
clw + %wTHw, where ¢ € R™ and H € R™™"™ are both constant. Then if v = T\ with

15

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

0 < 7 < 1 then By can be indefinite only if the true Hessian is indefinite in the range of
Sy, that is,

STNV? f(w)Sy # 0.

Conversely, if T > 1 then By may have arbitrarily large negative eigenvalues even if the
objective is convexr. Furthermore, for any trust-region radius oy > 0,

lim Q(p*) = —cc.

T—1t

Thus the model’s quality measured by the ratio of actual reduction versus predicted re-
duction

_ S(we +p7) — fwr)
Qk(p*)-

may be arbitrarily poor for any 0 sufficiently large.

Proof. Note that for a quadratic function f(w),
Yo = Vf(wps1) = Vf(wr) = Hoppr — Hwp = Hsy,

and therefore, Y, = HSj. This implies that SkTYk = SkTHSk, and therefore, Ly + Dy +
LT = STHS). Then from (8) and (9), we have

By =~I 4 (H — ~1)Sp (ST HSy, — vSFS)) " LSE(H —~I).

If STHSy = 0, then Ly, + Dy + LY = 0 and A > 0. Thus, if v = 7\ with 0 < 7 < 1,
then By is positive definite since (SkTHSk. —’ySESk) is positive definite because 0 < v < A

Conversely, if 7 > 1, from the smallest eigenvalue of (S,CTH Sy — 'ySESk) is nega-
tive. Then as 7 — 17T, Amin(SgHSk — 'ySgSk) approaches 07, implying Apmin(Bk)
approaches —oo. Let myin denote a vector in the eigenspace corresponding to Apmin(Bgk),
scaled so that ||mmin|| = 0. Then

. 1 1

Qk(p) < Qk(ﬂ'min) = CTﬂ-min + iﬁgianWmin < HC||6I€ + 5)\m1n(Bk)5l?; (22)
Thus lim,_,1+ Qk(p*) = —oo. Moreover, for 7 sufficiently close to 1 from above, By, is
indefinite, i.e., Amin(Bg) < 0, and therefore lims, oo Qk(p*) = —o0 in (22). In contrast,

if the quadratic objective function is convex, then we must have

1
lim f(wg +p*) — f(wg) = lim p* + f(p*)THp* = o0,
) —00

6k*>00 2

meaning that for sufficiently large i, the model function Qj, poorly predicts the actual
reduction in f. [

When combined with Lemma 2.4, the following lemma suggests selecting a v near
but strictly less than A to avoid asymptotically poor conditioning while improving the

16

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

negative curvature approximation properties of Bj. Note that) is cheaply determined
due to the small column dimension of Sj.

LEMMA 2.7 Suppose we apply Algorithm 1 to a quadratic objective function f(w) =
Tw + %wTHw, where ¢ € R" and H € R™*™ are constant. Let A denote the smallest
eigenvalue of the generalized eigenvalue problem

(Dy+ Ly —i—L;‘g)u = /A\S;{Sku

Then for all v < 5\, the smallest eigenvalue of By is bounded above by the smallest
eigenvalue of V2 f(w) = H in the span of S, i.e.,

TQT

vt ST HSpv
Amin(Bg) < min ——& =%~
min(Br) < 00, S ST S

Proof. If v <), then the matrix Dy, + Ly, + L;‘g — ’yS,sz is positive definite from the
definition of A. Therefore, from (8) and (12) , the eigenvalues in the matrix A for the low-

rank update to By are positive. Consequently, Amin(Bg) = 7. From the proof of Lemma
2.6, L+ Dy + LT = SgHSk. Therefore,

- UTS;{HS;CU
A = min —aTa
Sw#0 vT'S Spv

The result follows from the assumption that v < A. [|

It is further worthwhile to note that these observations were motivated by investigating
why the algorithm failed on some test cases but not others. Once these safe-guards were
put in place, the robustness of the algorithm went from inferior to L-BFGS to superior.
That is, if the reader has attempted to use L-SR1 in the past and found sometimes it
works great, and other times it fails, we suggest that it is likely the case that failures
were induced by inadvertently permitting the case 0 < A <~ to occur.

3. Numerical results

In this section, we present two sets of numerical results comparing the performance
of several methods, including the proposed Limited-Memory SR1 Trust-Region (L-SR1-
TR) and Limited-Memory Stochastic SR1 Trust-Region (L-SSR1-TR) methods, on two
databases. In our experiments, we use a fully-connected network model (see Figure 2).
The training inputs x; are 28 x 28 images, which are represented as vectors in R — R84,
At each layer, an affine transformation Wyay_1 + by is applied to the input vector ay_1,
where Wy is a matrix of weights and by is a bias vector. Before passing onto the next
layer, an activation function 6, defined to be the logistic function

1
0 ((Wéaf—l + b@))] = 1 + e—(Wzae—l“"bf).i ’

17

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

hidden bias

layer hidden

layer

output
layer

—

55556

ag = x; a1 = 0(Wiag + b1) ag = 6(Waay + by) p(w, z;) = S(O(Wsas + b))

Figure 2. Illustration of a fully-connected network model. Here, the input vector is ; € % and the final output
vector is p(w, z;) € RE with d = 3 and K = 2. The weight matrices are W1 € R5*3, Wy € R**5 and W3 € R2%4.
The bias vectors are by € R, by € R4, and b3 € R2. The activation function §(-) is applied before passing the
output to the next layer, except at the input layer. The output vector a, of hidden layer ¢ is then used as the
input in the next layer, £+ 1. In the final (output) layer, the softmax function S(-) is applied so that the output
vector p(w, x;) corresponds to probabilities with Zle(p(w,xi))k = 1. Here, w = (W1, b1, Wa, ba, W3, b3). When
vectorized, w € R4,

is applied. At the final layer, L, we apply a softmax function, given by

eO@(Wrar_1+br));

o ZkK—l e(G(WLCLL—lerL))k ’

(S(O(Wrag—1+b1)));

so that the output vector p(w, ;) corresponds to probabilities with Zle (p(w, z;))r = 1.
Here, w = (W71, by, Wa, by, ..., Wy, br). The softmax function is paired with cross-entropy
for the final output layer to form the resulting loss function element f; in (1):

K
filw) = = (i) log(p(w,)1,
k=

1

where K is the dimension of the output layer. For further details, see [27, Chap. 11].
Finally, for L-SSR1-TR, we used 33% for the overlap and used a minibatch size of 100,
increasing the batch size by a factor of 1.5 when progress ceased relative to the true loss.

Two errors are used to train a network: training error and test error. The training
error is used to define the optimization problem (1). Most approaches that use training
data tend to find models that overfit the data, i.e., the models find relationships specific
to the training data that are not true in general. In other words, overfitting prevents
machine learning algorithms from correctly generalizing. To help prevent overfitting, an
independent data set, called the test set is used to validate the accuracy of the model
to gage its usefulness in making future predictions. Training errors and test errors are
computed using the loss function f(w) in (1). For machine learning, it is important to
make sure the trained model yields as small test error as possible. The solution of (1) is
taken to be the w that minimizes the test error even though we are directly minimizing
the training error, which is our best measure for estimating the expected value of the
loss function for unknown data. Generally speaking, with neural network models it is
possible to drive the training error to zero for sufficiently large networks; however, the
resulting models tend to be overfitted and have less predictive value.

Experiment I. For the first set of experiments, we compared the training and test er-
rors of three methods: (i) a Hessian-free utilizing the Generalized Gauss-Newton method

18

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

described in [41], (ii) an L-BFGS method based on [39], and (iii) the proposed L-SR1-TR
method (see Figure 3). We do not include existing SGD methods because they are already
finely tuned for the MNIST data set and the computational time involved in the hyper-
parameter tuning cannot easily be accounted for in a fair comparison. For both L-BFGS
and L-SR1-TR methods, a Wolfe line search was used. We tested the three methods on
two data sets with full training and testing observations. The first set (Experiment IA)
uses the full Mixed National Institute of Standards and Technology (MNIST) database,
which is a large collection of handwritten digits that is commonly used for training var-
ious image processing systems [36, 38]. It contains 60,000 training images and 10,000
testing images. The goal is to train the neural network in order to classify the hand-
written digits 0 through 9 with minimal error. The second set (Experiment IB) uses the
Extended MNIST (EMNIST) database, which is an extension of the MNIST database to
handwritten letters [14]. We compared the performance of the three methods on different
network configurations with varying numbers of layers and neurons, which are denoted
by the sequence of numbers above each graph in Figures 3 and 4. For example, the se-
quence “784-350-250-150-10" in Figure 3(a) refers to the following: the number of inputs
is 784 = 282, which corresponds to the pixel value of the input images, which are 28 x 28
in size; the number of layers is 3 with 350 neurons in the first layer, 250 in the second,
and 150 in the third; and the number of outputs is 10 for the 10 different classes that
correspond to the digits from 0 to 9. All tests were performed in MATLAB (R2016b) on
a 64-bit 2.67Ghz Intel® Xeon ® CPU E7-8837 machine with 4 processors and 256 GB
RAM. These experiments were designed to test the hypothesis that one of the primary
reasons why Hessian-free methods outperform BFGS variants in deep learning optimiza-
tion problems is that they better approximate and exploit negative curvature.

The results on the four different network configurations are given in Figure 3. In Figure
3, loss versus “iterations” and “time” are plotted. Generally speaking, the Hessian-free
method outperforms both L-BFGS and L-SR1-TR in terms of achieving the smallest test
loss (and training loss) in the fewest iterations, with L-SR1-TR outperforming L-BFGS.
However, the cost per iteration for Hessian-free is significantly higher since Hessian-
free uses matrix multiplies whereas the quasi-Newton methods use a (much cheaper)
single gradient evaluation. Thus, in terms of wall-time, L-SR1-TR is the fastest method,
obtaining the best solution in the least amount of time given a one-hour window to solve
the given network.

Experiment II. The second set of experiments compares the two proposed L-SR1-TR
and the stochastic mini-batch version of L-SR1-TR (L-SSR1-TR) methods on the same
network configurations as in the first set of experiments (see Figures 5 and 6). While the
L-SR1-TR method achieves lower test and training losses than L-SSR1-TR per iteration
(see Figures 5(a,c,e,g) and 6(a,c,e)), L-SSR1-TR is the fastest method in terms of wall-
time (see Figures 5(b,d,f,h) and 6(b,d,f)) because the computational cost per iteration
for L-SSR1-TR is significantly cheaper.
We note that the results in Figures 3-6 are representative of other experiments.

4. Conclusions
In this paper, we presented an alternative approach for solving machine learning prob-
lems that is based on the L-SR1 update that allows for indefinite Hessian approximations.

This approach is particularly suitable for non-convex problems where exploiting direc-
tions of negative curvature is crucial. Numerical experiments suggest that the proposed

19

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

approaches (the limited-memory SR1 trust-region and the limited-memory stochastic SR1
trust-region methods) can outperform the more commonly used quasi-Newton approach
(L-BFGS) both in terms of computational efficiency and test and training loss.

Acknowledgments

We would like to thank Wenwen Zhou and Alireza Yektamaram for stimulating con-
versations concerning stochastic quasi-Newton methods with SR1. Further Alireza was
instrumental in setting up the stochastic framework used to generate numerical results.
J. Erway’s research work was funded by NSF Grants CMMI-1334042 and IIS-1741264.
R. Marcia’s research work was funded by NSF Grants CMMI-1333326 and I1S-1741490.

References

1]

[10]

[11]

[12]

[13]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M.
Devin, S. Ghemawat, I.J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. J6zefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D.G. Murray, C. Olah, M. Schuster, J.
Shlens, B. Steiner, I. Sutskever, K. Talwar, P.A. Tucker, V. Vanhoucke, V. Vasudevan, F.B. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, Tensorflow: Large-scale
machine learning on heterogeneous distributed systems, CoRR abs/1603.04467 (2016), Available at
http://arxiv.org/abs/1603.04467.

Y. Bengio, Practical recommendations for gradient-based training of deep architectures, in Neural
networks: Tricks of the trade, Springer, 2012, pp. 437—-478.

A.S. Berahas, J. Nocedal, and M. Takdc, A multi-batch L-BFGS method for machine learning, CoRR
abs/1605.06049 (2016), Available at http://arxiv.org/abs/1605.06049.

J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, Journal of Machine
Learning Research 13 (2012), pp. 281-305, Available at http://dl.acm.org/citation.cfm?id=
2188395.

J. Bergstra, D. Yamins, and D.D. Cox, Making a Science of Model Search: Hyperparameter Opti-
mization in Hundreds of Dimensions for Vision Architectures, in Proceedings of the 30th Interna-
tional Conference on Machine Learning, ICML 2013, Available at http://jmlr.org/proceedings/
papers/v28/bergstral3.html, 2013, pp. 115-123.

J.S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, Algorithms for hyper-parameter optimization, in
Advances in Neural Information Processing Systems 24, J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett,
F. Pereira, and K.Q. Weinberger, eds., Curran Associates, Inc., 2011, pp. 2546-2554, Available at
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf.

L. Bottou, F. Curtis, and J. Nocedal, Optimization methods for large-scale machine learning, STAM
Review 60 (2018), pp. 223-311.

J. Brust, J.B. Erway, and R.F. Marcia, On solving L-SR1 trust-region subproblems, Computational
Optimization and Applications 66 (2017), pp. 245-266.

O. Burdakov, L. Gong, S. Zikrin, and Y.X. Yuan, On efficiently combining limited-memory and
trust-region techniques, Mathematical Programming Computation (2016), pp. 1-34, Available at
http://dx.doi.org/10.1007/s12532-016-0109-7.

R.H. Byrd, J. Nocedal, and R.B. Schnabel, Representations of quasi-Newton matrices and their use
in limited-memory methods, Math. Program. 63 (1994), pp. 129-156.

R.H. Byrd, G.M. Chin, J. Nocedal, and Y. Wu, Sample size selection in optimization methods for
machine learning, Math. Program. 134 (2012), pp. 127-155, Available at http://dx.doi.org/10.
1007/s10107-012-0572-5.

R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method for large-
scale optimization, SIAM Journal on Optimization 26 (2016), pp. 10081031, Available at http:
//dx.doi.org/10.1137/140954362.

A. Choromanska, M. Henaff, M. Mathieu, G.B. Arous, and Y. LeCun, The loss surface of multilayer
networks, CoRR abs/1412.0233 (2014), Available at http://arxiv.org/abs/1412.0233.

20

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

[14]
[15]
[16]
[17]
18]

[19]

[20]

[21]

22]

23]

24]
[25]
[26]
27]
28]
29]
[30]

[31]

32]
[33]

[34]

[35]

[36]

37]

G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, EMNIST: an extension of MNIST to handwritten
letters, arXiv preprint arXiv:1702.05373 (2017).

A.R. Conn, N.I. Gould, and P.L. Toint, Testing a class of methods for solving minimization problems
with simple bounds on the variables, Mathematics of computation 50 (1988), pp. 399-430.

A.R. Conn, N.LM. Gould, and P.L. Toint, Convergence of quasi-newton matrices generated by the
symmetric rank one update, Math. Program. 50 (1991), pp. 177-195.

A.R. Conn, N.I.M. Gould, and P.L. Toint, Trust-Region Methods, Society for Industrial and Applied
Mathematics (STAM), Philadelphia, PA, 2000.

F. Curtis, A Self-Correcting Variable-Metric Algorithm for Stochastic Optimization, in Proceedings
of The 33rd International Conference on Machine Learning, 2016, pp. 632—641.

F.E. Curtis and X. Que, A quasi-Newton algorithm for nonconvex, nonsmooth optimization with
global convergence guarantees, Mathematical Programming Computation 7 (2015), pp. 399428,
Available at https://doi.org/10.1007/512532-015-0086-2.

Y.N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, Identifying and attack-
ing the saddle point problem in high-dimensional non-convex optimization, in Advances in Neural
Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and
K.Q. Weinberger, eds., Curran Associates, Inc., 2014, pp. 2933-2941.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z. Mao, M. Ranzato, A.W.
Senior, P.A. Tucker, K. Yang, and A.Y. Ng, Large Scale Distributed Deep Networks, in Ad-
vances in Neural Information Processing Systems 25, Available at http://papers.nips.cc/paper/
4687-large-scale-distributed-deep-networks, 2012, pp. 1232-1240.

I. Dewancker, M. McCourt, S. Clark, P. Hayes, A. Johnson, and G. Ke, A stratified analysis of
Bayesian optimization methods, CoRR abs/1603.09441 (2016), Available at http://arxiv.org/
abs/1603.09441.

J.C. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and stochastic
optimization, Journal of Machine Learning Research 12 (2011), pp. 2121-2159, Available at http:
//dl.acm.org/citation.cfm?id=2021068.

J.B. Erway and P.E. Gill, A subspace minimization method for the trust-region step, STAM Journal on
Optimization 20 (2009), pp. 1439-1461, Available at http://link.aip.org/link/?SJE/20/1439/1.
J.B. Erway, P.E. Gill, and J.D. Griffin, lterative methods for finding a trust-region step, SIAM J.
Optim. 20 (2009), pp. 1110-1131, Available at http://dx.doi.org/10.1137/070708494.

J.B. Erway and R.F. Marcia, On efficiently computing the eigenvalues of limited-memory quasi-
newton matrices, STAM Journal on Matrix Analysis and Applications 36 (2015), pp. 1338—-1359.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, Vol. 1, Springer
series in statistics New York, 2001.

D.M. Gay, Computing optimal locally constrained steps, SIAM J. Sci. Statist. Comput. 2 (1981), pp.
186-197.

N. Gould, An introduction to algorithms for continuous optimization, Oxford University Computing
Laboratory Notes, 2006.

N.ILM. Gould, S. Lucidi, M. Roma, and P.L. Toint, Solving the trust-region subproblem using the
Lanczos method, STAM J. Optim. 9 (1999), pp. 504-525.

R. Gower, D. Goldfarb, and P. Richtarik, Stochastic Block BFGS: Squeezing More Curvature out
of Data, in Proceedings of The 33rd International Conference on Machine Learning, Proceedings
of Machine Learning Research, Vol. 48, 20—22 Jun, Available at http://proceedings.mlr.press/
v48/gower16.html, PMLR, New York, New York, USA, 2016, pp. 1869-1878.

W.W. Hager, Minimizing a quadratic over a sphere, SIAM J. Optim. 12 (2001), pp. 188-208.

S. Toffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, in Proceedings of the 32nd International Conference on Machine Learn-
ing, ICML 2015, Available at http://jmlr.org/proceedings/papers/v37/ioffel5.html, 2015, pp.
448-456.

K. Kawaguchi, Deep learning without poor local minima, in Advances in Neural Information
Processing Systems 29, D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, and R. Garnett,
eds., Curran Associates, Inc., 2016, pp. 586594, Available at http://papers.nips.cc/paper/
6112-deep-learning-without-poor-local-minima.pdf.

D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, CoRR abs/1412.6980 (2014),
Available at http://arxiv.org/abs/1412.6980.

E. Kussul and T. Baidyk, Improved method of handwritten digit recognition tested on mnist database,
Image and Vision Computing 22 (2004), pp. 971-981.

Q. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Ng, On optimization methods for

21

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

[38]
39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

(48]

[49]

[50]
[51]

[52]

[53]

[54]
[55]

[56]
[57]

[58]

[59]

[60]

deep learning, in Proceedings of the 28th International Conference on Machine Learning (ICML-11),
ICML ’11, Bellevue, Washington, USA, June, ACM, New York, NY, USA, 2011, pp. 265-272.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recog-
nition, Proceedings of the IEEE 86 (1998), pp. 2278-2324.

D.C. Liu and J. Nocedal, On the limited memory method for large scale optimization, Mathematical
Programming B 45 (1989), pp. 503-528.

D. Maclaurin, D.K. Duvenaud, and R.P. Adams, Gradient-based Hyperparameter Optimization
through Reversible Learning, in Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, JMLR Workshop and Conference Proceedings, Vol. 37, Available at http:
//jmlr.org/proceedings/papers/v37/maclaurini5.html, JMLR.org, 2015, pp. 2113-2122.

J. Martens, Deep learning via Hessian-free optimization, in Proceedings of the 27th International
Conference on Machine Learning (ICML-10), 2010, pp. 735-742.

J. Martens and 1. Sutskever, Learning Recurrent Neural Networks with Hessian-Free Optimization,
in Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011, 2011, pp. 1033-1040.

J. Martens and 1. Sutskever, Training deep and recurrent networks with hessian-free optimization,
in Neural Networks: Tricks of the Trade, Springer, 2012, pp. 479-535.

H.B. McMahan and M.J. Streeter, Delay-Tolerant Algorithms ~ for Asyn-

chronous Distributed Online Learning, in Advances m Neural Informa-
tion Processing Systems 27, Available at http://papers.nips.cc/paper/
5242-delay-tolerant-algorithms-for-asynchronous-distributed-online-learning, 2014,

pp- 2915-2923.

M.R. Metel, Mini-batch stochastic gradient descent with dynamic sample sizes, ArXiv e-prints (2017).
J.J. Moré and D.C. Sorensen, Computing a trust region step, STAM J. Sci. and Statist. Comput. 4
(1983), pp. 553-572.

J.J. Moré and D.C. Sorensen, Newton’s method, in Studies in Mathematics, Volume 2. Studies in
Numerical Analysis, Math. Assoc. America, Washington, DC, 1984, pp. 29-82.

P. Moritz, R. Nishihara, and M. Jordan, A Linearly-Convergent Stochastic L-BFGS Algorithm, in
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, Proceedings
of Machine Learning Research, Vol. 51, 09-11 May, Available at http://proceedings.mlr.press/
v51/moritz16.html, PMLR, Cadiz, Spain, 2016, pp. 249-258.

J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput. 35 (1980), pp.
773-782.

J. Nocedal and S.J. Wright, Numerical Optimization, 2nd ed., Springer, New York, 2006.

J. Nocedal and Y.x. Yuan, Combining trust region and line search techniques, in Advances in non-
linear programming, Springer, 1998, pp. 153-175.

B.A. Pearlmutter, Fast ezact multiplication by the Hessian, Neural computation 6 (1994), pp. 147—
160.

B. Recht, C. Re, S. Wright, and F. Niu, Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent, in Advances in Neural Information Processing Systems
24, J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Weinberger, eds.,
Curran Associates, Inc., 2011, pp. 693-701, Available at http://papers.nips.cc/paper/
4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf.
H. Robbins and S. Monro, A stochastic approximation method, The Annals of Mathematical Statis-
tics 22 (1951), pp. 400-407.

M. Rojas, S.A. Santos, and D.C. Sorensen, A new matriz-free algorithm for the large-scale trust-
region subproblem, SIAM Journal on Optimization 11 (2001), pp. 611-646.

M. Rojas, S.A. Santos, and D.C. Sorensen, Algorithm 873: Lstrs: Matlab software for large-scale
trust-region subproblems and regularization, ACM Trans. Math. Softw. 34 (2008), pp. 11:1-11:28,
Available at http://doi.acm.org/10.1145/1326548.1326553.

L. Sagun, V.U. Giiney, and Y. LeCun, Ezplorations on high dimensional landscapes, CoRR
abs/1412.6615 (2014), Available at http://arxiv.org/abs/1412.6615.

N.N. Schraudolph, J. Yu, and S. Giinter, A Stochastic Quasi-Newton Method for Online Convex
Optimization, in Proceedings of the Eleventh International Conference on Artificial Intelligence and
Statistics, Proceedings of Machine Learning Research, Vol. 2, 21-24 Mar, Available at http://
proceedings.mlr.press/v2/schraudolphO7a.html, PMLR, 2007, pp. 436-443.

S.L. Smith, P.J. Kindermans, and Q.V. Le, Don’t Decay the Learning Rate, Increase the Batch Size,
ArXiv e-prints (2017).

J. Snoek, H. Larochelle, and R.P. Adams, Practical Bayesian Optimization of Machine Learning Al-

22

May 29, 2019

Optimization Methods & Software GOMS-2018-0117'FINAL

[61]

(62]

[63]

[64]
[65]
[66]
[67]

[68]

gorithms, in Advances in Neural Information Processing Systems 25:, Available at http://papers.
nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms,
2012, pp. 2960-2968.

E.R. Sparks, A. Talwalkar, M.J. Franklin, M.I. Jordan, and T. Kraska, Tupaq: An efficient planner
for large-scale predictive analytic queries, CoORR abs/1502.00068 (2015), Available at http://arxiv.
org/abs/1502.00068.

T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM J.
Numer. Anal. 20 (1983), pp. 626-637.

I. Sutskever, J. Martens, G.E. Dahl, and G.E. Hinton, On the importance of initialization and mo-
mentum in deep learning, in Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, Available at http://jmlr.org/proceedings/
papers/v28/sutskever13.html, 2013, pp. 1139-1147.

P.L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in Sparse
Matrices and Their Uses, Academic Press, London and New York, 1981, pp. 57-88.

V. Vapnik, Principles of risk minimization for learning theory, in Advances in Neural Information
Processing Systems, 1992, pp. 831-838.

S. Yektamaram, Optimization algorithms for machine learning designed for parallel and distributed
environments, Ph.D. diss., ISE Department, Lehigh University, Bethlehem, PA, 2017.

M.D. Zeiler, ADADELTA: an adaptive learning rate method, CoRR abs/1212.5701 (2012), Available
at http://arxiv.org/abs/1212.5701.

S. Zhang, A. Choromanska, and Y. LeCun, Deep learning with Elastic Averaging SGD, in Ad-
vances in Neural Information Processing Systems 28, Available at http://papers.nips.cc/paper/
5761-deep-learning-with-elastic-averaging-sgd, 2015, pp. 685-693.

23

May 29, 2019

Loss

Loss

Loss

Loss

10

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

10

0.8

0.6

0.4

0.2

0.0

Optimization Methods & Software

784-350-250-150-10

- - Test Loss HF
- - Test Loss L-BFGS
- - Test Loss L-SR1-TR
— Training Loss HF
— Training Loss L-BFGS [
— Training Loss L-SR1-TR

100 150 200 250
Iteration

(a)

784-400-250-150-100-30-10

- - Test Loss HF

- - Test Loss L-BFGS
- - Test Loss L-SR1-TR
— Training Loss HF
— Training Loss L-BFGS [
— Training Loss L-SR1-TR

100 150 200 250
Iteration

(©)

784-500-350-10

T T T

- - Test Loss HF
- - Test Loss L-BFGS

- - Test Loss L-SR1-TR
— Training Loss HF

— Training Loss L-BFGS ||
— Training Loss L-SR1-TR

Iteration

(e)

784-400-200-150-10

T T

- - Test Loss HF
- - Test Loss L-BFGS

- - Test Loss L-SR1-TR
— Training Loss HF

— Training Loss L-BFGS [{
— Training Loss L-SR1-TR

N
100 150 200 250
Iteration

(2

GOMS-2018-0117'FINAL

Loss

Loss

Loss

Loss

784-350-250-150-10

10

0.8 |

0.6 |

04}

0.2 |

0.0

T T T T

- - Test Loss HF
- - Test Loss L-BFGS
- - Test Loss L-SR1-TR
— Training Loss HF
— Training Loss L-BFGS [
Training Loss L-SR1-TR

1.0

L .
500 1000 1500 2000

Time

(b)

784-400-250-150-100-30-10

2500 3000 3500

0.8 |

0.6 -

0.4

0.2

0.0

T T T T T

- - Test Loss HF
- - Test Loss L-BFGS

- - Test Loss L-SR1-TR
— Training Loss HF

— Training Loss L-BFGS [
— Training Loss L-SR1-TR

10

I T n . n
500 1000 1500 2000 2500 3000 3500

Time

(d)

784-500-350-10

0.8 |-

0.6

0.4

0.2

0.0

- - Test Loss HF

- - Test Loss L-BFGS

- - Test Loss L-SR1-TR

— Training Loss HF

— Training Loss L-BFGS]
Training Loss L-SR1-TR

1.0

L
500 1000 1500 2000

Time

®

784-400-200-150-10

2500 3000 3500

0.8 -

0.6 -

0.4 -

0.2 -

0.0

- - Test Loss HF

- - Test Loss L-BFGS
- - Test Loss L-SR1-TR
— Training Loss HF
— Training Loss L-BFGS []
— Training Loss L-SR1-TR

0

L L N
500 1000 1500 2000 2500 3000

Time

(h)

3500

Figure 3. Experiment IA. Plots of the loss function versus iterations (left) and time (right) for the Hessian-
Free (HF), Limited-Memory BFGS (L-BFGS), and the proposed Limited-Memory SR1 Trust-Region (L-SR1-TR)
methods on the MNIST data set of handwritten digits using four different sets of hidden layers {{350,250,150},
{400,250,150,150,100,30}, {500,350}, {400,200,150}} with input layer of size 784 and output layer of size 10.

May 29, 2019

Optimization Methods & Software

784-350-250-150-26

GOMS-2018-0117'FINAL

784-350-250-150-26

0.40 T T 0.40 T T T T
- [= Testloss HF i ' X — Test Loss HF
ozl | — TestLoss L-BFGS 038 ey |- TestLossLeras
b — TestLoss L-SRL-TR . . |- TestiossLsriTR
1
— Training Loss HF ! \ — Training Loss HF
E | {1
0.36 \ : — Training Loss L-BFGS 0.36 i [\ | — Training Loss L-BFGS
] — Training Loss L-SR1-TR y 4 — Training Loss L-SR1-TR
034l |, 0.34 v /
9 1 2 i N 4
S 032 ' 1 9 032 ‘b N ;A
1 \ ~ /
I | N /
030 \ , 030 N , SO 1
\ = - N o N
% - N~ -
0.28 | - B 0.28 4
0.26 | B 0.26 B
L L L
0 100 200 300 400 500 2000 4000 6000 8000 10000
Iteration Time
784-400-250-150-100-30-26 784-400-250-150-100-30-26
0.40 . : . 0.40 - : —
N — Test Loss HF f — Test Loss HF
0.38 | L — Test Loss L-BFGS 0.38 ! — Test Loss L-BFGS
i — Test Loss L-SR1-TR I — TestLoss L-SR1-TR
— Training Loss HF — Training Loss HF
L | \ . .
0.36 . — Training Loss L-BFGS 036 — Training Loss L-BFGS
| - | — Training Loss L-SR1-TR — Training Loss L-SR1-TR
0.34 |- | \ H 0.34 | "
N i .

3 ! Sl 3 ;

S 032} l] S 032} i
0.30 | B 0.30 -
0.28 | 8 0.28 | 1
0.26 | B 0.26 |-

L L L L L L L L
0 100 200 300 400 500 0 4000 6000 8000 10000
Iteration Time
784-500-350-26 784-500-350-26
0.40 r r 0.40 I
— Test Loss HF Test Loss HF
038 | — Test Loss L-BFGS 038 | Test Loss L-BFGS
— Test Loss L-SR1-TR Test Loss L-SR1-TR
/| — Training Loss HF Training Loss HF
036 1 p /| — Training Loss L-BFGS 0363 Training Loss L-BFGS
— Training Loss L-SR1-TR Training Loss L-SR1-TR
0.34 0.34 | -
2 2 .7
S 032} 1 S 032f e 1
L7
030 R 1 030} . _
Y Z |
- \,
028 Nl - 0.28 | R
0.26 |- E| 0.26 | B
L L L L L L L
0 200 300 400 500 0 4000 6000 8000 10000
Iteration Time

(e) ®

Figure 4. Experiment IB. Plots of the loss function versus iterations (left) and time (right) for the Hessian-
Free (HF), Limited-Memory BFGS (L-BFGS), and the proposed Limited-Memory SR1 Trust-Region (L-SR1-TR)
methods on the EMNIST data set of handwritten letters using three different sets of hidden layers {{350,250,150},
{400,250,150,100,30}, {500,350} } with input layer of size 784 and output layer of size 26.

25

May 29, 2019

10

0.8

0.6

Loss

0.4

0.2

0.0

1.0

0.8

0.6

Loss

0.4

0.2

0.0

1.0

0.8

0.6

Loss

0.4

0.2

0.0

10

0.8

0.6

Loss

0.4

0.2

0.0

Optimization Methods & Software GOMS-2018-0117'FINAL

784-350-250-150-10

- - Test Loss L-SR1-TR

- - Test Loss L-SSR1-TR
— Training Loss L-SR1-TR
Training Loss L-SSR1-TR

n
100 150 200 250
Iteration

(a)

784-400-250-150-100-30-10

- - Test Loss L-SR1-TR

- - Test Loss L-SSR1-TR
— Training Loss L-SR1-TR
Training Loss L-SSR1-TR

L
100 150 200 250
Iteration

(©)

784-500-350-10

- - Test Loss L-SR1-TR

- - Test Loss L-SSR1-TR
— Training Loss L-SR1-TR
— Training Loss L-SSR1-TR

s
100 150 200 250
Iteration

(e)

784-400-200-150-10

- - Test Loss L-SR1-TR

- - Test Loss L-SSR1-TR
— Training Loss L-SR1-TR
— Training Loss L-SSR1-TR

!
100 150 200 250
Iteration

(8

784-350-250-150-10

Loss

- - Test Loss L-SR1-TR

- - Test Loss L-SSR1-TR
— Training Loss L-SR1-TR
Training Loss L-SSR1-TR

200 300

. L L N
400 500 600 700 800 900
Time

(b)

784-400-250-150-100-30-10

Loss

- - Test Loss L-SR1-TR

- - Test Loss L-SSR1-TR
— Training Loss L-SR1-TR
Training Loss L-SSR1-TR

I .
200 300 400 500

600 700 800 900
Time

(d)

784-500-350-10

Loss

- - Test Loss L-SR1-TR

- - Test Loss L-SSR1-TR
— Training Loss L-SR1-TR
Training Loss L-SSR1-TR

L

T L n
200 300 400 500 600

! n
700 800 900
Time

®

784-400-200-150-10

Loss

T T T

- - Test Loss L-SR1-TR

- - Test Loss L-SSR1-TR
— Training Loss L-SR1-TR
— Training Loss L-SSR1-TR

T T

200 300 400 500 600 700 800 900

Time

(h)

Figure 5. Experiment ITA. Plots of the loss function versus iterations (left) and time (right) for the proposed
Limited-Memory SR1 Trust-Region (L-SR1-TR) and Limited-Memory Stochastic SR1 Trust-Region (L-SSR1-TR)
methods on the MNIST data set of handwritten digits using four different sets of hidden layers {{350,250,150},
{400,250,150,150,100,30}, {500,350}, {400,200,150}} with input layer of size 784 and output layer of size 10.

26

May 29, 2019

Optimization Methods & Software

0.40

GOMS-2018-0117'FINAL

784-350-250-150-26

784-350-250-150-26

T T T T T 0.40 T T T T T
- - Test Loss L-SR1-TR ', Test Loss L-SR1-TR
038 - - Test Loss L-SSR1-TR 0381 Test Loss L-SSR1-TR
A
0.36 — Training Loss L-SR1-TR 036 | Training Loss L-SR1-TR
— Training Loss L-SSR1-TR “ Training Loss L-SSR1-TR
0.34 g 034 |, g
4 4]
S 032 \ g S 032 |! |
N \
\ \
0.30 N, 1 0.30 | \ ~ _ as 2t 7]
\\,— ’/</ \.\ . _\—’7_1\/\1
028} - W g e] 0.28 |- e oo SN avse et 1
0.26 |- 1 0.26 -]
0 100 200 300 a0 500 500 700 0 500 1000 1500 2000 2500 3000 3500
Iteration Time
(a) (b)
784-400-250-150-100-30-26 784-400-250-150-100-30-26
0.40 T T T T 0.40 T T T T
\
0.38 - 1 038 | L |
\
0.36 |- 1 0.36 | ‘I !
\ \
0.34 ” i 0.34 - v |
@ = T e e] 2 s = s v
S 032t 1 g 032}]
0.30 H Test Loss L-SR1-TR B 030H - - TestLoss L-SR1-TR g
Test Loss L-SSR1-TR 028 - Test Loss L-SSR1-TR
0.28 H e i .28 | L 1
Training Loss L-SR1-TR — Training Loss L-SR1-TR
0.26 H Training Loss L-SSR1-TR 1 0.26 || — Training Loss L-SSR1-TR i
I ' 1 1 I\ L 1 & 1 1 1 L 1 1
0 100 200 300 400 500 600 700 0 500 1000 1500 2000 2500 3000 3500
fteration Time
(c) (d)
784-500-350-26 784-500-350-26
0.40 T T T T T 0.40 T T T T T T
- - Test Loss L-SR1-TR | Test Loss L-SR1-TR
038 - - Testloss L-SSRI-TR | 038 T Test Loss L-SSR1-TR
.. | o
036 | — Training Loss L-SR1-TR 036} | Training Loss L-SR1-TR
— Training Loss L-SSR1-TR 'l Training Loss L-SSR1-TR
034 g 034 |,]
4 4 d
S 032} i g o032t | .
\
\
030 [1 030} P . 1
\ N
\
028} . 1 0.28 | AN N -
0.26 == e 026 | T TN TT 7777 oo 1
0 100 200 300 400 500 600 700 0 500 1000 1500 2000 2500 3000 3500
Iteration Time

(e)

®

Figure 6. Experiment IIB. Plots of the loss function versus iterations (left) and time (right) for the proposed
Limited-Memory SR1 Trust-Region (L-SR1-TR) and Limited-Memory Stochastic SR1 Trust-Region (L-SSR1-TR)
methods on the EMNIST data set of handwritten letters using four different sets of hidden layers {{350,250,150},
{400,250,150,150,100,30}, {500,350}} with input layer of size 784 and output layer of size 26.

27

