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Abstract

Structural variants (SVs) are a class of genomic variation shared by members of
the same species. Though relatively rare, they represent an increasingly impor-
tant class of variation, as SVs have been associated with diseases and suscepti-
bility to some types of cancer. Common approaches to SV detection require the
sequencing and mapping of fragments from a test genome to a high-quality refer-
ence genome. Candidate SVs correspond to fragments with discordant mapped
configurations. However, because errors in the sequencing and mapping will
also create discordant arrangements, many of these predictions will be spurious.
When sequencing coverage is low, distinguishing true SVs from errors is even
more challenging. In recent work, we have developed SV detection methods
that exploit genome information of closely related individuals — parents and
children. Our previous approaches were based on the assumption that any SV
present in a child’s genome must have come from one of their parents. However,
using this strict restriction may have resulted in failing to predict any rare but
novel variants present only in the child. In this work, we generalize our previous
approaches to allow the child to carry novel variants. We consider a constrained
optimization approach where variants in the child are of two types either in-
herited - and therefore must be present in a parent - or novel. For simplicity,
we consider only a single parent and single child each of which have a haploid
genome. However, even in this restricted case, our approach has the power to
improve variant prediction. We present results on both simulated candidate
variant regions, parent-child trios from the 1000 Genomes Project, and a subset
of the 17 Platinum Genomes.
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Figure 1: Detecting Structural Variants. To detect structural variants (SVs) in a test
individual, fragments of DNA (black) are sampled from their (unknown) genome (top) and
aligned to a reference genome (bottom). Fragments whose mappings are consistent with the
underlying sampling process (right) suggest that test and reference genomes are the same.
Fragments whose mappings are discordant indicate the presence of an SV. In our example
(left) the test genome has a deletion relative to the reference. Two black fragments in the test
genome that contain the deletion map to a much longer than expected length (red). Other
variants, such as duplications and inversions, have their own unique discordant signal.

1. Introduction

The complete DNA sequence of an organism (the genome) is one or more
ordered linear sequences of the letters A,C,G, or T. The total genome length is
anywhere from millions (for bacteria) to billions (for mammals) of letters. Every
cell in most multi-cellular organisms contains a complete and nearly identical
copy of an organism’s genome. When cells divide, the genome must be dupli-
cated so each cell will have its own copy, but every time the genome is copied
there is the opportunity for mutational processes to introduce variation. Ge-
nomic variation may consist of a modification to a single letter, termed single
nucleotide variants (SNVs), or rearrangements of larger regions, termed struc-
tural variants (SVs) [1, 2]. For multi-cellular organisms, variants are often fur-
ther classified into those which transmitted from parents to progeny, germline
variants, or those which occur during cell division in the lifetime of an organ-
ism, somatic variants [3]. In humans, the accumulation of somatic mutations
is commonly associated with the development of cancer [4] while the presence
of certain germline variants has been shown to increase the susceptibility for
certain types of cancer [5, 6]. Beyond cancer, genomic variants are associated
with many significant biological outcomes for individuals including a variety of
diseases in humans [7, 8], flowering behavior in plants [9] and have contributed
to rates of adaptation and the emergence of new species [10].

The detection of genomic variants such as SVs remains a challenging scien-
tific and computational problem. Even with modern DNA sequencing technolo-
gies, it is not possible to construct the complete genome of every cell. As such,
the common practice has been to construct a high-quality reference genome for
each species and then annotate this reference with sites of variation [11, 12, 13].
The dominant method for identifying SNVs or SVs involves comparing frag-
ments of DNA sequenced from a test (unknown) genome to a given reference
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Figure 2: Inheritance of Structural Variants. Because germline structural variants (black
and red bars) are transmitted from parents to their children, a child and parent will share
many variants. However, because of recombination not all variants present in a parent’s
genome will be present in a child’s genome and, although rare, a child may acquire novel
variants not present in a parent (red).

(see Figure 1) [14, 15, 16, 17, 18]. SVs are typically detected through indirect
evidence — a fragment that maps to a larger than expected distance — and as
such they are more difficult to identify than SNVs which may be directly ob-
served through alignment of sequences from the test genome to the reference.
However, predicting either type of variant is complicated by DNA sequencing
and alignment errors. Because of these errors, algorithms for variant detection
have suffered from high false-positive rates especially when the coverage — ex-
pected number fragments supporting each variant — is low [14, 15]. One hope
for improving the ability to accurately predict SVs has come from methods that
combine the information of many individuals [19]. This allows researchers to
leverage large-scale public efforts, such as the 1000 Genomes Project, that have
made available sequencing data from thousands of individuals, including parent-
child trios [20, 21]. Population level algorithms have the potential to improve
variant detection because the signal of true SVs will be boosted, but only when
variants are likely to be shared among multiple individuals. But, because of
the massive population expansion, many variants in humans are rare and, as
such, may only be shared by close relatives [22]. One approach for accurately
detecting rare variants would be to simultaneously predict variants in a parent
and a child. In particular, as shown in Figure 2, a parent and child will share
many but not all SVs.

Our group has developed computational methods to improve SV predic-
tion through considering pedigrees of related individuals [23, 24, 25, 26]. Our
previous methods constrained the set of potential SVs through parent-child re-
lationships by requiring that every variant present in the child was a germline
variant transmitted from a parent. While these approaches have improved the
ability to reduce false-positive predictions, they also increase the false-negative
rate because they do not allow for novel variants (SVs that are not inherited
from a parent) in the child genome.

This work improves upon our previous methods by allowing the child genome



to possess novel variants. In Section 2, we develop our mathematical model and
optimization framework for SV prediction in the context of one parent and one
child. For simplicity in this work, we develop our model for haploid genomes
so that at each potential SV site each individual either has the variant or does
not. We consider a continuous relaxation of this discrete problem, but favor
sparse solutions through the use of the ¢; norm. We also demonstrate that
by a hierarchical approach it is possible to generalize our method to multiple
generations. In Section 3, we show that, even with our simplified haploid genome
assumption, our method improves SV detection on both simulated and real
sequencing data for parent-child trios from the 1000 Genomes Project. Finally,
we demonstrate that our hierarchical approach has the potential to improve SV
prediction in extended pedigrees through analysis of a subset of the 17 Platinum
Genomes.

2. Method

Here we consider a general framework for detecting structural variants (SVs)
given sequencing data from one parent (p) and one child (¢). We assume that
there are m locations in the genome that could be a potential SV for each
individual. We assume that the variants in the child primarily come from the
parent (inherited), but the child may have variants not present in the parent
(novel). For simplicity, we consider each individual to be haploid (only one copy
of each chromosome). As such, the true SV signal for the parent, f;‘ e {0,1}™,
has either a 0 at position j if the parent does not have an SV at location j or 1
otherwise. In contrast, the true SV signal for the child, f;* € {0,1}™, comprises
two vectors, i.e., f* = f* + f*, where f¥ € {0,1}™ is the vector of SVs that are
inherited from the parent and f;*{ € {0,1}™ is the vector of SVs that are novel.
Specifically, the vector ﬁ* has either a 1 at position j if an SV is inherited from
the parent at position j or a 0 otherwise. Similarly, the vector f:’: has a 1 if and
only if there is a variant at position j that is not inherited from the parent and
0 otherwise.

2.1. Observational model

The observed data are the number of DNA fragments supporting each po-
tential SV, and the vectors ¢, € R™ and g, € R™ are the observation vectors of
the parent and child, respectively. As in previous work [27, 28, 29], we assume
that the data follow a Poisson distribution,

) (1)

[(ZZ'C)J} ~ Poisson A =¢) {(fi)j M (f")]} T
J
where j € {1,2,...,m}, A\, and A, are the sequencing coverage of the parent
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and child, respectively, and € > 0 is the measurement error corresponding to




the sequencing and mapping processes. Let

R

7y = { C] and f*=|fr
Yp e

o

Then the general observation model can be expressed as
i ~ Poisson(Af* + €1), (2)

where 1 € R?™ is the vector of ones and A € R?™*3™ ig the coverage matrix
given by
M =€) (Ae—e)lpy 0

0 0 A — )|’

where I,,, € R™*™ is the m x m identity matrix.

2.2. Problem formulation

Under the Poisson process model (2), the probability of observing ¥ is given
by

—

p(7 |AF) I? f ﬁeXP(—@{FWj+€)- (3)

We use the mazimum likelthood principle to determine the unknown Poisson
parameter A f* such that the probability of observing the vector of Poisson
data ¢ in (3) is maximized. Specifically, we minimize the corresponding negative
Poisson log-likelihood function

2m
F(f) =Y (AF), — ditog ((Af); +¢).
j=1

In our approach for minimizing F'( f), we will apply gradient-based methods and
relax the domain of f In particular, rather than enforcing f to be binary in
value, i.e., fe {0,1}®™, we only require the values of fto lie between 0 and 1,
ie,0< f<1.

2.8. Familial constraints
To improve the accuracy of our SV predictions, we incorporate additional
constraints that exploit information about the signal f First, if the child has a
structural variant, then it must be from the parent or it must be novel, but not
both, i.e., L
0<fi+fu <L

Second, if the child has a structural variant from the parent, then that SV must
be present in the parent, i.e.,

<fi<h<1

ot



Finally, we enforce that if there is a novel SV present in the child, it cannot be
present in the parent, i.e.,
0 S fn S 1- fp'

We will denote the set of all vectors satisfying these constraints by S, i.e.,

fi < fi+f < <f<f <
f ngngl_fpv nghfnvfpél
p

2.4. Sparsity

Structural variants are relatively rare in an individual’s genome. Without
incorporating how uncommon SVs are in a genome sequence, predictions result
in false positives that mistake fragments that are incorrectly mapped to locations
in the genome as SVs. In our work, we promote sparsity in our predictions
by incorporating an f1-norm penalty term in our problem formulation, which
is a common technique found in statistical literature [30, 31, 32]. What is
particularly novel in our formulation is that while SVs are rare, SVs that are
not inherited from a parent ( f:L in our notation) are even rarer. To this end, we
use two penalty terms: one for the parent SV ( ﬁ,) and for the child SV inherited
from the parent ( ﬁ), and another penalty term for the novel child SVs ( ﬁ)
Mathematically, we express this penalty as

pen(f) = (Ifpll + Ifill) + Al Fulss

where 7 > 1 is a penalty weight that places greater emphasis on f;L being much
sparser than both f, and f;, meaning the novel child SVs are much rarer than
either the parent SVs or the inherited child SVs.

2.5. Optimization problem

With these components defined, the genomic variants reconstruction prob-
lem has the following constrained optimization form:

minimize  F( F) + rpen( f)

subject to fe S

where 7 > 0 is a regularization parameter that balances the negative Poisson
log-likelihood data fidelity term with the sparsity-promoting penalty term. Fig-
ure 3b provides a visualization of each of the components in our optimization
framework: likelihood, sparsity and constraints.

We use the Sparse Poisson Intensity Reconstruction ALgorithm (SPIRAL)
framework [33] to solve (4) by minimizing a sequence of quadratic models to the
function F'( f) First we approximate F'( f) using a second-order Taylor series
expansion at the current iterate f%:

—

F(f) = F(f*) + (F = )VFF) + 3(F = V2R - ). 65)
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Figure 3: Illustration of feasible regions, sparsity penalty, and maximum likelihood surfaces
for the two scenarios for child SVs: (a) When there is not a novel child variant (f, = 0),
our approach reduces to our original model for germline structural variant prediction, where
0< fl < fp < 1, meaning an inherited child SV can only be present if the parent also has
that SV. (b) When there is not an inherited child variant (f; = 0), a parent SV cannot be
present where there is a novel child variant and vice versa, i.e., 0 < fp + fn <1
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The gradient of F(f) is given by

. )\c (1 - Dc?jc)
VE(f) = )‘C(l_DCZZ:c) )
Ap (1 = Dypyp)

where 1 € R™ is a column vector of ones and D., D, € R™*™ are diagonal
matrices with

1
Do) = - -
(Deli Ae(f2); + Al fr); + €
1

)‘p(f;)j te

for 1 < j < m. We approximate the second-derivative Hessian matrix with a
scalar multiple of the identity matrix oy where oy, > 0 (see [34, 35] for details)
and define the quadratic model

FE() = F(P) + (F - POTVR() + SN - P (6)

Now, each quadratic subproblem will be of the form

Y = argmin - F*(f) + mpen(f)
fe]RSm

subject to j?E S.

It can be shown that this constrained quadratic subproblem is equivalent to the



following subproblem:

f = argmin - Q(f) = §[1f =3 + Zpen(f)
fersm (7)

subject to fe S,

where
§'ik .
§h= |5k = f*— =VF(f").
—k (675
Sp

=

We note that the objective function Q(f) separates into the function

Jj=1

where
Qj (ﬁ7ﬁ17.ﬁ9) = é{((ﬁgzk)J)2+((ﬁz§7]:)J)2+(( ;gpk)j)Q}
+{ EATERIAY +7I(ﬁ)j}-

Since the bounds that define the feasible set S are component-wise, then (7)
separates into subproblems of the form

C 1 2 1 2 1 2
rf?,lﬁ,l,rﬁ,lezﬂk 5(fi = 50)" + 5(fn —sn) 5(fp — Sp)

+ ol + A+ 3l

subject to 0< fi+ fn <1, 0<fi<fy <1,
ngngl_fpa nghfnvfpgla

where {f;, fn, fp} and {s;, s, sp } are scalar components of the vectors {ﬁ, ﬁ, f;}
and {5}, 5, 5p }, respectively, at the same location. Completing the squares and
ignoring constant terms, the optimization problem (8) can be expressed as
o 1 21 2,1 2
%}ﬁlﬁlgﬂ% §(fi —a)’ + §(fn—b) +§(fp_c)
subject to 0< fi+ fu <1, 0<fi<f, <1, ()
ngn S 1_fp7 OS fiafnafp S 1;

where a = s; — -, b= sp, — ZTT and ¢ = s, — alk The unconstrained minimizer
of (9) is (a,b,¢). If (a,b,c) is feasible with respect to the constraints, then it
is also the constrained minimizer. If (a,b,c) is not feasible, then we obtain
the feasible solution to (9) by orthogonally projecting (a, b, c) onto the three-
dimensional feasible set, which is illustrated in Fig. 4. In particular, the f;-fy.-fp
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Figure 4: The three-dimensional feasible region of the minimization problem (9) on the f;-
fn-fp axis. Because novel child SVs are not present in the parent genome, i.e., fn <1 — fp,
fn — 0 as fp — 1. Similarly, because inherited SVs come from the parent genome, i.e.,
fi < fp, fi = 0 as fp — 0. Finally, because novel and inherited child SVs are mutually
exclusive, i.e., fn + fi <1, fn = 0 as f; — 1 and vice versa. These define the vertices of the
feasible region, which is a polytope since the constraints are linear. Subproblem minimizers
not satisfying the constraints are orthogonally projected onto this feasible region.

three-dimensional space partitions into 15 different regions that projects onto a
vertex, edge, or surface of the feasible set for infeasible points. Tables 1 and 2
enumerate and define the regions of interest and the corresponding projections.

2.5.1. Forward and Backward Hierarchical Approaches

In application, observations for related individuals may span multiple gener-
ations. As such, we propose two approaches to address prediction of novel child
variants. In the case we have observations ¥, ¢, and ¥g,, where ¢, is the ob-
servation vector of the grandparent signal, we describe both of these approaches
below.

Forward Hierarchical (FH) Approach:
Step 1: Given ¢, and ¥yp, reconstruct f]; and f;p.
Step 2: Use f = f;, from Step 1 as initialization to reconstruct ﬁ, f:h and
o
Backward Hierarchical (BH) Approach:
Step 1: Given ¢, and %, reconstruct f;, f;, and f];.

Step 2: Use f;o = f; and f;‘f = f,, from Step 1 as initialization to reconstruct
fia fn7 and fgp'

We note that for the backward hierarchical approach, the final novel variants
are those not present in the grandparent signal.
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g
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S (u1,v1,w1) | 2—2b—c<a b<l4+a+c c<2—ath
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81 (a,vs,ws) 0<a b<l1l—-2a+c| b—1<c<b+1
&
—
a (us, b, ws) le] <a 0<b<1 c< —a—2b+2

Table 1: The partitioning of the f;- fn-fp space and the corresponding orthogonal projections
onto the feasible set. The projection of the unconstrained minimizer (a, b, ¢) is the minimizer
of (9). Projections onto edges and surfaces are represented as linear combinations of a, b, and
¢ in Table 2.

Projection U v w
(ur,v1,w1) | 3(1+a—b+c) i2-a+b—c) t(l4+a—-b+o)
gﬁ (0, vz, w2) 0 114b—0¢) 11—btoe)
(us, 0, ws) %(aJrc) 0 %(aJrc)
g | (a,v4,wa) a L1—c+b) L1 +e—0)
&
C;S) (us, b, ws) %(c—!—a) b %(c—&—a)
Table 2:  Orthogonal projections (u,v,w) of the unconstrained minimizer (a,b,c) onto the

surfaces and edges of the feasible set.
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3. Results

3.1. Implementation Details

We implemented our method for variant detection in MATLAB by extending
our previous approach [26] based on the SPIRAL method [33]. We next analyze
the performance of our method on both simulated and real data. We compared
the performance of our new method with two other variant prediction methods.
First, we compare to our previously published method for variant prediction in
the context of one-parent/one-child [29]. This method had a similar sparsity-
promoting term 7, but required all predictions in the child to occur in the parent
(i-e., did not allow for novel variants in the child). Second, we compare to the
same method but with only sparsity constraints (i.e., no family constraints).
The regularization parameters 7 were chosen to be the same for all methods
and, when showing results for our new method, v was chosen to maximize
the area under the curve (AUC). In all cases, the SPIRAL algorithm was run
with the same terminating criteria, if the relative difference between consecutive
iterates converged to || fre1 — frll2/llfrll2 < 1078, For each trio, the numerical
experiments took on average of 6 minutes to run in serial on a commodity
machine. In contrast, in real experiments, the SV-caller GASV took an average
of 180 minutes to process the .BAM files and 1.5 minutes to generate candidate
SVs for each trio. In other words, the memory footprint of our method is
extremely low and does not result in fatalistic warnings. In particular, the main
computational overhead is in the generation of predictions. We are currently
developing an open-source, parallel version of our method, but our MATLAB
code is available upon request.

3.2. Simulated Experiments

Because our model was developed in the simplified assumption of one-parent
and one-child with haploid genomes, before applying it to real human data vi-
olating our assumptions, we studied its performance on data we simulated to
match our assumptions. For simplicity we do not directly simulate the gener-
ation and mapping of reads, we only generated the sequencing depth (or cov-
erage). In these cases we simulated the true signal for a parent and child by
creating a vector of 10° potential SVs and selecting 500 locations to be true
variants for the parent and child signal separately. We selected 500 locations
uniformly at random to be the true SVs in the parent. The child signal was
then generated by randomly selecting |500p| of the parent variants to be inher-
ited (where p is the percent overlap between parent and child SVs) and then
choosing (500 — |500p]) locations from the remaining (10° —500) locations that
were not chosen as a parent variant to be novel variants in the child. In our
experiments, we chose 0.5 < p < 1.

8.2.1. Analysis
When the percentage of novel variants is (< 10%) in the child, our method is
better able to reconstruct the child signal. Hence, we are able to more accurately

11
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Figure 5: Left. ROC curves of three methods illustrating the false positive rate vs. the false
true positive rate in the simulated child reconstruction, where 7 = 20 and v = % Right. ROC

curves of three methods illustrating the false positive rate vs. the false true positive rate in the

simulated parent reconstruction, where 7 = 20 and v = 2 These simulations were done with

sequencing coverage of 4 in both individuals and p = 0.9 (so the child has 50 novel variants).

recover the SVs in the child reconstruction when we allow for novel variants.
Figure 5 illustrates how our proposed method can adequately recover the parent
signal under the assumptions that the novel variants are far more rare than the
inherited variants in the child. If we allow for a larger number of novel variants
in the child (= 50%) then our reconstruction is more reliant on the depth of the
sequencing coverage. In these cases we need higher sequencing coverage (= 10x)
for both individuals to accurately recover their signals (data not shown).

8.8. 1000 Genomes Project Trio Data

To test our proposed method of novel variant detection, we apply our method
to both father-mother-daughter trios sequencing data from the 1000 Genomes
Project [11]. In the pilot study of the project, both the CEU (European an-
cestry) and YRI (Yoruba population) genomes were sequenced at high coverage
using three sequencing platforms with a mean mapped depth of 43.14, and
40.05, respectively. This data was subsequently subsampled to &~ 4x coverage
and aligned to NCBI36. In particular, we use the .bam files corresponding to
SLX (Illumina Genome Analyser ABI SOLIiD system), with 36 - 50 bp reads.
We incorporate the SV-caller GASV to obtain candidate variant positions for
all six individuals [36]. The preprocessing of GASV, BAMTOGASV, was run
with default settings and candidate variants were obtained with the —BATCH
option in GASV for candidate deletions. In addition to comparing our method
to other constrained models (i.e., sparsity and sparsity with family constraints),
we benchmark our work against GASV output by thresholding at each observed
number of fragments supporting a potential SV. As such, our model mitigates
the high false positive rates of previous SV-calling tools.

For the true signals f *  the study reported deletions passing filters associated
with a post-beagle 95% confident call rate and a Hardy-Weinberg equilibrium
p-value < 0.01 in each of the populations. Additionally, we filter out LowQual

12



ROC Curves for CEU Parent Signal

1200
1000
8
2 800 - — . 1
g e L
s 600 - 1
(0] Family + Sparsity
IL:_ 400 - — Novel + Family + Sparsity, |
= Thresholding (GASV)
200 == Sparsity
0
0 1 2 3 4 5 6

Figure 6: ROC curves of four methods illustrating the novel deletions (validated set of deletions
may be incomplete) vs. true positives in the signal of the CEU parent NA12891, where 7 =
0.0129 and v = 10. We observe an increase of true positive predictions when the number of
novel predictions < 1000.

deletions near centromeres or telomeres longer than 250bp of the reported val-
idated deletion set. Moreover, variants in the child signal not in one of the
parents represent the the novel deletion signal we aim to reconstruct. In par-
ticular, the child has an average of 8.55% and 6.26% novel variants (of total
variants) for the YRI and CEU trios, respectively.

8.8.1. Analysis

For parent signal reconstructions, we note an initial improvement in true
positive prediction of our proposed model when the number of novel predictions
is low. Figure 6 illustrates our findings for the CEU parent NA12891. Although
the area under the curve (AUC) for the ROC curve is less for our proposed
method, we note an improvement from simple thresholding techniques (GASV).
Moreover, constraints from our initial model favor parent signal recovery [29].
Next, we focus on the reconstruction of the entire child signal f; Figure 7
illustrates the novel variant predictions against validated deletions in the YRI
child NA19240 considering the same four methods. We observe comparable
results with enforcing only sparsity (i.e., no inheritance constraints) and an
improvement over previous methods. Since the rate of novel variants is less
than 10% in this low coverage regime, this is consistent with our simulated
experiments.

3.4. Platinum Genomes

We also apply our method to low-coverage (= 5X) sequencing data for the
three-generation, 17-member CEU pedigree (dbGaP accession phs001224.v1.p1)
using the same four models as before [13]. All 17 family members’ DNA was
originally sequenced on an Illumina HiSeq2000 to an average depth of 50x us-
ing 2x100 bp reads and PCR-free sample preparation. Although originally

13
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Figure 7: ROC curves of four methods illustrating the novel deletions vs. true positives in the
combined child signal f. of the child in the YRI trio (NA19240), where 7 = 1 and v = 10. We
note comparable performance of our proposed model with only enforcing sparsity.

sequenced at high coverage, we use Samtools to subsample and achieve low cov-
erage of approximately 5x [37]. We determine true SVs with the intersection
of GASV and Delly SV calls [36, 38]. In particular, we look at the deletions
from the grandparent-parent-child (NA12889, NA12877, and NA12882) and ap-
ply our method using the proposed hierarchical approaches. As before, we
benchmark our method by comparing to the thresholding of GASV candidate
structural variants.

8.4.1. Analysis

For both the forward and backward hierarchical approaches, we find simi-
lar patterns for parent and grandparent signal reconstruction, namely less pre-
dictive power of true positives. Fig 8 illustrates the novel child signal recon-
structions for NA12882. We note that the forward hierarchical (FH) approach
achieves competitive AUC values when initializing the parent signal from one
application of our method (with parent with the grandparent signals). We high-
light that the backward hierarchical (BH) method results in an increase of the
true positive predicted for the novel child signal. The BH approach is also com-
pared to applying the method once (with child and parent observations) and
note that it outperforms all other methods. When we considered higher cover-
age in this data set (= 10x), we observe similar performance for the backward
hierarchical approach for novel deletions and less improvement in sensitivity
when compared to thresholding GASV deletion call set (data not shown).

4. Conclusions

We propose a new method to detect novel structural variants — SVs present
in a child not inherited from a parent — from sequencing data in parent-child
pairs. Our method incorporates both relatedness and sparsity constraints, al-
lowing for varying penalty parameters in the reconstruction of the child signal.
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Figure 8: ROC curves of four methods illustrating the novel deletions vs. true positives in the
signal of the CEU child NA12882, where 7 = 0.0129 and v = 10. Left. Using the forward
hierarchical (FH) approach, we observe comparable detection of novel variants. Right. With
the backward hierarchical (BH) approach, we note an increase in true positive rate compared
to applying our method only once (dashed blue line).

By doing so, our new model is less sensitive to our regularization parameters.
Although parent signal recovery resulted in reduced predictive capacity, our
proposed method improved true positive predictions in the child. We present
our results for both simulated, real data from the 1000 Genomes Project and a
subset of the Platinum Genomes, and suggest further exploration in varying se-
quencing coverage for future parent-offspring data. In future studies, we intend
to incorporate other SV-calling tools, larger family structures, and a general
relatedness parameter in our methods.
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