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1. INTRODUCTION

Security of networks has become ubiquitous in modern
large networking infrastructures. There has been a sig-
nificant improvement in the efficiency and reliability of
systems due to enhanced interconnection of intelligent
devices. However, this has opened the door for strategic
adversaries to exploit the vulnerabilities of the network
and cause damage. This gives rise to important questions
regarding the security of the network, for example, what
are the potential threats to the network, or what are the
cost-efficient defense strategies. In this work, we investi-
gate an asset protection game between an adversary and
a network provider.

In order to minimize the impact of a malicious attack
on a large-scale system, resources need to be efficiently
allocated to protect “high-value” targets. Since attackers
can exploit the vulnerabilities of the network to launch
a high-impact low-frequency attack, it is necessary to
examine the security of the network from a mathematical
perspective in order to obtain optimal defense strategies.
Game theory (Basar and Olsder (1999)) is a useful tool
to model adversarial scenarios. Security games model
attack scenarios wherein an attacker attacks a number of
targets while the defender allocates its resources to protect
them to minimize the impact. The payoff for the attacker
and the defender is based on the successfully attacked
and protected targets, respectively. Traditionally, attacker-
defender games have been modeled as zero-sum games,
and the resulting saddle-point strategies are assumed to
be optimal for both players.

The combinatorial nature of a security games renders
the problem of obtaining optimal strategies for the play-
ers computationally infeasible. Kiekintveld et al. (2009)
proposed an algorithm for randomized security resource
allocation by introducing a compact representation for

� This work was supported in part by NSF CPS grant ECCS
1739969.

Stackelberg security game with multiple resources based
on a mixed-integer programming formulation. They con-
sider an attacker that attacks one target, and a defender
that has multiple resources to defend the targets. Bhat-
tacharya et al. (2011) propose an approximation algorithm
to compute Stackelberg strategy for a security game in
which the defender tries to minimize the total cost of
the resources. Korzhyk et al. (2011c) show that under a
natural restriction on security games (subsets of defense
sets are defense sets), any Stackelberg strategy is also a
Nash equilibrium strategy. Brown et al. (2012) consider
a security game with multiple attackers, and provide ap-
proximate algorithms to compute optimal solutions.

Although, Stackelberg models have been used in real world
applications (Pita et al. (2008), Jain et al. (2010)), one
of their major drawbacks is the fact that the defender
cannot be sure that the attacker is aware of the defender’s
mixed strategy before his/her decision. Yin et al. (2010)
and Korzhyk et al. (2011b) model the uncertainty of the
attacker’s knowledge about the defender’s mixed strategy
as part of the game, and propose an iterative algorithm
based on alternating between Nash equilibrium solver and
a Stackelberg solver. Another remedy for Strong Stack-
elberg solutions is proposed by Guo et al. (2018) which
introduces the solution concept of the inducible Stackel-
berg equilibrium to avoid overoptimism. In the past, there
has been some work to connect equilibrium computation in
security games to combinatorial optimization. Xu (2016)
and Wang and Shroff (2017) reduced the security game
to a combinatorial optimization problem which can be
characterized by a set consisting of the defenders pure
strategies. Moreover, their framework captures most of the
characteristics of the security game models.

In the past decade, there has been extensive research on
the complexity of computing the equilibrium of security
games due to their combinatorial nature. Korzhyk et al.
(2010) show that computing the optimal Stackelberg strat-
egy in security resource allocation game, when attacker
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attacks one target, is NP-hard in general. However, when
resources are homogeneous and cardinality of protection
set is at most 2, polynomial-time algorithms have been
proposed by the authors. Korzhyk et al. (2010) propose
an LP formulation similar to Kiekintveld’s formulation,
and present a technique to compute the mixed strategies
in polynomial time. In the presence of multiple attackers
with limited resources, solving the security game becomes
significantly more challenging. Korzhyk et al. (2011a) pro-
pose a polynomial-time algorithm for computing Nash
equilibrium in security games modeled as a non-zero game
with multiple attacker resources. Our work lies in a similar
vein. In contrast to the iterative procedure proposed in
Korzhyk et al. (2011a), we derive structural properties
of the optimal solution to arrive at a polynomial-time
algorithm to compute the value of a zero-sum security
game.

In this work, we assume that the utility function has
an additive property i.e., the total utility of successfully
attacking multiple targets is equal to the sum of utilities
of the individual targets. In several practical problems, it
is possible to approximate the utility function with an ad-
ditive utility function (Soltan et al. (2018), Korzhyk et al.
(2011c)). However, one may also consider non-additive
utility functions to capture the interdependency between
targets. Wang and Shroff (2017) and Wang et al. (2017)
examine the security game with non-additive utilities and
multiple targets. They use the framework proposed by Xu
(2016) which shows that a security game is equivalent
to a combinatorial optimization problem over the pure
strategies of the defender. They prove that computing
optimal strategies is NP-hard in general, and under some
constraints they propose polynomial-time algorithms.

In this work, we address a security game between resource-
constrained players in which the utility function has an
additive property. In Section 2, we present the problem
formulation. In Section 3, we present structural properties
of the optimal attacker strategy. In Section 4, we present
a polynomial-time algorithm to compute the value of a
large-scale zero-sum game. In Section 5, we present our
conclusions along with some future work.

2. PROBLEM FORMULATION: SECURITY GAME

Consider a two-person zero-sum game on a graph G(ν, ε)
containing n vertices and m links, where ν = {1, . . . , n}
and ε = {1, . . . ,m} are the vertex set and the edge set,
respectively. We assume an attacker (player 1) chooses ka-
links to attack. So, there are na =

(
m
ka

)
actions for player 1.

On the other hand, protection budget of links is limited,
and we assume that only kd links will be protected by
the defender. So, there are nd =

(
m
kd

)
actions for player

2. The defender (Player 2) has no knowledge about the
links chosen by player 1. In order to find the optimal
strategy for the players, we formulate a strategic security
game (X ,Y, A), where X and Y denote the action sets
for attacker and defender, respectively, and card(X ) =
na, card(Y) = nd. Every element of X , denoted by xi, is
defined as the attacked links. Similarly, yi ∈ Y is defined as
the protected links. Let I = {1, . . .m}. Each xi ∈ X and
yi ∈ Y is a ka-tuple, and kd-tuple subset of I, respectively.

The attacker has no information about the links that
are protected by the defender. Let φi denote the cost
associated to link i, and each link is labeled such that

φi ≥ φj for i > j.

We consider an additive property for the utility function
i.e., entries of the cost matrix A are defined as follows:

aij =
∑

{l|l∈xi∩yc
j}

φl. (1)

A represents the game matrix or payoff matrix for player
1. Since we consider a zero-sum game, the payoff matrix
for player 2 is −A.

Let p, q be the probability vectors representing the mixed
strategies for player 1 and player 2, respectively. The
expected utility function is

v = pTAq.

According to the minimax theorem, every finite two-
person zero-sum game has a saddle point with the value,

v∗, in mixed strategy p∗ =
[
p∗1, . . . , p

∗
na

]T
for player 1, and

mixed strategy q∗ =
[
q∗1 , . . . , q

∗
nd

]T
for player 2, such that

player 1’s average gain is at least v∗ no matter what player
2 does. And player 2’s average loss is at most v∗ regardless
of player 1’s strategy, that is

pTAq∗ ≤ p∗TAq∗ ≤ p∗TAq.

In the next section, we present an algorithm to compute
v∗ which is polynomial in m, ka and kd.

3. STRUCTURAL PROPERTIES OF THE OPTIMAL
SOLUTION

Since v∗ denote the value of the game, the following holds:

v∗ = max
p

min
1≤i≤nd

(pTA)i = min
q

max
1≤j≤na

(Aq)j

Let (pTA)i denote the ith element of pTA. From (1),
(pTA)i can be written in the following form,

(pTA)i =

nd∑
j=1

pjaji =

nd∑
j=1

pj
∑

l∈xj∩yi
c

φl =
∑
j∈yc

i

αjφj ,

where,

αj =
∑

{i|j∈xi}

pi. (2)

Note that (pTA)i ≥ v∗, ∀i, and minimum value of (pTA)i
is v∗. We say pl ∈ αj when pl is present in the R.H.S of
(2) (i.e. j ∈ xl).

Lemma 1. Let Γ = {αi1 , . . . , αika
} be an arbitrary set of

αi’s with cardinality ka.

(1) ∃pc s.t. pc ∈ αi1 , . . . , αika
and pc /∈ αika+1

, . . . , αim

(2) Given any αr /∈ Γ, there exists αj ∈ Γ such that pi’s
can be perturbed to reduce αr by δ > 0, and increase
αj by δ without any change in αi’s for i ∈ I \ {r, j}.
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Proof. 1) We prove for the special case when Γ =
{α1, . . . , αka

}. From (2), it is clear that p1 is com-
mon in α1, . . . , αka

. Moreover, p1 does not appear in
αka+1, . . . , αm because none of ka +1, . . . ,m lie in x1. For
the general case, it is possible to relabel φi’s such that
Γ = {α′

1, . . . , α
′
ka
} = {αi1 , . . . , αika

}. Therefore, p′1 lies in
α′
1, . . . , α

′
ka
, and we can define pc = p′1 .

2) In order to prove this claim, we assume that pc ∈ αr.
From part 1, there exists αj , such that pc /∈ αj . From
part 1, there exist p′c such that p′c ∈ αj , and p′c belongs
to all αi’s which contain pc except αr. So by reducing pc
by δ and increasing pc′ by δ, we are able to reduce αr and
increase αj without affecting other αi’s. �

Theorem 1. For ka + kd ≤ m, the optimal solution p∗ and
v∗ satisfy the following properties:

(1) α∗
i φi ≥ α∗

jφj for i > j,
(2) v∗ = α∗

1φ1 + · · ·+ α∗
m−kd

φm−kd
,

(3) α∗
i φi = α∗

jφj ∀ i, j ∈ {m− kd, . . . ,m}.

Proof. 1) We prove by contradiction. Assume that there
exists i and j such that αiφi < αjφj for i > j for the
optimal solution. Since φi ≥ φj , αj > αi. From property 2
in Lemma 1, pd, p

′
d > 0 exist such that pd ∈ αj (pd /∈ αi)

and p′d ∈ αi (p
′
d /∈ αj). We show that if pd is decreased by

δ, and p′d is increased by δ, v∗ either increases or remains
constant. As a consequence, the first assumption is not
correct, and we conclude that αiφi ≥ αjφj . In order to
show that v∗ is not decreasing, we analyze an arbitrary
(pTA)r. Since we know that (pTA)r ≥ v∗, v∗ can be
decreased only when (pTA)r is decreased for (pTA)r = v∗.
If (pTA)r contains both αiφi and αjφj , the value of (p

TA)r
is increased by reducing αj and increasing αi. If (p

TA)r
only contains αiφi, it will increase as well. If (pTA)r
contains only αjφj , there exists another (p

TA)r′ such that

(pTA)r′ = (pTA)r − αjφj + αiφi. (3)

Since we assumed that αjφj > αiφi, (p
TA)r > (pTA)r′ ≥

v∗. Therefore, we can pick δ such that by reducing αj ,
v∗ is not reduced. The last case is when (pTA)r does not
contain αiφi, αjφj . In this case v∗ is not affected. Hence
the first property holds.

2) Since v∗ = mini(p
TA)i, and (pTA)i’s are constructed

from all m− kd combinations of αjφj the second property
holds.

3) We prove by contradiction. Assume that ∃i ∈ {m−kd+
1, . . . ,m} such that αiφi > αi−1φi−1. Since ka + kd ≤ m
,there exists Γ = {αi1 , . . . , αika

} such that i1, . . . , ika ≤
m − kd, and from property 2 in lemma 1, there exists an
r ∈ {1, . . . , ka} such that we can reduce αi and increase
αr without affecting the other α’s which in turn increases
the v∗. Since v∗ is the value of the game, we reach a
contradiction. Therefore, the assumption at the beginning
cannot hold as a result of which the property holds. �

Corollary 1.1. If ka+kd ≤ m, the optimal solution satisfies
the following:

α∗
mφm = · · · = α∗

sφs ≥ · · · ≥ α∗
s−ka+1φs−ka+1, (4)

s ∈ {ka, . . . ,m− kd}.

The proof of the above corollary follows from Theorem 1
and Lemma 1. From Lemma 1, we can conclude that any
αj �= 0 for j = 1, . . . , αs−ka

can be reduced to increase v∗.
Therefore α∗

1 = · · · = α∗
s−ka

= 0.

Let Ua and Ud, called active sets of attacker and defender,
denote the union of xi’s and yi’s corresponds to the
support sets of p∗ and q∗, respectively.

Corollary 1.2. In a security game (X ,Y, A), Ua = {i, i +
1, . . . ,m}, where i ∈ {1, . . . ,m− ka}.

4. COMPUTATION OF THE VALUE

We consider the game from the attacker’s perspective. For
Ua = {i, . . . ,m}, the following holds:

(p∗TA)j > v∗ ∀j s.t. xj ∩ Ua = ∅.
Consequently,

q∗j = 0 ∀j s.t. xj ∩ Ua = ∅,
otherwise, p∗TAq > v∗. Hence, Ud ⊆ Ua.

According to Corollary 1.2, both players choose strategies
that involve set of links with highest impacts (φi). We
use this property to reduce the possible scenarios for the
attacker by constructing an (m − kd) × (m − kd) matrix
U such that its element (i, i + r), denoted as Ui,i+r, is
associated with the following condition:

αmφm = · · · = αsφs > αs−1φs−1 ≥ · · · ≥ αs−rφs−r

s = m− kd − i+ 1 (5)

r ∈ {0, . . . , ka}, i ∈ {1, . . . ,m− kd}. (6)

The above condition can be interpreted as Ua = {s−r, s−
r + 1, . . . ,m}, and Ud = {s, s + 1, . . . ,m} for cell Ui,i+r.
Since Ud ⊆ Ua, we consider that Ui,j is not a candidate for
the solution of the security game, when j < i.

The following theorem relates v∗ to elements of U .

Theorem 2. v∗ = max{Ui,j}. Elements of U are defined as

follows:

• Ui,i =
kai
ci

when ciφs ≥ ka.

• Ui,i+r =
∑s−1

l=s−r φl +
(ka−r)i

ci
,

when ciφs−r > i, and ciφs ≥ ka − r > ciφs−1

• Ui,i+r = (ka − r − ci−1φs)φs−r +
∑s−1

l=s−r+1 φl + iφs

when ciφs−r ≤ i, and ciφs ≥ ka − r > ciφs − 1,
• Otherwise(i.e. when the above conditions are not
satisfied), Ui,j is not a candidate for the solution, and
this entry is not considered in max.

where ci =
∑m

j=s
1
φj
.

Proof. The diagonal element Ui,i corresponds to the
following case:

αmφm = · · · = αsφs, (7)

αj = 0 for j ∈ {1, . . . , s− 1}
Substituting the above condition in the expression for v∗

in Theorem 1, we obtain the following:

v =

m−kd∑
l=s

αlφl = iαjφj =⇒ αj =
v

iφj
, j ∈ {s, . . . ,m}
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Proof. 1) We prove for the special case when Γ =
{α1, . . . , αka

}. From (2), it is clear that p1 is com-
mon in α1, . . . , αka

. Moreover, p1 does not appear in
αka+1, . . . , αm because none of ka +1, . . . ,m lie in x1. For
the general case, it is possible to relabel φi’s such that
Γ = {α′

1, . . . , α
′
ka
} = {αi1 , . . . , αika

}. Therefore, p′1 lies in
α′
1, . . . , α

′
ka
, and we can define pc = p′1 .

2) In order to prove this claim, we assume that pc ∈ αr.
From part 1, there exists αj , such that pc /∈ αj . From
part 1, there exist p′c such that p′c ∈ αj , and p′c belongs
to all αi’s which contain pc except αr. So by reducing pc
by δ and increasing pc′ by δ, we are able to reduce αr and
increase αj without affecting other αi’s. �

Theorem 1. For ka + kd ≤ m, the optimal solution p∗ and
v∗ satisfy the following properties:

(1) α∗
i φi ≥ α∗

jφj for i > j,
(2) v∗ = α∗

1φ1 + · · ·+ α∗
m−kd

φm−kd
,

(3) α∗
i φi = α∗

jφj ∀ i, j ∈ {m− kd, . . . ,m}.

Proof. 1) We prove by contradiction. Assume that there
exists i and j such that αiφi < αjφj for i > j for the
optimal solution. Since φi ≥ φj , αj > αi. From property 2
in Lemma 1, pd, p

′
d > 0 exist such that pd ∈ αj (pd /∈ αi)

and p′d ∈ αi (p
′
d /∈ αj). We show that if pd is decreased by

δ, and p′d is increased by δ, v∗ either increases or remains
constant. As a consequence, the first assumption is not
correct, and we conclude that αiφi ≥ αjφj . In order to
show that v∗ is not decreasing, we analyze an arbitrary
(pTA)r. Since we know that (pTA)r ≥ v∗, v∗ can be
decreased only when (pTA)r is decreased for (pTA)r = v∗.
If (pTA)r contains both αiφi and αjφj , the value of (p

TA)r
is increased by reducing αj and increasing αi. If (p

TA)r
only contains αiφi, it will increase as well. If (pTA)r
contains only αjφj , there exists another (p

TA)r′ such that

(pTA)r′ = (pTA)r − αjφj + αiφi. (3)

Since we assumed that αjφj > αiφi, (p
TA)r > (pTA)r′ ≥

v∗. Therefore, we can pick δ such that by reducing αj ,
v∗ is not reduced. The last case is when (pTA)r does not
contain αiφi, αjφj . In this case v∗ is not affected. Hence
the first property holds.

2) Since v∗ = mini(p
TA)i, and (pTA)i’s are constructed

from all m− kd combinations of αjφj the second property
holds.

3) We prove by contradiction. Assume that ∃i ∈ {m−kd+
1, . . . ,m} such that αiφi > αi−1φi−1. Since ka + kd ≤ m
,there exists Γ = {αi1 , . . . , αika

} such that i1, . . . , ika ≤
m − kd, and from property 2 in lemma 1, there exists an
r ∈ {1, . . . , ka} such that we can reduce αi and increase
αr without affecting the other α’s which in turn increases
the v∗. Since v∗ is the value of the game, we reach a
contradiction. Therefore, the assumption at the beginning
cannot hold as a result of which the property holds. �

Corollary 1.1. If ka+kd ≤ m, the optimal solution satisfies
the following:

α∗
mφm = · · · = α∗

sφs ≥ · · · ≥ α∗
s−ka+1φs−ka+1, (4)

s ∈ {ka, . . . ,m− kd}.

The proof of the above corollary follows from Theorem 1
and Lemma 1. From Lemma 1, we can conclude that any
αj �= 0 for j = 1, . . . , αs−ka

can be reduced to increase v∗.
Therefore α∗

1 = · · · = α∗
s−ka

= 0.

Let Ua and Ud, called active sets of attacker and defender,
denote the union of xi’s and yi’s corresponds to the
support sets of p∗ and q∗, respectively.

Corollary 1.2. In a security game (X ,Y, A), Ua = {i, i +
1, . . . ,m}, where i ∈ {1, . . . ,m− ka}.

4. COMPUTATION OF THE VALUE

We consider the game from the attacker’s perspective. For
Ua = {i, . . . ,m}, the following holds:

(p∗TA)j > v∗ ∀j s.t. xj ∩ Ua = ∅.
Consequently,

q∗j = 0 ∀j s.t. xj ∩ Ua = ∅,
otherwise, p∗TAq > v∗. Hence, Ud ⊆ Ua.

According to Corollary 1.2, both players choose strategies
that involve set of links with highest impacts (φi). We
use this property to reduce the possible scenarios for the
attacker by constructing an (m − kd) × (m − kd) matrix
U such that its element (i, i + r), denoted as Ui,i+r, is
associated with the following condition:

αmφm = · · · = αsφs > αs−1φs−1 ≥ · · · ≥ αs−rφs−r

s = m− kd − i+ 1 (5)

r ∈ {0, . . . , ka}, i ∈ {1, . . . ,m− kd}. (6)

The above condition can be interpreted as Ua = {s−r, s−
r + 1, . . . ,m}, and Ud = {s, s + 1, . . . ,m} for cell Ui,i+r.
Since Ud ⊆ Ua, we consider that Ui,j is not a candidate for
the solution of the security game, when j < i.

The following theorem relates v∗ to elements of U .

Theorem 2. v∗ = max{Ui,j}. Elements of U are defined as

follows:

• Ui,i =
kai
ci

when ciφs ≥ ka.

• Ui,i+r =
∑s−1

l=s−r φl +
(ka−r)i

ci
,

when ciφs−r > i, and ciφs ≥ ka − r > ciφs−1

• Ui,i+r = (ka − r − ci−1φs)φs−r +
∑s−1

l=s−r+1 φl + iφs

when ciφs−r ≤ i, and ciφs ≥ ka − r > ciφs − 1,
• Otherwise(i.e. when the above conditions are not
satisfied), Ui,j is not a candidate for the solution, and
this entry is not considered in max.

where ci =
∑m

j=s
1
φj
.

Proof. The diagonal element Ui,i corresponds to the
following case:

αmφm = · · · = αsφs, (7)

αj = 0 for j ∈ {1, . . . , s− 1}
Substituting the above condition in the expression for v∗

in Theorem 1, we obtain the following:

v =

m−kd∑
l=s

αlφl = iαjφj =⇒ αj =
v

iφj
, j ∈ {s, . . . ,m}
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From Lemma 1, every pi is present in ka αi’s. Since∑na

j=1 pj = 1,
∑m

j=1 αj = ka. Substituting (8) into∑m
j=1 αj , we obtain the following:

m∑
j=s

v

iφj
= ka =⇒ v =

kai∑m
j=s

1
φj

(8)

Let ci =
∑m

j=s
1
φj
. Substituting v in (8) leads to the

following:

αj =

{
ka

φjci
j ∈ {s, . . . ,m}

0 j ∈ {1, . . . , s− 1}
Since φj ’s are in ascending order, αs ≤ 1 implies that
αj ≤ 1 for j > s. φsci < ka implies that αs > 1 which
contradicts the definition of α in (2). Hence, in this case
the maximum value of αs is 1. Therefore,

αjφjci < ka, for j = s, . . . ,m,

which implies that
∑m

l=1 αl = ka cannot be satisfied. In
other words, Ui,i cannot be the optimal solution when
φsci < ka, and this cell is not a candidate for the solution
of the game. Hence we can put this entry equal to 0, when
ciφs < ka.

The off-diagonal entry Ui,i+r corresponds to the following
condition:

αmφm = · · · = αsφs > αs−1φs−1 ≥ · · · ≥ αs−rφs−r

s = m− kd − i+ 1 (9)

r ∈ {1, . . . , ka}, i ∈ {1, . . . ,m− kd − 1}. (10)

Substituting αjφj ’s from (5) in v =
∑m−kd

j=1 αjφj leads to
the following expression for v:

v =
s−1∑

l=s−r

αlφl + iαjφj j ∈ {s, . . . ,m}

=⇒ αj =
v −

∑s−1
l=s−r αlφl

iφj
j ∈ {s, . . . ,m} (11)

Since
∑m

l=1 αl = ka, we obtain the following:

s−1∑
l=s−r

αl +

m∑
l=s

v −
∑s−1

j=s−r αjφj

iφl
= ka (12)

=⇒ v =
s−1∑

l=s−r

(ciφl − i)

ci
αl +

kai

ci
, (13)

where ci =
∑m

j=s
1
φj
. Next, we consider two cases based

on the coefficients of αl in the above expression.

First, we consider the case in which the coefficients of αl

are positive (i.e. ciφs−r > i). From (13), we can conclude
that the maximum value of v occurs at the following values
of α’s:

αj =




0 j ∈ {1, . . . , s− r − 1}
1 j ∈ {s− r, . . . , s− 1}

ka−r
ciφj

j ∈ {s, . . . ,m}
(14)

If ka−r
ciφs

≤ 1, then entry of Ui,i+r is a candidate for the

solution of the security game. Substituting (14) in (13)
leads to the following expression for v:

v =

s−1∑
l=s−r

φl +
(ka − r)i

ci
(15)

If ka−r
ciφs

> 1, the constraint of αj ≤ 1 is violated, and

consequently this cell of U cannot be the solution for the
security game.

Next, we consider a case in which some coefficients of αl

in (13) are negative, and ka−r
ciφs

> 1. In this case, αs should

be modified, and the only case which can be a candidate
for the solution of the game is

αj =





0 j ∈ {1, . . . , s− r − 1}
δ j = s− r
1 j ∈ {s− r + 1, . . . , s}
φs

φj
j ∈ {s+ 1, . . . ,m},

(16)

where δ = ka − r − ci−1φs, which is resulted from∑m
j=1 αj = ka. Since 0 < δ ≤ 1, ka − r − ci−1φs > 0,

which is equivalent to ciφs − 1 < ka − r.

Moreover, v can be computed from Theorem 1, second
part, which is given by the following expression:

v = δφs−r + iφs +

s−1∑
l=s−r+1

φl. (17)

From definition of U , in Ui,i+r, the active sets are Ua =
{s− r, s− r+1, . . . ,m}, and Ud = {s, s+1, . . . ,m}. Each
column and row of U , corresponds to the attacker and
defender’s active set, respectively. �

Corollary 1.3. v∗ can be computed in O((m− kd)
2).

The above corollary can be concluded from the fact that
U has (m−kd)

2 entries. Algorithm 1 gives the value of the
game and active links for the attacker and the defender.

Next, we show the feasibility of each cell of U i.e., there
exists a p which satisfies the values of α in each cell of
U obtained in the previous analysis. In other words, we
show that in each cell of U that can be a candidate for
the value of the game, there exists p ≥ 0,

∑N
j=1 pj = 1

such that Mp = α, where α = [α1, . . . , αm]
T

is obtained
from the analysis in proof of Theorem 2. M is a matrix of
dimension

(
m
k

)
×m, and each column has k entries equal to

1 and rest of the entries equal to 0. In other words, M is a
matrix constructed from

(
m
k

)
combinations of k one in an

m dimensional vector. We refer to M as a combinatorial
matrix, and denote it as M[m,k].

Lemma 2. Let α = [α1, . . . , αm]
T
, and

∑m
j=1 αj = k, and

0 ≤ αj ≤ 1. α lies in the convex-hull of columns of M[m,k].

In other words, there exists p ≥ 0,
∑N

j=1 pj = 1, such that
Mp = α.

Proof. The proof is by induction. We assume that the
lemma is true for m′ = m − 1 and k′ = 1, . . . , k − 1.
Moreover, M[m,k] can be written as

M[m,k] =

[
1T 0T

M[m−1,k−1] M[m−1,k]

]
. (18)

By separating p into p̄1 and p̄2,
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Algorithm 1 Computation of the value, and active links

1: Input: φ1, . . . , φm and ka, kd
2: Output: v∗,Ua,Ud

3: Construct U based on Theorem 2
4: for i = 1 : m− kd do
5: if ciφs ≥ ka then
6: Ui,i =

kai
ci

7: else
8: Ui,i = 0
9: end if

10: for r = 1 : ka do
11: if ciφs−r > i, and ciφs ≥ ka − r > ciφs−1 then

12: Ui,i+r =
∑s−1

l=s−r φl +
(ka−r)i

ci
,

13: else if ciφs−r ≤ i, and ciφs ≥ ka − r > ciφs−1
then

14: Ui,i+r = (ka − r − ci−1φs)φs−r +∑s−1
l=s−r+1 φl + iφs

15: else
16: Ui,i+r = 0
17: end if
18: end for
19: end for
20: v∗ ← maxUi,j

21: (i∗, j∗) ← argmaxUi,j

22: Ua ← {m− kd − j∗ + 1, . . . ,m}
23: Ud ← {m− kd − i∗ + 1, . . . ,m}

M[m,k]p=

[
1T 0T

M[m−1,k−1] M[m−1,k]

] [
p̄1
p̄2

]

=

[
1T p̄1

M[m−1,k−1]p̄1 +M[m−1,k]p̄2

]
. (19)

Second entry of the above matrix can be written in the
following form:

α1M[m−1,k−1]p
′
1 + (1− α1)M[m−1,k]p

′
2, (20)

where, p̄1 = α1p
′
1, p̄2 = (1−α1)p

′
2. Since we assumed that

the lemma is true for m′ = m − 1 and k′ = 1, . . . , k − 1,
there exists p′1 and p′2 in a simplex such that the following
hold:

M[m−1,k−1]p
′
1 =

k − 1

k − α1




α2

...
αm


 , (21)

M[m−1,k]p
′
2 =

k

k − α1




α2

...
αm


 . (22)

By substituting the above expressions in (19), we conclude
that M[m,k]p = α, where p lies on a simplex. In other
words, α lies in a convex-hull of columns of M . In order
to complete the proof, we need to show that the lemma
holds for arbitrary M[k+1,k] and M[m,1].

Note that M[m,1] = Im×m. Therefore p = α, and∑m
j=1 pj =

∑m
j=1 αj = 1. Next,

M[k+1,k]p = (11T − I)p = α (23)

p= (11T − I)−1α = (
11T

k
− I)α = 1− α. (24)

Consequently, lemma holds for base cases, which completes
the proof. �

Finally, we consider the case when ka + kd > m. When
k > m

2 , the optimal solution satisfies the following:

αmφm = · · · = αka+1φka+1 ≥ αkaφka ≥ · · · ≥ α1φ1,

As in the case of ka + kd ≤ m, we can construct a matrix
U with ith entry on the diagonal as follows:

αmφm = · · · = αsφs, (25)

αj = 0, j ∈ {1, . . . , s− 1}
s = ka − i+ 2

i ∈ {1, . . . , ka + 1},
Since v =

∑m−kd

j=1 αjφj ,

v = 0 for i = 1, . . . , ka + kd −m+ 1,

which implies that these cells cannot be a candidate for
the value of the game. For i ≥ ka + kd −m+ 2, we obtain
the following:

αj =
ka
ciφj

, v =
ka(i− ka − kd +m− 2)

ci
. (26)

and off-diagonal entry (i, i+r) corresponds to the following
condition:

αmφm = · · · = αsφs > αs−1φs−1 ≥ · · · ≥ αs−rφs−r,

s = ka − i+ 2 (27)

r ∈ {1, . . . , ka}, i ∈ {1, . . . , ka}.

For i ≤ ka + kd −m + 1, all entries corresponding to the
first ka+kd−m+1 columns are a candidate for the value
of the game. For other off-diagonal elements, we have an
analysis similar to the off-diagonal entries for ka+kd ≤ m.

5. CONCLUSION

In this work, we investigated a security game. We formu-
lated a zero sum-game in which the payoff matrix of the
game has a special structure which results from the addi-
tive property of the utility function. We presented struc-
tural properties of the optimal attacker strategy. Based on
the structural properties, we proposed a polynomial-time
algorithm to compute the value of the large-scale zero-sum
game.

There are several directions of future research. One direc-
tion is to use the proposed structural property to formulate
a network design problem to minimize the impact of at-
tacks. Another direction of future research is to generalize
the results of this work to nonzero-sum games with dif-
ferent utility functions for attacker and defender. Finally,
we plan to extend our analysis to games with non-additive
utility functions by using perturbation analysis.
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M[m−1,k−1] M[m−1,k]
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p̄1
p̄2

]
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[
1T p̄1

M[m−1,k−1]p̄1 +M[m−1,k]p̄2

]
. (19)
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′
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′
2, (20)
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′
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
 , (21)

M[m−1,k]p
′
2 =

k

k − α1




α2

...
αm


 . (22)
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to complete the proof, we need to show that the lemma
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For i ≤ ka + kd −m + 1, all entries corresponding to the
first ka+kd−m+1 columns are a candidate for the value
of the game. For other off-diagonal elements, we have an
analysis similar to the off-diagonal entries for ka+kd ≤ m.
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lated a zero sum-game in which the payoff matrix of the
game has a special structure which results from the addi-
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tural properties of the optimal attacker strategy. Based on
the structural properties, we proposed a polynomial-time
algorithm to compute the value of the large-scale zero-sum
game.
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tion is to use the proposed structural property to formulate
a network design problem to minimize the impact of at-
tacks. Another direction of future research is to generalize
the results of this work to nonzero-sum games with dif-
ferent utility functions for attacker and defender. Finally,
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