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ABSTRACT

Crowd workers struggle to earn adequate wages. Given the limited task-related information pro-
vided on crowd platforms, workers often fail to estimate how long it would take to complete cer-
tain microtasks. Although there exist a few third-party tools and online communities that provide
estimates of working times, such information is limited to microtasks that have been previously
completed by other workers, and such tasks are usually booked immediately by experienced work-
ers. This paper presents a computational technique for predicting microtask working times (i.e.,
how much time it takes to complete microtasks) based on past experiences of workers regarding
similar tasks. The following two challenges were addressed during development of the proposed
predictive model — (i) collection of sufficient training data labeled with accurate working times,
and (ii) evaluation and optimization of the prediction model. The paper first describes how 7,303
microtask submission data records were collected using a web browser extension — installed by 83
Amazon Mechanical Turk (AMT) workers — created for characterization of the diversity of worker
behavior to facilitate accurate recording of working times. Next, challenges encountered in defining
evaluation and/or objective functions have been described based on the tolerance demonstrated by
workers with regard to prediction errors. To this end, surveys were conducted in AMT asking work-
ers how they felt regarding prediction errors in working times pertaining to microtasks simulated
using an “imaginary” AI system. Based on 91,060 survey responses submitted by 875 workers,
objective/evaluation functions were derived for use in the prediction model to reflect whether or
not the calculated prediction errors would be tolerated by workers. Evaluation results based on
worker perceptions of prediction errors revealed that the proposed model was capable of predicting
worker-tolerable working times in 73.6% of all tested microtask cases. Further, the derived objec-
tive function contributed to realization of accurate predictions across microtasks with more diverse
durations.
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1. INTRODUCTION

Crowd workers often struggle to earn appropriate wages (Irani and Silberman, 2013; McInnis et al.,
2016; Ipeirotis, 2010). This is one of the largest problems affecting current crowd markets, consid-
ering that the main motivation of workers is to earn sufficient wages to make a living (Berg, 2015;
Brewer et al., 2016; Kuek et al., 2015; Martin et al., 2014). The key challenge in the quest to earn
more lies in selecting potentially lucrative microtasks by predicting if they are worth their suggested
prices via estimation of their working times — (i.e., time required to complete a microtask). Un-
fortunately, the said working-time estimation is difficult, because workers are only provided “raw”
information about microtasks in the form of simple textual descriptions or previewed user inter-
faces, which do not directly indicate how long completion of a certain microtask would take. In
this study, we propose a method for working-time prediction for a given microtask based on various
types of work-relevant information provided on crowd-worker forums even before the microtask is
started by a worker.

Existing techniques for working-time evaluation are available for only those microtasks with pre-
vious working histories for which have been collected from their users. There exist online plat-
forms123 and worker tools proposed by researchers (Callison-Burch, 2014; Hanrahan et al., 2015)
that leverage working records collected from users to calculate working times, thereby suggest-
ing which microtasks are likely the most lucrative. However, such working-time calculation is not
always possible if microtask completion history is not previously provided by any worker. Con-
sidering that suggested microtasks are already popular and competitive in most cases, and that new
microtasks are frequently posted every day, working-time estimation for previously unseen micro-
tasks becomes all-the-more important.

In this study, we propose a method for predicting the working time for any microtask based on
working histories of other microtasks completed by workers. This paper is an extension of our pre-
vious work, wherein we proposed TurkScanner system (Saito et al., 2019a), which outputs working
times in seconds via use of machine learning-based regression and different types of work-relevant
information, such as microtask information (microtask HTML elements and microtask metadata),
worker information (e.g., basic worker profile, dashboard information), and requester information 
(requester reputation posted in Turkopticon (Irani and Silberman, 2013)), most of which can be ob-
tained before workers actually start working on a microtask. Through use of the proposed approach,
it is expected that microtasks that contain specific keywords, many input elements, or longer time
limits would take longer to complete; workers with more experience would finish microtasks earlier;
and requesters with more and better reviews are good at designing microtasks that run smoothly.

There are a few possible ideas for real-world applications. First, our working time prediction system
could be developed as a worker tool. For instance, when a worker seeks microtasks in a crowd
platform, the tool could estimate working time and hourly wage of every single microtask and

1Turkopticon, https://turkopticon.ucsd.edu/
2Turkopticon 2, https://turkopticon.info/
3TurkerView, https://www.turkerview.com

https://www.turkerview.com
https://turkopticon.info
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visualize it in the searched microtask list. With this, the worker can check the potential values of
all available microtasks at a glance, which can assist workers’ efficient decision making of selecting
lucrative microtasks. Another example is an application as a requester tool. In general, workers
encounter cheap microtasks because requesters created them. That is, if the requesters know a
proper standard of microtask pricing and calculate their microtask prices accurately based on the
standard, the risk that workers choose cheap microtasks could be avoided. To this end, a requester
tool could suggest a proper price for a microtask that was created and uploaded to the tool by a
requester.

The following two challenges were encountered during development of the proposed system.

i) Data collection: For successful implementation of a statistical approach for predicting work-
ing times, it is necessary to collect reliable ground-truth data comprising actual working times of
previously executed microtasks. Automatic gauging of working times is difficult to realize. Addi-
tionally, there is no common means to calculate working times, because worker behavior is diverse
(Kaplan et al., 2018) and involves actions, such as visiting external websites as part of the work or
just for checking emails, leaving their work desk for breaks, and accepting multiple microtasks in
a batch and completing them in succession (Hara et al., 2018). To this end, a browser extension
was developed to be installed by crowd workers on their machines. The extension collected three
different times (two recorded automatically and one manual recording triggered by workers at the
click of a button), and workers were asked to select the one that was likely the most accurate. The
selected working time was then added as a label to microtask data scraped in the background to be
used as input features. Among all data collected after deploying the script to Amazon Mechanical
Turk (AMT) workers, 7,303 valid records of microtask submissions were extracted from 83 unique
workers for use in performance evaluation of the working-time prediction system.

ii) Defining worker perception for model optimization & evaluation: Because our research
aims at helping workers formulate working-time expectations, the proposed model must be opti-
mized and evaluated based on how meaningful the information provided to workers is, and this
cannot be determined exclusively by using objective values (i.e., seconds). Psychologists have
determined that there often exist differences between objective values of a certain stimulus and
subjective human perception of the same. We assumed that this was equally applicable to work-
ing times of crowdsourcing microtasks. For instance, a prediction error of “30-second difference”
for (predicted,actual) = (30s,60s) would not likely be as acceptable as (1030s,1060s), whereas
that of “100% difference” in the case of the former would not be as problematic as (1500s,3000s).
It is therefore believed that any statistic model for time estimation must always be optimized and
evaluated in accordance with human perception. Otherwise, the overall or per-(arbitrary-)category
accuracy, at best, of worker tools that depend solely on objective measurements could be evaluated
exclusively in either seconds or percentages, thereby resulting in lower satisfaction among users.
To understand the human perception of microtask working times, we performed a subjective survey
randomly and repeatedly among AMT workers, where they were suggested a pair of predicted and
actual working times for an imaginary microtask. During the survey, workers were asked whether
the shown prediction error was acceptable to them. In the survey, 91,060 data samples were col-
lected from 875 unique workers to obtain CrowdSense, a set of evaluation results demonstrating the
workers’ perception of whether or not they accepted the prediction error between the predicted and
actual working times for a hypothetical microtask. With reference to CrowdSense, it was concluded
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that the proposed working-time prediction model was capable of accurately predicting ∼73% of all
tested microtasks in the dataset in accordance with our empirical definition based on worker ac-
ceptance of prediction errors. CrowdSense was additionally leveraged for model optimization, and
it was observed that the proposed optimization approach facilitated accurate prediction of working
times over a more diverse range compared to baseline methods.

The remainder of this paper has been structured as follows. Section 2 presents a review of extant
previous literature investigating the problem of low wages of crowd workers followed by a discus-
sion pertaining to online communities and worker tools that provide estimated working times and
other information regarding available microtasks. Relevant literature defining subjective perception
measurement across different research domains has also found mention. Section 3 explains the data
collection approach employed in this study using a browser script, and results obtained thereof have
been discussed. Section 4 describes the design of the survey conducted in this study along with
results pertaining to workers’ perception of prediction errors as well as objective and evaluation
functions. Section 5 explains experimental settings and corresponding results for evaluating per-
formance of CrowdSense — both overall and across different time scales. Section 6 discusses key
limitations encountered in this study as well as relevant future endeavors planned. Lastly, major
conclusions drawn from this study are discussed in section 7.

2. RELATED WORK

This study aims to solve a problem of unfair treatment and underpaying of crowd workers reported
by several extant studies. In this section, we present a brief review of previous studies that point
out the unfairness prevalent in crowd markets, followed by an introduction to systems that calculate
the working time of microtasks to assist workers in their quest to earn higher wages. Ultimately,
we mention discuss related work defining human subjective perception, a subject that is expected to
pertain to the development of the proposed working-time prediction system to optimize prediction
performance and system evaluation subsequently discussed in this paper.

2.1. Unfair Pay in Crowd Markets

Crowd workers are generally underpaid (Horton, 2011; Katz, 2017; (ILO), 2016; Durward et al.,
2016; Thies et al., 2011). Because the main motivation of crowd workers is to earn sufficient wages
(Martin et al., 2014), ensuring adequate pay forms an important aspect of preserving the crowd-
working environment. To address this concern, several researchers have proposed approaches to
help workers increase their income (Chiang et al., 2018; Coetzee et al., 2015; Dontcheva et al.,
2014).

Several studies report that the power imbalance between requesters and workers is one of the main
causes of the low-wage problem (Salehi et al., 2015; Silberman et al., 2010; O’neill and Martin,
2013). Requesters are usually assigned broad capabilities when posting microtasks. They are al-
lowed to create microtasks freely, and are not only provided with microtask templates for easy task
creation but also allowed to build their own systems and navigate workers to their site for execution
of complex and unique microtasks. Additionally, requesters can set any price they feel appropriate
for execution of microtasks created by them. It is known that several microtasks are set a very low
price by requesters not having sufficient experience or who try to save money without considera-
tion of worker welfare. For execution of their microtasks, requesters can instantly hire the desired
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number of workers whenever needed through use of features that facilitate screening (Mason and
Suri, 2012; Litman et al., 2017), blocking (Karger et al., 2011), and rejecting (Bederson and Quinn,
2011; Wu and Quinn, 2017) workers they do not like.

In contrast, workers are usually provided very limited task-related information on crowdsourcing
platforms (Irani and Silberman, 2013; Chilton et al., 2010; Alsayasneh et al., 2017). On major plat-
forms, such as Amazon Mechanical Turk4, Microworkers5, and Prolific6, workers are typically pro-
vided with the requester’s name, number of remaining slots in the microtask batch, reward amount,
allotted time, microtask title (along with a brief description), and an example of the microtask inter-
face. To earn efficiently, workers need to immediately judge, based on available data, as to which
microtask would provide the best benefit with regard to maximizing their wage. A failure to do so
would result in workers taking up sub-optimal microtasks that require too much completion time
for the suggested price, thereby making their work routines less efficient. Previous studies related
to worker ethics have suggested that the United States’ minimum wage be considered the lower
limit for microtask hourly wage (Barowy et al., 2017; Hara and Bigham, 2017); however, in many
cases, workers fail to estimate the hourly wage because they do not know how to evaluate the given
information.

Thus, workers often miss opportunities to earn more because of the power imbalance between re-
questers and workers. This, in turn, results in many workers being paid less than their rightful
minimum wage (Irani and Silberman, 2013; McInnis et al., 2016; Ipeirotis, 2010; Hitlin, 2016; Hor-
ton and Chilton, 2010; Irani and Silberman, 2016; Martin et al., 2014). The above discussion clearly
emphasizes the need for development of better methods to help crowd workers earn higher wages.

2.2. Estimating Working Time of Microtasks

An important information to determine benefits of a given microtask is to know its total working
time (i.e., how long it would take to finish the microtask) prior to beginning working on it. Several
researchers and practitioners have explored means to accurately estimate microtask working times,
thereby assisting workers to get better at microtask selection (McInnis et al., 2016; Chiang et al.,
2018).

Crowd workers often leverage the availability of online communities and worker tools to achieve
better work efficiency (Kaplan et al., 2018). Among the many existing options, Turkopticon and
TurkerView are major online communities where fellow workers post reputations of requesters and
microtasks. In addition, these sites offer worker tools that utilize posted information. The said tools
not only collect five-grade evaluations of several reputation criteria and comments from workers but
also ask workers to list corresponding working times to facilitate calculation of the average working
time for the microtasks. The same can then be used to calculate their hourly wages. However, the
said tools employ history-based methods that can estimate working times for only a limited number
of microtasks, which have already been executed by other workers, who presumably provided their
relevant working time to the system. Considering that experienced workers often use other tools,

4https://www.mturk.com/
5https://www.microworkers.com/
6https://www.prolific.co/

https://6https://www.prolific.co
https://5https://www.microworkers.com
https://4https://www.mturk.com
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such as Panda Crazy7, that “auto-accept” popular microtasks with high requester ratings, and that
new microtasks are posted in platforms on a daily basis (Saito et al., 2019a), it is believed that the
current scope for assistance is so small that several workers would remain unaided.

Researchers have also explored several means to estimate microtask working times. CrowdWorkers
(Callison-Burch, 2014) is a browser extension for AMT workers that records user working times
for each submitted microtask and calculates the estimated working time and hourly wage for other
users. TurkBench (Hanrahan et al., 2015) is a web tool that recommends which microtask to take
up next (based on its hourly wage) and auto-accepts the microtasks, thereby enabling workers to
maximize their hourly wages. TurkBench records working times in the background and leverages
them for accurate estimation of hourly wages. However, both above-mentioned tools are based
on the history of workers executing specific microtasks. Consequently, these tools require several
recent records pertaining to each microtask, thereby making it difficult to employ these techniques
during selection of previously unseen microtasks.

We have previously proposed TurkScanner (Saito et al., 2019a), a machine learning-based system
capable of accurately predicting working times for AMT microtasks despite them being posted for
the first time on a platform. In this system, many features were extracted from microtask data (i.e., 
metadata and HTML elements). Although the tool leverages Turkopticon ratings and worker pro-
files as auxiliary data, performance of its prediction operation was independent of their availability.
Major challenges associated with the use of Turkscanner was caused by its data-driven approach.
The first challenge involved collection of reliable datasets for training the TurkScanner model, since
there exists no publicly available dataset containing both microtask data and working times. Addi-
tionally, there exists no easy method to accurately gauge microtask working times owing to diverse
worker behaviors. The second challenge was to define suitable criteria for model optimization and
evaluation based on worker perception. This forms the primary objective of this study, as described
in the previous section. A discussion of relevant literature pertaining to human perception is in-
cluded in the next subsection.

2.3. Subjective Perception Measurement

Several extant studies focus on investigating the relationship between subjective human perception
and objective numerical scales in different domains. As a first in this regard, Weber, in the 19th
century, demonstrated the notion of the “just noticeable difference (JND),” which corresponded
to the threshold value of a stimulus that humans perceive as a difference. For derivation of his
proposed Weber contrast (Fechner et al., 1966), let R denote the strength of a stimulus and ΔR 
denote the corresponding JND. The value of ΔR/R always remains constant, regardless of the R 
value. For example, for an increase in the value of a stimulus from 100 to 110, a corresponding
increase from 200 to 220 in the value of the same stimulus is necessary for humans to perceive
an identical change. Subsequently, Fechner derived the Weber–Fechner law (Fechner et al., 1966)
by integrating the Weber contrast defined by the relationship E = C logR, where E denotes the
subjective perception; R denotes the strength of the stimulus; and C is a constant. The above law is
applicable to several phenomena, such as weight, sound, and vision (brightness), and it indicates that
humans perceive these phenomena approximately logarithmically. Other studies have also applied

7http://pandacrazy.allbyjohn.com/

https://7http://pandacrazy.allbyjohn.com
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the above law in other applications, such as quality of service of communication systems (Reichl
et al., 2010) and marketing (Britt, 1975).

In our study, we define the relationship between the subjective perception of workers against mi-
crotask completion times and their objective numerical scales. The said relationship has not yet
been investigated in extant studies performed in this regard. We believe that development of such
a relationship would be a significant contribution to the literature on crowd work and estimation of
task-completion times.

3. TRAINING DATA COLLECTION

This section first explains the method employed in the proposed system to calculate the completion
time of microtasks from collected data. Subsequently, the design of the web browser extension
developed for data collection is described, followed by an overview of the collected dataset.

3.1. Defining and Measuring Working Time

Accurate gauging of microtask completion times is difficult in practice owing to the observed diver-
sity in worker behaviors during task execution (Bederson and Quinn, 2011). Workers are sometimes
asked by requesters to temporarily leave their microtask page and browse external websites or use
search engines as a part of the task execution. In addition, there exists a possibility that workers may
encounter a lapse in concentration and browse other websites not relevant to their assigned task or
leave their work desk to take a break. Some workers might even accept multiple microtasks and
complete them in succession. Therefore, it is necessary to formalize such behavioral patterns and
determine whether the entire time spent must be considered under working hours to make automated
data labeling possible.

The proposed system is based on a heuristic labeling method that records working times in three
different ways, each possesses its pros and cons. The system ultimately asks workers to select the
most reasonable working time applicable. We expected that this method would facilitate accurate
labeling of collected data under various operating conditions. The three methods for recording
working times can be described as under.

– TIME_ALL. In this approach, the working time is automatically recorded by using a program
that accounts for the entire duration between the beginning and completion of execution of a mi-
crotask assigned to a worker. Pros: This is the most reliable method for calculating the working
time when a worker starts and completes a task without interruption. Cons: All time spent in
irrelevant chores (e.g., checking emails, grabbing coffee) is accounted for.

– TIME_FOCUS. This approach is similar to TIME_ALL, but only accounts for the time for
which the worker was operating on the microtask-page browser tab. Pros: This method excludes
time spent on task-irrelevant events. Cons: Time spent on other tabs related to task task execusion
(e.g., survey web pages, Google searches) cannot be properly accounted for.

– TIME_BTN. In this approach, workers record the working time themselves, by toggling on-
screen buttons at instances when they begin and finish working on the assigned task. Pros: This
approach can cover all worker behavior patterns, including unexpected ones. Cons: The approach
is fully dependent on worker operation, thereby it is vulnerable to human error (e.g., careless or
spam response).
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Figure 1. A procedure of how a worker accepts and completes a HIT in Amazon Mechanical
Turk.

To arrive at a final decision, a fourth working time type, described below, was also introduced.

– TIME_CUSTOM. In case none of the three above-mentioned options seem to correctly rep-
resent the working time, working hours are to be manually input by workers. Pros: It provides
workers with a last-resort option to label the correct working time when all other recording meth-
ods fail. Cons: Errors in worker response may still be present.

The following hypotheses regarding working-time calculation were considered in this study. First,
TIME_BTN approach was considered the most dominant choice by workers for determining task
completion times, followed by TIME_ALL. This is because workers frequently browse external
websites for various reasons and may even leave their work desks halfway through. Thus, they
would be able to record moderately accurate working times by simply toggling a button. Although
the TIME_ALL approach is the most reliable when workers do not take breaks when executing
an assigned task, some experienced workers often accept multiple microtasks in multiple browser
tabs (Kaplan et al., 2018), and thus, it was surmised that the TIME_ALL approach would not be as
frequently used as TIME_BTN.

3.2. Data Collection with a Web Browser Script

To facilitate microtask data collection with working-time labels, AMT workers were recruited and
asked to install our web browser extension to scrape microtask data and send it to our server. See
Figure 2 for the whole procedure.

Participant workers were recruited via an AMT survey microtask. When the participants accepted
the microtask, they were first asked to provide details of their basic profile (e.g., gender, age, house-
hold income, years of experience, and weekly working hours). Subsequently, they were navigated
to a web page with a link to install the web extension script 8. Upon completion of the installation,
workers were advised that they may start the process, thereby contributing to data collection for up
to 10 days, following which they were allowed to uninstall the software at any time. Based on their
contribution to the said data collection, all participating workers were awarded a bonus.

After installation of the browser extension, workers were instructed to work on microtasks (or
“HITs”, as they are referred to in the AMT environment) per their regular workflows. A HIT is

8https://github.com/shuwakkumacs/hitscraper/

https://8https://github.com/shuwakkumacs/hitscraper
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Figure 2. A data collection procedure. Workers first take our survey HITs to install our browser
extension as well as to answer questions about their worker profiles for participating our data
collection study. Once the browser extension is installed, it collects data of all HITs visited by

the workers together with actual working times.

a single web page that appears when it is accepted until it is submitted by a worker (see Figure 1.)
Each HIT completion record was collected in accordance with steps (a)–(c) below, and participating
workers were awarded a bonus of 5 cents for completing steps (b) and (c).

(a) Background-data scraping: On each HIT page visited by a worker, the installed extension
script extracted various microtask-relevant data as input features for the working-time estimation
system. These features included information pertaining to the microtask, worker, and requester.
Microtask information was extracted from HIT metadata and HTML elements available on every
visited HIT page. Worker information contained survey responses regarding basic worker informa-
tion collected prior to extension script installation, as well as worker profile obtained once per day
via an asynchronous request on the worker dashboard page in AMT. We assumed that worker fea-
tures would represent worker capabilities, such as their skill levels and learning-curve effects (Yelle,
1979), with regard to microtask execution (Rzeszotarski and Kittur, 2011). Requester information
included their reputation on microtasks they created, as obtained from Turkopticon via provided
APIs.

(b) Manual working time recording: Upon opening an accepted HIT page, workers were in-
structed to record their working time themselves until the assigned task was completed. The working
states of workers (whether active or paused) was recorded by toggling a button rendered at the top
of the HIT interface by the web-extension script (refer Figure 3.) The following two features were
incorporated to prevent workers from forgetting to record their working state. First, the assigned
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Figure 3. Interface to record TIME_BTN. (a) The button at the top of the HIT page can be
toggled to pause/resume recording working time. (b) A black screen is rendered over the HIT at

the beginning as a reminder workers to start the timer.

HIT page was overlaid with an alert screen, which workers were supposed to manually dismiss prior
to beginning execution of relevant HIT microtasks. Secondly, a red border was rendered around the
HIT page while the recording button was activated, so that workers would be easily notified of the
status of the recording button. Not more than two buttons were activated simultaneously in multiple
tabs, because it was assumed that multitasking on HITs is not practically possible.

(c) Post-HIT survey: Upon HIT completion, workers were asked to provide recorded working time
as one out of multiple available choices for labeling the HIT submission record with a working time.
Upon submission of each HIT, a window popped up asking workers to choose from amongst work-
ing times calculated using the TIME_ALL, TIME_FOCUS, TIME_BTN, and TIME_CUSTOM
approaches as to what they thought was the most reasonable. In cases where workers felt that none
of the first three choices were correct, they selected the last choice (i.e., TIME_CUSTOM) and
manually input their working time in the “X minutes and Y seconds” format in a separate text box
provided for this purpose. After selection of an appropriate working time, workers could click the
“Submit” button to send their answers and dismiss the window.

3.3. Data Description

The above described data collection exercise performed for 10 days in late October 2018 yielded
7,303 valid HIT records collected from 83 participating workers. The resulting HIT record dataset
comprised 1,587 unique HIT groups (a batch of HIT instances that share the same microtask meta-
data and interface) created by 977 requesters. On average, participants contributed for 6.5 days (SD
= 3.5; Median = 8.1) and worked on 109 HITs (Min = 1; Max = 1958; SD = 238.1; Median = 34).

Figure 4 depicts a histogram of working times corresponding to collected HIT records. The work-
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Figure 4. Working time distribution of microtasks in the dataset.

ing time lengths demonstrated a long-tail distribution, wherein majority of submitted HITs were
completed within durations less than 2.5 min and large variance ranging from 3 s to more than 1 h
(SD = 380.2 s; Median = 148.3 s; Min = 3 s; Max = 4118 s, Mean = 277.9 s). We believe that a
microtask working-time collection with such a long-tail distribution is natural considering that most
workers in crowd markets are beginners (Hara et al., 2018) that are more likely to accept shorter
tasks (Cheng et al., 2015).

As regard working time labels in the collected dataset, the TIME_ALL, TIME_BTN,
TIME_FOCUS, and TIME_CUSTOM approaches were chosen for 3,600 (49.3%), 2,461 (33.7%),
745 (10.2%), and 497 (6.8%) HIT records, respectively. This result is in partial agreement with our
initial hypotheses in that the TIME_FOCUS and TIME_CUSTOM approaches were chosen less
frequently compared to other choices. However, the observed result was also contrary to our expec-
tation, since the TIME_ALL approach was chosen more frequently compared to TIME_CUSTOM
by 15.6 points.

The toggle button was clicked at least once in 6,681 (91.5%) HITs, and the timer was paused once,
twice, and four in 60, 6, and 3 HITs, respectively, and the same was never stopped in the remaining
6,612 HITs. These results imply that in most cases, the alert screen seemed to be effective in
prompting workers to activate the recording button, but the red border shown while the timer was
activated did not necessarily work at all times. Among data labeled with TIME_BTN, the observed
difference between working times calculated using the TIME_BTN and TIME_ALL approaches
measured less than 5 s and 10 s in 75.4% and 86.9% of all recorded cases. This indicates that
the TIME_ALL and TIME_BTN approaches recorded nearly the same working time in most cases
labeled with TIME_BTN, thereby implying that the button was immediately clicked when the tasks
were started and completed without taking a break. However, some workers still considered the
TIME_BTN option to be more accurate without a strong reason. However, a rigid evaluation of
whether the button was “correctly” used is not possible because the collected dataset did not contain
tracking information of workers during HIT execution.

Another kind of analysis that would be interesting is to discuss collected working times per HIT
type (e.g., image tagging, writing, etc.) However, we would like to leave it for future work, because
there is no clear criteria to categorize HIT types, and such categorization would require a lot of
hours, which is currently out of our focus in this paper.
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4. TRAINING AND EVALUATION OF PROPOSED WORKING TIME PREDIC-
TION MODEL

This section introduces CrowdSense — an approach to measure worker perception, i.e., whether
or not they “accept” the difference (hereinafter referred to as "prediction error") between predicted
and actual working times. We define workers’ acceptance of a prediction error in the sense that they
perceive the prediction error as not being problematic to disturb their workflow.

During model training, our initial concern was to quantify an acceptable accuracy level for working-
time prediction. Of course, ideally, a predictive system must not return any error. However, this is
not realistic, because there always exist several types of noise that result in prediction of inaccurate
working times. Thus, a threshold value for prediction errors must be defined for them to be accepted
by workers. For instance, a prediction of (predicted,actual) = (200s,250s) might be acceptable,
whereas that of (200s,300s) might get rejected. However, when working time have smaller values,
both (20s,25s) and (20s,30s) might not be problematic but (20s,40s) might get rejected. Thus, we
believed that a minimum prediction error, which workers perceive as unacceptable or problematic
must be defined. Such relationships between the objective value of any stimulus and human percep-
tion of the same have been investigated in previous literature (Reichl et al., 2010; Britt, 1975), and
the difference threshold is often referred to as the “just notifiable difference (JND)” (Fechner et al.,
1966; Sher et al., 2017).

During CrowdSense development, we expected following possibilities. First, CrowdSense would
facilitate evaluation of system performance based on worker acceptability of prediction errors. For
example, the overall prediction accuracy can be calculated by checking whether the pair of pre-
dicted and actual working times for each tested microtask was below or above JND (i.e., whether
the prediction error would be acceptable to or rejected by workers.) Without CrowdSense, we can
only discuss the difference between predicted and actual working times in terms of seconds or the
percentage error. This does not explain how meaningful a certain prediction would be to workers.
Secondly, CrowdSense would contribute to optimization of the predictive model, thereby reducing
prediction errors that might be considered problematic by workers. The JND defines, for any given
working-time duration, the maximum prediction error acceptable to workers, thereby demonstrat-
ing worker sensitivity to the prediction error. Realizing this sensitivity would help one prioritize
during model training as to which type of prediction error must be eliminated first, thereby facili-
tating elimination of problematic prediction errors a priori. However, model optimization without
CrowdSense would only allow us to calculate training losses in terms of simple differences between
actual and predicted working times. This would not always make the model optimum in terms of
worker acceptability of prediction errors; for example, calculating simple differences in seconds
would result in relatively larger training losses for long-duration microtasks.

4.1. CrowdSense: Survey-based Measurement of Workers’ Perception of
Working Time

4.1.1. Strategy For Estimating JNDs 

For JND estimation, we leveraged the method of constant stimuli (Woodworth and Schlosberg,
1954; Kuroda and Hasuo, 2014), considering the human perception in weightlifting as an example.
To this end, participants were asked to lift a standard weight followed by a comparison weight.
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Subsequently, they were asked to judge whether they detected a difference between the two weights.
The standard weight is usually fixed to a certain value (e.g., 100 g), whereas the comparison weight
is discretely altered within a certain range (e.g., 105 g, 110 g, 115 g, ..., 150 g). Participants were
asked to compare any one weight pair during each comparison trial. After gathering responses from
a sufficient number of participants for each pair, a threshold value of the comparison weight was
determined to be that for which more than half of all participants perceived a difference in weight.
This threshold was, thus, considered JND with regard to the standard weight.

In our study, the method of constant stimuli was employed to determine JNDs for working times
of microtasks. To this end, we designed a microtask that asked workers to compare a pair of sug-
gested working times by considering the predicted and actual working times as the standard and
comparison values, respectively. During execution of the survey microtask, workers were instructed
to assume a situation wherein they utilized a system that erroneously predicts the working time of a
given microtask. Being given a random set of predicted and actual working times for an imaginary
microtask, workers were asked whether the difference between the times, or prediction error, was
acceptable to them or not. After questioning multiple workers, JNDs were determined for each
standard value of the predicted working time by calculating the prediction-error threshold which
more than half of all workers perceived as acceptable.

Two different metrics were considered in this study depending on whether the residual (or working-
time prediction error) calculated as [actual time]-[predicted time] possessed a positive or negative
value. Implications of a positive residual (i.e., predicted < actual) are easy to understand; the larger
the residual, the more annoyed workers would be, because the system overestimates the benefit,
which directly reduces worker earnings. Because this problem occurs when workers actually work
on a microtask, we asked workers to imagine that they actually accepted and completed a certain
microtask, and then asked if they felt the prediction error was problematic or not.

In contrast, a negative residual value (i.e., predicted > actual) necessitates use of a slightly dif-
ferent setting in the survey, since the obtained result is not intuitive. When a worker completes a
microtask, the predicted working time of which exceeds the actual working time, the worker can
earn more than expected. For this reason, survey with negative residuals would end up collecting
more “acceptable” responses for nearly all comparison pairs. However, a system that always pre-
dicts working times shorter compared to the actual is not considered a good system. The more the
microtasks are undervalued, the more often workers miss opportunities to find lucrative microtasks.
To make workers understand the negative impact of this situation on their potential earnings, the sur-
vey instruction was slightly altered; workers were directed to assume a microtask that they decided
not to do, and that they subsequently knew another worker had completed it faster than predicted,
owing to existence of prediction error in the system. Workers were then asked if the incurred er-
ror was acceptable to them. By setting the survey question in this way, we expected accurate JND
determination in cases involving negative residuals.

4.1.2. Microtask Survey Design 

Figure 5 depicts microtask interface designs considered in this study. In each pair, workers were
shown values of “predicted” and “actual” working times on the left and right, respectively. Whether
the calculated prediction error was acceptable to workers or not was recorded by asking them to
click an appropriate response button. The next comparison pair queue was displayed to them as
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Figure 5. Microtask survey interface to evaluate prediction error (of a positive residual) by
comparing a predicted working time (left) and the actual working time (right). To evaluate a

negative residual, we changed the sentence to “you decided NOT to work” for predicted time and
to “someone else ended up spending” for actual time, and we made the actual time shorter than

the predicted time.

soon as they finished answering the previous question. This sequence continued until the last pair.
The microtask was submitted after workers responded to a simple survey that also recorded their
comments and feedbacks, if any. Each participant was paid $1.50 USD (expected ∼$10/hr) for
evaluating up to 100 different comparison pairs (or less when no more pairs were listed in the
queue) yielding positive or negative residuals. Each participant was allowed to take surveys for
both residual types.

In this study, worker judgments were intentionally recorded by providing with working times ex-
clusively, and no other information was provided, such as the price or type of microtask assigned.
It seems to be a natural argument that microtask prices and types must also be provided to survey
takers. This is because workers always refer to this information when judging whether a microtask
is worth doing, and knowledge of the same might consequently change their response. Although
we believe this to be true, it must be noted that there exist both pros and cons in making this in-
formation available to workers. While access to this information would provide greater insight into
how workers practically evaluate the working time in their daily routines, it is also true that work-
ers often set their own hourly earning goals and microtask-type preferences. Thus, their responses
may easily get biased, and results obtained would solely demonstrate demographic distributions of
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Table 1. List of parameter values used for generating comparison pairs
(predicted[s],actual[s]) = (pi,ai j). For positive residuals, there exist ∑Npos = 641 pairs,
wherein ai j = pi + jdi(1 ≤ j ≤ ni,di ∈ Dpos,ni ∈ Npos). For negative residuals, there exist

∑Nneg = 277 pairs, wherein ai j = pi − jdi(1 ≤ j ≤ ni,di ∈ Dneg,ni ∈ Nneg). Frequencies of pi, di,
and ni were determined based on arbitrary choices made by authors based on the policy of i)
successfully determining JND thresholds for each pi, and ii) sampling adequate data whilst

consider as few plots as possible to determine JNDs.

i pi ∈ P di ∈ Dpos ni ∈ Npos di ∈ Dneg ni ∈ Nneg 
0 5 5 29 – –
1 10 10 22 5 1
2 30 10 22 5 5
3 45 10 22 5 8
4 60 10 22 10 5
5 120 15 22 15 7
6 180 10 45 15 11
7 240 10 45 20 11
8 300 10 45 20 14
9 450 20 22 30 12
10 600 20 45 30 15
11 900 20 45 30 15
12 1200 20 45 30 20
13 1500 30 45 30 25
14 1800 30 45 30 30
15 2250 60 30 60 18
16 2700 60 30 60 23
17 3150 60 30 60 27
18 3600 60 30 60 30

hourly-wage goals and microtask preferences of participants, which are not of interest in this study.
It is understood that worker responses vary based on their experience and circumstances. The sole
intent of this study was to address this variance by collecting multiple responses from different
workers for each sample and averaging them.

In this study, we prepared 641 and 277 comparison pairs with positive and negative residuals, re-
spectively. Subsequently, 19 different time lengths (in seconds) were considered for use as predicted
working times varying in the range of 5 s to 1 h, each of which was denoted as pi ∈ P. For each pi,
corresponding actual working times were set, denoted by ai j = pi + jdi(1 ≤ j ≤ ni,di ∈ Dpos,ni ∈ 
Npos) and ai j = pi − jdi(1 ≤ j ≤ ni,di ∈ Dneg,ni ∈ Nneg) for positive and negative residuals, respec-
tively, where di denotes interval of the difference between predicted and actual working times for
each pair. The value of di increases upon each iteration of j, and ni denotes the number of sampled
ai j for each pi. See Table 1 for the full list of pi, di, and ni values.
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4.2. Defining An Evaluation Function Based on Collected Results

In this study, 91,060 worker responses were collected as comparison-pair data samples. The num-
ber of participating workers was 875, of which 131 responded to survey questions pertaining to
both positive and negative residuals. With regard to positive residuals, evaluations were performed
using 60,760 responses provided by 660 unique workers. On average, each comparison pair was
evaluated by 95.4 unique workers (median = 97; SD = 8.9; minimum = 62; maximum = 118). For
negative residuals, 30,300 comparison responses provided by 346 unique workers were collected.
On average, each pair was evaluated by 109.4 unique workers (median = 110; SD = 5.2; minimum
= 95; maximum = 123).

Similarly to what we discussed in Section 3.3, it would have been interesting to analyze the variance
of workers’ tolerance of prediction error across different microtask types, by specifying what type
of microtasks the participants were evaluating. Although we agree that microtask types would
make some difference to workers’ tolerance, we were not able to conduct such analysis in this paper
because i) there would be a large number of microtask type sub-categories (e.g., image classification
and bounding box drawing would vary workers’ tolerance, while they belong to the same vision-
related microtasks) and ii) the results would vary across workers by their preferences and expertise.

Once data collection was completed, an evaluation function was derived based on CrowdSense
results. It was expected that the said CrowdSense-based evaluation function would enable us to
quantitatively determine the possibility of predicting results with sufficient accuracy so as to be
acceptable to workers. This was previously impossible with the exclusive use of objective values of
the working time. To this end, we calculated a percentage of “acceptable” votes for each comparison
pair to obtain the maximum acceptable prediction error for each pi, denoted by ei ∈ E. Using the
constant stimuli approach, we defined acceptable prediction errors as those for which the response
from 50% or more of all participating workers was recorded as “acceptable.” Subsequently, a series
of ei values were curve-fitted to derive the function e = f (p), where p denotes the predicted working
time, and e denotes the residual corresponding to the maximum acceptable prediction error.

See Figure 6 for comparison-pair survey results. For the data samples obtained for positive and
negative residuals, the least-squares method was employed to fit a function curve in accordance
with the relation:

e = f (p) = α log(p + β )+ γ (1)

α , β , and γ are coefficients, calculated under the constraint that the curve function is fitted through
all the calculated ei (the maximal acceptable prediction error for each pi, shown by black plots.)
Using our survey results, values of the coefficients were determined to be α = 164.3, β = 173.1,
and γ = −780.5 for the positive-residual function ( fpos(p)); corresponding coefficient values for
the negative-residual function ( fneg(p)) were α = −289.6, β = 358.5, and γ = 1703.1. The result-
ing log-like curve demonstrated an interesting trend indicating that most participating workers were
forgiving of large errors with regard to predicted working times for small microtasks, whereas they
were likely to accept small relative errors (not exceeding ∼500 s) for large microtasks up to an hour.
In addition, participants were observed to be as tolerant to errors concerning negative-residual com-
parison pairs as they were to those pertaining to positive-residual ones. However, they demonstrated
greater tolerance for prediction errors pertaining to longer predicted working times.

Based on Equation (1), we can then derive a function that calculates a system “accuracy”, meaning
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Figure 6. Survey results for all ai j (blue, white, or red plots), maximal acceptable prediction
error ei in each pi (black plots), and a curve fitted to the series of ei(= E) (dashed curve), for the

cases of positive and negative residuals respectively. E was fitted by a log curve (i.e.,
fpos(p), fneg(p) = α log(p + β )+ γ , where α , β , and γ are constants).

how frequent the system is able to predicting working times of microtasks within errors that workers
can tolerate. Here we let a set of evaluation functions f = { fpos(p), fneg(p)} and an actual working
time of a microtask a. If |a − p| ≤ | f (p)|, the prediction error of the microtask can be regarded as
correct as workers would think is not problematic. Thus we define a function for calculating the
system’s prediction accuracy, that counts the number of microtasks with acceptable working time
prediction error among all n tested microtasks (T = {t0, t1, ..., tk, ..., tn}) as follows:

∑
n
k=0[|ak − pk| ≤ | f (pk)|]Prediction Accuracy [%] = × 100 (2)

n 

4.3. Defining An Objective Function

We designed objective functions for model optimization based on the two CrowdSense-based eval-
uation functions. The objective functions were derived with the intention to facilitate calculation
of reasonable losses across different working-time ranges based on subjective worker perception.
In contrast, as described in Section 1, prediction errors calculated with an objective working-time
length would exaggerate losses for large microtasks with longer completion times.

The objective functions were designed by defining the “psychological amount” of working time, as
depicted in Figure 7. This definition is based on that Weber–Fechner law (Fechner et al., 1966) was
used for defining “psychological amount” of any stimuli derived from Weber’s law incorporating
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Figure 7. Psychological amount of working time. The linear function and the log function in
gray color are visualized as baseline functions for reference. Offsets ensure that the graph of

each function contains the point (x,y) = (0,0).

JNDs. Reciprocals of evaluation functions f were considered to represent workers’ sensitivity to the
prediction error. Accordingly, it was expected that a function obtained by integrating the reciprocal
of f would represent a new working-time scale that can also be referred to as the psychological
working time (denoted by P):

P ={Ppos(t),Pneg(t)}�Z Z � 
K K 

= dt,− dt 
fpos(t) fneg(t) (3)( ) 

e−
γ

α K · e−
γ

α K · γ

α
) γ

α
)Ei(log(t + β )+ Ei(log(t + β )+ 

,−= 
α α 

where K is a constant and Ei is the exponential integral.

Appropriate prediction losses can simply be defined as the difference between psychological
amounts of the predicted and actual working times estimated by using appropriate CrowdSense
functions. That is, the psychological amount-based prediction loss can be expressed as� 

Ppos(a) − Ppos(p) (a ≥ p)Loss = (4)Pneg(p) − Pneg(a) (a < p) 

where a denotes the actual working time, and p denotes the predicted working time, both measured
in seconds.

For instance, let us consider calculation of losses on prediction errors in cases where
(predicted,actual) = (30s,60s) and (1030s,1060s). Because residuals are positive in both cases,
the resulting losses can be calculated as Ppos(60) − Ppos(30) ≈ 25.2 and Ppos(1060) − Ppos(1030) ≈ 
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7.8, respectively. This demonstrates that penalties can be appropriately calculated, as we mentioned
previously that a loss would be smaller when its calculation is based on psychological working time
than when it is based on seconds where the working time is longer.

5. EXPERIMENT

In this section demonstrates how CrowdSense facilitates i) evaluation of the proposed system for
predicting microtask working times based on workers’ perception leading to acceptance or rejection
of prediction errors, and ii) optimization of the proposed model for more accurate working-time
prediction. Defining the “overall accuracy” of a system in terms of the psychological likelihood
of workers to accept predicted working times, although with some errors, has not been considered
in previous studies performed in this domain (Saito et al., 2019a). We hypothesized on the model
optimization that CrowdSense would facilitate realization of an all-the-more accurate working-time
prediction system capable of operating across different working-time scales — CrowdSense can
define penalties on prediction errors based on workers’ tolerance across different working-time
lengths, thereby allowing the predictive model to optimize itself for minimizing the likelihood of
“problematic” error prediction regardless of the microtask duration. This study demonstrates the
above hypothesis to be true via comparison against baseline methods that define penalties based
solely on working-time predictions in seconds or log-seconds.

5.1. Settings

Evaluation Method and Criteria: Cross validation was performed with collected datasets de-
scribed in Section 3. The training and test sets were split in a “task group-open” splitting manner;
no microtask from the same group in either the training or test sets was included in the other set. In
this study, the CrowdSense-based "system accuracy" was set as the evaluation criterion. For each
compared optimization method, prediction accuracy was calculated using Equation (2).

Prediction Algorithm: We compared two algorithms to perform regression with Gradient Boost-
ing Decision Tree (GBDT) (Friedman, 2001) and neural network (NN). Regardless of the method
employed, a feature vector with 101 dimensions was considered as input, and a scalar value of the
predicted working time in s was obtained as the output. In GBDT-based models, LightGBM (Ke
et al., 2017) and hand-tuned hyper parameters were used for each compared method, such that its
highest overall accuracy was realized upon convergence of its training loss. Values of the maximum
tree depth lied in the range of 3âĂS4, and the number of trees (= iterations) ranged between 350¸
and 450. On the other hand, PyTorch (Ketkar, 2017) was used for building NN-based models that
comprised 30- and 10-dimensional hidden layers. Additionally, Rectified Linear Unit (ReLU) (Nair
and Hinton, 2010) was employed as the activation function for each hidden layer. Similar to GBDT,
hyper parameters for each NN-based model were also hand-tuned. Batch training (batch size =
32) was performed for ∼1000 epochs to obtain the highest overall accuracy upon convergence of
training losses.

Input Features: Using collected data, microtask-, requester-, and worker-relevant features were
extracted. See Table 2 containing the comprehensive features list.

– Microtask features correspond to the most dominant representation. They include HIT metadata
(basic profile of a HIT instance, e.g., time limit (in seconds), price, and HIT batch size) as well
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Table 2. List of input features parsed from the collected data. The features consist of three
categories and eight sub-categories. The parenthesized numbers in bold text represent the

feature dimension sizes.

HIT (78) – HIT-relevant information
META (5) HIT metadata set by requesters: time limit, reward, # of HITs in a batch,

template type, and HTML text length.
URL (7) URL counts in HTML source code: anchor links, in-text links, image links,

audio links, video links, Qualtrics9 survey links, and all links.
INP (36) Input-tag counts and percentage : text, submit, radio, checkbox, select, hid-

den, text area, number, and other 8 input types.
KW (30) Keyword occurrence in either HIT title, description, or page: "summa-

rize", "survey", "instructions", "opinion", "description", "describe", "read",
"click", "audio", "video", and 20 other keywords.

WKR (20) – Worker-relevant information
PRFL (8) Worker-profile information collected in pre-surveys: age, gender, educa-

tion level, employment status, household income, years of work experience,
weekly working hours, and estimated amount of earnings per hour.

EXT (8) Installed AMT-relevant extension tools: CrowdWorkers10, Distill11, Tam-
permonkey12, OpenTurk13, MTurk Suite14, TurkOpticon, Page Monitor15, and
Auto Refresh16.

HIST (4) Worker dashboard information: # of approved HITs, approval rate, total
earnings, and # of HIT submissions in a HIT group

REQ (3) – Requester reputation information
TO (3) Turkopticon: average of 5-point scale ratings relevant to requester evaluation,

for their generosity/fairness and # of reviews.

as keyword occurrences, URL counts, and input-tag counts extracted from the HTML source
code of the microtask. We expected that these features would contribute to the proposed model’s
learning of microtask contents that affect working time and the extent to which they do so.

– Requester features represent the reputation of requesters posted in Turkopticon (Irani and Silber-
man, 2013) by AMT workers, which can be obtained via API calls. This information is considered
to indicate how appropriate working times might be assumed by the requester in consideration
of microtask information provided to workers. In case the reputation a particular requester could
not be obtained from Turkopticon, average values for each criterion were calculated and used as
requester-reputation features.

– Worker features include worker-profile information provided by workers in the beginning of the
data-collection exercise along with a list of AMT worker tools installed in their browser and
worker dashboard information. By leveraging such features, the proposed model can possibly
consider worker capabilities for crowd work, thereby fine-tuning the predicted working time of a
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Table 3. System performance evaluation results based on worker error acceptance. a) Overall
accuracy across all tested microtasks; b) Average accuracy for microtasks of which working

time was shorter than 510 s (i.e., the first four working time categories) or longer (i.e., the last
five working time categories.)

Accuracy [%]
(a)
All

(b)
– 510 s 510 s –

GBDT_raw
GBDT_log

GBDT_CrowdSense

65.3
70.4
73.6

69.9 35.2
79.8 9.7
79.1 31.0

NN_raw
NN_log

NN_CrowdSense

60.5
63.0
63.5

64.4 27.6
71.3 12.0
65.3 39.0

microtask.

Objective Function: For both GBDT and NN models, we compared results obtained using three
objective functions that define training losses by calculating the sum of mean squared errors (MSE)
of prediction errors corresponding to raw-, log-, and CrowdSense-scaled working times. The pre-
diction error calculated by using the raw-scale working time represents a simple difference in
seconds between predicted and actual working times. For example, prediction errors for cases
(predicted,actual) = (60s,30s) and (300s,450s) equal 30 and 150, respectively. The Log-scaled
working time calculates prediction errors based on the difference between logged predicted and ac-
tual working times. In other words, prediction errors for the two above-mentioned cases are calcu-
lated as | log60− log30| ≈ 0.69 and | log300− log450| ≈ 0.41, respectively. Prediction errors corre-
sponding to CrowdSense-scaled working times were calculated by using Equation (4). Values of pre-
diction errors for the two above-mentioned cases were calculated to be Pneg(60) − Pneg(30) ≈ 90.02
and Ppos(450) − Ppos(300) ≈ 58.95, respectively.

5.2. Results

Prediction accuracy by methods: Evaluation results obtained in this study reveal that use of the
CrowdSense approach contributes to the determination of both the overall accuracy based on subjec-
tive worker perception and best prediction score. Table 3a lists overall accuracy values obtained for
all compared methods, calculated by using Equation (2). As can be realized, in most cases, GBDT-
based models demonstrate higher scores compared to NN-based models. The accuracy value of
73.6% was obtained for the GBDT_CrowdSense model. This implies that prediction results for
73.6% of all tested microtasks were sufficiently accurate to be considered acceptable by workers.
Scores obtained for other GBDT-based methods were 69.9% (GBDT_log) and 65.3% (GBDT_raw).
Results obtained for all NN-based models lied in the range of 60–63%, which are obviously lower
compared to those obtained for GBDT-based models.

It should be noted that our intention is not to emphasize that CrowdSense-based optimization scored
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Figure 8. System performance comparison by working time categories, a) for GBDT and b) for a
neural network. In the parenthesis after each actual working time category, the number of

tested microtask data whose actual working time is within the range is shown. The working time
categories are split based on the evaluation function for positive residual errors, but the

accuracy includes both positive and negative errors.

the best accuracy, but rather to discuss the difference of the accuracy between the CrowdSense-based
and objective value-based optimization methods. Since the objective functions and the evaluation
functions are both based on the same criteria, it is not very surprising that CrowdSense-based op-
timization contributed to the best accuracy. However, the prediction accuracy was relatively low
when the model is optimized by seconds or log-seconds, which indicates that there is a gap between
the workers’ perception and objective values of working time. This implies that, without Crowd-
Sense, working time prediction would more likely result in undesirable consequences to workers
such as making a worker tool that predicts working times of microtasks intuitively less useful.

Prediction accuracy per working time length: Figure 8 illustrates proposed system performance
observed for each working-time category. We first created working time categories such that each of
them represents a time range that workers would accept as the prediction error (Saito et al., 2019b).

(0) (0) (1) (1) (N) (N)The regions were defined as R = {r(0),r(1), ...,r(N)} = {[rmin,rmax), [rmin,rmax), ..., [rmin,rmax)}
(k) (k−1) (k) (k) (k) (k) (k) (0) (N)where r = r , r = r = 1, r = ∞,min max max min + f (rmin) − ((rmin + f (rmin)) mod R f loor), rmin max 

and R f loor ≥ 1. Figure 9 depicts a schematic illustrating the above region calculation. In this study,
R f loor = 30[s] and N = 9.

For all comparison methods considered in this study, there was a similar trend that accuracy was
higher where working time was shorter. The highest accuracy of ∼80% was observed for tested
microtasks with under 510 s of completion time. For work time exceeding this value, the accuracy
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Figure 9. Strategy to define ranges based on the evaluation derived from CrowdSense.

was observed to deteriorate.

Differences were also observed between trends pertaining to the two baseline optimization meth-
ods — log10 and raw working-time-scale-based — when employing both GBDT- and NN-based
models. Model optimization employing the log10 working-time scale demonstrated realization of
the highest peaks between 60 s and 300 s, and its accuracy became extremely low with increase
in working time beyond 510 s. In contrast, the raw-scale-based optimization demonstrated lower
scores corresponding to shorter working times. However, it was found to predict longer working
times more accurately. These differences support our hypothesis that the log-scale-based optimiza-
tion would exaggerate error penalties for shorter microtasks whilst ignore those for longer tasks,
and that the raw-scale-based would operate vice-versa. This makes overfitting of the model possi-
ble towards the exaggerated side.

However, contrary to the above discussion, the CrowdSense-based optimization was observed to
be rather successful in leveraging attributes of both baseline methods. For a simple analysis of the
difference between working-time lengths, the working time was divided into two groups comprising
four and five regions, respectively, by means of a threshold value of 510 s. Average accuracies for
these groups are separately listed in Table 3b. In both groups, the use of CrowdSense-based opti-
mization demonstrated the highest accuracies. When employing the GBDT-based regression model,
scores obtained using the CrowdSense-based approach demonstrated a difference of -0.7 points for
≤ 510 s and -4.2 points for > 510 s. Corresponding differences observed when employing NN-
based regression equaled -9.9 and -27.9 points, respectively. When employing the NN-based model,
CrowdSense demonstrated better accuracy compared to the raw working-time-based optimization
for the former category, and the best performance for the latter caterogy. This clearly demonstrates
that use of the CrowdSense-based approach contributes towards reducing biases across the entire
working-time range considered for baseline-optimization methods.

Feature importance: The important features evenly belonged to all the feature categories of
microtask-, worker-, and requester-relevant features. See Figure 10 for the ranking list of feature
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importance. First, the top microtask features included HIT meta data such as reward (1st), time
limit duration (3rd), and HTML text length (7th). This is not very surprising since these features
are considered as features that would directly affect HIT working time. On the other hand, the
top worker-relevant features mainly represented worker experiences such as weekly working hours
(4th), the number of approved HITs (5th), the number of total submissions in the same HIT group
(6th), and worker total earnings (8th). These features are thought to be effective to adjust (although
still roughly) estimated working time based on how much workers are good at working on micro-
tasks. Also, the top requester-relevant features (i.e., Turkopticon ratings) were generosity (2nd), the
number of reviews (9th), and fairness (12th). While the aforementioned HIT meta data are solely
parameters that requesters can change arbitrarily, the requester-relevant features would enable it to
control working time estimation by considering their reliability. Other subsequent top features were
keywords, URLs, and input tags contained in HITs: for instance, “minute” / “click” / “describe” as
keywords, the total number of URLs in the page / URLs that navigate to other pages as URLs, and
textarea / button as input tags.

Figure 10. The top 30 important features for working time prediction. The importance values
were calculated from GBDT_CrowdSense model with a split-based measure (by counting

numbers of times the feature was used in the model.)
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6. LIMITATIONS AND FUTURE WORK

This study explored development of a system for accurately predicting the working time of micro-
tasks by leveraging the subjective perception of workers with regard to the working time. This also
resulted in reasonable optimization and evaluation of the underlying prediction model. Limitations
of the proposed system and possible future directions are discussed below.

Respecting objective value-based evaluation: As we showed in the experimental results, objective
value-based model optimization give biases for penalties of prediction errors across different time
scales. By seconds-based optimization, the system was capable of more accurate time prediction
for long microtasks but not for short microtasks, and vice-versa by log-seconds-based optimization.
Our experimental results demonstrated that our workers’ tolerance-based method would be very
useful to build a new optimization criteria that takes only the good points of the both objective
value-based criteria. In this sense, we believe the workers’ tolerance-based model optimization is
totally fair for workers; we had no intention of exploiting workers’ feelings, but rather our results
just showed that it was capable of predicting working times more accurately by solving the problem
that the objective value-based optimization had.

However, we should also keep in mind objective meanings of time. Our evaluation function regards
each working time prediction as “correct” if workers could tolerate its error regardless of its ob-
jective value. Therefore it should be further evaluated among the correct predictions on how much
objective error they actually contained. In this paper, supporting workers’ decision making — by
considering lost time caused by the actual amount of time difference — is the problem of risk man-
agement strategy design for workers and task scheduling, which could be another research topic and
is out of our scope.

Applicability of workers’ tolerance to the real-world usage: In the proposed approach for defin-
ing CrowdSense, we posted microtasks that asked workers to analyze their daily crowd-work envi-
ronment and express how they felt about prediction errors pertaining to simulated microtasks. Al-
though our assumption regarding the simulated environment was sufficient for determining worker
perception, it cannot be guaranteed that results obtained by using this approach would exactly match
with worker opinions in real-world scenarios. For example, values of parameters, such as α , β , γ ,
and K, in Equation (1) can be different, or worker perception can possibly be more or less di-
verse compared to results obtained in this study. Thus, further investigation needs to be performed
to determine these differences. However, collection of real-world data is very difficult owing to
following reasons: i) there is no control on the experimenter side with regard to which pairs of pre-
dicted/actual working times must be used for questioning workers; this makes it difficult to sample
enough data for each pair; ii) workers need to use to a certain kind of working-time prediction sys-
tem to check predicted working times and complete a microtask to record the actual working time;
this is simply too much work to be done for collection of a single sample; iii) there are other factors,
such as requester preferences or microtask content, that add noise to or bias data, thereby making
CrowdSense less generalized. Because of these reasons, a more detailed study design is necessary
to collect real-world data for CrowdSense execution.

Pursuing a better prediction accuracy: The highest prediction accuracy observed in this study
equaled ∼73%. We do not conclude this as the “real” upper limit of performance of our proposed
working-time prediction approach, and suggest the following means to enhance the said perfor-
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mance. i) further feature engineering would contribute to attainment of higher accuracies. In addi-
tion to input features used in this study, more meaningful data, such as media content and dynamic
elements rendered using JavaScript, can be extracted from microtasks. Other techniques, such as
microtask category classification, based on natural language processing can also be employed; ii) 
As mentioned in Section 3.3, collected data demonstrates a long-tail distribution of working-time
labels wherein most microtasks demonstrated short working times. Such bias in a dataset causes the
trained prediction model to be over-optimized for microtasks with shorter working times. This issue
can be addressed via collection of a larger dataset, which specifically aims at obtaining microtasks
with longer working times by setting a higher bonus for workers accepting longer microtasks.

7. CONCLUSIONS

This paper presented an approach to predict microtask working times based on CrowdSense — a
technique to measure worker perception towards working-time prediction errors for model opti-
mization and evaluation. The motivation behind this study was to help crowd workers estimate how
long it would take them to complete a given microtask, thereby facilitating their search for more
lucrative microtasks.

The proposed method first addressed the difficulty encountered in defining and gauging the “work-
ing time” and collecting associated microtask submission data. Next, the paper presents the Crowd-
Sense approach to quantify the subjective perception of workers towards errors in working-time
prediction. This facilitates both optimization and evaluation of the model in terms of how workers
perceive prediction results, which was previously not possible owing to exclusive use of objective
values of the working time in seconds. Experimental results obtained in this study demonstrate that
the proposed working-time prediction system was capable of predicting microtask working times
with due worker acceptance in ∼73% of all tested cases. The results also revealed that use of the
CrowdSense-based model optimization enhances the prediction accuracy across a broad range of
working times, which was not possible by using extant baseline approaches.
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