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and Network Policy in Hierarchical Data Centers
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Abstract—As large-scale data analytic becomes norm in various industries, using MapReduce frameworks to analyze ever-increasing
volumes of data will keep growing. In turn, this trend drives up the intention to move MapReduce into multi-tenant clouds. However,
the application performance of MapReduce can be significantly affected by the time-varying network bandwidth in a shared cluster.
Although many recent studies improve MapReduce performance by dynamic scheduling to reduce the shuffle traffic, most of them do
not consider the impact by widely existing hierarchical network architectures in data centers. In this paper, we propose and design a
Hierarchical topology (Hit) aware MapReduce scheduler to minimize overall data traffic cost and hence to reduce job execution time.
We first formulate the problem as a Topology Aware Assignment (TAA) optimization problem while considering dynamic computing and
communication resources in the cloud with hierarchical network architecture. We further develop a synergistic strategy to solve the
TAA problem by using the stable matching theory, which ensures the preference of both individual tasks and hosting machines. Finally,
we implement the proposed scheduler as a pluggable module on Hadoop YARN and evaluate its performance by testbed experiments
and simulations. The testbed experimental results show Hit-scheduler can improve job completion time by 28% and 11% compared to
Capacity Scheduler and Probabilistic Network-Aware scheduler, respectively. Our simulations further demonstrate that Hit-scheduler
can reduce the traffic cost by 38% at most and the average shuffle flow traffic time by 32% compared to Capacity scheduler. In
this manuscript, we have extended Hit-scheduler to a decentralized heuristic scheme to perform the policy-aware allocation in data
center environments. Many existing centralized approximation approaches are too complex and infeasible to implement over a data
center, which typically include large amounts of servers, containers, switches and traffic flows. In the extension, we have designed a
decentralized heuristic scheme to perform the Policy-Aware Task (PAT) allocation by using existing centralize algorithm to approximately
maximize the total gained utility. Finally, the simulation based experimental results show that the proposed PAT policy reduces the
communication cost by 33.6% compared with the default scheduler in data centers.

Index Terms—Joint Optimization, MapReduce Scheduling, Network Policy, Hierarchical Clouds, Topology Aware Assignment
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1 INTRODUCTION

MapReduce is based on an implicit parallel program-
ming model that provides a convenient way to ex-
press distributed computations, particularly for large-
scale data sets. It is originally designed for petabytes
or multi-terabytes of data processing, which has been
widely accepted by industries [1]. A recent trend is to
move MapReduce applications from the environment
of dedicated clusters to multi-tenant shared clusters,
such as Amazon EC2, to improve the cluster utiliza-
tion. However, there is an important challenge that the
performance of MapReduce applications can be signifi-
cantly influenced by the network bandwidth in a data
center. As the network resource is shared among virtual
machines hosting various applications or among differ-
ent computing frameworks, the bandwidth available for
MapReduce applications becomes changeable over time.

The data communication traffic in MapReduce is
mainly caused by two factors, i.e., remote map access
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and intermediate data shuffle. Many popular techniques
like delay scheduling [2] and flow-based scheduling [3]
are designed to place individual Map tasks on the
machines or racks where most of their input data is
located, which aims to reduce the remote map traffic.
However, most intermediate data sets still spread over
the cluster randomly in a distributed HDFS (Hadoop
Distributed File System) [4]. The subsequent job stages
(i.e., shuffle) have to transfer intermediate data cross
machines or racks, which are often heavily congested by
the constrained bandwidth. Prior studies [5], [6] have
shown the shuffle traffic mostly dominates the overall
performance of MapReduce jobs compared to the remote
map traffic. Thus, a few recent studies [5], [7] improve
MapReduce performance by dynamic scheduling to re-
shape or reduce the shuffle traffic. However, most of
them do not consider the impact by widely existing com-
plex network architectures in data centers, or just set up
a simple model for workload scheduling. Indeed, a large
number of researches have payed attention to the areas
of MapReduce scheduling and network policy manage-
ment, respectively. However, dynamic MapReduce task
scheduling and network policy optimization have been
so far addressed in isolation, which may significantly de-
grade the overall system performance. On the one hand,
studies [8], [9] have focused primarily on exploiting soft-
ware defined networking and network function virtual-
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ization in the area of network policy management. They
mainly assume a static allocation of compute resources,
which is not true in most real clusters. On the other hand,
MapReduce task scheduling has largely concentrated on
the flexible assignment, efficient placement and locality
awareness to maximize various cluster resource (e.g.,
CPU, MeM and network I/O) utilization, and optimize
application level SLAs. However, there are very few
works on dynamic task assignment in conjunction with
dynamic network policy configuration to optimize the
cluster wide communication cost. Network management
is a complex task but overlooked by research in the
field of big data analytics. Providing a balanced services
while ensuring high performance is a major challenge
when moving MapReduce into the cloud [10]. In data
center, packet transmission is managed by a collection
of networking policies to ensure performance. Network
policies enforce that the packet transmission follows a
sequence of specified middileboxes. Traditionally, cloud
providers have to carefully craft routing in order to
satisfy the policy demand [11]. Recently, to efficiently
manage middleboxes, Software-Defined Networking [12]
has been proposed to enforce networking policies. SDN
abstracts a global view of network so as to grammatically
ensure the correctness of packet transmission.

In this paper, we tackle this challenging problem by
jointly optimizing task scheduling and network policy
management in the cloud with hierarchical network
architecture. We find that the correlation between the
network architecture and the task scheduling is very
weak under the current popular schedulers. The shuffle-
heavy data does not correspond to the low latency
route due to two factors. First, the data fetching time
of reduce tasks depends on not only distribution of the
intermediate data in the cluster but also the limited
bandwidth. Second, the bandwidth on the routing path
is not static but dynamic, which is also influenced by the
assignment of tasks running in the cloud.

In this work, we propose and design a Hierarchical
topology (Hit) aware MapReduce scheduler to minimize
overall data traffic cost and hence to reduce job execution
time. More specifically, we make the following technical
contributions. We formulate the problem as a Topology
Aware Assignment (TAA) optimization problem while
considering dynamic computing and communication re-
sources in the cloud with hierarchical network architec-
ture. To achieve jointly optimizing network policy and
task assignment, we model traffic flow, traffic policy,
task assignment, routing path and corresponding cost
according to flow-based traffic policy. We find that opti-
mizing each shuffle flow to obtain a globally optimal task
assignment is NP-Hard. We implement the proposed
scheduler as a pluggable module on Hadoop YARN
and evaluate its performance by testbed experiments
and simulations. The experimental results show Hit-
scheduler can improve job completion time by 28% and
11% compared to Capacity Scheduler and Probabilistic
Network-Aware scheduler, respectively. Our simulations

TABLE 1
Benchmarks Characterization

Shuffle Types Benchmark Proportion and Type
Heavy terasort(5%), index(10%), join(10%),

sequence count(10%), adjacency(5%)
Medium inverted-index(10%), term-

vector(10%)
Light grep(15%), wordcount(10%), classifi-

cation(5%), histogram(10%)

further demonstrate that Hit-scheduler can reduce the
traffic cost by 38% at most and reduce the average shuffle
flow traffic time by 32% compared to Capacity scheduler.

A preliminary version of the paper appeared in [13].
In this manuscript, we have extended Hit-scheduler to
a decentralized heuristic scheme to perform the policy-
aware allocation in data center environments. To enforce
these policies, we use SDN to implement the correct
sequence to data packet when scheduling MapReduce
tasks. Specifically, policy-aware task allocation problem
can be treated as a restricted version of the General-
ized Assignment Problem [14], which has been proven
APX-hard. Many existing centralized approximation ap-
proaches are infeasible to implement over a data cen-
ter environment, which typically include large amounts
of servers, containers, switches and traffic flows. The
computation complexities of those algorithms are unac-
ceptable for moving MapReduce applications into data
center, especially considering billions of traffic paths [15].
In the extension, we have designed a decentralized
heuristic scheme to achieve the policy-aware allocation,
approximately maximize the total gained utility, and
adhere to policy demand meanwhile. Simulation based
experimental results show that the proposed PAT policy
reduces the communication cost by 33.6% compared
with the default scheduler in data centers.

The rest of this paper is organized as follows. Sec-
tion 2 gives background and motivations on shuffle
traffic optimization. Section 3 describes the modeling
and formulation of TAA problem. Section 5 gives details
on solution design. Section 6 describes the policy-aware
scheduling in data centers. Section 7 gives details on
system implementation. Section 8 presents experimen-
tal results. Section 9 reviews related work. Section 10
concludes the paper.

2 BACKGROUND AND MOTIVATION
2.1 Performance Impact due to Data Shuffle
When running a MapReduce job, all Map and Reduce
tasks are typiclly scheduled to maximize concurrency
(i.e., occupy the whole cluster or as much as possible)
in order to improve cluster utilization or achieve load
balance. As Reduce tasks have to read the output from
the corresponding Map tasks, such all map to all reduce
data shuffle operation results in an all machines to
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Fig. 1. Traffic Volume During Shuffle Phase

all machines communication, which stresses the limited
network bandwidth. In particular, concurrently running
multiple shuffle-heavy jobs may significantly increase
the pressure of network bandwidth [16]. Although many
existing schedulers pay attention to optimize remote
map access traffic, most of them are shuffle-unaware
and result in high pressure on the network in the cloud.
This is due to the fact that Reduce tasks are typically
scheduled well before the completed distribution of Map
task output is known.

To identify the impact of shuffle communication, we
analyze a few representative workloads consisting of
benchmark drawn from Apache Hadoop release [17].
The benchmarks are characterized as heavy shuffle,
medium shuffle and light shuffle, and the percentages of
different jobs are shown in Table 1. Figure 1 shows that
the actual volumes of the total shuffle traffic and remote
Map input traffic for heavy shuffle, medium shuffle
and light shuffle jobs, respectively. The result shows the
shuffle data volume of heavy shuffle jobs is a significant
contributor (>75%) of the total communication traffic,
and the contribution of the remote Map input traffic is
less than 20% of the total communication traffic. This ob-
servation demonstrates that the shuffle traffic dominates
the overall performance of Shuffle-heavy jobs compared
to the remote map traffic. Thus, we focus on optimizing
the data shuffle traffic for MapReduce applications.

2.2 Challenges due to Hierarchical Networks
Today’s cloud operators greatly extend the popular
three-tier network architecture [17] in data centers. At the
access tier (i.e., bottom level), each machine connects to
one or two access switches. At the aggregation tier, each
access switch connects to one (or two) switches. Finally,
every aggregation switch is connected with multiple
switches at the core tier. Figure 2 shows a 2-layer topol-
ogy, which is usually rooted at one of the core switches.
There are more alternative architectures proposed re-
cently, such as VL2 [18], PortLand [19] and BCube [20].
In contrast, most existing task scheduling policies do
not consider the possible impact by these hierarchical
network architectures, or just set up a simple model for
data intensive applications. Furthermore, the network is
oversubscribed from the bottom layers to the core ones
in datacenters. To efficiently avoid network congestion
in the core layers, it’s better to enforce the data packet
to route over edge layers as much as possible [21].

(a) Traffic-unaware flow (b) Traffic-aware flow

Fig. 2. Workflow under hierarchical networks.

As a result, those virtual machines and containers who
exchange data packets intensively should be collocated
with the edge layers.

These topology unaware strategies may significantly
deteriorate the system performance in the hierarchical
network architecture. For example, Figure 2 depicts a
scenario that the task(R1) requires to transfer the related
data from the task(M1). As shown in Figure 2(a), the
shuffle traffic flow from M1 task to R1 task is configured
to traverse w2, w1 and w4 sequentially. Since the capacity
of each switch is constrained by the processing rate, the
overloaded w1 will lead to the packets of this shuffle
traffic flow being rejected. An alternative solution is
to optimize the shuffle traffic flow as shown in Fig-
ure 2(b) and correspondingly achieves lower network
overhead. Furthermore, cloud environment hides the
physical topology of the infrastructure, which inhibits
optimal scheduling. For instance, the tasks associated
with a job may be placed across multiple racks while
this information is not typically visible to the application.
Apparently, topology invisible solutions will lead to a
longer transfer time to shuffle large amounts of interme-
diate data to Reduce task.

2.3 Case Study

We conducted a case study based on a Hadoop cluster
(i.e., one master nodes and four slave nodes) and ran
two jobs (one shuffle-heavy job and one shuffle-light
job) with the same input data sizes by using different
schedulers. As shown in Figure 3, four slave nodes are
connected via the Tree network topology. We set different
network latencies between machines by implementing
API DelayFetcher(), which provides a function to
mimic the task level data transmission delay between
machines. In order to simplify the data shuffle analysis,
we configure that each server can host at most two tasks.
In the experiment, we submit jobs by using Capacity
Scheduler to enqueue and assign the Map and Reduce
tasks to different nodes. Here, we assume that the delay
caused by one switch equals to 1 (T) and the total delay
caused by the network is linearly related to the number
of switches the data packets have traversed [22].
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(a) Topology-unaware (b) Topology-aware

Fig. 3. Assigning Job 1 (M1, R1) and Job 2 (M2, R2).

After job executions completed, we analyze the related
log files and find that the total shuffle data for Job
1 is nearly 34 GB and 10 GB for Job 2. It demon-
strates that Job 1 is shuffle heavy and Job 2 is shuffle
light workload. In particular, we focus on two selected
Map tasks and two selected Reduce tasks as shown in
Figure 3. The log files show that Map tasks M1 and
M2 are assigned to server S1 while Reduce tasks R1

and R2 are assigned to S4 and S2, respectively. The
data volume to be exchanged between M2 and R2 is
much larger than another pair of task. Without policy
awareness, the default allocation decision would cost
precious bandwidth on core routers. In contrast, a better
solution is to assign reduce task R1 to server S2 and
R2 to S4 based on the given network architecture and
data volume. Then the total required bandwidth on
the core router can be reduced. The above observations
demonstrate that the shuffle-heavy data transmission
does not correspond to the bandwidth-efficient route
in the hierarchical network architecture. It may lead to
network overhead and degrade the performance while
scheduling different types of workloads in the cloud.
The policy-aware scheduling has to find the optimal
allocation while meeting the network bandwidth and
policy demand.

3 PROBLEM MODELING
In this section, we formulate the problem by moving
MapReduce applications into a multi-tier data center
which is typically structured under a multi-root tree
topology, such as VL2 [18].

3.1 Formulation
We consider a multi-root tree topology, such as canon-
ical [23], as a typical multi-tier data center network in
the formulation. Let S = {s1, s2, s3...} be the set of
servers in the data center and C = {c1, c2, c3...} be the
set of containers hosted by the servers. We use ri to
denote the physical resource requirements of ci, such
as memory size, CPU cycles. Accordingly, the available
physical resource of sj is defined as qj . Hence, we use∑

ci∈A(sj)
ri ≤ qj to denote that sj has sufficient resource

to accommodate containers ci, in which A(sj) defines the

TABLE 2
Notation Summary.

ci the i-th container
si the i-th server
ri the resources requirement of i-th container
fi the i-th traffic flow
pi the policy for the i-th flow
wi the i-th middlebox
xij the indicator for task
Ck the shuffle cost for the k-th policy
qj the available resource of the j-th server
U the network utility
A the allocation of tasks

set of containers hosted by sj , and ri is the resources
requirement of ci.

Running MapReduce application in the cloud, the
shuffle traffic is flow-based. We define the shuffle traffic
flow as F = {f1, f2, f3...}. For each flow fi, it has several
important properties {size, src, dst}. Correspondingly,
fi.src specifies the source container running Map task
while fi.dst specifies the destination container running
Reduce task, e.g., fi.src = c1 and fi.dst = c2. The data rate
of fi.rate is represented by the shuffle data rate from fi.src
to fi.dst. Then we define a binary variable xij(xmij , x

r
ij) to

denote whether the jth Map or Reduce task is assigned
to the container ci. Each container can host at most one
Map or Reduce task.

Let W = {w1, w2, w3...} denote the set of all switches
in the cloud. Each switch has two properties, {capacity,
type}. We define that wi.capacity is the capacity of wi, and
wi.type is the type of the switches. The set of policies
for shuffle traffic is defined as P = {p1, p2, p3...}. In
this work, policies are configured through the policy
controller (e.g SDN) to govern traffic related to the
MapReduce application running in the cloud. In general,
the shuffle traffic flows and policies in the cloud are one-
to-one correspondence. For each policy pi, it also has
important properties {list, len, type}, where pi.list is the
list of switches that fi will traverse, e.g. pi.list[0] is the
first access switch that the flow will traverse. And pi.len
is the size of the switches list. And pi.type is the type of
ith switch the flow will traverse, e.g. pi.type[0] is the type
of the first switch in the list. Let P(ci, cj) be the policies
defined for shuffle traffic from container ci to cj .

Here, we define that if and only if all the required
switches are allocated to pi with the correct type and
order, then the policy pi is satisfied.

pi.type[j] == wtype,∀ w = pi.list[j], j = 1, ..., pi.len.

We denote R(ni, nj) as the routing path between nodes
(i.e., servers, switches) ni and nj . For a shuffle traffic
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flow fi, its actual routing path is:

Ri(fi.src, fi.dst) = R(fi.src, pi.list[0])

+

pi.len−2∑
j=1

R(pi.list[j], pi.list[j+1])

+R(pk.list[pk.len−1], fi.dst).

(1)

Hence, we define the shuffle cost of all the traffic from
containers ci to cj as

C(ci, cj) =
∑

pk∈P (ci,cj)

∑
fk∈Rk(ci,cj)

fk.rate × cs

=
∑

fk∈Rk(ci,cj)

{Ck(ci, pk.list[0])

+

pi.len−2∑
j=1

Ck(pk.list[j], pk.list[j+1])

+ Ck(pk.list[pk.len−1], cj)},

(2)

in which cs is the unit cost for corresponding rout-
ing path, and Ck(ci, pk.list[0]) is the shuffle traffic
cost between ci and the first access switch for flows
which matches pk, while, similarly, we define that
Ck(pk.list[pk.len−1], cj) is the shuffle traffic cost between
the cj and corresponding access switch.

4 MINIMIZING DATA SHUFFLE COST

We denote A(ci) to be the server which hosts container
ci and A(pk) to be the set of switches which are allocated
to policy pk. Give the set of containers C, servers S,
policies P and switches W, we define the Topology
Aware Assignment (TAA) of Map and Reduce tasks to
minimize the total shuffle traffic cost (important notation
is summarized in Table 2.):

min
∑
ci∈C

∑
cj∈C

C(ci, cj)

s.t.A(ci) 6= 0, ∀ci ∈ C;∑
i∈R

xmij = 1;
∑
i∈R

xrij = 1;∑
j∈R

xrij +
∑
j∈R

xmij = 1;∑
ci∈A(sj)

ri ≤ qj ;∑
pk∈A(wi)

fk.rate ≤ wi.capacity,∀wi ∈W;

pi.type[j] == wtype,∀ w = pi.list[j],∀pi ∈ P.

(3)

The first constraint ensures that each container is only
deployed on one server. The second constraint guar-
antees that one Map or Reduce task is hosted by one
container. The third constraint demonstrates that one
container can host one task. The fourth and fifth con-
straints are the capacity requirement for switches and
servers. The sixth constraint requires that all the flow
should satisfy the traffic policies.

(a) (b)

(c) (d)

Fig. 4. Separated Optimization on Policies

The above mentioned TAA problem is NP-Hard,
we will show that the Multiple Knapsack Problem
(MKP) [24] can be reducible to this topology aware task
assignment in polynomial time. It has been proven that
the decision for MKP is strongly NP-complete. The proof
can be found in the preliminary version.

5 SOLUTION

In this section, we introduce a separable scheme to
efficiently solve our problem.

5.1 Optimization on Network and Task Assignment
5.1.1 Network Policy
When performing the network policy optimization, it
will possibly result in rescheduling the switches on
the selected path. Here, we denote pk.list[i] → ŵ as
rescheduling the ith switch of pk to a new switch ŵ. All
the switches having sufficient capacities to handle the
shuffle data traffic are denoted as the candidates to be
rescheduled as below:

S(pk.list[i]) = {ŵ|ŵtype == pk.type[i],∑
pi∈A(ŵ)

fi.rate ≤ ŵcapacity − fk.rate,

∀ŵ ∈W \ pk.list[i]}.

(4)

In the beginning, the flow fk is assigned with required
switches based on a random policy pk. Then we will
consider optimization on intermediate switches (e.g.
pk.list[i] ∀i=1,2, ... pk.len-2) and the end access switches
respectively (e.g. pk.list[0] or pk.list[pk.len−1]). We start from
simplest case that performing optimization of pk on one
switch pk.list[i] on intermediate access switches. Here,
we define the utility as the shuffle traffic cost reduction
gained by optimizing the shuffle traffic policy pk.list[i] →
ŵ:

U(pk.list[i] → ŵ) = Ck(pk.list[i−1], pk.list[i])

+ Ck(pk.list[i], pk.list[i+1])− Ck(pk.list[i−1], ŵ)

− Ck(ŵ, pk.list[i+1]).

(5)

If the optimization of pk involves two or more switches
along the flow path, we can optimize the policies by
rescheduling the corresponding switches one by one. For
example, as shown in Figure 4(a) and (b), if the original
flow path w1 → w2 → w3 → w4 is rescheduled as w1 →
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ŵ2 → ŵ3 → w4, the optimization can be separated into
Figure 4(c) and (d). The corresponding utility remains
the same:

U(w2 → ŵ2, w3 → ŵ3) = U(w2 → ŵ2) + U(w3 → ŵ3).
(6)

The second case is that the optimization of pk is
performed on end access switches, which results in
pk.list[0] → ŵ or pk.list[pk.len−1] → ŵ. The difference
between intermediate switches and end access switches
is that the associated source or destination container
should be considered, because the end access switches
communicate with containers directly. The utility of op-
timization on pk.list[0] is shown as below:

U(pk.list[0] → ŵ) = Ck(fk.src, pk.list[0])

+ Ck(pk.list[0], pk.list[1])− Ck(fk.src, ŵ)

− Ck(ŵ, pk.list[1]).

(7)

5.1.2 Task Assignment
In order to assign tasks, we should make sure that there
are available containers to host the Map or Reduce tasks.
For example, if we want to optimize a task xij hosted on
ci from currently allocated server A(ci) to a new server
ŝ, the candidate servers ŝ can be characterized by:

O(ci) = {ŝ|(
∑

ck∈A(ŝ)

rk + ri ≤ q̂)}. (8)

Consider a container ci hosting jth map task, where
xmij=1, is allocated on server sk initially. The shuffle traffic
cost induced by ci between sk and the access switches
is as below:

Ci(sk) =
∑

pk∈P (ci,∗)

Ck(ci, pi.list[0]). (9)

While optimizing the assignment of jth reduce task xrij ,
which is original hosted on the container ci, the differ-
ence between optimization on map tasks is that it only
involves the last egress switches. Similarly, the shuffle
traffic cost is

∑
pk∈P (∗,ci) Ck(pi.list[pk.len−1], ci). Here we

define the utility brought by rescheduling container ci
hosting xij from A(ci) to another server ŝ as below:

U(A(ci)→ ŝ) = Ci(A(ci))− Ci(ŝ). (10)

5.1.3 Separable Optimization
For each flow, we can conclude that the optimization of
task assignment and network policies are independent
with each other. We can optimize them separately and
achieve the same total utilities as optimizing them to-
gether.

U(s1, w1, w2 → ŝ1, ŵ1, ŵ2)

= U(s1 → ŝ1) + U(w1 → ŵ1) + U(w2 → ŵ2).
(11)

From Equation 6 and 11, we can conclude that the
rescheduling order of individual switches and contain-
ers running corresponding tasks are independent with
each other and the total utilities remains the same as

Fig. 5. Shuffle Traffic Flow Path

optimizing all the switches on the routing path together.
These observations mean that the optimization of traffic
policies and task assignment can be performed inde-
pendently. Please refer to the preliminary study [13] for
solving the above separable optimization problem based
on a typical many-to-one stable matching, i.e., Stable
Marriage Problem.

5.2 Applying Solution in Hadoop
The slave nodes of a Hadoop cluster can be configured to
concurrently support up to a certain number of Map or
Reduce tasks. If the number of Map or Reduce tasks ex-
ceeds the number of available containers, Map/Reduce
tasks are first assigned to execute on all free contain-
ers. These tasks form the first ”wave” of MapReduce
tasks, and subsequent tasks form the second, third, and
subsequent waves. In this paper, each map and reduce
pair form a shuffle traffic flow, in which the container
fi.src host map task will transfer its output to container
fi.dst host reduce task. We characterize MapReduce task
placement problem into two types: Map and Reduce
initial placement and subsequent-wave placement.

5.2.1 Initial-wave Task Scheduling
For the case where both Map and Reduce tasks form
the new waves, we should apply the Hit-Scheduler to
optimize both fi.src and fi.dst, minimizing the total shuf-
fle delay. In these cases, the map and reduce tasks have
been not assigned. We assume that they are randomly as-
signed in the beginning. Each map and reduce pair form
a shuffle traffic flow. Because they have to transfer the
map task’s output to corresponding reduce task through
the hierarchical topology. Under this assumption, we use
the Hit-Scheduler to make the placement decision.

5.2.2 Subsequent-wave Task Scheduling
For the case multiple Map waves and one reduce wave,
where Map tasks occur in multiple waves, while Reduce
tasks tend to complete in one wave, we do not need to
consider the optimization of the placement of Reduce
task in the same reduce wave, but only optimize the
placement of Map task. For the objective function, the
destination of each shuffle traffic flow fi.dst is static.
This problem can be interpreted as finding the optimal
fi.src. In these cases, we can fix the destination of each
flow in TAA scheme, and greedily find the optimal
placement of map tasks. In this stage, we should pair
the Map tasks that have higher shuffle output with the
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Fig. 6. Data traffic flows traversing different sequences of
switches and middleboxes in a data center environment.

physical servers which can achieve low delay in network
traffic. We choose one of the solution among the all
possible placement of Map tasks to achieve the lowest
communication delay in that wave. The total algorithm
complexity for these cases is O(n2).

6 POLICY-AWARE SCHEDULING IN CLOUDS

In this section, we describe moving MapReduce into
DC to demonstrate that a policy-unaware strategy could
cause performance degradation.

Cloud data centers offer flexibility and elasticity for
users to utilize large amounts of computational and stor-
age resources to satisfy their requirements. In particular,
running MapReduce in data centers allows enterprises to
efficiently analyze large amounts of data without build-
ing their own infrastructures [25]. However, moving
MapReduce into Data Centers (DC)s may incur several
challenging problems, such as security and load balanc-
ing issues, while achieving high application performance
from the view of cloud operators. Data-intensive ap-
plications like MapReduce over DC networks typically
lead complex communication behaviors which are man-
aged by some network policies regarding performance
and security [26]. To implement such policies, cloud
operators typically apply various network appliances
or ”control middleboxes”, e.g., load balancers, traffic
shapers, Intrusion Detection and Prevention Systems [25]
in DCs. As a result, such a network environment leads
to various new constraints while assigning tasks in DCs.
In this section, we extend the proposed Hit Scheduler to
a decentralized heuristic scheme to perform the policy-
aware allocation in DC environments.

6.1 Motivating Example
It is necessary to propose a policy-aware scheduling in
DC environments to avoid the unexpected failure and
possible performance degradation. Figure 6 depicts a
motivation example by describing a running MapReduce
application in DC. The example uses a common network
architecture, Fat-Tree [27], in DC, which is composed

of a number of network components, such as networks
switches and middleboxes. Firewall (FW) will control the
coming network traffic based on predetermined security
rules and monitor the network environments. Intrusion
Prevention Systems (IPS) are configured with rules to
monitor networks or systems for malicious activity or
policy violations. Any malicious activity or violation
will be typically reported to the administrator. These
devices will also detect and evaluate the performance of
each middlebox. Load Balancers (LB) will forward traffic
flows from one host to other hosts, aiming to optimize
resources use and maximize throughput. In data center,
policies are configured by using a tuple, which consists
of the sequence of middleboxes. The following policy is
configured to govern how the output from Map function
will be traversed to the destination in the cloud when
running the application:
• p = {c1, c2, 1,001, 1,002, TCP} → {LB, FW, IPS}.

For this policy p, container c2 hosting Reduce task will
communicate with the specific server to fetch the Map
output results. The traffic flow will first traverse by LB
for load-balancing, after which it will be checked by
FW in the core router for security. Before reaching the
destination, it will be forwarded to the IPS located in
the aggregation layer. Consider the allocation of c2 in
the above example application. Without network-aware
strategies, c2 may be hosted by server s3. A large volume
of intermediate data will be exchanged between con-
tainer c1 and c2, which requires precious bandwidth in
the core layer. In order to allocate tasks in near distance
and keep the traffic in edge layers, c2 can be scheduled to
s1 so that the containers hosting Map and Reduce task
are close to each other, neglecting the requirement of
policies. However, this allocation decision will increase
the routing length of traffic flow and occupy much
more network resources. Because according the policy
configurations p, the traffic flows between the containers
c1 and c2 have to be forwarded through LB, FW and
IPS sequentially. The container c2 hosting Reduce task
should be scheduled to the server s2 so as to reduce
the network cost between container c2 and IPS by tak-
ing both the network policy configurations and traffic
patterns into consideration. Obviously, a policy-aware
task scheduling strategy will find an optimal placement
decision while meeting the demand of both network
bandwidth and networks policies. In the following sec-
tions, we will corporate the policy-aware task scheduling
into our existing network-aware allocation problem.

6.2 Policy-Aware Task Allocation Problem
In this section, we design a decentralized heuristic so-
lution to perform policy-aware and network-aware task
scheduling in the data center.

Given a set of tasks, servers and policies, min(ci) is
defined as ingress middleboxes of all outgoing traffic
flows from container ci, i.e., min(mi) = {mj | mj=pink ,
pk.src = ci}. Similarly, mout(ci) = {mj | mj=poutk , pk.dst =
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ci} is defined as egress middlebox of all incoming flows
to the destination container ci. We further define S(mk)
as a set of servers that can retrieve the middlebox mk

from the policy controller. To meet the requirements
of policies configurations, we can obtain the feasible
servers that a container ci hosting task can be allocated
as following:

S(ci) =
⋂

mk∈min(ci)∪mout(ci)

S(mk). (12)

S(vi) will be all the possible destination servers for con-
tainer ci, which have enough capacity. Here, we denote a
vector Ri to represent the physical resource requirements
of container ci. Ri can have three dimensions such as
CPU, RAM and I/O operations. Correspondingly, we
denote Hj to represent the amount of resources provi-
sioned by the server sj . Obviously, Ri ≤ Hi can ensure
that all the requested resources of si can be satisfied to
host the allocated container ci. We also define A to be
a possible allocation of task. In particular, A(ci) will be
the server which hosts the container ci. Correspondingly,
A(sj) will be a set of containers hosted by the server sj .
If we reschedule a container ci from A(ci) to a server ŝ,
the possible hosting servers for ci can be characterized
as following:

Si = {ŝ|(
∑

sk∈A(ŝ)

Rk +Ri) ≤ Hi,∀ŝ ∈ S(ci)/A(ci)}. (13)

We define the total network cost as Ci(si), which is
caused by ci among sj and min(ci)∩mout(ci), where sj
= A(vi)

Ci(si) =
∑

pk∈P (ci,∗)

Ck(ci, p
in
k ) +

∑
pk∈P (∗,ci)

Ck(ci, p
out
k ).

(14)

The improved utility by adjusting A(vi) → ŝ can be
measured as:

U(A(ci)→ ŝ) = Ci(A(ci))− Ci(ŝ). (15)

The problem can be formulated as maximizing the total
utility by optimizing the allocation Â:

max UA→Â

s.t. UA→Â>0.
(16)

The Policy-Aware Task allocation (PAT) problem is NP-
Hard, which can be mapped into an APX-hard Gen-
eralized Assignment Problem (GAP) [14]. In a cloud
data center environment, there are thousands or millions
of physical machines, containers, network devices and
traffic flows, which makes it extremely hard to solve
the problem using existing heuristic algorithms. we will
show that the Multiple Knapsack Problem (MKP) [24]
can be reducible to the PAT problem in polynomial time
by introducing the non-polynomial complexity. The mul-
tiple knapsack problem [24] is one of the most studied
problems in combinatorial optimization, given n items,

with each item 1 ≤ j ≤ n having an associated profit
pj and weight wj . Given a set of K knapsacks with a
corresponding ci capacity for each knapsack, the MKP
is to select k disjoint subsets of items such that the
total profit due to selected items is maximized. For each
knapsack, the total weight of items assigned to it in the
subset should be less than its capacity.

We start with performing the mapping from MKP to
a special case of our PAT problem. Take a scheduling
decision A0 as example, in which the PAT is to find
the optimal solution Â which can maximize the total
network utility UA→Â. S′ = S\{s0} is defined to be a
feasible set of servers which can host the container. For
each container ci to be allocated, we assume that the
network cost introduced by ci on all the possible servers
are the same, which means Ci(ŝ) = δi,∀ŝ ∈ S′, where δi is
a fixed value. Then, we treat each task to be an item with
size Ri which will be allocated to a knapsack. The profit
of assigning container ci can be U(A(ci))→ŝ=Ci(A(ci))-δ-
Cm(A(ci)). The PAT problem is be to obtain the optimal
allocation of all flows to the corresponding intermediate
middleboxes and a feasible allocation of tasks to servers
S′, while maximizing the total network utility in the
same time. Therefore, the MKP problem can be reduced
to the PAT problem in polynomial time and hence the
PAT problem is NP-Hard.

6.3 Policy-Aware Task Allocation Algorithm

Algorithm 1 PAT-task for ci
1: initialize L= 0;
2: Optimization(ci, L)
3: loop
4: inf ← synMsg()
5: if inf.type==reject then
6: L = L ∪ {inf.update}
7: Optimization(ci, L)
8: end if
9: if inf.type==accept then

10: updateMsg(optimize, inf.update,Ri)
11: perform optimization: vi → s
12: end if
13: end loop
14: function Optimization(ci, L)
15: s0 ← A(ci)
16: Si ← possible candidates;
17: X ← argmaxx∈Si\LU(A(ci)→ x)
18: if X6=0 and s0 /∈ X then
19: s ← candidate with enough capacity;
20: updateMsg(request, s, Ri)
21: end if
22: end function
23: update networking route.

The computation times of using the existing heuristic
algorithms [14] to approximate the optimization prob-
lem (16) is unacceptable, especially when this problem
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Algorithm 2 PAT-server for sj
1: loop
2: inf ← synMsg()
3: if inf.type == request then
4: ci = inf.update
5: Ri = inf.resource
6: if

∑
ck∈A(sj)

Rk+Ri leq Hj then
7: updateMsg(accept, ci)
8: elseupdateMsg(reject, ci)
9: end if

10: end if
11: if inf.type == optimize then
12: if

∑
ck∈A(sj)

Rk+Ri leq Hj then
13: update resources.
14: else
15: upsateMsg(reject, ci)
16: end if
17: end if
18: end loop

involves thousands or millions of physical machines,
containers, network devices and traffic flows [15]. In this
section, we propose a decentralized heuristic algorithm
to obtain the optimal allocation decision considering
the configurations of policies. Algorithm 1 and 2 show
procedures of the decentralized algorithms in terms of
tasks and servers respectively. PAT-task is designed for
tasks to find the feasible servers which can maximize
the utility under constraints of resources and policies.
Correspondingly, PAT-server will control the NodeMan-
agers on servers to decide which request can be satisfied
considering residual resources. PAT-task and PAT-server
will synchronize the allocation information with each
other. The API updateMsg(type, dst, res) will update the
specific device type and resource information to the des-
tination server. The API synMsg() will synchronize the
source allocation decision. The variable request indicates
that a task requests the feasible server. Correspondingly,
a server can answer the request with an accept or reject,
while considering both the available capacities and the
demand of tasks. If the request is satisfied, the server
will confirm the acceptance.

From the view of PAT-task algorithm, it will first try
to find the feasible candidates greedily to improve the
network utility, as shown in the line 4-7. The function
Optimization() is to maximize utility by iterating over
all the possible candidates for ci. To avoid the repeat-
ing request for the same servers, we will maintain a
blacklist L. The function Optimization() will always pick
the server which have the most available resources as
candidate for allocation, i.e., line 15-20. If a candidate s
accepts ci’s request, then container ci hosting task will
be allocated to s.

Correspondingly, the PAT-server algorithm working
on server sj will always synchronize with PAT-task to
obtain requests. PAT-server will answer the request with

an accept if this server has enough available capacities to
host the task ci. Or it will return a reject message in the
line 15. If this server accepts the request, servers sj will
update its residual resources after considering hosting
ci. The above PAT-task and PAT-server can reduce the
network cost and approach a stable state in the end.

Proof. Our preliminary study [13] has shown that
the optimization of traffic policies and task assignment
can be performed independently. The cost of each task
ci can be obtained by considering the hosting server
and related middleboxes in min(ci) and mout(ci). After
introducing the policies configurations, the allocations of
tasks are still independent. Meanwhile, when algorithms
implement optimization, i.e. A(ci)→s, the improved util-
ity will be always positive, i.e., U(A(ci) → s)>0. This
means that the network cost will be always decreased
while optimizing the allocation of tasks among feasible
servers. The amount of gained utility will vary after each
optimization step. These two algorithms 1 and 2 will
finally reach a stable state in a number of steps.

7 IMPLEMENTATION ON HADOOP

In order to implement Hit-scheduler, we split our solu-
tion into offline and online phase. In the offline phase,
we profile the shuffle data rate for each application
and capture the topology architecture configuration in
the cluster. In the online phase, we add a new class
mapred.job.topologyaware to collect the information
of task placement, embedding shuffle traffic flow, net-
work architecture and cluster configuration from the
offline phase. We modify three mechanisms based on the
default Hadoop. We use the modified DelayFetcher()
to express the delay between two servers in the cluster.
We develop a new Hit−ResourceRequest based on
ResourceRequest to enable Hit-Scheduler to be aware
of the network architecture. We design a new class
Hit− Scheduler to implement the algorithm of the
topology aware task assignment.

7.1 DelayFetcher
We add a new function Sleep(Delay) into the original
Fecther mechanism to obtain DelayFetcher. The delay
between two machines si and sj is decided by the shuffle
cost C(si, sj) and corresponding bandwidth on the path
Bij , so the delay for the flow is Delay = C(si,sj)

Bij
. With this

component, we can mimic the performance degradation
caused by hierarchical network architecture.

7.2 Hit-ResourceRequest
A MapReduce application could ask specific
computing resource requests to satisfy its demand
via the ApplicationMaster. The task scheduler
then gives responses to these resource requests by
delivering some containers, which aims to satisfy the
requirements laid out by the ApplicationMaster
in the initial ResourceRequest. To implement
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Hit−ResourceRequest, we specify resource-name
as the preferred host for the specific task, which
is the hostname of the preferred machine. We
update the preferred resource-name for each task
in Hit−ResourceRequest from the class file
mapred.job.topologyaware.taskdict.

7.3 Hit-Scheduler
The container allocation is the successful result of
the ResourceManager, which grants a specific re-
quest from a new component Hit−ResourceRequest.
A Container grants rights to an application to use
a specific amount of resources (e.g. memory, CPU)
on a preferred host. According to the optimal task
assignment via Hit−ResourceRequest, we use the
Hit− Scheduler algorithm to implement our strat-
egy. For each task, we assign resource by calling
getContainer(Hit-ResourceRequest, node) if the task pre-
ferred container matches the current node with available
resource. Then the ApplicationMaster will take the
preferred container and treated it as the NodeManager,
on which the container was allocated, to use the re-
sources for corresponding tasks.

8 EVALUATION

8.1 Testbed and Hierarchical Network
The evaluation testbed consists 9 nodes, each of which is
configured with Intel Xeon(R) CPU E5-2630v4@2.20GHz
x 20 and 32GB DDR3 memory, running Ubuntu 16.04
LTS operating system. One node serves as the master
node, and all the 8 nodes serve as slaves. The nodes are
connected by switches with 16GbE ports. More details
can be found in the preliminary version of the paper.

We evaluate the performance of our strategy in terms
of the job completion time and the improvement on
shuffle flow. To verify Hit-Scheduler algorithm’s scal-
ability, we compare our performance under different
hierarchical network architectures, network bandwidths,
job types and job numbers with Capacity scheduler and
Probabilistic Network-aware scheduler [28].

8.2 Simulation of DC Setup
We implement our solution and evaluate its performance
under a typical DC topology, i.e. Fat-Tree, using ns-3 [29].
In this evaluation setup, containers running MapReduce
application will communicate with one or more other
containers in the DC network. We also introduce a con-
tainer manger on each server, which serves as NodeMan-
ager in Apache Hadoop Yarn, to manage the allocation
of requested containers. The central ResourceManager
is responsible for scheduling containers among different
servers in the data center. Fat-tree can be extended to
any other types of representative networks architectures
without loss of generality in our simulated environment.
We constrain the amount of CPU and RAM resources of
each server to represent the limited capacities of servers.
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Fig. 7. Performance Evaluation of PAT.

In the experiments, we configure that each server has
16GB RAMs and 8 cores, which can host 8 containers
running in parallel if each container is configured with
2GB memory and one core. In network layers, the re-
source constraint is represented as the demand of all the
traversing flows do not exceed the device’s capacities.
Considering all of these factors, a task allocation decision
is only feasible if the hosting server has sufficient com-
putational resources and networking bandwidth, i.e., a
feasible server as defined in Equation 13.

In SDN-based implementation, there is a centralized
controller that stores policies for routers and middle-
boxes. It decides whether these devices should ac-
cept and transmit data packets. We apply the Flow-
Tags [30] implementation to enforce that data transimis-
sion should travel a sequence of middileboxes based
on policies. We constraint that all the traffic flows from
running MapReduce applications in the cloud have to
follow the policy configurations introduced in the sec-
tion 6. The constraints represent that all the traffic flows
have to traverse a number of devices sequentially as
configured by the networking policies before the in-
termediate results reach their destinations [31]. All the
traffic flows are configured to traverse 1-3 networking
devices in the cloud, including Firwall, IPS and LB. To
evaluate the performance and efficiency of our solution,
we compare it with Probabilistic Network-aware sched-
uler [28], which however is a non-policy-aware task
scheduling scheme. As for the network cost, we evaluate
the impact of networking policies in terms of link length
and network utilization. Here, we define the link length
as the number of hops that each flow will traverse and
network utilization as average usage of bandwidth in
each networking layer in a data center topology.

8.3 Improvement on Overall Utility

We first evaluate the improvement on utility in terms of
the cumulative distribution function (CDF). Figure 7(a)
demonstrates the performance of PAT in term of network
cost. We measure the improvement of the individual
container’s network cost after policy-aware scheduling
by comparing the improved utility brought by both
Probabilistic Network-aware scheduler and PAT with the
baseline using the default Capacity scheduler. Results
show that PAT can reduce the network cost by 33.6%,
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Fig. 8. Performance comparison and analysis of PAT and Probabilistic Network-aware scheduler.

while Probabilistic Network-Aware Scheduler can only
achieve that by nearly 14.6% on average. It means that
55% of scheduling decisions can reduce the correspond-
ing network cost by almost 45% effectively. We further
study intrinsic properties to learn how PAT works to
achieve the performance. Figure 7(b) shows the allo-
cations results of containers from the default Capacity
scheduler, Probabilistic Network-Aware Scheduler and
PAT, respectively. It can be observed that, Capacity
scheduler randomly assigns tasks on server wherever
there are available capacities, e.g., each server hosts
5-7 containers. Probabilistic Network-Aware Scheduler
can cluster containers into smaller groups of servers.
However, with policy-aware scheduling, PAT can find
more potential improvement, which group nearly 70%
of total tasks into 22.8% of servers.

8.4 Performance of PAT on Network Utilization

We further present performance results of PAT and Prob-
abilistic Network-aware scheduler in terms of the overall
network cost reduction, average end-to-end link length
and network utilization. Figures 8(a) demonstrates that
PAT can efficiently reduce the total network cost by
28.2% while Probabilistic Network-aware scheduler only
achieves an improvement by 13.6% compared with de-
fault capacity scheduler. The reason why PAT has higher
improvement is that it offers more space for optimiza-
tion than Probabilistic Network-aware scheduler with
policy constraints. More importantly, as shown in Fig-
ure 8(b), by policy-aware scheduling, PAT can signifi-
cantly shorten the average link length by 15.8%, while
Probabilistic Network-aware scheduler reduces it only
by 5.42%. These two results imply that the traffic flows
can be forwarded to the destinations as soon as possible
by reducing the average link length while avoiding
the possible network congestion in the same time. PAT
scheduling decisions can localize the containers with
heavy shuffle data and reduce the link length of the end-
to-end flow by optimizing the network communication.

Furthermore, Figure 8(c) illustrates that PAT can im-
prove network utilization in both the core and aggre-
gation layers in the data center by 23.9% and 8.5%,
respectively. The corresponding reduction for Probabilis-
tic Network-aware scheduler is only 6.5% and 3.8%,
respectively. However, the improvement on network

utilization in edge layers is marginal compared with the
other two layers. This is because all of these strategies
can fully utilize lower-layer links. Improvements on the
network utilization in the core and aggregation layers
demonstrate that our proposed PAT can effectively create
extra headroom to accommodate much more containers
by utilizing the network topological resources effectively.
We also analyze the cases of policy violations as de-
picted in our case study. From Figure 8(d), we can
see that Probabilistic Network-aware scheduler causes
more than 12% of policy violations and 8.4% on average
of middleboxes are involved in the violations. Because
Probabilistic Network-aware scheduler only considers
feasible servers and middleboxes in the network, which
will obviously cause potential security vulnerabilities.

8.5 Improvement on Job Completion Time
Figure 9(a) shows that our strategy saves a significant
amount of time to complete MapReduce jobs. Specifi-
cally, Hit-Scheduler outperforms Capacity scheduler 28%
and Probabilistic Network-Aware scheduling strategy
11% in terms of the job completion time reduction,
respectively. The reason is that our strategy takes the hi-
erarchical network architecture into account and jointly
optimizes the assignment of map and reduce tasks to re-
duce the cost on shuffle phase. The results in Figure 9(b)
also show that Capacity scheduler performs better in the
beginning stage as more resources are allocated to Map
tasks for improving the resource utilization. Probabilistic
Network-Aware scheduler achieves better performance
than Hit-Scheduler during map phase due to the fact that
our strategy does not consider the remote access for map
input. However, the overall job completion time is bet-
ter than Probabilistic Network-Aware scheduler, which
verifies our assumption that shuffle traffics play a more
important role when running MapReduce applications in
the cloud. Figure 9(c) further confirms that Hit-Scheduler
achieves significant improvement in terms of Reduce
task execution times compared to the other strategies.

Figure 10(a) illustrates the effectiveness on reducing
the length of the average routing path. It shows that Hit-
Scheduler reduces the average route path from 6.5 hops
to 4.4 hops compared with Capacity Scheduler, which
achieves nearly 30% improvement. It is because Capacity
Scheduler is unaware of the network architecture, result-
ing in longer flow route path which is caused by failing
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Fig. 9. Cumulative Distribution of Job Completion Times, Map and Reduce Execution Times under Various Policies.
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Fig. 10. Performance Comparison Hit vs. Capacity.

to consider optimizing the traffic in the network. As a
result of shorter route path, Figure 10(b) shows that Hit-
Scheduler reduces the average shuffle delay from 189 us
to 131 us. Reducing the shuffle traffic flow delay play an
important role in improving the job completion time.

8.6 Impact of Network and Workload
To illustrate the effectiveness of our strategy for dif-
ferent workloads, we compare the shuffle cost reduc-
tion gained by Hit-Scheduler with Probabilistic Network
Aware Scheduler under the same Tree network archi-
tecture. Figure 11(a) shows that for a single job, the
reduction on shuffle cost increases to 38% for shuffle-
heavy workload, while 21% for Probabilistic Network
Aware Scheduler. The results also demonstrate that the
improvements for the shuffle-light and shuffle-medium
datasets are not as apparent as the shuffle-heavy dataset
because they require less data shuffle traffic.

Figure 11(b) shows the shuffle traffic cost of the
shuffle-heavy workload under four different network
architectures. It illustrates that Map-and-Reduce style fits
the Tree network architecture very well because it results
in less shuffle cost. Under all of these different architec-
tures, Hit-Scheduler outperforms Probabilistic Network
Aware Scheduler and Capacity Scheduler about 19%
and 32% in terms of the shuffle cost. Though Prob-
abilistic Network Aware Scheduler takes the network
topology and bandwidth into consideration, it cannot
handle some complex topologies, e.g, VL2 shown in
the figure. This is because Probabilistic Network Aware
Scheduler assumes that the network cost is static and
fixed among all nodes in the cloud and does not take the
limited bandwidth into consideration. Compared with
Probabilistic Network Aware Scheduler, Hit-Scheduler

(a) Different Job Types (b) Different Networks

Fig. 11. Impact of Network and Job
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can effectively support various complex topologies and
correspondingly achieves better scalability.

8.7 Impact of Bandwidth and Job Numbers

We further implement a large-scale simulation to eval-
uate the network policy, where we set the the total
number of nodes to be 512, which are connected via Tree
network. Figure 12 shows the throughput improvement
achieved by Hit-Scheduler and Probabilistic Network
Aware scheduler compared to Capacity scheduler un-
der varying bandwidth from 6Gbps to 10Gbps [32].
It demonstrates that Hit-Scheduler significantly outper-
forms Probabilistic Network Aware scheduler especially
when given the limited bandwidth. The improvement
can be nearly 23.8% while the bandwidth is limited to
6Gbps. This is due to the fact that Probabilistic Network
Aware scheduler assumes the communication cost be-
tween two nodes is static and the routing path is single-
one path, which is simply decided by the number of
switches it will traverse. Compared with Probabilistic
Network Aware scheduler, there are more opportuni-
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ties for Hit-Scheduler to improve the throughput with
the limited bandwidth. Please refer to the preliminary
study [13] for the sensitivity of Hit-Scheduler under
various job numbers.

9 RELATED WORK
There are considerable literatures on computation place-
ment considering network and resource optimiza-
tion [15]. However, most techniques require specialized
hardware or communication protocols. A number of
researches have been proposed to improve the schedul-
ing for MapReduce jobs. Zaharia et al. [7] developed a
scheduling algorithm called LATE that tried to improve
the response time of short jobs by executing duplicates
of some tasks in a heterogeneous system. However,
these techniques do not guarantee locality for shuffle
stages. ShuffleWacther [5] and iShuffle [6] try to improve
the locality of the shuffle by scheduling both maps
and reducers on the same set of racks. However, all
these scheduling schemes do not explicitly take into
account the cost caused by network for deciding the
placement of tasks, which may lead to excessive latency
in shuffling and degrade the performance of job exe-
cution. A transmission cost-based scheduling method,
Probabilistic Network-Aware Scheduler [28] was pro-
posed considering the network topology and link band-
width. However, they assume that network cost among
nodes is static and the bandwidth for shuffle flow is
fixed. Actually, the computation running in the cloud
and transmission on the network will affect each other.
Unlike previous works, we propose a task scheduling
scheme taking both the dynamic network policy and
computation into account.

Recent development in SDN can support much more
policy deployment over the data center. SIMPLE [33]
is an SDN-based policy enforcement scheme to steer
traffic in data center according to policy requirements.
FlowTags [30] is proposed to leverage SDN’s global
network visibility and guarantee correctness of policy
enforcement. EnforSDN [34] is proposed to decouple
the policy resolution layer from the policy enforcement
layer so as to provide better flexibility. PGA [35] PGA is
proposed to model the behavior of closed middleboxes
and ensure their correct behavior in a service chain while
minimizing operator interventions. However, they are
not fully designed with computation in consideration,
and may put the application running in the data cen-
ter under the risk of violating the policies. However,
these approaches did not fully consider the allocation
of virtual machines or container, especially the specific
big data analytic workloads, which might cause perfor-
mance degradation.

Multi-tenant Cloud DC environments enable more
flexible middlebox deployments over the network.
PACE [25] is proposed to support application-wide, in-
network policies. However, it only considers both the
computation placement and network policies in the one-
off scenario. Quokka [36] is proposed to schedule both

the traffic flows and middleboxes in the network to
reduce the transmission latencies. A programming mid-
dlebox [37] based on Clos network design is presented
to improve the bandwidth utilization and reduce the
network latency by utilizing the global network infor-
mation. PLAN [38] studies the optimization of policy-
aware network resource usage but focus on the VMs
management. All of those works do not consider the
impact from network policies on task placement.

10 CONCLUSION

In this paper, we focus on jointly optimizing task
scheduling and network policy management in the cloud
with hierarchical network architecture. We have pro-
posed and developed a hierarchical topology aware
MapReduce scheduler to minimize overall data traffic
cost and hence to reduce job execution time. The main
technical novelty of Hit-scheduler lies in the integration
of dynamic computing and communication resources
in hierarchical clouds. As demonstrated by the model-
ing, optimization and experimental results based on the
testbed implementation, Hit-scheduler can improve job
completion time by 28% and 11% compared to Capacity
Scheduler and Probabilistic Network-Aware scheduler,
respectively. Our simulations further demonstrate that
Hit-scheduler can reduce the traffic cost by 38% at most
and reduce the average shuffle flow traffic time by 32%
compared to Capacity scheduler. In this manuscript, we
have extended Hit-scheduler to a decentralized heuristic
scheme to perform the policy-aware allocation in data
center environments. The simulation based experimental
results show that the proposed PAT policy reduces the
communication cost by 33.6% compared with the default
scheduler in data centers.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[2] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. of ACM
Eurosys, 2010.

[3] A. Verma, B. Cho, N. Zea, I. Gupta, and R. H. Campbell, “Breaking
the mapreduce stage barrier,” Cluster computing, vol. 16, no. 1, pp.
191–206, 2013.

[4] K. Shvachko, H. Kuang, S. Radia, R. Chansler et al., “The hadoop
distributed file system.” in Proc. of IEEE MSST, 2010.

[5] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Shufflewatcher: Shuffle-aware scheduling in multi-tenant mapre-
duce clusters,” in Proc. of USENIX ATC, 2014.

[6] Y. Guo, J. Rao, D. Cheng, and X. Zhou, “ishuffle: Improving
hadoop performance with shuffle-on-write,” In IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 6, pp. 1649–1662,
2017.

[7] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments.” in Proc. of USENIX OSDI, 2008.

[8] L. Gyarmati and T. A. Trinh, “Scafida: A scale-free network
inspired data center architecture,” Proc. of ACM SIGCOMM, 2010.

[9] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proc. of IEEE INFOCOM, 2016.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:14 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2961653, IEEE
Transactions on Cloud Computing

14

[10] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for
evaluating mapreduce performance using workload suites,” in
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2011 IEEE 19th International Symposium on.
IEEE, 2011, pp. 390–399.

[11] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,”
in Proc. of USENIX NSDI, 2012.

[12] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an
intellectual history of programmable networks,” Proc. of ACM
SIGCOMM, 2014.

[13] D. Yang, W. Rang, and D. Cheng, “Joint optimization of mapre-
duce scheduling and network policy in hierarchical clouds,” in
Proc. of ICPP. ACM, 2018.

[14] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algo-
rithms for the generalized assignment problem,” European journal
of operational research, 1992.

[15] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros, “Scalable
traffic-aware virtual machine management for cloud data cen-
ters,” in Distributed Computing Systems (ICDCS), 2014 IEEE 34th
International Conference on. IEEE, 2014, pp. 238–247.

[16] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint
flexibility in data-intensive clusters,” in Proc. of ACM SIGCOMM,
2013.

[17] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Tarazu: optimizing mapreduce on heterogeneous clusters,” in
Proc. of ACM SIGARCH, 2012.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable
and flexible data center network,” in Proc. of ACM SIGCOMM,
2009.

[19] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Port-
land: a scalable fault-tolerant layer 2 data center network fabric,”
in Proc. of ACM SIGCOMM, 2009.

[20] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: a high performance, server-centric network
architecture for modular data centers,” In ACM SIGCOMM Com-
puter Communication Review, 2009.

[21] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost
of a cloud: research problems in data center networks,” Proc. of
ACM SIGCOMM, 2008.

[22] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine place-
ment,” in Proc. of IEEE INFOCOM, 2010.

[23] A. Headquarters, “Cisco data center infrastructure 2.5 design
guide,” in Cisco Validated Design I. Cisco Systems, Inc, 2007.

[24] H. Kellerer, U. Pferschy, and D. Pisinger, “Introduction to
np-completeness of knapsack problems,” in Knapsack problems.
Springer, 2004, pp. 483–493.

[25] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong,
Y. R. Yang, and C. Guo, “Pace: Policy-aware application cloud
embedding,” in Proc. of INFOCOM. IEEE, 2013.

[26] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward
software-defined middlebox networking,” in Proc. of Workshop on
Hot Topics in Networks. ACM, 2012.

[27] C. E. Leiserson, “Fat-trees: universal networks for hardware-
efficient supercomputing,” IEEE transactions on Computers, vol.
100, no. 10, pp. 892–901, 1985.

[28] H. Shen, A. Sarker, L. Yu, and F. Deng, “Probabilistic network-
aware task placement for mapreduce scheduling,” in Proc. of IEEE
CLUSTER, 2016.

[29] “Ns-3,” https://www.nsnam.org//.
[30] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,

“Enforcing network-wide policies in the presence of dynamic
middlebox actions using flowtags,” in Proc. of USENIX NSDI,
2014.

[31] D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching
layer for data centers,” in SIGCOMM Computer Communication
Review. ACM, 2008.

[32] “Amazon ec2 instance types.” https://aws.amazon.com/ec2/instance-
types/.

[33] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“Simple-fying middlebox policy enforcement using sdn,” in Proc.
of ACM SIGCOMM, 2013.

[34] Y. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin, and E. Raichstein,
“Enforsdn: Network policies enforcement with sdn,” in 2015
International Symposium on Integrated Network Management. IEEE.

[35] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to
express and automatically reconcile network policies,” in Proc. of
ACM SIGCOMM, 2015.

[36] P. Duan, Q. Li, Y. Jiang, and S.-T. Xia, “Toward latency-aware
dynamic middlebox scheduling,” in Proc. of ICCCN. IEEE, 2015.

[37] R. Tu, X. Wang, J. Zhao, Y. Yang, L. Shi, and T. Wolf, “Design of a
load-balancing middlebox based on sdn for data centers,” in Proc.
of INFOCOM Workshops. IEEE, 2015.

[38] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao, “Plan:
Joint policy-and network-aware vm management for cloud data
centers,” Transactions on Parallel and Distributed Systems, 2017.

Donglin Yang received his B.S. degree in Elec-
trical Engineering from Sun Yat-sen University,
China, in 2016. Currently, he is working towards
the Ph.D. degree in Computer Science at the
University of North Carolina at Charlotte. His
works focus on big data analytics platforms and
machine learning computing systems.

Dazhao Cheng received his B.S. and M.S. de-
grees in Electronic Engineering from Hefei Uni-
versity of Technology in 2006 and the University
of Science and Technology of China in 2009,
respectively. He received his Ph.D. degree from
the University of Colorado, Colorado Springs in
2016. He is currently an Assistant Professor in
the Department of Computer Science at the Uni-
versity of North Carolina, Charlotte. His research
interests include Big Data and cloud computing.
He is a member of the IEEE and ACM.

Wei Rang received his B.S. degree in Com-
puter Science from Shandong Normal Univer-
sity, China in 2013. He obtained his M.S. de-
gree in Computer Science from Southern Illi-
nois University Carbondale in 2017. Currently,
he is a Ph.D. student in Computer Science at
the University of North Carolina at Charlotte.
His research interests mainly focus on Cloud
Computing and Parallel Computing.

Yu Wang is a Professor of Computer and Infor-
mation Sciences, Temple University. He received
his Ph.D. degree in Computer Science from Illi-
nois Institute of Technology, his B.Eng. degree
and M.Eng. degree in Computer Science from
Tsinghua University, China. His research inter-
est includes wireless networks, mobile social
networks, smart sensing, and mobile computing.
He has published over 150 papers in peer re-
viewed journals and conferences, with four best
paper awards. He is an IEEE Fellow and senior

member of the ACM.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 15:23:14 UTC from IEEE Xplore.  Restrictions apply. 


