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Abstract—With the increasing penetration of cyber systems in
the power grid, it is becoming increasingly imperative to deploy
adequate security measures all across the grid to secure it against
any kind of cyber threat. Since financial resources for investment
in security are limited, optimal allocation of these cybersecurity
resources in the grid is extremely important. At the same time,
optimization of these investments proves to be challenging due to
the uncertain behavior of attackers and the dynamically changing
threat landscape. Existing solutions for this problem either do
not address the dynamic behavior of adversaries or lack in the
practical feasibility of the defense models. This paper addresses
the problem of optimizing investment strategies in the cyber-
security infrastructure of a smart grid using a game-theoretic
approach. The attacker is modeled using various attacker profiles
which represent the possible types of adversaries in the context
of CPS. Each profile has certain characteristics to bring out the
aspect of uncertain behavior of the adversaries. The defender is
modeled with various pragmatic characteristics that can be easily
translated to the real-world grid scenarios for implementation.
These characteristics include the standards laid down by the
North American Electric Reliability Corporation (NERC) for
Critical Infrastructure Protection (CIP) commonly known as the
NERC-CIP standards. The game-theoretic framework allows us
to obtain optimal strategies that the defender of the grid can
adopt to minimize its losses against the possible attack threats
on the grid. The concept is illustrated by a simplistic 3-bus power
system model case study which depicts how the solution can be
translated to practical implementation in the actual grid.

Index Terms—CPS, Smart Grid, Cybersecurity, Game Theory,
Attacker model, Defender model, NERC-CIP
I. INTRODUCTION

The Smart Grid is fast becoming one of the largest Cyber-
Physical Systems (CPS) ever built. Rapid growth of this CPS
is accompanied by increased vulnerability of the system due
to the threats from the cyberspace. Any successful breach of
security by the adversaries into the system can cause blackouts
in the power grid which in turn can lead to human as well as
monetary losses as was witnessed in the Ukrainian 2015 and
2016 Attacks [1]. This creates an obligatory need for securing
the power grid against any possible cyber attacks. One of
the biggest challenges in securing the grid under an evolving
threat landscape is the uncertain behavior of the adversaries
when the resources of the stakeholders in the grid (or the
defender of the grid) are limited. Cybersecurity solutions
that use deterministic models [2] cannot ensure immunity
against the dynamic and uncertain adversary behavior. In other
words, quantification of the cyber-threat landscape proves to
be a bottle-neck while assessing the risk associated with
the different elements of the smart grid. This calls for the
development of stochastic and heuristic models which can
capture this aspect of the smart grid cyberspace to allow for
optimal deployment of the available resources. Existing works
that try to solve the problem of protecting the grid against
cyber attacks using various techniques like optimization theory
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Fig. 1. Attacker and Defender Interactions in the Smart Grid

and Markov Decision Processes do not consider the dynamics
of the threat landscape [3], [4]. One of the approaches to
model human behavior in a dynamic environment is game
theory [S]. Game-theoretic modeling involves two or more
entities competing over a common platform to maximize their
profits or minimize their losses. In the case of a smart grid, the
adversary and the defender can be considered as two entities
that are competing against each other where the former entity
is trying to maximize its profits from the system and the latter
one is trying to minimize its losses. Although there has been a
lot of work on the application of game theory to cybersecurity
[6], [7], it is mostly limited to just cyber systems and does
not deal with CPSs. The works that propose attacker models
for CPS [8], [9] and apply game theory for cybersecurity in
smart grids [2], [10] lack in the practical feasibility of their
models in the current grid scenario.

In this paper, we have proposed an approach to model
the attacker and defender of the smart grid that takes into
account the uncertain behavior of the attacker and the practical
feasibility of the defender model. In addition to these two
entities, the smart grid CPS is also modeled under the game-
theoretic framework using NERC-CIP standards [11] and
the Electricity Subsector Cybersecurity Capability Maturity
Model (ES-C2M2) [12] in order to allow us for practical
implementation of the proposed solution in the real-world grid.
The solution provides us with the best strategy for the defender
to invest the available resources optimally in the grid.

The paper is organized as follows: Section II depicts the
problem formulation; Section III shows the methodology used
and delineates the different models developed in the game-
theoretic framework; Section IV provides a case study to
validate the models; and Section V concludes the paper.

II. PROBLEM FORMULATION

Fig. 1 depicts how the attacker and the defender interact
over the cyber and physical layers of the smart grid. The
attacker tries to penetrate the cyber layer and incurs a cost
represented by C'ost 1. A successful attack on the cyber layer
has impacts on the physical layer and is associated with a cost
represented by C'ost 2. This cost is incurred by the defender
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Fig. 2. Proposed Methodology Flowchart

and is called the impact cost on the system due to an attack.
The defender, in order to make the grid more secure, invests in
the cyber and the physical layers and incurs the costs C'ost 3
and Cost 4, respectively. The total costs incurred by the At-
tacker and Defender are given by: Attacker’'s Cost = Cost 1
and Defender’s Cost = Cost 2 + Cost 3+ Cost 4.

The attacker is trying to minimize its cost while maximizing
defender’s cost. The objective function for the attacker can
be formulated as the following multi-objective optimization
problem:

min Cost 1
max Cost 2
subject to: Attacker's resources and characteristics

System properties

Similarly, the defender’s objective function can be stated as
follows:

man Cost 2+ Cost 3+ Cost 4
mazx Cost 1
subject to: Defender’s resources and characteristics

System properties

III. GAME THEORY-BASED MODELING

This section discusses in detail the proposed framework, the
System model, the Defender model, the Attacker model, and
the functions used for game formulation and solution.

A. Proposed Framework

Fig. 2 shows the proposed methodology wherein three
types of models have been developed, namely, the Attacker
Model, the Defender Model, and the System Model under a
game-theoretic framework. The Attacker and Defender Models
define various strategies that the attacker and the defender
can adopt in an environment defined by the System Model.
Depending upon the strategy adopted by the attacker and the
defender, each of them incurs a cost which is also dependent
on the cost of impact that the attacker’s strategy has on
the system. These costs define the payoff that each of the
players will be receiving by playing the respective strategies.
A comprehensive list of payoffs of each of the players for

various possible strategies generates a payoff matrix which is
solved using game-theoretic tools to culminate into the best
strategy to be used by the defender. Although this framework
has been developed for the smart grid environment, it can be
adopted in any CPS environment wherein the system model,
the attacker model and defender model can be changed to fit
the given environment.

B. System and Defender Model

The Smart Grid CPS at the transmission level can be
represented as a network of substations which are connected
at both the physical and the cyber layers. The cyber layer
of the substations makes them vulnerable to cyber attacks
and in this work the substations are considered as the target
nodes that the attacker intends to attack. We have defined a
model for the substations which is derived from the NERC-
CIP standards and the Electricity Subsector Cybersecurity
Capability Maturity Model (ES-C2M2) introduced by the
United States’ Department of Energy. The ES-C2M?2 proposes
a model for organizations related to the electricity subsector
wherein they can assign scores to various predefined domains
in accordance with the organization’s cybersecurity practices.
In our work, we have modified this model and changed
the domains to various characteristics based on some of the
NERC-CIP standards in which each characteristic is scored
according to the maturity level of the cybersecurity resources,
equipment, and practices of each substation. The domains
that were selected from the various NERC-CIP standards
to represent the substations are as follows: Personnel and
Training - Level of training and awareness of personnel about
Cybersecurity; Electronic Security Perimeter - Maturity of
Security at the Software Level including firewalls, Password
Protection, Operating Systems, IDS, etc.; Physical Security -
Maturity of Security at the Physical Level including Physi-
cal access to substations, redundant hardware, etc.; Systems
Security Management - Implementation and management of
Firmware Updates, IPS, System Access Control, etc.; Recovery
Plans for Cyber Systems - Maturity level of recovery plans
including their implementation and testing for recovery of BES
Cyber Systems to ensure stability, operability, and reliability
of the BES; and Information Protection - Methods involving
storage, transit and use of Information. The summation of
all the scores of each characteristic in a substation gives the
Maturity Indicator Level (MIL) of the substation. Higher the
MIL of a substation, higher will be the cost incurred by the
attacker to carry out a successful attack on that substation.

In this work, we have considered that the defense mech-
anism adopted by the defender to reduce the chances of a
successful attack is to increase the cost of attack on a target
node, that is, increasing Cost I. The Defender Model lays out
the investment strategies that the defender can execute in order
to increase this cost. The defender’s strategies are to increase
the MIL of the substations by investing monetary resources
in the substations. As was mentioned previously, increasing
of the MIL of a substation increases the cost of attack on
that substation. The end result of this work gives the best
strategy out of the possible defense strategies such that the
cost incurred by the defender is minimized.
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Attacker Characteristics
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= Terrorist 6 3 2 1 1 5 18 0.125 6 (Highest)
Nation State 4 1 i 3 6 i 16 0 4

Fig. 3. Attacker Profiles and Characteristics
C. Attacker Model Attack Target/Strategy

Modeling of an attacker in the CPS smart grid environment SS1 SS2 553
proves to be a challenge due to the fact that the motives and,
thus, the characteristics of the attacker are hard to predict. In o B PBl Psz PBS
order to solve this issue, we have considered various possible = | p p P
profiles of an attacker and assigned specific characteristics o 1 12 I3
to the profiles. This is illustrated in Fig. 3 which shows c:: H p p >
six profiles of the attacker in the left-most column and the o Hl H2 H3
the characteristics in the top-most row. The profiles and g | C B E. P
characteristics are defined below: E T p p p

Basic user - Unstructured hacker or hobbyist; Insider - Dis- TL 12 13
gruntled employee or a social engineering victim; Hacktivist - N P P P
A hacker activist; Terrorist - Cyber-terrorist; Cybercriminal - fil e i
Black hat hacker or structured hacker; and Nation-State - An ZPSSl= 1 EPssz =1l zPsss =l
attacker sponsored by a nation.

The various characteristics are - Knowledge: Cost incurred ~ Fig- 4. Attack Probability Matrix
to gain knowledge of the system; Financial Support: Cost
incurred to arrange finances for the attack; Manpower: Cost

incurred to arrange manpower for the attack; Determination:
Cost incurred to get determination for carrying out the attack;
Stealthiness: Cost incurred for efforts put in to stay undetected;
and Expertise: Cost incurred to gain attacking proficiency.
Each profile is given a relative score under each column
based on heuristics for the particular characteristic of each
profile. The Sum column adds all the scores of each row. The
Sum represents the overall relative cost incurred by each type
of attacker to carry out an attack on any component in the
system. This relative cost is normalized to a different range
in the Normalized Costs column for better visualization of the
relative costs. For the purpose of bringing in the stochastic
nature of the threats, each attack target in the system is
assigned a probability of attack based on the intention of each
type of attacker profile and the impact that the target node will
have on the system if taken out. The intention of an attacker
defines the level of impact that the attacker wants to have on
the system and its value is obtained from heuristic evaluation
as is represented in the column Intended Impact in Fig. 3.
Fig. 4 shows how different attacker profiles can have varying
probabilities of attack over different substations. The sum of
the probabilities of all profiles for a particular substation is
one as is represented in the last row. This is because we have
distributed the attack probabilities across different attacker
profiles according to their Intended Impact after considering
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Fig. 5. Attacker and Defender Cost Projections and System Impacts

that an attack on a substation has occurred.

Fig. 5 shows how the Attacker and the Defender project
their respective costs on the system, that is, the Smart Grid
and how the system responds to those cost projections. Each
attacker profile incurs some cost to attack a substation 5.5,
with some probability P, ,,, where pr is the attacker profile. A
weighted sum of these costs based on the probabilities gives
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the total attacker’s cost to attack the substation S.S,, and is
represented in the figure as C,,. The defender in turn invests
Cypn in S5, and also incurs an impact cost C;, due to the
attack on S.5,,.

To obtain the actual cost incurred by the attacker to attack
a target node (substation) in the system, four factors are taken
into consideration: The relative cost of attack for each profile
of attacker; the probability of attack by each type of attacker
for the target node; the impact due to the loss of the target
node; and the MIL of the target substation node. The actual
cost of attack on a target node is calculated by taking a
weighted sum of the relative costs of each attacker profile and
multiplying this weighted sum with the impact cost metric.
The impact cost metric is based on the load lost due to the
attack and the MIL of the target node. As was mentioned
previously, higher the MIL of the target node, higher will
be the cost of attack. The weights given to the relative cost
incurred by each attacker profile are equal to their respective
probabilities of attack on the target node. This cost of attack
for any target node, thus, takes into account the threat from
various sources of attack that are represented by the different
attacker profiles. The following equation is used to calculate
the actual cost incurred by the attacker to attack a substation:

Ca,SSn = Z(PPT,SSVL * Nc,pr * [c,n) (1)

pr

where C, 55y, represents the actual cost of attack on substation
SSn, pr represents the attacker profile, n represents the sub-
station number, P, g5, represents the probability by which
the attacker profile pr will attack substation SSn whose value
is taken from the attack probability matrix. N, ,, represents
the relative normalized cost for attacker profile pr given in
the Normalized Cost column of Fig. 3 and I.,, represents the
impact cost metric for substation SSn.

For the sake of simplicity at the stage of proof of concept,
we have not considered coordinated attacks on substations.
The strategies for the attacker taken into account in this work
are single-stage attacks on a substation.

D. Payoff Functions and Nash Equilibrium

We have considered a zero-sum game formulation wherein
the payoff of the attacker and the defender add up to zero.
The payoff that the attacker gets from the game is the sum of
the costs incurred by the defender minus the cost incurred by
the attacker and is represented by the following equation:

Uy = ap(a1Cq + a2 C; — a3Cl) (2)

where C; = Cost 3 + Cost 4, C; = Cost 2, and C, = Cost
I. a1,as, and ag are normalizing factors to get different
costs on the same scale and are dependent on Cy4, C;, and
C,, respectively. g is a scaling up factor to bring the
normalized costs on to a larger scale in order to allow for
differentiation between closely valued data and is dependent
on (alCd + s C; — 043Ca).

For a zero-sum game, the defender’s payoff is the negative
of the attacker’s payoff and is given by the following equation:

Us=—U, 3)

ss1  Flow=150 MW
Limit = 170 MW o8 2

Load = 140 MW
Flow =90 MW FI|0\|'I\-I' =10 MW
Limit = 80 MW Limit = 60 MW

Bus 3 $53

Load = 100 MW

Fig. 6. Three bus power system model used for the case study

After the payoffs for each player are calculated, we can
obtain the payoff matrix in which all possible strategies of the
defender are represented by the rows and the attacker’s strate-
gies are represented by the columns. The Nash Equilibrium or
the optimal strategy to be adopted by each player is obtained
by using the following set of equations:

Vgp = max min Uy 4)
i

Ugp = min max U;; &)
J ?

Equations 4 and 5 give the minimum payoff that the de-
fender and attacker can get from the game represented by vg,
and v, Tespectively. U;; represents the payoff for defender’s
ith strategy when the attacker plays the jth strategy. For a
ZETro sum game, Vg4, = Vqp represents the Pure Strategy Nash
Equilibrium (PSNE) wherein a single strategy is dominant over
all other strategies for each player.

In case of a game where a single strategy is not dominant,
a Mixed Strategy Nash Equilibrium (MSNE) is obtained.
Equation 6 represents the expected payoff in such a case
with p and ¢ being the probability distributions over different
strategies for the defender and the attacker, respectively. vgm,
and v, in equation 7 and 8 represent the optimal payoffs
for the defender and attacker, respectively, in case of a mixed
strategy solution and vg,;, = Vg, is the MSNE.

E(p.q) = Z ZpinUij (6)
j=1i=1

Vgm = maxmin E(p, q) @)
P q

Vam = min max E(p, q) (8)
a p

IV. CASE STUDY

For the proof of concept of this work, we have considered
a simplistic case study of a three bus transmission system
with each bus acting as a substation, namely, SS1, SS2, and
SS3 as shown in Fig. 6. It shows relays from R1 to R7
each monitoring different transmission lines in their respective
substations. R1, R2, and R4 are controlled by SS1; R3 and R6
are controlled by SS2; and RS and R7 are controlled by SS3.
In this case study, we have assumed that an attacker after
attacking a substation manipulates all the relays associated
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D2: 5112, 52311, 53212
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D4: 5112, 5213, 53210
D5: $1-»13, 52-»10, 53212
D6: 51-13,52->11, 53211

D7: S1->13,52-212,53=>10

Strategy Cost
$10,000 | D16: S1-»13, S2-»11, S3-»10 | $8,000
510,000 | D17: 51-»13,52->12,53->9 | 58,000
$10,000 | D18: 5112, 52310, 5310 | $8,000
510,000 | D19: S1-»12, S2-»12, S3-»11 | $6,000
$10,000 | D20: 5112, 52311, 5310 | $6,000
$10,000 | D21: 51-»12, 52-»10, S329 | $6,000
$10,000 | D22: S1-»13, S2-»10, S3-»10 | $6,000
D8: S1->13,52->13,5329 $10,000 | D23: S1->13,52->11,53-»9 | 56,000
D9: 51>14,52-10,53>11 [$10,000 | D24: 5112, 52->10, 5310 | $4,000
D10: S1->14, 52->11, 5310 |[$10,000 | D25: S1-»12, 52-»11, S3>9 | 54,000
D11: 5112, 52310, 53212 [$8,000 | D26: 51>12,52->12,53>8 | 54,000
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D13: 51-»12, 52-»12, S3->10 |$8,000 D28: 51-»12,52-»11, 53-8 | 52,000
D14: S1-312,52-313,53>9 [$8,000 | D29: 51>12,52->10,53>9 |52,000
D15: 51-213, 52-»10, S3-»11 |$8,000

Fig. 7. Defender Strategies

Attacker Al a2 A3
Defender

D1:D10 {-20000, 20000)

(-15250, 15250)

{-10500, 10500)
(-5750, 5750)

(-1000, 1000)

(-19238.17, 19238.17)
(-14488.17, 14488.17)

(-20000, 20000)

(-15250, 15250)

(-10500, 10500)
(-5750, 5750)
{-1000, 1000)

D11:D18
Di9:D23
D24:D27
D28:D29

(-9738.168, 9738.168)

(-4988.168, 4988.168)
(-238.1683, 238.1683)

Fig. 8. Payoff Matrix

with that substation, that is, the substation and the transmission
lines associated with it are isolated from the grid.

The MIL of each substation is assumed according to the
critical level of the substation. Each substation has six charac-
teristics or domains with each domain having a maturity value
ranging from O to 3, where O is lowest maturity level and 3
is the highest maturity level. Thus, any substation can have
an MIL ranging from O to 18. The defender’s and attacker’s
strategies and costs are obtained after taking few assumptions
as follows: 1) The MIL for SS1, SS2, and SS3 are 12, 10,
and 8, respectively. 2) The defender has a budget of $10,000.
3) Increase in MIL of each domain costs the same across
all substations which is equal to $2,000. 4) The maximum
allowed difference in MIL of any two substations is 4. 5) The
cost of loss of load is $100/MW. 6) The attacker will attack
only one substation in a single attack. The possible defender’s
strategies under these assumptions are listed down in Fig. 7
along with the costs associated with each strategy. These costs
mentioned in the figure represent Cy, that is, the investment
cost of the defender. The cost due to loss of each substation
or the impact cost gives the value of C;. The attacker’s cost
for carrying out the attack, C,, is calculated after substituting
appropriate values in eq. 1. Using these costs, a1, as, as,
and «q are calculated. For each strategy, the payoff for the
defender and the attacker is computed using their respective
payoff functions given in eq. 2 and eq. 3 to form the payoff
matrix as shown in Fig. 8. The defender’s strategies having the
same value of Cy are clubbed together as one row for easy
visualization as all the strategies with the same Cj result in the
same payoff values. The game is then solved using equations
4 to 8 to obtain the Nash Equilibrium which is highlighted as
the yellow cells in the payoff matrix in Fig. 8.

The Nash Equilibrium gives us the best strategy that the
defender needs to adopt in order to minimize losses from a
cyber attack on the given system. In this system, the Nash
Equilibrium suggests that the defender should either increase

the MIL of SS2 to 11 from the initial value of 10 or increase
the MIL of SS3 to 9 from the initial value of 8. This can be
done by investing in the substation’s cybersecurity resources
according to NERC-CIP standards, that is, by having a more
mature level of compliance to the standards.

V. CONCLUSION AND FUTURE WORK

We have proposed a novel method for modeling of the
Cyber-Physical Smart Grid System and the various stakehold-
ers involved in it including the defender and the attacker
of the system based on a game-theoretic framework. We
have introduced an approach to incorporate the uncertain and
dynamic behaviour of the attack landscape in a CPS smart grid.
The results provide us with optimal strategies to be adopted
by the defender of the smart grid in order to optimally use
their available resources against potential cyber attacks. We
have demonstrated the practical feasibility of the results in the
current real-world grid scenario by considering the NERC-CIP
standards and ES-C2M2 model that are being implemented
in the United States’ power grid. We have also presented a
case study on a simplistic three-bus power transmission system
represented as a three-substation system in order to illustrate
the concept of the work. For our future work, we plan to carry
out risk assessment studies under the same framework and
also consider larger systems for our case studies. Additionally,
apart from implementing this methodology for offline risk
assessment studies, we plan to modify the models for its
application in online dynamic cyber contingency studies.
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