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Abstract—Genomic variation shared by members of the same
species that are longer than a single nucleotide are commonly
called structural variants (SVs). Though relatively rare, they
represent an increasingly important class of variation as SVs
have been associated with diseases and susceptibility to some
types of cancer. Common approaches to SV detection require
the sequencing and mapping of fragments from a test genome to
a high-quality reference genome. Candidate SVs correspond to
fragments with discordant mapped configurations, but because
errors in the sequencing and mapping will also create discordant
arrangements, many of these predictions will be false. When
sequencing coverage is low, distinguishing true SVs from errors
is even more complicated. In recent work, we have developed
SV detection methods that simultaneously consider the genomes
of closely related individuals – parents and children. Our ap-
proaches control false positive SVs by requiring children inherit
all SVs in their genome from a parent. However, in doing so,
our models may have missed true novel variants acquired by
the child. In this work, we generalize our previous approaches
to allow the child to carry novel variants but enforce sparsity
through an `1 penalty (since novel SVs in the child should be
rare). We present results on both simulated genomes as well as
two-sequenced parent-child trios from the 1000 Genomes Project.

Index Terms—Sparse signal recovery, convex optimization,
next-generation sequencing data, structural variants, computa-
tional genomics

I. INTRODUCTION

The complete DNA sequence of an organism (the genome)
is one or more ordered linear sequences of the letters A, C,
G, or T. The total genome length is anywhere from millions
(for bacteria) to billions (for mammals) of letters. Every cell
in most multi-cellular organisms contains a complete and
nearly identical copy of an organism’s genome. When cells
divide, the genome must be duplicated so each cell will
have its own copy, but every time the genome is copied
there is the opportunity for mutational processes to introduce
variation. Genomic variation may consist of a modification
to a single letter, termed single nucleotide variants (SNVs),

or rearrangements of larger regions, termed structural variants
(SVs) [1], [2]. For multi-cellular organisms, variants are often
further classified into those which transmitted from parents
to progeny, germline variants, or those which occur during
cell division in the lifetime of an organism, somatic variants
[3]. In humans, the accumulation of somatic mutations is
commonly associated with the development of cancer [4] while
the presence of certain germline variants have been shown to
increase the susceptibility for certain types of cancer [5], [6].
Beyond cancer, genomic variants are associated with many
significant biological outcomes for individuals including a
variety of diseases in humans [7], [8], flowering behavior in
plants [9] and have contributed to rates of adaptation and the
emergence of new species [10].

The detection of genomic variants such as SVs remains a
challenging scientific and computational problem. Even with
modern DNA sequencing technologies, it is not possible to
construct the complete genome of every cell. As such, the
common practice has been to construct a high-quality refer-
ence genome for each species and then annotate this reference
with sites of variation [11], [12]. The dominant method for
identifying SNVs or SVs involves comparing fragments of
DNA sequenced from a test (unknown) genome to a given
reference [13], [14]. SVs are typically detected through indi-
rect evidence – a fragment that maps to a larger than expected
distance – and as such they are more difficult to identify than
SNVs which may be directly observed through alignment of
sequences from the test genome to the reference. However,
predicting either type of variant is complicated by DNA
sequencing and alignment errors (see Fig. 1). Because of these
errors, algorithms for variant detection have suffered from high
false-positive rates especially when the coverage – expected
number fragments supporting each variant – is low [14], [13].
One hope for improving the ability to accurately predict SVs
has come from methods that combine the information of
many individuals [15]. This allows researchers to leverage



large-scale public efforts, such as the 1000 Genomes Project,
that have made available sequencing data from thousands of
individuals, including parent-child trios [16], [17]. Population
level algorithms have the potential to improve variant detection
because the signal of true SVs will be boosted, but only when
variants are likely to be shared among multiple individuals.
But, because of the massive population expansion, many
variants in humans are rare and, as such, may only be shared
by close relatives [18].

Fig. 1: Illustration of DNA sequencing and mapping process,
beginning with an unknown genome. The unknown genome
is fragmented and the ends of the fragments are sequenced.
The sequenced reads are then compared and mapped to
the reference genome. Measurement errors in both of these
processes are depicted in red.

Our group has developed computational methods to im-
prove SV prediction through considering pedigrees of re-
lated individuals [19], [20], [21], [22]. Our previous methods
constrained the set of potential SVs through parent-child
relationships by requiring that every variant present in the child
was a germline variant transmitted from a parent. While these
approaches have improved the ability to reduce false-positive
predictions, they also increase the false-negative rate because
they do not allow for novel variants (SVs that are not inherited
from a parent) in the child genome.

This work improves upon our previous methods by allowing
the child genome to possess novel variants. In Section 2, we
develop our mathematical model and optimization framework
for SV prediction in the context of one parent and one child.
For simplicity in this work, we develop our model for haploid
genomes so that at each potential SV site each individual
either has the variant or does not. We consider a continuous
relaxation of this discrete problem, but favor sparse solutions
through the use of the `1 norm. In Section 3, we present the
results of our method on both simulated and real sequencing
data for parent-child trios from the 1000 Genomes Project.
Even with our simplified haploid genome assumption, we find
that our framework has the potential to improve SV prediction

for low-coverage individuals.

II. METHOD

We now describe a structural variant (SV) detection frame-
work given genomic data from both parents (father, F , and
mother, M ) and from one child (C). Let ~f∗ι ∈ Rm be the
vector of m locations of potential SVs for each individual
ι ∈ {F,M,C}. We make the following assumptions:

• Inherited variants: The variants in the child primarily
come from the parents. In particular, if both parents have
an SV at a particular location, the child must also have an
SV at that location. Furthermore, we assume SVs are rare.

• Novel variants: On rarer occasions, the child may have
variants not present in either parent.

• Haploid genotype: For simplicity, we consider each
individual to be haploid (only one copy of each
chromosome).

• Low-coverage sequencing: The expected number of
fragments supporting each variant is low, and the observed
measurements are governed by a Poisson process.

We denote the true SV signal for either parent, P ∈ {F,M},
by ~f∗P ∈ {0, 1}m, which has either a 1 at position j if the
parent has an SV at location j or 0 otherwise. In contrast, the
true SV signal for the child, ~f∗C ∈ {0, 1}m, is composed of
two vectors:

~f∗C = ~f∗I + ~f∗N ,

where ~f∗I ∈ {0, 1}m and ~f∗N ∈ {0, 1}m denote the vector
of SVs that are inherited from either parent and are novel,
respectively. In particular, (~f∗I )j has either a 1 if an SV is
inherited from the parent at position j or a 0 otherwise.
Similarly, (~f∗N )j has a 1 if and only if there is a variant
at position j that is not inherited from the parent and 0
otherwise. We note that at each location, ~fI and ~fN cannot
simultaneously be both non-zero since a child variant can only
either be inherited or be novel, but not both. In other words,
the vectors ~f∗I and ~f∗N satisfy the complementary condition
(~f∗I )j(~f

∗
N )j = 0 for 1 ≤ j ≤ m.

Observation model. We denote the vector of observations
and the vector of true SV signals by ~y = [~yC ; ~yF ; ~yM ] and
~f∗ = [~f∗I ; ~f∗N ; ~f∗F ; ~f∗M ], where the entries in the measurement
vector ~yι correspond to the number of DNA fragments sup-
porting each potential SV, and the vector ~yι ∈ Rm, where
ι ∈ {C,F,M}, is the observation vectors for each individual.
Because we assume that the sequence coverage is low, we
expect that the number of fragments covering any position in
the genome to follow a Poisson distribution (see e.g., [13],
[23]). In particular, we can express the general observation
model as

~y ∼ Poisson(A~f∗ + ε1), (1)



where 1 ∈ R3m is the vector of ones and A ∈ R3m×4m is the
coverage matrix given by

A =

(λC−ε)Im (λC−ε)Im 0 0
0 0 (λF−ε)Im 0
0 0 0 (λM−ε)Im

 ,
where Im ∈ Rm×m is the m×m identity matrix.

Problem formulation. We use the maximum likelihood prin-
ciple to determine ~f∗ such that the probability of observing
the vector of Poisson data ~y in (1) is maximized. More
precisely, we minimize the corresponding negative Poisson
log-likelihood function

Φ(~f) =
3m∑
j=1

{(
A~f

)
j
− ~yj log

(
(A~f)j + ε

)}
.

To apply gradient-based optimization approaches for minimiz-
ing Φ(~f), we allow ~f to take on more than the binary values
of 0 and 1 and instead be continuous in the interval [0, 1].

Feasibility constraints. We impose the following constraints
on the SV signal estimate ~f , which correspond to the biolog-
ical assumptions we make:

• Since each entry in an individual’s SV signal is binary,
i.e., ~f∗C , ~f

∗
F ,
~f∗M ∈ {0, 1}m, and since ~f∗C = ~f∗I + ~f∗N with

~f∗I ,
~f∗N ∈ {0, 1}m, then we have 0 ≤ ~fI , ~fN , ~fF , ~fM ≤ 1

and 0 ≤ ~fI + ~fN ≤ 1.

• Because a novel variant in the child cannot be inherited
from either parent, we have 0 ≤ ~fN ≤ 1 − ~fF and
0 ≤ ~fN ≤ 1− ~fM .

• If both parents have an SV, then the child must inherit the
same SV: ~fF + ~fM − 1 ≤ ~fI . Similarly, if neither parent
has an SV, then the child cannot have an inherited SV:
~fI ≤ ~fF + ~fM .

We will denote the set of ~f satisfying these constraints by F .

Optimization setup. With these components defined, the
genomic variants reconstruction problem has the following
constrained optimization form:

minimize
~f∈R4m

Φ(~f) + τpen(~f)

subject to ~f ∈ F
(2)

where pen(~f) is a penalty that promotes sparsity in ~f and
τ > 0 is a regularization parameter that balances the nega-
tive Poisson log-likelihood term with the sparsity-promoting
penalty term. We use the Sparse Poisson Intensity Recon-
struction ALgorithm (SPIRAL) framework [24], [25] to solve

(2), which involves solving a sequence of scalar quadratic
subproblems of the form

minimize
fI ,fN ,fF ,fM

∈R

1
2 (fI−sI)2+ 1

2 (fN−sN )2+ τ
αk
|fI |+ τγ

αk
|fN | +

1
2 (fF−sF )2 + 1

2 (fM−sM )2+ τ
αk
|fF |+ τ

αk
|fM |

subject to 0 ≤ fI , fN , fF , fM ≤ 1, 0 ≤ fI + fN ≤ 1

0 ≤ fN ≤ 1− fF , 0 ≤ fN ≤ 1− fM ,
fF + fM − 1 ≤ fI ≤ fF + fM .

(3)
where at each iteration k,

• {fI , fN , fF , fM} and {sI , sN , sF , sM} are scalar
components of the vectors ~f k = {~f kI , ~f kN , ~f kF , ~f kM}
and ~s k = {~s kI , ~s kN , ~s kF , ~s kM}, respectively, at the same
location;

• αk is the learning rate;

• ~s k = ~f k − 1
αk
∇Φ(~f k) is the predicted new iterate along

the steepest descent (negative gradient) from the current
iterate with step length 1/αk;

• 0 < γ < 1 is a parameter that further amplifies sparsity on
novel child SVs.

Note that because the constraints are more complex in (3) than
in our previous work, we must use a different approach.

Optimization approach. We propose using an alternating
block-coordinate descent approach to solve (3). Specifically,
the proposed method solves (3) by alternating between child
and parent indicator variables. First, we fix the parent struc-
tural variant signals, fF and fM , and solve the resulting
minimization problem for the child signal, fI and fN . Next,
we fix the child signal and minimize over the parent indicator
variables. The method continues until the difference between
subsequent iterates falls below a specified threshold. We
outline the steps below.

Step 0: Initially, we fix the values for the parent indicator
variables by setting f (0)F = f

(0)
M = 0.5 for each candidate SV

location.

Step 1: Suppose we have obtained f̂
(j−1)
F and f̂

(j−1)
M from

the previous iteration. The child indicator variables f̂ (j)I and
f̂
(j)
N are obtained from solving

minimize
fI ,fN∈R

1
2 (fI − cI)2 + 1

2 (fN − cN )2 (4)

subject to 0 ≤ fI + fN ≤ 1

0 ≤ fN ≤ min
(

1− f̂ (j−1)F , 1− f̂ (j−1)M

)
max

(
0, f̂

(j−1)
F + f̂

(j−1)
M − 1

)
≤ fI

fI ≤ min
(

1, f̂
(j−1)
F + f̂

(j−1)
M

)
,

where cI = sI − τ
αj

and cN = sN − γτ
αj

. The feasible region
is shown in Fig. 2(a).



1

1

fN

fI 1

1

fM

fF

(a) (b)

Fig. 2: The feasible set (indicated by the shaded region) for each step of the proposed block-coordinate minimization approach.
(a) In Step 1, we minimize over the child indicator variables fI and fN given fixed parent indicator variables f̂F and f̂M . (b)
In Step 2, we minimize over the parent indicator variables fF and fM given fixed child indicator variables f̂N and f̂I .

Step 2: Suppose we have obtained f̂ (j)I and f̂ (j)N from Step 1.
To obtain the solution for the current iteration f̂ (j)F and f̂ (j)M ,
we have

minimize
fF ,fM∈R

1
2 (fF − cF )2 + 1

2 (fM − cM )2 (5)

subject to 0 ≤ fF ≤ min
(

1, 1− f̂ (j)N

)
,

0 ≤ fM ≤ min
(

1, 1− f̂ (j)N

)
,

fF + fM − 1 ≤ f̂ (j)I ≤ fF + fM ,

where cF = sF − τ
αj

and cM = sM − τ
αj

. The feasible region
is shown in Fig. 2(b).

We note that both problems (4) and (5) have closed form
solutions, where the minimizer is obtained by projecting the
unconstrained solution to the feasible set (see e.g., [25]).

III. RESULTS

We implemented our method for variant detection in Matlab
by extending our previous approach [25] based on the SPIRAL
method [24]. We analyze the performance of our method on
both simulated and real data by comparing our new method
with two other variant prediction methods. We compare our
previous method for variant prediction in the context of
two-parents/one-child [20]. This method includes a sparsity
promoting term τ , but did not specifically model novel variants
in the child. Second, we include a comparison to the model
that only enforces sparsity. The regularization parameter τ was
chosen to be the same for all methods and γ was chosen when
the area under the curve (AUC) was maximized. Each model
was run with the same terminating criteria, checking if the
relative difference between consecutive iterates converged to
‖~fk+1 − ~fk‖2/‖~fk‖2 ≤ 10−8.

A. Simulated Data

Because our model was developed in the simplified assump-
tion of two-parent and one-child with haploid genomes, before
applying it to real human data violating our assumptions,
we studied its performance on data we simulated to match
our assumptions. In these cases we simulated the true signal
for both parents and the child and varied the fraction of
similarity between parents and the number of novel variants
in the child to study the performance of our model. We first
created the parent signals and then derived the child with its
novel variants. Each simulated true signal consisted of 105

potential SVs. For the parents, 500 locations were chosen at
random to be true variants; the fraction of variants the parents
had in common was varied according to their chosen percent
similarity. For the child signal, if both parents had an SV at
a particular location the child signal did as well. If only one
parent had an SV at a location, the child had a 50% chance
of inheriting that SV. Novel variants in the child were chosen
randomly from locations where no parent had an SV. From
these true signals, observed signals were created by sampling
from the Poisson distribution with a given coverage and error.

Analysis. When the percentage of novel variants is small in
the child (< 10%), we observe better performance of our new
method. In Figure 3 we show an ROC curve for a simulated
data set where the parents were chosen to have 50% similarity
and the child had 50 novel variants. We note that the area
under the curve for our proposed method is higher than our
other methods for the child reconstruction. Hence, we are able
to more accurately recover the SVs in the child reconstruction
when we allow for novel variants. We also note that while our
performance is reduced for reconstructing the parent genome
as compared to our previous method, our new method still
outperforms sparsity constraints alone (data not shown). We
also observed that for the child reconstruction, our proposed
method is more stable under varying τ values.



Fig. 3: ROC curves of three methods illustrating the false
positive rate vs. the false true positive rate in the simulated
child reconstruction, where λM = λF = 8, λC = 10, ε = .01,
τ = 100 and γ = 500.

B. 1000 Genomes Project Trio Data

To validate our method, we consider trio data of two
separate populations from the 1000 Genomes Project [11].
Both the European (CEU) and Yoruba (YRI) father-mother-
daughter trio genomes were sequenced at ≈ 4× coverage
and aligned to NCBI36. We obtain our candidate set of SVs
from the GASV pipeline, but our method is also applicable to
other SV callers [26]. We filter the validated set of variants by
eliminating experimentally validated SVs shorter than 250bp
and which are classified as low quality. We note that only 15
of the validated variants in the child signal not present in either
of the parents constitute our novel child signal ~f∗N .

Analysis. For child (inherited and novel) signal reconstruc-
tions, we achieve competitive sensitivity with our previous
methods. When reconstructing the parent signals, we improve
on our previous 2 parent - 1 child model, whose iterates
are updated by non-alternating closed-form projections [20].
Figure 4 illustrates this improvement with predicted novel
deletions against experimentally validated variants in the CEU
mother NA12891 when comparing against previous models.
We also find that our new method is stable under changes of
τ and γ values.

IV. CONCLUSIONS

We propose a new method to detect novel structural variants
– SVs present in a child not inherited from a parent – from
sequencing data in parent-child trios. Our method incorpo-
rates both relatedness and sparsity constraints, allowing for
varying penalty parameters in the reconstruction of the child
signal. By doing so, our new model is less sensitive to our
regularization parameters. With real data, our method achieves
competitive true positive predictions in the child and improves
parent signal recovery, and we intend on exploring this with

Fig. 4: ROC curves of four methods illustrating novel variants
vs. true positives (experimentally validated) in the signal of
the CEU mother NA12891, where τ = 10 and γ = 1

10 . We
observe an overall improvement in correctly classifying SVs
compared to previous methods.

further simulated data studies. We present our results for both
simulated and real data from the 1000 Genomes Project and
suggest further exploration in varying sequencing coverage for
future parent-offspring data. In future studies, we intend to
incorporate other SV-calling tools, larger family structures, and
a general relatedness parameter in our methods.
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