
Elastic Executor Provisioning for Iterative
Workloads on Apache Spark

Donglin Yang, Wei Rang, Dazhao Cheng

University of North Carolina, Charlotte

dyang33, wrang, dazhao.cheng@uncc.edu

Yu Wang

Temple University

wangyu@temple.edu

Jiannan Tian, Dingwen Tao

The University of Alabama

jtian10@crimson.ua.edu, tao@cs.ua.edu

Abstract—In-memory data analytic frameworks like Apache
Spark are employed by an increasing number of diverse
applications—such as machine learning, graph computation, and
scientific computing, which benefit from the long-running process
(e.g. executor) programming model to avoid system I/O overhead.
However, existing resource allocation strategies mainly rely on
the peak demand normally specified by users. Since the resource
usages of long-running applications like iterative computation
vary significantly over time, we find that peak-demand-based
resource allocation policies lead to low cloud utilization in
production environments. In this paper, we present an elastic
utilization aware executor provisioning approach for iterative
workloads on Apache Spark (i.e., iSpark). It can identify the
causes of resource underutilization due to an inflexible resource
policy, and elastically adjusts the allocated executors over time
according to the real-time resource usage. In general, iterative
applications require more computation resources at the beginning
stage and their demands for resources diminish as more iterations
are completed. iSpark aims to timely scale up or scale down
the number of executors in order to fully utilize the allocated
resources while taking the dominant factor into consideration. It
further preempts the underutilized executors and preserves the
cached intermediate data to ensure the data consistency. Testbed
evaluations show that iSpark averagely improves the resource
utilization of individual executors by 35.2% compared to vanilla
Spark. At the same time, it increases the cluster utilization from
32.1% to 51.3% and effectively reduces the overall job completion
time by 20.8% for a set of representative iterative applications.

I. INTRODUCTION

While many data analytic systems [21] are widely ap-

plied to process diverse workloads, various cloud manage-

ment systems [17] are designed to effectively allocate physi-

cal resources according to underlying resource requirements.

However, substantial disparities between the resource usage

requested by jobs and the actual system resource utilization

still exist in production clouds. Industrial studies [16] from

Twitter and Google show that typical disparities are around

53% for CPU while the actual CPU utilization is only be-

tween 20% and 35%. Although many resource control policies

have been proposed to improve the cloud resource utilization

with different techniques, e.g., resource provisioning [17], job

scheduling [11][19] and load balance [6][15], most of them

focus on multi-process programming models like MapRed-

cue [5], in which task is the basic scheduling unit. They often

optimize the resource allocation via resizing containers or

VMs (Virtual Machines), where JVMs (Java Virtual Machines)

are launched to execute the computation of tasks. Then,

different tasks are executed by different processes so that

each JVM can initiate a new process with flexible resource

allocation. However, compared to multi-process programming

models, Apache Spark, one of the most popular in-memory

data analytics platform, utilizes multiple threads instead of

multiple processes to achieve parallelism on a single node.

It adopts an executor-based multi-thread programming model.

Different from container or VM, the executor is a long-running

JVM process, in which multiple tasks can be executed con-

currently via multiple threads. It avoids the memory overhead

of several JVMs but leads to individual executors occupying

a large amount of resources over a long time, which makes

traditional dynamic resource control techniques for multi-

process programming models inefficient in Spark.

Apache Spark’s unique programming model provides in-

termediate data consistency in memory between computation

tasks, which eliminates significant amount of disk I/Os and

reduces data processing times. In particular, Spark runtime

outperforms Hadoop runtime by more than ten times for ma-

chine learning or iterative applications [21]. This is the reason

why iterative computations are increasingly common on data-

parallel clusters. However, the diverse resource consumption

patterns of various iterative tasks potentially result in mismatch

in cluster resource usage, which should be handled properly.

In particular, the data processing of many iterative applications

is typically iterative with diminishing return [22][3]. In partic-

ular, it requires more computation resource at the beginning

and then the demands for resource diminish as more iterations

are completed. However, most existing policies primarily focus

on resource fairness or load balance, which are agnostic to the

real-time resource demand and job runtime.

Indeed, Spark applies peak demand based policies to allo-

cate resources i.e., number of executors. The static allocation

policy reserves resources upfront, while the dynamic allocation

policy simply requests resources as much as application’s

demands. In both scenarios, these long-running executors keep

alive until the entire Directed Acyclic Graph (DAG) is finished.

In other words, they will hold all the requested resources

once allocated to the job, though the job’s demand may

diminish in the later stages. A few recent studies [4] try

to dynamically change the parallelism within each stage to

improve the resource utilization. Unfortunately, they do not978-1-7281-0858-2/19/$31.00 c©2019 IEEE
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fundamentally address the underutilization problems when the

long-running application requires time-varying resources. This

disparity causes the formation of idle resources, producing

inefficient cluster resource usage and an inability to provision

computing services.

Many existing studies [11][3][10] have shown that dy-

namically tuning resources at runtime can effectively uti-

lize computation resources and reduce resource contention.

However, it is challenging to exploit time-varying resource

demands of various iterative workloads on Apache Spark.

First, resource allocation would be counterproductive while

lacking accurate accounting information of the resource usage

in the default system. Most existing schedulers [9] assign

resources based on the peak demand estimation, which can

not capture the real-time resource usage and further lead

to resource underutilization. In contrast, an ideal scheduler

should provision cluster resources in a timely manner if any

resource under-utilization is detected during runtime. However,

it is still difficult to decide the number of allocated executors

and which executor to be evicted from the running list facing

time-varying multi-resource demand across different stages.

Second, it is necessary to ensure the data consistency when

applying elastic resource scheduling strategies, e.g. adding

and removing executors. In particular, removing running ex-

ecutors directly may cause the re-computation of lost data,

which is a significant overhead to in-memory data analytics

computation. To tackle the aforementioned challenges, we

present an automated utilization aware executor provisioning

approach for long-running iterative workloads on Apache

Spark (i.e., iSpark). It monitors the real-time resource usage

for individual executors and flexibly scales up or down the

allocated resources to best fit the application’s demand, i.e.,

minimizing the resource slack in the cluster. iSpark further

preserves the cached intermediate result on the underutilized

executors before removing them to ensure consistency. This

policy can effectively avoid the additional overhead caused

by implementing the scaling down decisions. Specifically, this

paper makes the following contribution1:

• We empirically study and demonstrate the time-varying

resource demand of iterative workloads running on

Apache Spark. We find that the demands for resources

of iterative applications are high at the beginning stage

while diminishing in the later stages as more iterations

are completed.

• We propose iSpark, an elastic executor management

framework compatible with Apache Spark. It monitors

the real time resource usage and adjusts the allocated

resource strategically at runtime to capture varying work-

load demands and improve cluster utilization.

• We design and implement a new component with adaptive

policy to preempt the underutilized executors gently. It

preserves the cached intermediate data from underutilized

executors to ensure the data consistency.

1The source code is available at https://github.com/Young768/iSpark.

• We evaluate iSpark based on the representative workloads

from HiBench [8]. Our results demonstrate that iSpark

improves cluster’s CPU utilization by 29% compared to

default Spark resource allocation policies and effectively

reduces the overall job completion time 20.8%.

The rest of this paper is organized as follows. Section II

gives background and motivations on resource allocation.

Section III describes the detailed system design and embedded

resource scheduling algorithm. Section IV presents experi-

mental results. Section V reviews related work. Section VI

concludes the paper.

II. MOTIVATION

A. Background

Spark currently applies two peak demand based policies

(i.e., static and dynamic allocation models) to allocate re-

sources for task execution. In the mode of static allocation,

users control the amount of application resource by config-

uring the number of executors. The application reserves CPU

and memory resources over the full job duration. The dynamic

allocation can only increase the number of executors simply

to meet the peak demand of workloads until it reaches the

upper number set by users. Note that the executor can exit

only when the corresponding process becomes idle in both

scenarios. Obviously, these peak demand based strategies in

Apache Spark may lead to severe resource wastage when the

application’s resource usage varies significantly in different

stages. Extremely, the idle executors are not allowed to be shut

down because of the cached intermediate data on them. Other-

wise, it will incur additional overhead by re-computation [2].

Thus, a more fine-grained and holistic design is expected for

those iterative applications with diminishing resource demand.

B. Empirical Study

To quantify the time-varying resource demand of iterative

workloads, we profile the resource usage of executors by using

the benchmark from HiBench [8]. We conducted a case study

based on a 9-nodes cluster, where 8 nodes serve as slave

nodes and one serves as master node. We configured that each

executor with 2 GB memory and one CPU core. We repeated

each experiment for 10 times and collected the average data.

1) Diminishing Demand of Iterative Processing: Firstly,

we study the resource demand nature of iterative applications

under the default static resource allocation policy. In the

experiment, we set the number of executors to be 8. We ran

a number of iterative applications provided in HiBench [8],

including LDA, SVM, PageRank and KMeans. Figure 1(a)

shows the accumulative job progress achieved with the stati-

cally allocated resources. The result also shows that it takes

20% time for the SVM job to achieve progress by 90%,

and 80% time to further finish training. The other three

applications also exhibit similar features: the first several

iterations generally boost the job progress very quickly. These

features can be explained as the law of diminishing return,

which has been applied in many other data analytic systems

in addition to machine learning [22]. It implies that the
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Fig. 1. Empirical study results of iterative job progress analysis, accumulative CPU usage and time-varying CPU utilization on executors.

iterations in later stages may result in marginal performance

if still given the same amount of computational resources.

To further demonstrate our observations, we collect the real-

time CPU utilization trace of the cumulative CPU usage

across all machines, which is illustrated in Figure 1(b). The

results confirm that the CPU usage for iterative application is

quite high at the beginning, which is nearly close to 80%.

As the iterative processes going on, the CPU usage drops

to below 30%. The above observations demonstrate that the

default resource allocation is inefficient as they are agnostic

to the actual resource demand within each job. Thus, we

find an opportunity here that deallocating the resources from

these applications in the later stages may not affect their

performance but result in higher resource efficiency.

2) Underutilized Executors: We further enabled the dy-

namic allocation policy and set the maximum number of

executors to be 32. We depicted the number of executors

against time in Figure 1(c) and recorded the corresponding

average CPU utilization at time M and N in Figure 1(d). It

shows that the number of executors increased exponentially

at the beginning stage until it reached the upper bound. The

dynamic allocation policy allows Spark to request executors in

rounds (i.e. stages), which is triggered when there are pending

tasks backlogged for more than the duration set by user. The

result in Figure 1(c) also demonstrates the effectiveness of

such scaling up resource control policy. Figure 1(d) shows

the average CPU usage at time M and N on four selected

executors for PageRank application. The result illustrates that

the average CPU usage achieves nearly 70% at stage M.

However, the average CPU usage decreases to 30% at stage

N, which is lower than half of peak value at stage M. The

number of executors remained the same even though there

are under-utilized nodes, e.g., exe2 and exe3. These results

demonstrate that the current dynamic allocation policy cannot

evict the under-utilized nodes effectively and lead to severe

resource fragmentation and wastage. A key observation is that

the number of allocated executors should be reduced when

there are under-utilized nodes. The utilization of individual ex-

ecutors should be improved and then the deallocated resources

can be released or utilized by other applications co-hosting in

the cluster.

C. Motivation of Elastic Provisioning

The above observations motivate us that the number of allo-

cated executors should be dynamically tuned during runtime to

Executor1

Executor2

Executor3

Executor4

Task-1

Task-2

Task-3

APP-1 Unused

Task-4

(a) Peak Demand Base Allocation

Executor1

Executor2

Task-1 Task-4

Task-2

APP-1 APP-2

Executor3 APP-2

Executor4 APP-2

Task-3

(b) Utilization Aware Allocation

Fig. 2. A toy example shows different allocation policies.

avoid the resource wastage. This work focuses on the scaling

down policy to handle the under-utilized problem in the later

stage of iterative job execution. We intuitively explain our

proposed scheme via a toy example in Figure 2. Note that

the current dynamic allocation policy only starts to remove

executors if there is no running tasks and cached data on the

executor. The parallelism of the computation will maintain the

initial setting during the runtime. However, for cases where the

computation in the later stage requires less resources, it will

not remove the corresponding executors (e.g. Executor 3 and

4 in Figure 2(a)) though their utilizations are quite low. This is

because of the fact that running tasks and cached data are still

on these underutilized executors. To overcome this problem,

a more aggressive strategy is expected to combine the tasks

running on the under-utilized Executor 3 and 4 into a single

one executor (i.e., Executor 1), resulting in two high-utilized

nodes as shown in Figure 2(b). At the same time, the cached

intermediate data on Executor 3 and 4 should be preserved to

ensure the data consistency. Then these released resource (i.e.,

Executor 3 and 4) can be utilized by other applications or shut

down for energy efficiency.

III. SYSTEM DESIGN

A. Architecture Overview

Figure 3 shows the architecture of iSpark. It includes three

centralized components, i.e., iMetricCollector, iController and

iCacheManager and two distributed mechanisms, i.e., Monitor

and iBlockManager, which are implemented on each partici-

pating executor. The key functionality of iSpark is built on top

of Apache Spark, which can timely scale up or scale down

the number of executors in order to fully utilize the allocated

resources while considering the multiple resource constraints.

From the perspective of workflow, Spark usually launches a

driver program together with a SparkContext object after job
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submssion. Within SparkContext, the proposed new compo-

nent iController, iMetricCollector and iCacheManager are

instantiated along with existing components DAGScheduler

and ExecutorAllocationManager. Then, Spark driver launches

multiple executors across the cluster based on the resource

demand, which will result in Monitor being deployed on

each executor accordingly. We briefly describe the major

components of the new mechanisms in iSpark.

• iMetricCollector collects the real-time information (e.g.

CPU and memory metrics) and the operation logic in-

formation, i.e. RDD dependency, from DAG scheduler.

Monitor will report the resources usage information of

corresponding executors to iMetricCollector periodically

via the system heartbeat.

• iController makes the provisioning decisions based on the

metrics provided by iMetricsCollector, which will further

request ExecutorAllocationManager (EAM) to perform

the provisioning decision in terms of the number of

executors.

• Centralized iCacheManager coordinates with iController

to ensure the data consistency. iCacheManager is re-

sponsible for managing RDDs, which applies DAG-aware

policy to preserve data partitions and updates the related

RDD information to DAG scheduler.

• Distributed iBlockManager replicates the data blocks on

these executors to be removed based on the provision-

ing decision and the DAG-aware policy provided by

iCacheManager.

B. Utilization Aware Executor Provisioning

The resource provisioning policy embedded in iController

aims to minimize the number of allocated executor, and satisfy

the application’s demand at the same time. The dynamic

provisioning procedures of iSpark are based on the utiliza-

tion information collected from the previous iterations of the

running application, which is provided by iMetricsCollector.

We first formulate the proposed resource provisioning problem

and then address it based on the bin packing problem. We

finally transform the multi-dimensional bin packing problem

into the classic packing problem by using a dominant factor

scheduling approach.

1) Problem Statement: For a given workload set, makespan

is the duration between workload submission and completion.

Equivalently, the makespan of applications can be minimized

if all available resources can be fully utilized by applications

along time. To achieve the above goal, iSpark aims to improve

the resource utilization at both application and cluster level in

this problem. In vanilla Spark, a user submits an application

with parallelism of m requesting n executors (normally n ≤

m). Then the cluster manager allocates
n∑
i

Ri resources for a

specific iterative application (Ri is a multi-dimensional vector,

with dimensions representing CPU and memory). We denote

ri as the peak resource request of a task xi allocated on corre-

sponding executor. Currently, vanilla Spark allocates resources

for applications based on their peak demands. Initially, the

allocated resource should satisfy that: G = {xi|
∑

ri ≤
n∑
i

Ri}.

In iSpark, we use ui to represent the estimated utilization of a

task xi running on the hosting machine and Uj to represent the

utilization of executor j. We estimate ui by using the historical

utilization informations from tasks running on workers and

provision sufficient resources at once based on the estimation.

Once an application is submitted at t, let xij denote that

task i will be allocated on executor j and yj be an indicator,

where yj represents that executor j is used. There are three

constraints in the problem formulation as follows. First, at

least one executor should be allocated for the computation

during the job execution:

1 ≤

n∑

j

yj . (1)

Second, iSpark keeps the same parallelism of the application

for the whole duration, which means the number of tasks or

partitions will not be changed during the whole runtime:
∑

j

∑

i

xijyi = m. ∀i, j. (2)

Third, the resource usage of each executor j should not

exceed its capacity. Here, we denote a dynamic threshold (i.e.,

min{θ, Umax}), which enables the system to automatically

adjust its behavior depending on the workload patterns ex-

hibited by the applications. θ represents each executor’s fixed

capacity, which is set as 100% by default. Umax is the highest

usage of executor from previous iterations. This threshold

represents a trade-off between efficiency and performance. On

the one hand, it mitigates the impact from skewness to make

the scheduling more efficient; On the other hand, it ensures

that the system does not run out of resources. Each executor’s

estimated resource usage is ui(t− ti) after the tasks have been

executed since ti. Thus,
∑

i

xijui(t − ti) ≤ yi min{θ,Umax}. (3)

The objective is formulated as below, which aims to maximize

the usage of these allocated executors, i.e, minimizing the
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number of executors to be assigned during the job execution.

min
n∑

i=1

yi,

s.t. (1) (2) (3).

(4)

As the objective function and the constraint (3) are both

nonlinear, it is difficult and computationally expensive to solve

the problem directly. Thus, we introduce a heuristic algorithm

as follows to tackle the aforementioned challenges.

Algorithm 1 Adaptive provisioning

1: update ui via heartbeat from monitor;

2: sort Uj in decreasing order;

3: if there are pending jobs and Uj≤ γ then

4: for task i in taskset do

5: argmax Uj based on DFS;

6: if Uj ≤ min{θ, Umax} then

7: pack task i into executor j;

8: update and sort Uj in decreasing order;

9: remove xi from taskset;

10: end if

11: end for

12: end if

2) Adaptive Provisioning Policy: The optimization problem

defined in Equation (4) can be transferred to a bin packing

problem [20] with variable bin sizes and balls, where bins rep-

resent the executors and balls are the task set to be allocated.

Bin sizes are available capacities of the executors and the size

of balls corresponds to the resource usage of tasks. First, we

draw an analogy with the solution in a one-dimensional space

(both balls and bins). An effective heuristic for such problem

is to repeatedly match the largest ball to fit in the current bin.

When no more balls fit, a new bin will be opened. Intuitively,

this approach reduces the unused space in each bin (i.e.,

reduces fragmentation in our problem) and therefore, reduces

the total number of bins used, which can be equivalent to

minimizing executor number N and fully utilizing the existing

bins. As the bin packing problem is NP-Hard, we then apply a

Best Fit Decreasing Packing (BFDP) algorithm, which requires

no more than ( 11
9
×OPT+1) [20] bins, where OPT is the

number of bins provided by the optimal solution. To efficiently

trigger the algorithm, we introduce a lower bound γ, which

is chosen empirically based on the sensitivity evaluation in

Section IV-D. As shown in Algorithm 1, iSpark adaptively

adjusts resource provisioning when there are pending jobs

in the queue and underutilized executors simultaneously. For

each task to be scheduled, the algorithm tries to pack it into

the executor which has the least available capacity among

all eligible executors, to maximize Uj based on BFDP (as

shown in line 5-8). If it can satisfy the capacity’s constraint

(Eq. 3), the task will be packed into that executor directly.

If not, the algorithm will keep searching for executor with

enough available resources. After this, the executor will be

classified into two categories: receivers or givers. Givers are

�	


Executor A
�	


Executor B
�	


Executor C

(a) CPU Usage

�	�

Executor A

�
�

Executor B Executor C
�	��	� �
� �	�

(b) Memory Usage

Fig. 4. An example of dominant factor from the view of CPU and memory.

defined as those executors who will give up their execution

mission for the remaining stages and release the underutilized

resource according to the new placement decisions. Receivers

are defined as running executors who will be oversubscribed

by tasks from givers for the remaining iterations to fully use

resource slack. The task assignment results (as shown in line

7) and related Uj will be updated repeatedly until all the tasks

have been scheduled.

Unfortunately, BFDP algorithm typically focuses on solving

one-dimensional packing problem. To solve our problem for

multiple resources, we transform the multi-dimensional bin

packing problem into the classic packing problem by using

Dominant Factor Scheduling (DFS) approach. For instance,

if we simply apply BFDP algorithm to pursue an optimal

number of executors to fully utilize CPU cores, it may be

too greedy and introduce high contention for other resources,

such as memory. Intuitively, as shown in Figure 4, we use

an example to explain how DFS works. There are three

running executors, whose CPU usage are 30%, 30% and 10%,

and memory usage are 40%, 45% and 20%, respectively. If

we schedule the resources by applying BFDP based on the

CPU usage, the optimal solution would be to pack the tasks

from both executors B and C into A, resulting in that the

estimated utilization of executor A will be around 70% in the

following stages. However, from the perspective of memory,

it is highly possible that the memory usage of executor A

will be overloaded (105%), causing the tasks failure in the

following stages, which is unacceptable. In this case, CPU

is actually a soft constraint (task is slower than expected

with higher resource usage), but memory should be a hard

constraint (task will fail due to Out of Memory). Thus, it is

better to only pack the tasks from underutilized C into B to

fully utilize the resources slack, avoiding the potential task

failure. Correspondingly, B and C will be the receivers and

givers, respectively. In iSpark, the dominant factor is defined

as the bottleneck resource when we pack the task sets into

executors, which ensures that our reallocation will not cause

task failures. As shown in Line 5 of Algorithm 1 , we use the

maximal utilization as the DFS for BFDP. Here, we define

maximal utilization as maximizing 〈Uc
i (t), Um

i (t)〉, where

Uc
i (t) and Um

i (t) are the used memory and CPU at time t.

3) Resource Reprovisioning: Another concern is reclaim-

ing resource slack aggressively (i.e., under-provisioning) may

cause severe resource contention (with possible task fail-

ures). In particular, CPU provisioning can only tolerate over

100% utilization in a short bursty duration and should be

avoided. Thus, the resource reprovisioning is necessary when

the average resource utilization keeps higher than h times
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of the expected upper threshold for one monitoring epoch.

For example, as shown in Figure 5, the CPU usages of both

executor A and B are underutilized before time t. However,

the scaling down policy leads the executor overloaded after

the executor A is removed directly at time t. To avoid

these cases, we set h to 1.1 for CPU usage specifically,

which is experimentally determined to balance application

performance and resource utilization. The detailed sensitivity

analysis is discussed in Section IV-D. In each provisioning

interval, we update the threshold min {θ, Umax} based on the

latest information. To prevent disastrous task failures caused

by resource demand variation, the reprovisioning action is

required if any executor’s actual utilization is larger than

h×min {θ, Umax}. Then iSpark requests one more executors

by extending the existing scaling up policy. This heuristic

allows iSpark to quickly correct resource provisioning decision

to avoid overloaded workers.

C. Preempt Executors Gently

1) Data Consistency in iSpark: Due to the consistency

semantics of RDD, if any intermediate data from previous

iterations has not finished or been lost (due to removing

running executors), Spark will not automatically use these

cached RDDs for the following computations. Therefore, iS-

park introduces a new automatic mechanism iCacheManager

to entail that some RDD partitions need to be preserved when

the provisioning is triggered. It leverages the DAG information

generated by the task scheduler for selecting preservation

candidates. After the preservation, iCacheManager will inform

the DAG scheduler to update RDD information. With this

functionality, iSpark can safely implement the resource provi-

sioning decisions while avoiding additional and unnecessary

re-computation overhead.

The key idea of keeping the data consistency is to preserve

the intermediate results in memory before removing a running
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�����������

DAG

�������

�������

�����

�����

���

�
�

�������

�����������

�����������

Fig. 7. An illustration of VIP policy: when stage m is finished, the future
stages have dependency on RDD A while no dependency on RDD B. So
partition 1 is prioritized to be preserved from giver to receiver.

executor, i.e, to preempt a running processes safely. The

detailed procedure is illustrated in Figure 6. Once a remove

request is initiated by iController, iCacheManager creates a

new RPC (Remote Procedure Call) thread, which holds a list of

givers that are being removed. Then iCacheManager collects

DAG information and instantiates a new distributed component

iBlockManager on that givers correspondingly. iBlockManager

will send a request to BlockManagerMasterEndpoint (BMME)

to preserve the prioritized RDD partitions. So these partitions

can be preserved to receivers according to the scheduling

decision. iBlockManager then responds whether there are more

RDD blocks to be preserved. If all RDD partitions have been

preserved, iCacheManager will inform iController that the

executor can be removed safely. EAM will further release that

executor and update the RDD information to DAG scheduler

and task scheduler. If iBlockManager finds that there are more

data partitions, iBlockManager will keep preserving process.

2) RDD Preservation: Once the resource provisioning is

determined, task scheduler is performed to assign individual

tasks to each executor. To make our proposed architecture

compatible with default task scheduling policies, we let

iBlockManager to preserve the RDD partitions from the ex-

ecutors and avoid data inconsistency. Considering the limited

memory space, iSpark leverages both the metrics from Monitor

and the DAG information generated by task scheduler for

selecting the best candidates. Here we introduce a DAG-aware

preservation policy to utilize memory efficiently.

Spark typically divides a job into several stages based

on RDD dependencies, and submits the stages one by one.

Each stage has a group of tasks that concurrently execute the

computation. These tasks are generated based on different lo-

calities of RDD partitions. In iSpark, iCacheManager obtains

RDD dependencies via the metrics from iMetricsCollector.

iBlockManager then associates this information to support

partition-level preservation. Thus, in each stage of a job, we

have a collection of tasks with their dependent RDDs and

refer these partitions as V IP (V ery Important P artitions).

When implementing a remove request, iBlockManager firstly

scans the current RDDs cached in memory on the executors

to be removed. As shown in Figure 7, it will prioritize V IP

partition 1 to be preserved from giver to receiver according

to the demand of future stages. If there is no more available

V IP , iSpark preserves the RDDs with highest partition ID,
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TABLE I
WORKLOADS USED IN EVALUATION.

Workload PageRank GBT LDA

Input data size(GB) 22.8 32.4 25.6

Fraction 40% 30% 30%

which is based on the observation that Spark assigns tasks

according to the partition ID in an ascending order. The goal

of this policy is to utilize RDD dependency information to

achieve better memory utilization and avoid additional I/O

overhead. The second scenario happens in receivers when the

cache storage is full or has not sufficient space. To remedy this,

we have to utilize limited storage memory space to hold the

incoming partitions. iSpark evicts partitions whose dependent

stages have finished before spilling others. As shown in this

example, partition 5 of RDD B will be evicted, i.e., spilled to

hard disk by default. Then partition 1, which belongs to RDD

A, will be moved to receiver to ensure the data consistency.

D. Implementation

iMetricCollector: We use two lightweight system-level

tools psutil and MemoryMXBean in Linux to implement the

monitor. The monitor at each worker communicates with the

iMetricCollector at the master node via RPC. The data

points for training the models are gathered from the class

shuffleReadMetrics in TaskMetrics file.

iController We modify maxNumExecutorsNeeded() func-

tion to implement the provisioning strategy. For the preemp-

tion, we add a function in ExecutorAllocationClient.scala file

to mark executors to be shut down. We invoke the API

doKillExecutors to preempt specific executors.

iCacheManger: We add a new file iCacheManager.scala

to implement the component iCacheManager. The API

prePartition() will request iBlockManager to preserve RDD

partitions based on the source and destination list provided

by iController. While preserving the RDD partitions, we

implement checkMem() to check if there is enough memory

space on destination executors.

iBlockManager: We add a new class preemptID to repre-

sent the executors to be preempted, which can not accept any

partition from others. We add a new API preserveRDDBlock()

in BlockManagerMasterEndpoint.scala files to implement the

preservation process.

IV. EVALUATION

A. Experiment Setup

The evaluation testbed consists of 9 nodes, each of which

has Intel Xeon(R) CPU E5-2630v4@2.20GHz x 20 and 64GB

DDR3 RAM, running Ubuntu 16.04 LTS operating system

with kernel version 4.0, Scala 2.10.0, and Hadoop YARN

2.8.0 for cluster management. One node serves as the master,

and all the other 8 nodes serve as slaves. These nodes are

connected with Gigabit Ethernet. Each executor is configured

with a bunch of {1 core, 2G RAM} resources. To test our

0 20 40 60 80 100 120 140
Timeline (min)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
P

U
 U

til
iz

at
io

n

Vanilla Spark
iSpark

(a) Cluster CPU utilization compari-
son between iSpark and Vanilla Spark

5 10 15 20 25 30 35
Improvement on makespan (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

PageRank
GBT
LDA

(b) The CDFs of improvement on
makespan of iSpark vs. Vanilla Spark

Fig. 8. Performance effectiveness on multiple applications.

prototype, we use three workloads from the HiBench big data

benchmarking suite [8], which are commonly used in existing

work. For each workload we use different input data sizes.

In each experiment run, we sequentially submitted a total

number of 120 applications, including PageRank, GBT and

LDA, with 22.8, 32.4 and 25.6 G input data set, as shown in

Table I, whose arrival follows a Poisson process with mean

inter-arrival time of 5 seconds [13]. We compare iSpark with

two existing resource scheduling strategies which are provided

by Vanilla Spark. (1) Static allocation statically reserves CPU

and memory for each executor according to the peak demand,

and launches a fixed number of executors according to user

configuration. (2) Dynamic allocation is a built-in policy,

which can only scale up the number of executors based on the

workload as much as possible. For these policies, we configure

the same number of CPU cores and memory size for each

executor.

B. Analysis on Multiple Applications

Figure 8(a) shows the resource utilization achieved by

Vanilla Spark and iSpark in terms of accumulative cluster

usage, which is an averaged value of all the running workers.

For fairness, the default dynamic allocation policy is enabled

in Vanilla Spark. The results show that iSpark achieves appar-

ent CPU usage increment, with the average CPU utilization

increasing from 32.1% to 51.3%. For Vanilla Spark, the overall

utilization is relatively low from 40th to 80th minutes, which

is mainly caused by starvation. Vanilla Spark requests resource

based on the peak demand, but it steps into trough stages after

the short duration of peak usage and leads low utilization. In

this case, the running application already acquires all desired

resources from the cluster manager, which prevents or delays

other applications to share the cluster resources. Compared

with Vanilla Spark, iSpark can release underutilized resource

in time, which allows more applications running concurrently

in the cluster to minimize the fragmentation.

We further compared the makespan between Vanilla Spark

and iSpark, and the improvement of makespan is shown in

Figure 8(b). Here, makespan is defined as the time elapsed

between application submission and completion. Figure 8(b)

shows that the median reduction of PageRank, GBT and

LDA on makespan is around 20.8%. The improvement on the

makespan results from that iSpark can effectively reduce the

waiting times of those applications pending in the submission
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Fig. 9. Real-time traces and effectiveness analysis on a single application.

queue. Peak demand based allocation policy in Vanilla Spark

hurts the makespan of applications due to lower cluster utiliza-

tion, and it keeps other applications in the waiting queue for

longer time. Compared with Vanilla Spark, iSpark can make

the underutilized resources available for pending applications,

resulting in shorter makespan.

C. Analysis on a Single Application

To further evaluate the effectiveness of the proposed pro-

visioning policy, we specifically investigate the real-time

traces of CPU utilization and number of executor dur-

ing running LDA workload by profiling the execution log

files. We measure and plot the averaged CPU utilization of

all the running executors as shown in Figure 9(a). Here,

we define the CPU utilization for a single application as
actual CPU Time

reserved CPU Time
×100%. We compare iSpark with Vanilla

Spark under the default static and dynamic allocation policies.

The results in Figure 9(a) show that the average utilizations of

the default static and dynamic allocation are 43.2% and 41.5%

respectively. Figure 9(b) further verifies our previous investi-

gation in case study that these two policies in Vanilla Spark

are both peak demand based. They over-allocate CPU cores

and can not reclaim the under-utilized resources even though

the utilization decreases obviously after 900th second in the

job duration. The average CPU usage is lower than half of the

peak usage and the related duration is nearly 3 times of the

peak duration, resulting the severe resource wastage. However,

compared with Vanilla Spark, there are less resource usage

fluctuations in iSpark, whose average utilization is 58.4%. This

is because iSpark can reduce the reserved CPU resource when

the utilization decreases. We notice that the job execution time

(neglecting the waiting time in queue) is negligibly delayed

by 3% for PageRank application, which are mainly from the

potential resource contention for higher utilization and over-

head from the data preservation. Figure 9(b) also shows that

iSpark can grant sufficient resources earlier than the other two

schemes, which benefits from the polynomial regression model

at the beginning stage. Figure 9(c) further shows the average

utilization improvement of PageRank, GBT and LDA. Here we

define average improvement as average load−baseline
baseline

×100%.

Compared with static allocation, the overall resource utiliza-

tion improvement by iSpark are 32.3%, 26.1% and 28.6% for

PageRank, GBT and LDA, respectively. Indeed, the dynamic

TABLE II
IMPACT OF DOMINANT FACTOR.

DF vs. CF average median highest

PageRank 4.2% 4.8% 9.7%

GBT 3.3% 5.2% 8.4%

LDA 4.7% 6.3% 11.2%

allocation is lower efficient than the static allocation as it

starves for more resources at the beginning stages. Compared

to the dynamic allocation, the overall resource utilization by

iSpark achieves higher improvements, i.e., 35.2%, 28.3% and

31.8% for PageRank, GBT and LDA, respectively.

D. Sensitivity Analysis

To evaluate sensitivity of parameter γ and h, we use the

PageRank application as workload, and vary γ from 20%

to 60% and h from 0.9 to 1.2. Figure 10(a) captures the

effectiveness impacts by varying γ. Here the baseline is Vanilla

Spark with default dynamic allocation policy. The figure shows

that the utilization improvement marginally increases with

the higher h. The improvement on utilization is 13%, 17%,

24%, 32% and 34% when we set the γ as 20%, 30%, 40%,

50% and 60%. Thus, we recommend that the γ should be

50% in case of variability of workloads and frequent resource

reallocation. Figure 10(b) and 10(c) show the sensitivity of

the parameter h. When h is set to be 0.9, 1.0 and 1.1, the

corresponding task failure is less than 1.0%. However, when

we increase h to 1.2, task failure grows to 2.9% because of

resource under-provision. We also evaluate the impact of h in

terms of Job Completion Time (JCT). Here the baseline is h=1.

We measure the value actual JCT
baseline

and plot it in Figure 10(d).

When h equals 1.2, the job execution is delayed to 1.3 times

of baseline, which is mainly caused by task failure. When

we drop h to 0.9, the job execution is also delayed, which is

mainly caused by a higher percentage of executors involving

in resource reprovisoning 10(c), which takes a large portion

of time to request new executors [14].

E. Effectiveness of Dominant Factor

To evaluate the effectiveness of dominant factor, we com-

pare the job completion time between iSpark with dominant
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factor (DF) and iSpark with CPU factor only (CF). Here,

CF means it only takes each executor’s CPU capacity into

consideration when we apply the BFDP algorithm to minimize

the number of executors. Table II shows that dominant factor

scheduling can achieve the average and median improvement

on Job Completion Time (JCT) at 4.2% and 4.8% for PageR-

ank, 3.3% and 5.2% for GBT, 4.7% and 6.3% for LDA,

respectively. Compared with the dominant factor, the CPU

factor approach reclaims the underutilized resources much

more aggressively, which neglects the possible bottleneck by

memory resource. It’s aggressiveness invokes more resource

reprovisioning to make up the possible under-provision, which

takes a noticeable amount of time to request and ramp up new

executors and degrades the job performance correspondingly.

F. Overhead and Effectiveness of Preemption

To evaluate the effectiveness of executor preemption, we

run two wordcount applications in an interleaved way and

only evaluate the action phase, in which the result stage

needs to perform operations on cached intermediate data. Each

application starts with 8 executors initially. We elastically

change the number of executors between 4 and 32. Here,

we set the processing period for each application to 1s,

which means that every second only one application can be

executed. Then the CPU utilization of executors occupied

by another application is 0. Under the dynamic allocation

modes, the executor number will be reduced to 4 when CPU

usage is 0. Figure 11 shows that elastic provisioning with

disabled iCacheManager is much worse than the other two

modes in terms of processing time. The reason is that some

intermediate data results have been lost, which needs averagely

88 seconds to recompute these intermediate data. However,

iSpark with preservation component only accounts 3 to 5

seconds compared to the static policy, which demonstrates that
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Fig. 12. Effectiveness of DAG-Aware Policy.

the proposed component can ensure the data consistency with

minor preservation overhead.

G. Effectiveness of DAG-aware Policy

To evaluate the effectiveness of DAG-aware block preserva-

tion policy, we run SVM application with 32G input dataset.

We compare the performance achieved by iSpark with DAG-

aware policy and iSpark with random selection policy sep-

arately. We keep the fraction of storage memory as default

value, i.e., 0.6, but vary the configured memory size of

individual executors from 2G to 6G. As shown in Figure 12(a),

DAG-aware policy performs better than the random selection

policy in terms of cache hit ratio. The cache hit ratio of

random selection policy is 68% and 84% when the memory

size is 2G and 4G respectively. In contrast, the proposed DAG-

aware policy can improve the cache hit ratio to 92% and 98%,

respectively. This is due to the fact that the DAG-aware policy

can reserve the limited memory space for the data with higher

priority with the help from RDD dependency information.

There is no apparent difference while given sufficient memory

space. The reason is that there is enough memory to cache all

the intermediate data. We further evaluate the effectiveness

of DAG-aware policy in terms of JCT when the memory of

executor is configured to 2G. Figure 12(b) shows the reduction

on JCT achieved by iSpark with DAG-aware policy is 5.2%

compared to random selection policy. This result shows that

DAG-aware policy can efficiently utilize the limited memory

space when preserving the RDD partitions.

V. RELATED WORK

Many popular cluster schedulers primarily focus on re-

source fairness [7], cluster utilization [12] or resource reserva-

tions [17]. Recently, capacity scheduling [1] is proposed to ful-
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fill an efficient quota-based resource sharing among multiple

jobs. The objective is the enforcement of scheduling invariants

for heterogeneous applications, with policing/security utilized

to prevent excessive resource occupation. Although these

works achieve higher cluster utilization in practice, they cannot

cope well with Spark executors which execute the entire DAG

of applications. Furthermore, most of these works only focus

on initial allocation of resources, which cannot dynamically

provision resources at runtime for those applications with

time-varying demands.

There are some recent works to optimize the scheduling of

long-running processes, i.e. executors. Prophet [18] performs

executor scheduling to fully match the demand of applications

with the available resources. Morpheus [10] automatically

assigns resources for jobs based on the historical data to

meet application’s demand. MEDEA [6] targets at making

good placement decisions of long-running processes. However,

both Prophet and Morpheus cannot dynamically adjust the

computing resource amounts at runtime. They do not cope

well with Spark since they may require additional launching

and computational cost if any reallocation happens. MEDEA

works well for task placement but does not consider the

possible time-varying resource usage of applications during

runtime. Our work differs from these researches in that we dy-

namically provision the executors of Spark without additional

launching and computational cost if any reallocation happens.

In particular, Elasecutor [11] and PAF [3] focus the dynamic

resource demands of workloads. Elasecutor elastically resizes

executors to avoid over-allocation, and places executors strate-

gically to minimize resource fragmentation. However, it may

not guarantee the original submission order of jobs and fur-

ther affect the fairness among jobs. Considering the resource

elasticity, PAF starts with the fair allocation policy and then

judiciously adjusts it by iteratively transferring resources from

one job to another, so as to improve resource utility. However,

it cannot cope with the diminishing resource demand within

each application. SLAQ [22] is another quality-driven schedul-

ing system designed for large-scale iterative training jobs. The

scheduler automatically predicts the resource consumption and

adjusts allocation to achieve better quality. It aims to improve

the throughput and speed up the convergence of a single job. In

contrast, iSpark aims to improve the performance of multiple

iterative applications and the overall cluster utilization.

VI. CONCLUSION

In this paper, we focus on iterative workloads running on

Apache Spark with diminishing resource demands during the

job duration. We identify the causes of resource underutiliza-

tion due to inflexible resource policy. To this end, we propose

a flexible utilization aware executor provisioning approach

to elastically adjust the allocated executors according to the

real-time resource usage. iSpark preempts the underutilized

executors and preserves the cached intermediate data from

them to ensure the data consistency. Testbed evaluations

demonstrate that iSpark improves the resource utilization of

individual executors 35.2% compared to vanilla Spark. At the

same time, it increases the cluster utilization from 32.1% to

51.3% and effectively reduces the overall job completion time

by 20.8% for a set of representative iterative applications.
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