2019 IEEE International Conference on Big Data (Big Data)

Elastic Executor Provisioning for Iterative
Workloads on Apache Spark

Donglin Yang, Wei Rang, Dazhao Cheng
University of North Carolina, Charlotte
dyang33, wrang, dazhao.cheng@uncc.edu

Abstract—In-memory data analytic frameworks like Apache
Spark are employed by an increasing number of diverse
applications—such as machine learning, graph computation, and
scientific computing, which benefit from the long-running process
(e.g. executor) programming model to avoid system I/O overhead.
However, existing resource allocation strategies mainly rely on
the peak demand normally specified by users. Since the resource
usages of long-running applications like iterative computation
vary significantly over time, we find that peak-demand-based
resource allocation policies lead to low cloud utilization in
production environments. In this paper, we present an elastic
utilization aware executor provisioning approach for iterative
workloads on Apache Spark (i.e., iSpark). It can identify the
causes of resource underutilization due to an inflexible resource
policy, and elastically adjusts the allocated executors over time
according to the real-time resource usage. In general, iterative
applications require more computation resources at the beginning
stage and their demands for resources diminish as more iterations
are completed. iSpark aims to timely scale up or scale down
the number of executors in order to fully utilize the allocated
resources while taking the dominant factor into consideration. It
further preempts the underutilized executors and preserves the
cached intermediate data to ensure the data consistency. Testbed
evaluations show that iSpark averagely improves the resource
utilization of individual executors by 35.2% compared to vanilla
Spark. At the same time, it increases the cluster utilization from
32.1% to 51.3% and effectively reduces the overall job completion
time by 20.8% for a set of representative iterative applications.

I. INTRODUCTION

While many data analytic systems [21] are widely ap-
plied to process diverse workloads, various cloud manage-
ment systems [17] are designed to effectively allocate physi-
cal resources according to underlying resource requirements.
However, substantial disparities between the resource usage
requested by jobs and the actual system resource utilization
still exist in production clouds. Industrial studies [16] from
Twitter and Google show that typical disparities are around
53% for CPU while the actual CPU utilization is only be-
tween 20% and 35%. Although many resource control policies
have been proposed to improve the cloud resource utilization
with different techniques, e.g., resource provisioning [17], job
scheduling [11][19] and load balance [6][15], most of them
focus on multi-process programming models like MapRed-
cue [5], in which task is the basic scheduling unit. They often
optimize the resource allocation via resizing containers or

978-1-7281-0858-2/19/$31.00 (©2019 IEEE

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 413

Yu Wang
Temple University
wangyu@temple.edu

Jiannan Tian, Dingwen Tao
The University of Alabama
jtian10@crimson.ua.edu, tao@cs.ua.edu

VMs (Virtual Machines), where JVMs (Java Virtual Machines)
are launched to execute the computation of tasks. Then,
different tasks are executed by different processes so that
each JVM can initiate a new process with flexible resource
allocation. However, compared to multi-process programming
models, Apache Spark, one of the most popular in-memory
data analytics platform, utilizes multiple threads instead of
multiple processes to achieve parallelism on a single node.
It adopts an executor-based multi-thread programming model.
Different from container or VM, the executor is a long-running
JVM process, in which multiple tasks can be executed con-
currently via multiple threads. It avoids the memory overhead
of several JVMs but leads to individual executors occupying
a large amount of resources over a long time, which makes
traditional dynamic resource control techniques for multi-
process programming models inefficient in Spark.

Apache Spark’s unique programming model provides in-
termediate data consistency in memory between computation
tasks, which eliminates significant amount of disk I/Os and
reduces data processing times. In particular, Spark runtime
outperforms Hadoop runtime by more than ten times for ma-
chine learning or iterative applications [21]. This is the reason
why iterative computations are increasingly common on data-
parallel clusters. However, the diverse resource consumption
patterns of various iterative tasks potentially result in mismatch
in cluster resource usage, which should be handled properly.
In particular, the data processing of many iterative applications
is typically iterative with diminishing return [22][3]. In partic-
ular, it requires more computation resource at the beginning
and then the demands for resource diminish as more iterations
are completed. However, most existing policies primarily focus
on resource fairness or load balance, which are agnostic to the
real-time resource demand and job runtime.

Indeed, Spark applies peak demand based policies to allo-
cate resources i.e., number of executors. The static allocation
policy reserves resources upfront, while the dynamic allocation
policy simply requests resources as much as application’s
demands. In both scenarios, these long-running executors keep
alive until the entire Directed Acyclic Graph (DAG) is finished.
In other words, they will hold all the requested resources
once allocated to the job, though the job’s demand may
diminish in the later stages. A few recent studies [4] try
to dynamically change the parallelism within each stage to
improve the resource utilization. Unfortunately, they do not

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

fundamentally address the underutilization problems when the
long-running application requires time-varying resources. This
disparity causes the formation of idle resources, producing
inefficient cluster resource usage and an inability to provision
computing services.

Many existing studies [11][3][10] have shown that dy-
namically tuning resources at runtime can effectively uti-
lize computation resources and reduce resource contention.
However, it is challenging to exploit time-varying resource
demands of various iterative workloads on Apache Spark.
First, resource allocation would be counterproductive while
lacking accurate accounting information of the resource usage
in the default system. Most existing schedulers [9] assign
resources based on the peak demand estimation, which can
not capture the real-time resource usage and further lead
to resource underutilization. In contrast, an ideal scheduler
should provision cluster resources in a timely manner if any
resource under-utilization is detected during runtime. However,
it is still difficult to decide the number of allocated executors
and which executor to be evicted from the running list facing
time-varying multi-resource demand across different stages.
Second, it is necessary to ensure the data consistency when
applying elastic resource scheduling strategies, e.g. adding
and removing executors. In particular, removing running ex-
ecutors directly may cause the re-computation of lost data,
which is a significant overhead to in-memory data analytics
computation. To tackle the aforementioned challenges, we
present an automated utilization aware executor provisioning
approach for long-running iterative workloads on Apache
Spark (i.e., iSpark). It monitors the real-time resource usage
for individual executors and flexibly scales up or down the
allocated resources to best fit the application’s demand, i.e.,
minimizing the resource slack in the cluster. iSpark further
preserves the cached intermediate result on the underutilized
executors before removing them to ensure consistency. This
policy can effectively avoid the additional overhead caused
by implementing the scaling down decisions. Specifically, this
paper makes the following contribution':

o« We empirically study and demonstrate the time-varying
resource demand of iterative workloads running on
Apache Spark. We find that the demands for resources
of iterative applications are high at the beginning stage
while diminishing in the later stages as more iterations
are completed.

e« We propose iSpark, an elastic executor management
framework compatible with Apache Spark. It monitors
the real time resource usage and adjusts the allocated
resource strategically at runtime to capture varying work-
load demands and improve cluster utilization.

o We design and implement a new component with adaptive
policy to preempt the underutilized executors gently. It
preserves the cached intermediate data from underutilized
executors to ensure the data consistency.

I'The source code is available at https:/github.com/Young768/iSpark.

414

o We evaluate iSpark based on the representative workloads
from HiBench [8]. Our results demonstrate that iSpark
improves cluster’s CPU utilization by 29% compared to
default Spark resource allocation policies and effectively
reduces the overall job completion time 20.8%.

The rest of this paper is organized as follows. Section II
gives background and motivations on resource allocation.
Section III describes the detailed system design and embedded
resource scheduling algorithm. Section IV presents experi-
mental results. Section V reviews related work. Section VI
concludes the paper.

II. MOTIVATION
A. Background

Spark currently applies two peak demand based policies
(i.e., static and dynamic allocation models) to allocate re-
sources for task execution. In the mode of static allocation,
users control the amount of application resource by config-
uring the number of executors. The application reserves CPU
and memory resources over the full job duration. The dynamic
allocation can only increase the number of executors simply
to meet the peak demand of workloads until it reaches the
upper number set by users. Note that the executor can exit
only when the corresponding process becomes idle in both
scenarios. Obviously, these peak demand based strategies in
Apache Spark may lead to severe resource wastage when the
application’s resource usage varies significantly in different
stages. Extremely, the idle executors are not allowed to be shut
down because of the cached intermediate data on them. Other-
wise, it will incur additional overhead by re-computation [2].
Thus, a more fine-grained and holistic design is expected for
those iterative applications with diminishing resource demand.

B. Empirical Study

To quantify the time-varying resource demand of iterative
workloads, we profile the resource usage of executors by using
the benchmark from HiBench [8]. We conducted a case study
based on a 9-nodes cluster, where 8 nodes serve as slave
nodes and one serves as master node. We configured that each
executor with 2 GB memory and one CPU core. We repeated
each experiment for 10 times and collected the average data.

1) Diminishing Demand of Iterative Processing: Firstly,
we study the resource demand nature of iterative applications
under the default static resource allocation policy. In the
experiment, we set the number of executors to be 8. We ran
a number of iterative applications provided in HiBench [8],
including LDA, SVM, PageRank and KMeans. Figure 1(a)
shows the accumulative job progress achieved with the stati-
cally allocated resources. The result also shows that it takes
20% time for the SVM job to achieve progress by 90%,
and 80% time to further finish training. The other three
applications also exhibit similar features: the first several
iterations generally boost the job progress very quickly. These
features can be explained as the law of diminishing return,
which has been applied in many other data analytic systems
in addition to machine learning [22]. It implies that the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

cPu

100 e L
80 o)
> 60) 60
g |
o 4o, * LDA 40
g | F/ —SVMm
- — PageRank 20
4 —-KMeans L .
0 05 10 15 20
0 20 40 60 80 100

W User W System

Cumulative Time %

(a) Accumulative Job Progress. (b) Accumulative of CPU Usage.

A

o

%)
g

1 I Used [JUnused

w
=)

exed exel exe2 exe3
Stage M

Executor Number
5

=
T [Used [JUnused
g

o

ge(%)
3
g

o

S}

0
5 10 15 20 25 exed exel exe2 exed
Time (stage) Stage N

(c) Number of Executor. (d) CPU Utilization.

Fig. 1. Empirical study results of iterative job progress analysis, accumulative CPU usage and time-varying CPU utilization on executors.

iterations in later stages may result in marginal performance
if still given the same amount of computational resources.
To further demonstrate our observations, we collect the real-
time CPU utilization trace of the cumulative CPU usage
across all machines, which is illustrated in Figure 1(b). The
results confirm that the CPU usage for iterative application is
quite high at the beginning, which is nearly close to 80%.
As the iterative processes going on, the CPU usage drops
to below 30%. The above observations demonstrate that the
default resource allocation is inefficient as they are agnostic
to the actual resource demand within each job. Thus, we
find an opportunity here that deallocating the resources from
these applications in the later stages may not affect their
performance but result in higher resource efficiency.

2) Underutilized Executors: We further enabled the dy-
namic allocation policy and set the maximum number of
executors to be 32. We depicted the number of executors
against time in Figure 1(c) and recorded the corresponding
average CPU utilization at time M and N in Figure 1(d). It
shows that the number of executors increased exponentially
at the beginning stage until it reached the upper bound. The
dynamic allocation policy allows Spark to request executors in
rounds (i.e. stages), which is triggered when there are pending
tasks backlogged for more than the duration set by user. The
result in Figure 1(c) also demonstrates the effectiveness of
such scaling up resource control policy. Figure 1(d) shows
the average CPU usage at time M and N on four selected
executors for PageRank application. The result illustrates that
the average CPU usage achieves nearly 70% at stage M.
However, the average CPU usage decreases to 30% at stage
N, which is lower than half of peak value at stage M. The
number of executors remained the same even though there
are under-utilized nodes, e.g., exe2 and exe3. These results
demonstrate that the current dynamic allocation policy cannot
evict the under-utilized nodes effectively and lead to severe
resource fragmentation and wastage. A key observation is that
the number of allocated executors should be reduced when
there are under-utilized nodes. The utilization of individual ex-
ecutors should be improved and then the deallocated resources
can be released or utilized by other applications co-hosting in
the cluster.

C. Motivation of Elastic Provisioning

The above observations motivate us that the number of allo-
cated executors should be dynamically tuned during runtime to

415

APP-1

() app2

7

@ Arp []unused
Executorl -

Executor2 i
Executor3 -:
Executor4 ‘4

(a) Peak Demand Base Allocation

Executorl
Executor2

Executor3 | APP-2

L

Executor4 [APP-Z } ‘

(b) Utilization Aware Allocation

Fig. 2. A toy example shows different allocation policies.

avoid the resource wastage. This work focuses on the scaling
down policy to handle the under-utilized problem in the later
stage of iterative job execution. We intuitively explain our
proposed scheme via a toy example in Figure 2. Note that
the current dynamic allocation policy only starts to remove
executors if there is no running tasks and cached data on the
executor. The parallelism of the computation will maintain the
initial setting during the runtime. However, for cases where the
computation in the later stage requires less resources, it will
not remove the corresponding executors (e.g. Executor 3 and
4 in Figure 2(a)) though their utilizations are quite low. This is
because of the fact that running tasks and cached data are still
on these underutilized executors. To overcome this problem,
a more aggressive strategy is expected to combine the tasks
running on the under-utilized Executor 3 and 4 into a single
one executor (i.e., Executor 1), resulting in two high-utilized
nodes as shown in Figure 2(b). At the same time, the cached
intermediate data on Executor 3 and 4 should be preserved to
ensure the data consistency. Then these released resource (i.e.,
Executor 3 and 4) can be utilized by other applications or shut
down for energy efficiency.

III. SYSTEM DESIGN
A. Architecture Overview

Figure 3 shows the architecture of iSpark. It includes three
centralized components, i.e., iMetricCollector, iController and
iCacheManager and two distributed mechanisms, i.e., Monitor
and iBlockManager, which are implemented on each partici-
pating executor. The key functionality of iSpark is built on top
of Apache Spark, which can timely scale up or scale down
the number of executors in order to fully utilize the allocated
resources while considering the multiple resource constraints.
From the perspective of workflow, Spark usually launches a
driver program together with a SparkContext object after job

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

\

= ® - |

g DAGScheduler 2 ExecutorAllocation |
s Manager

= |

|

|

iCacheManager }

J

@,

I
2 .
= Monitor

[BlockManager} [BlockManagerMasterEndpoint }

Q
o
5
g
2
3
9

***** >

iBlockManager

|
|
|
|
|
|
|
Executor; /‘

@Metrics and DAG ~ (3)Cache management
@RDD preservation (&Task rescheduling ®Allocation decision

Fig. 3. Architecture of iSpark.

submssion. Within SparkContext, the proposed new compo-
nent iController, iMetricCollector and iCacheManager are
instantiated along with existing components DAGScheduler
and ExecutorAllocationManager. Then, Spark driver launches
multiple executors across the cluster based on the resource
demand, which will result in Monitor being deployed on
each executor accordingly. We briefly describe the major
components of the new mechanisms in iSpark.

o iMetricCollector collects the real-time information (e.g.
CPU and memory metrics) and the operation logic in-
formation, i.e. RDD dependency, from DAG scheduler.
Monitor will report the resources usage information of
corresponding executors to iMetricCollector periodically
via the system heartbeat.

o iController makes the provisioning decisions based on the
metrics provided by iMetricsCollector, which will further
request ExecutorAllocationManager (EAM) to perform
the provisioning decision in terms of the number of
executors.

o Centralized iCacheManager coordinates with iController
to ensure the data consistency. iCacheManager is re-
sponsible for managing RDDs, which applies DAG-aware
policy to preserve data partitions and updates the related
RDD information to DAG scheduler.

o Distributed iBlockManager replicates the data blocks on
these executors to be removed based on the provision-
ing decision and the DAG-aware policy provided by
iCacheManager.

B. Utilization Aware Executor Provisioning

The resource provisioning policy embedded in iController
aims to minimize the number of allocated executor, and satisfy
the application’s demand at the same time. The dynamic
provisioning procedures of iSpark are based on the utiliza-
tion information collected from the previous iterations of the
running application, which is provided by iM etricsCollector.
We first formulate the proposed resource provisioning problem
and then address it based on the bin packing problem. We
finally transform the multi-dimensional bin packing problem
into the classic packing problem by using a dominant factor
scheduling approach.

416

1) Problem Statement: For a given workload set, makespan
is the duration between workload submission and completion.
Equivalently, the makespan of applications can be minimized
if all available resources can be fully utilized by applications
along time. To achieve the above goal, iSpark aims to improve
the resource utilization at both application and cluster level in
this problem. In vanilla Spark, a user submits an application
with parallelism of m requesting n execgtors (normally n <

m). Then the cluster manager allocates | R; resources for a

specific iterative application (R; is a multi-dimensional vector,
with dimensions representing CPU and memory). We denote
r; as the peak resource request of a task x; allocated on corre-
sponding executor. Currently, vanilla Spark allocates resources
for applications based on their peak demands. Initially, the

allocated resource should satisfy that: G = {x;| > r; <> R;}.

In iSpark, we use u; to represent the estimated utilization of a
task x; running on the hosting machine and U to represent the
utilization of executor j. We estimate u; by using the historical
utilization informations from tasks running on workers and
provision sufficient resources at once based on the estimation.

Once an application is submitted at #, let x;; denote that
task ¢ will be allocated on executor j and y; be an indicator,
where y; represents that executor j is used. There are three
constraints in the problem formulation as follows. First, at
least one executor should be allocated for the computation
during the job execution:

1<y (1)
J

Second, iSpark keeps the same parallelism of the application
for the whole duration, which means the number of tasks or
partitions will not be changed during the whole runtime:

Z inj)’i =m. Vi, J.)

J K2
Third, the resource usage of each executor j should not
exceed its capacity. Here, we denote a dynamic threshold (i.e.,
min{f, Upnaz}), which enables the system to automatically
adjust its behavior depending on the workload patterns ex-
hibited by the applications. é represents each executor’s fixed
capacity, which is set as 100% by default. U, is the highest
usage of executor from previous iterations. This threshold
represents a trade-off between efficiency and performance. On
the one hand, it mitigates the impact from skewness to make
the scheduling more efficient; On the other hand, it ensures
that the system does not run out of resources. Each executor’s
estimated resource usage is u;(f—t;) after the tasks have been

executed since t;. Thus,

injui(t — ;) < y;min{0, Umaz}. 3)

The objective is formulated as below, which aims to maximize
the usage of these allocated executors, i.e, minimizing the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

number of executors to be assigned during the job execution.

min Yy,
i=1
st. (1) (2) (3).

As the objective function and the constraint (3) are both
nonlinear, it is difficult and computationally expensive to solve
the problem directly. Thus, we introduce a heuristic algorithm
as follows to tackle the aforementioned challenges.

“)

Algorithm 1 Adaptive provisioning

1: update u; via heartbeat from monitor;

2: sort U; in decreasing order;

3: if there are pending jobs and U;< ~ then

4 for task i in taskset do

5 argmax U; based on DFS;

6 if U; < min{f, Up,q,} then
7: pack task i into executor j;
8
9

update and sort U; in decreasing order;
: remove x; from taskset;
10:

end if
11: end for
12: end if

2) Adaptive Provisioning Policy: The optimization problem
defined in Equation (4) can be transferred to a bin packing
problem [20] with variable bin sizes and balls, where bins rep-
resent the executors and balls are the task set to be allocated.
Bin sizes are available capacities of the executors and the size
of balls corresponds to the resource usage of tasks. First, we
draw an analogy with the solution in a one-dimensional space
(both balls and bins). An effective heuristic for such problem
is to repeatedly match the largest ball to fit in the current bin.
When no more balls fit, a new bin will be opened. Intuitively,
this approach reduces the unused space in each bin (i.e.,
reduces fragmentation in our problem) and therefore, reduces
the total number of bins used, which can be equivalent to
minimizing executor number N and fully utilizing the existing
bins. As the bin packing problem is NP-Hard, we then apply a
Best Fit Decreasing Packing (BFDP) algorithm, which requires
no more than (%XOPTH) [20] bins, where OPT is the
number of bins provided by the optimal solution. To efficiently
trigger the algorithm, we introduce a lower bound ~, which
is chosen empirically based on the sensitivity evaluation in
Section IV-D. As shown in Algorithm 1, iSpark adaptively
adjusts resource provisioning when there are pending jobs
in the queue and underutilized executors simultaneously. For
each task to be scheduled, the algorithm tries to pack it into
the executor which has the least available capacity among
all eligible executors, to maximize U; based on BFDP (as
shown in line 5-8). If it can satisfy the capacity’s constraint
(Eq. 3), the task will be packed into that executor directly.
If not, the algorithm will keep searching for executor with
enough available resources. After this, the executor will be
classified into two categories: receivers or givers. Givers are

417

—y—

Executor A Executor B Executor C

30% 30% 0%

Executor C

Executor A Executor B

(a) CPU Usage (b) Memory Usage

Fig. 4. An example of dominant factor from the view of CPU and memory.

defined as those executors who will give up their execution
mission for the remaining stages and release the underutilized
resource according to the new placement decisions. Receivers
are defined as running executors who will be oversubscribed
by tasks from givers for the remaining iterations to fully use
resource slack. The task assignment results (as shown in line
7) and related U; will be updated repeatedly until all the tasks
have been scheduled.

Unfortunately, BFDP algorithm typically focuses on solving
one-dimensional packing problem. To solve our problem for
multiple resources, we transform the multi-dimensional bin
packing problem into the classic packing problem by using
Dominant Factor Scheduling (DFS) approach. For instance,
if we simply apply BFDP algorithm to pursue an optimal
number of executors to fully utilize CPU cores, it may be
too greedy and introduce high contention for other resources,
such as memory. Intuitively, as shown in Figure 4, we use
an example to explain how DFS works. There are three
running executors, whose CPU usage are 30%, 30% and 10%,
and memory usage are 40%, 45% and 20%, respectively. If
we schedule the resources by applying BFDP based on the
CPU usage, the optimal solution would be to pack the tasks
from both executors B and C into A, resulting in that the
estimated utilization of executor A will be around 70% in the
following stages. However, from the perspective of memory,
it is highly possible that the memory usage of executor A
will be overloaded (105%), causing the tasks failure in the
following stages, which is unacceptable. In this case, CPU
is actually a soft constraint (task is slower than expected
with higher resource usage), but memory should be a hard
constraint (task will fail due to Out of Memory). Thus, it is
better to only pack the tasks from underutilized C into B to
fully utilize the resources slack, avoiding the potential task
failure. Correspondingly, B and C will be the receivers and
givers, respectively. In iSpark, the dominant factor is defined
as the bottleneck resource when we pack the task sets into
executors, which ensures that our reallocation will not cause
task failures. As shown in Line 5 of Algorithm 1, we use the
maximal utilization as the DFS for BFDP. Here, we define
maximal utilization as maximizing (U{(t), U*(t)), where
Ui(t) and U (t) are the used memory and CPU at time ¢.

3) Resource Reprovisioning: Another concern is reclaim-
ing resource slack aggressively (i.e., under-provisioning) may
cause severe resource contention (with possible task fail-
ures). In particular, CPU provisioning can only tolerate over
100% utilization in a short bursty duration and should be
avoided. Thus, the resource reprovisioning is necessary when
the average resource utilization keeps higher than /& times

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

B overloaded g

3
38

Scaling down ~

A removed

CPU Utilization(%)

Executor A

Executor B

.t .
Cumulative Time

Fig. 5. An overprovisioning example to motivate the reprovisioning operation.

4.preserve partition

L iBlockM:

BMME

5. RDD information| 3. preserve request

6.remove

iController iMetricCollector

(iCacheManag)
Linitiate preservation 2.update metrics

Fig. 6. Overview of RDD preservation workflow in iSpark.

of the expected upper threshold for one monitoring epoch.
For example, as shown in Figure 5, the CPU usages of both
executor A and B are underutilized before time ¢t. However,
the scaling down policy leads the executor overloaded after
the executor A is removed directly at time ¢. To avoid
these cases, we set h to 1.1 for CPU usage specifically,
which is experimentally determined to balance application
performance and resource utilization. The detailed sensitivity
analysis is discussed in Section IV-D. In each provisioning
interval, we update the threshold min {60, U,,,. } based on the
latest information. To prevent disastrous task failures caused
by resource demand variation, the reprovisioning action is
required if any executor’s actual utilization is larger than
hxmin {6, Uz} Then iSpark requests one more executors
by extending the existing scaling up policy. This heuristic
allows iSpark to quickly correct resource provisioning decision
to avoid overloaded workers.

C. Preempt Executors Gently

1) Data Consistency in iSpark: Due to the consistency
semantics of RDD, if any intermediate data from previous
iterations has not finished or been lost (due to removing
running executors), Spark will not automatically use these
cached RDDs for the following computations. Therefore, iS-
park introduces a new automatic mechanism iCacheManager
to entail that some RDD partitions need to be preserved when
the provisioning is triggered. It leverages the DAG information
generated by the task scheduler for selecting preservation
candidates. After the preservation, iCacheManager will inform
the DAG scheduler to update RDD information. With this
functionality, iSpark can safely implement the resource provi-
sioning decisions while avoiding additional and unnecessary
re-computation overhead.

The key idea of keeping the data consistency is to preserve
the intermediate results in memory before removing a running

418

RDD B

partition 4

/ partition 3
: | partiton 1 §
[Job }L‘“;b [Stage m }\ giver >

partition 5

receiver

Fig. 7. An illustration of VIP policy: when stage m is finished, the future
stages have dependency on RDD A while no dependency on RDD B. So
partition 1 is prioritized to be preserved from giver to receiver.

executor, i.e, to preempt a running processes safely. The
detailed procedure is illustrated in Figure 6. Once a remove
request is initiated by iController, iCacheManager creates a
new RPC (Remote Procedure Call) thread, which holds a list of
givers that are being removed. Then iCacheManager collects
DAG information and instantiates a new distributed component
iBlockManager on that givers correspondingly. iBlockManager
will send a request to BlockManagerMasterEndpoint (BMME)
to preserve the prioritized RDD partitions. So these partitions
can be preserved to receivers according to the scheduling
decision. iBlockManager then responds whether there are more
RDD blocks to be preserved. If all RDD partitions have been
preserved, iCacheManager will inform iController that the
executor can be removed safely. EAM will further release that
executor and update the RDD information to DAG scheduler
and task scheduler. If iBlockManager finds that there are more
data partitions, iBlockManager will keep preserving process.

2) RDD Preservation: Once the resource provisioning is
determined, task scheduler is performed to assign individual
tasks to each executor. To make our proposed architecture
compatible with default task scheduling policies, we let
iBlockManager to preserve the RDD partitions from the ex-
ecutors and avoid data inconsistency. Considering the limited
memory space, iSpark leverages both the metrics from Monitor
and the DAG information generated by task scheduler for
selecting the best candidates. Here we introduce a DAG-aware
preservation policy to utilize memory efficiently.

Spark typically divides a job into several stages based
on RDD dependencies, and submits the stages one by one.
Each stage has a group of tasks that concurrently execute the
computation. These tasks are generated based on different lo-
calities of RDD partitions. In iSpark, iCacheManager obtains
RDD dependencies via the metrics from iMetricsCollector.
iBlockManager then associates this information to support
partition-level preservation. Thus, in each stage of a job, we
have a collection of tasks with their dependent RDDs and
refer these partitions as VIP (Very Important Partitions).
When implementing a remove request, iBlockManager firstly
scans the current RDDs cached in memory on the executors
to be removed. As shown in Figure 7, it will prioritize VIP
partition 1 to be preserved from giver to receiver according
to the demand of future stages. If there is no more available
VIP, iSpark preserves the RDDs with highest partition ID,

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I
WORKLOADS USED IN EVALUATION.

Workload PageRank | GBT | LDA
Input data size(GB) 22.8 324 | 25.6
Fraction 40% 30% | 30%

which is based on the observation that Spark assigns tasks
according to the partition ID in an ascending order. The goal
of this policy is to utilize RDD dependency information to
achieve better memory utilization and avoid additional I/O
overhead. The second scenario happens in receivers when the
cache storage is full or has not sufficient space. To remedy this,
we have to utilize limited storage memory space to hold the
incoming partitions. iSpark evicts partitions whose dependent
stages have finished before spilling others. As shown in this
example, partition 5 of RDD B will be evicted, i.e., spilled to
hard disk by default. Then partition 1, which belongs to RDD
A, will be moved to receiver to ensure the data consistency.

D. Implementation

iMetricCollector: We use two lightweight system-level
tools psutil and MemoryMXBean in Linux to implement the
monitor. The monitor at each worker communicates with the
tMetricCollector at the master node via RPC. The data
points for training the models are gathered from the class
shuffleReadMetrics in TaskMetrics file.

iController We modify maxNumExecutorsNeeded() func-
tion to implement the provisioning strategy. For the preemp-
tion, we add a function in ExecutorAllocationClient.scala file
to mark executors to be shut down. We invoke the API
doKillExecutors to preempt specific executors.

iCacheManger: We add a new file iCacheManager.scala
to implement the component iCacheManager. The API
prePartition() will request iBlockManager to preserve RDD
partitions based on the source and destination list provided
by iController. While preserving the RDD partitions, we
implement checkMem() to check if there is enough memory
space on destination executors.

iBlockManager: We add a new class preemptID to repre-
sent the executors to be preempted, which can not accept any
partition from others. We add a new API preserveRDDBlock()
in BlockManagerMasterEndpoint.scala files to implement the
preservation process.

IV. EVALUATION
A. Experiment Setup

The evaluation testbed consists of 9 nodes, each of which
has Intel Xeon(R) CPU E5-2630v4@2.20GHz x 20 and 64GB
DDR3 RAM, running Ubuntu 16.04 LTS operating system
with kernel version 4.0, Scala 2.10.0, and Hadoop YARN
2.8.0 for cluster management. One node serves as the master,
and all the other 8 nodes serve as slaves. These nodes are
connected with Gigabit Ethernet. Each executor is configured
with a bunch of {I core, 2G RAM} resources. To test our

419

0.8 1 Y

L Vanilla Spark

—-iSpark 0.8
0
140 5 10 15 20 25 30 35
Improvement on makespan (%)

07 &
it (W1
#ioaladepa .
T T AR A ahal 0.6
8 Y UR AN e A w
si Pk AR i e
= Vi yyve Lty ‘.."V‘.V ©44
-9-PageRank
GBT

0.2
0.3 -+LDA

0 20 40 60 80
Timeline (min)

100 120

(a) Cluster CPU utilization compari- (b) The CDFs of improvement on
son between iSpark and Vanilla Spark makespan of iSpark vs. Vanilla Spark

Fig. 8. Performance effectiveness on multiple applications.

prototype, we use three workloads from the HiBench big data
benchmarking suite [8], which are commonly used in existing
work. For each workload we use different input data sizes.
In each experiment run, we sequentially submitted a total
number of 120 applications, including PageRank, GBT and
LDA, with 22.8, 32.4 and 25.6 G input data set, as shown in
Table I, whose arrival follows a Poisson process with mean
inter-arrival time of 5 seconds [13]. We compare iSpark with
two existing resource scheduling strategies which are provided
by Vanilla Spark. (1) Static allocation statically reserves CPU
and memory for each executor according to the peak demand,
and launches a fixed number of executors according to user
configuration. (2) Dynamic allocation is a built-in policy,
which can only scale up the number of executors based on the
workload as much as possible. For these policies, we configure
the same number of CPU cores and memory size for each
executor.

B. Analysis on Multiple Applications

Figure 8(a) shows the resource utilization achieved by
Vanilla Spark and iSpark in terms of accumulative cluster
usage, which is an averaged value of all the running workers.
For fairness, the default dynamic allocation policy is enabled
in Vanilla Spark. The results show that iSpark achieves appar-
ent CPU usage increment, with the average CPU utilization
increasing from 32.1% to 51.3%. For Vanilla Spark, the overall
utilization is relatively low from 40th to 80th minutes, which
is mainly caused by starvation. Vanilla Spark requests resource
based on the peak demand, but it steps into trough stages after
the short duration of peak usage and leads low utilization. In
this case, the running application already acquires all desired
resources from the cluster manager, which prevents or delays
other applications to share the cluster resources. Compared
with Vanilla Spark, iSpark can release underutilized resource
in time, which allows more applications running concurrently
in the cluster to minimize the fragmentation.

We further compared the makespan between Vanilla Spark
and iSpark, and the improvement of makespan is shown in
Figure 8(b). Here, makespan is defined as the time elapsed
between application submission and completion. Figure 8(b)
shows that the median reduction of PageRank, GBT and
LDA on makespan is around 20.8%. The improvement on the
makespan results from that iSpark can effectively reduce the
waiting times of those applications pending in the submission

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

N
o

IN
o

[JiSpark vs. Static

—=iSpark ===- Static =~ Dynamic

e
\

.-

N

w
o

—_
o

CPU Utilization %
5
TR
-
~
\’§~
£, e
—
T~
3%
=2
=,
5
Number of Executors
n
o

= iSpark - Static

Dynamic IliSpark vs. Dynamic

w
=]

o

Average Improvement (%)
n
o

:

o
e T -

0 . .
0 1000 2000 3000 1000 2000

Cumulative Time (s)

4000 5000

(a) Utilization traces of LDA

Cumulative Time(s)

(b) Number of executors when running LDA

o

3000 4000 5000 DA

Workloads

PageRank GBT

(c) CPU utilization comparison

Fig. 9. Real-time traces and effectiveness analysis on a single application.

queue. Peak demand based allocation policy in Vanilla Spark
hurts the makespan of applications due to lower cluster utiliza-
tion, and it keeps other applications in the waiting queue for
longer time. Compared with Vanilla Spark, iSpark can make
the underutilized resources available for pending applications,
resulting in shorter makespan.

C. Analysis on a Single Application

To further evaluate the effectiveness of the proposed pro-
visioning policy, we specifically investigate the real-time
traces of CPU utilization and number of executor dur-
ing running LDA workload by profiling the execution log
files. We measure and plot the averaged CPU utilization of
all the running executors as shown in Figure 9(a). Here,
we define the CPU utilization for a single application as
actual ORI Time,100%. We compare iSpark with Vanilla
Spark under the default static and dynamic allocation policies.
The results in Figure 9(a) show that the average utilizations of
the default static and dynamic allocation are 43.2% and 41.5%
respectively. Figure 9(b) further verifies our previous investi-
gation in case study that these two policies in Vanilla Spark
are both peak demand based. They over-allocate CPU cores
and can not reclaim the under-utilized resources even though
the utilization decreases obviously after 900th second in the
job duration. The average CPU usage is lower than half of the
peak usage and the related duration is nearly 3 times of the
peak duration, resulting the severe resource wastage. However,
compared with Vanilla Spark, there are less resource usage
fluctuations in iSpark, whose average utilization is 58.4%. This
is because iSpark can reduce the reserved CPU resource when
the utilization decreases. We notice that the job execution time
(neglecting the waiting time in queue) is negligibly delayed
by 3% for PageRank application, which are mainly from the
potential resource contention for higher utilization and over-
head from the data preservation. Figure 9(b) also shows that
iSpark can grant sufficient resources earlier than the other two
schemes, which benefits from the polynomial regression model
at the beginning stage. Figure 9(c) further shows the average
utilization improvement of PageRank, GBT and LDA. Here we
define average improvement as “””“geb(f::ﬁ;:“““"e x100%.
Compared with static allocation, the overall resource utiliza-
tion improvement by iSpark are 32.3%, 26.1% and 28.6% for
PageRank, GBT and LDA, respectively. Indeed, the dynamic

420

TABLE II
IMPACT OF DOMINANT FACTOR.
DF vs. CF | average | median | highest
PageRank | 4.2% 4.8% 9.7%
GBT 3.3% 5.2% 8.4%
LDA 4.7% 6.3% 11.2%

allocation is lower efficient than the static allocation as it
starves for more resources at the beginning stages. Compared
to the dynamic allocation, the overall resource utilization by
iSpark achieves higher improvements, i.e., 35.2%, 28.3% and
31.8% for PageRank, GBT and LDA, respectively.

D. Sensitivity Analysis

To evaluate sensitivity of parameter v and &, we use the
PageRank application as workload, and vary v from 20%
to 60% and h from 0.9 to 1.2. Figure 10(a) captures the
effectiveness impacts by varying ~. Here the baseline is Vanilla
Spark with default dynamic allocation policy. The figure shows
that the utilization improvement marginally increases with
the higher /4. The improvement on utilization is 13%, 17%,
24%, 32% and 34% when we set the v as 20%, 30%, 40%,
50% and 60%. Thus, we recommend that the ~ should be
50% in case of variability of workloads and frequent resource
reallocation. Figure 10(b) and 10(c) show the sensitivity of
the parameter 4. When % is set to be 0.9, 1.0 and 1.1, the
corresponding task failure is less than 1.0%. However, when
we increase & to 1.2, task failure grows to 2.9% because of
resource under-provision. We also evaluate the impact of 4 in
terms of Job Completion Time (JCT). Here the baseline is h=1.
We measure the value % and plot it in Figure 10(d).
When & equals 1.2, the job execution is delayed to 1.3 times
of baseline, which is mainly caused by task failure. When
we drop 4 to 0.9, the job execution is also delayed, which is
mainly caused by a higher percentage of executors involving
in resource reprovisoning 10(c), which takes a large portion
of time to request new executors [14].

E. Effectiveness of Dominant Factor

To evaluate the effectiveness of dominant factor, we com-
pare the job completion time between iSpark with dominant

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

a
3z
o

S
)
S

w

[

)
3

Improvement on Utilization(%)
8
Task Failure(%)

@

S

@
w

S}

~

Percentage of Reprovisioning (%)
=
Impact on JCT (%,

0
30 40 50 60 0.9
Varying Threshold(%)

"=
S

0.95 1 1.05 11

Varying h

1.15

(a) Average utilization. (b) Percentage of task failures

S

0.9
1.15 12 0.9 1 11 12
Varying h

(d) Impact on JCT

oo
©
o
©
&

1 105 1.1
Varying h

(c) Percentage of reprovisioning

Fig. 10. Sensitivity analysis on varying threshold ~ and parameter /.

==

80
60
40 -
20

ot —_—

Processing Time (s)

=

Static W/o preservation W/i preservation

Fig. 11. Evaluation on overhead and effectiveness of preservation.

factor (DF) and iSpark with CPU factor only (CF). Here,
CF means it only takes each executor’s CPU capacity into
consideration when we apply the BFDP algorithm to minimize
the number of executors. Table II shows that dominant factor
scheduling can achieve the average and median improvement
on Job Completion Time (JCT) at 4.2% and 4.8% for PageR-
ank, 3.3% and 5.2% for GBT, 4.7% and 6.3% for LDA,
respectively. Compared with the dominant factor, the CPU
factor approach reclaims the underutilized resources much
more aggressively, which neglects the possible bottleneck by
memory resource. It’s aggressiveness invokes more resource
reprovisioning to make up the possible under-provision, which
takes a noticeable amount of time to request and ramp up new
executors and degrades the job performance correspondingly.

F. Overhead and Effectiveness of Preemption

To evaluate the effectiveness of executor preemption, we
run two wordcount applications in an interleaved way and
only evaluate the action phase, in which the result stage
needs to perform operations on cached intermediate data. Each
application starts with 8 executors initially. We elastically
change the number of executors between 4 and 32. Here,
we set the processing period for each application to Is,
which means that every second only one application can be
executed. Then the CPU utilization of executors occupied
by another application is 0. Under the dynamic allocation
modes, the executor number will be reduced to 4 when CPU
usage is 0. Figure 11 shows that elastic provisioning with
disabled iCacheManager is much worse than the other two
modes in terms of processing time. The reason is that some
intermediate data results have been lost, which needs averagely
88 seconds to recompute these intermediate data. However,
iSpark with preservation component only accounts 3 to 5
seconds compared to the static policy, which demonstrates that

421

[CJRandom [ZJDAG-aware

0.8

0.6

CDF

0.4

RDD Cache Hit Ratio (%)

20 02

2 4 6 2 4 6 8 10
Varying Memory Size (GB) Improvement on JCT(%)

(a) Impact on Cache Hit Ratio (b) Impact on JCT

Fig. 12. Effectiveness of DAG-Aware Policy.

the proposed component can ensure the data consistency with
minor preservation overhead.

G. Effectiveness of DAG-aware Policy

To evaluate the effectiveness of DAG-aware block preserva-
tion policy, we run SVM application with 32G input dataset.
We compare the performance achieved by iSpark with DAG-
aware policy and iSpark with random selection policy sep-
arately. We keep the fraction of storage memory as default
value, i.e., 0.6, but vary the configured memory size of
individual executors from 2G to 6G. As shown in Figure 12(a),
DAG-aware policy performs better than the random selection
policy in terms of cache hit ratio. The cache hit ratio of
random selection policy is 68% and 84% when the memory
size is 2G and 4G respectively. In contrast, the proposed DAG-
aware policy can improve the cache hit ratio to 92% and 98%,
respectively. This is due to the fact that the DAG-aware policy
can reserve the limited memory space for the data with higher
priority with the help from RDD dependency information.
There is no apparent difference while given sufficient memory
space. The reason is that there is enough memory to cache all
the intermediate data. We further evaluate the effectiveness
of DAG-aware policy in terms of JCT when the memory of
executor is configured to 2G. Figure 12(b) shows the reduction
on JCT achieved by iSpark with DAG-aware policy is 5.2%
compared to random selection policy. This result shows that
DAG-aware policy can efficiently utilize the limited memory
space when preserving the RDD partitions.

V. RELATED WORK

Many popular cluster schedulers primarily focus on re-
source fairness [7], cluster utilization [12] or resource reserva-
tions [17]. Recently, capacity scheduling [1] is proposed to ful-

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

fill an efficient quota-based resource sharing among multiple
jobs. The objective is the enforcement of scheduling invariants
for heterogeneous applications, with policing/security utilized
to prevent excessive resource occupation. Although these
works achieve higher cluster utilization in practice, they cannot
cope well with Spark executors which execute the entire DAG
of applications. Furthermore, most of these works only focus
on initial allocation of resources, which cannot dynamically
provision resources at runtime for those applications with
time-varying demands.

There are some recent works to optimize the scheduling of
long-running processes, i.e. executors. Prophet [18] performs
executor scheduling to fully match the demand of applications
with the available resources. Morpheus [10] automatically
assigns resources for jobs based on the historical data to
meet application’s demand. MEDEA [6] targets at making
good placement decisions of long-running processes. However,
both Prophet and Morpheus cannot dynamically adjust the
computing resource amounts at runtime. They do not cope
well with Spark since they may require additional launching
and computational cost if any reallocation happens. MEDEA
works well for task placement but does not consider the
possible time-varying resource usage of applications during
runtime. Our work differs from these researches in that we dy-
namically provision the executors of Spark without additional
launching and computational cost if any reallocation happens.

In particular, Elasecutor [11] and PAF [3] focus the dynamic
resource demands of workloads. Elasecutor elastically resizes
executors to avoid over-allocation, and places executors strate-
gically to minimize resource fragmentation. However, it may
not guarantee the original submission order of jobs and fur-
ther affect the fairness among jobs. Considering the resource
elasticity, PAF starts with the fair allocation policy and then
judiciously adjusts it by iteratively transferring resources from
one job to another, so as to improve resource utility. However,
it cannot cope with the diminishing resource demand within
each application. SLAQ [22] is another quality-driven schedul-
ing system designed for large-scale iterative training jobs. The
scheduler automatically predicts the resource consumption and
adjusts allocation to achieve better quality. It aims to improve
the throughput and speed up the convergence of a single job. In
contrast, iSpark aims to improve the performance of multiple
iterative applications and the overall cluster utilization.

VI. CONCLUSION

In this paper, we focus on iterative workloads running on
Apache Spark with diminishing resource demands during the
job duration. We identify the causes of resource underutiliza-
tion due to inflexible resource policy. To this end, we propose
a flexible utilization aware executor provisioning approach
to elastically adjust the allocated executors according to the
real-time resource usage. iSpark preempts the underutilized
executors and preserves the cached intermediate data from
them to ensure the data consistency. Testbed evaluations
demonstrate that iSpark improves the resource utilization of
individual executors 35.2% compared to vanilla Spark. At the

422

same time, it increases the cluster utilization from 32.1% to
51.3% and effectively reduces the overall job completion time
by 20.8% for a set of representative iterative applications.

ACKNOWLEDGEMENT
This work was supported by NSF grant CCF-1908843.

REFERENCES
(1]
(2]

Hadoop: Capacity scheduler. https://hadoop.apache.org/docs/stable/hadoop-
yarn/hadoop-yarn-site/CapacityScheduler.html.

Spark dynamic allocation policy. https://spark.apache.org/docs/latest/job-
scheduling.html.

C. Chen, W. Wang, and B. Li.
Exploiting demand elasticity of data analytics jobs.
INFOCOM, 2018.

Y. Cho, C. A. C. Guzman, and B. Egger. Maximizing system utilization
via parallelism management for co-located parallel applications. In Proc.
of PACT. ACM, 2018.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 2008.

P. Garefalakis, K. Karanasos, P. R. Pietzuch, A. Suresh, and S. Rao.
Medea: scheduling of long running applications in shared production
clusters. In Proc. of ACM EuroSys, 2018.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-grained
resource sharing in the data center. In Proc. of USENIX NSDI, 2011.
S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench
benchmark suite: Characterization of the mapreduce-based data analysis.
In Proc. of IEEE ICDEW, 2010.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg. Quincy: fair scheduling for distributed computing clusters. In Proc.
of ACM SOSP, 2009.

S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tu-
manov, J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, et al.
Morpheus: Towards automated slos for enterprise clusters. In Proc. of
USENIX OSDI, 2016.

H. X. Libin Liu. Elasecutor: Elastic executor scheduling in data analytics
systems. In Proc. of ACM SoCC, 2018.

K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker. Monotasks:
Architecting for performance clarity in data analytics frameworks. In
Proc. of SOSP. ACM, 2017.

K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and
V. ICSI. Making sense of performance in data analytics frameworks. In
Proc. of USENIX NSDI, 2015.

A. Pi, W. Chen, X. Zhou, and M. Ji. Profiling distributed systems in
lightweight virtualized environments with logs and resource metrics. In
Proc. of IEEE IPDPS, 2018.

P. Pinyoanuntapong, M. Lee, and P. Wang. Delay-optimal traffic
engineering through multi-agent reinforcement learning. In 20/9 IEEE
INFOCOM Workshop: NI 2019, 2019.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proc. of ACM SoCC, 2012.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache hadoop
yarn: Yet another resource negotiator. In Proc. of ACM SoCC, 2013.
G. Xu, C.-Z. Xu, and S. Jiang. Prophet: Scheduling executors with time-
varying resource demands on data-parallel computation frameworks. In
Proc. of IEEE ICAC, 2016.

D. Yang, W. Rang, and D. Cheng. Joint optimization of mapreduce
scheduling and network policy in hierarchical clouds. In Proc. of ICPP.
ACM, 2018.

M. Yue. A simple proof of the inequality ffd (1) 11/9 opt (1)+ 1, 1 for the
ffd bin-packing algorithm. Acta mathematicae applicatae sinica, 1991.
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. Proc. of USENIX Hot-
Cloud, 2010.

H. Zhang, L. Stafman, A. Or, and M. J. Freedman. Slaq: quality-driven
scheduling for distributed machine learning. In Proc. of ACM SoCC,
2017.

Performance-aware fair scheduling:
Proc. of IEEE
(41

(5]
(el

(7]

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

