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A bstr a ct — U n m a n n e d A e ri al Ve hi cl es ( U A Vs) a r e st e a dil y b ei n g
c o nsi d e r e d f o r s c e n a ri os d e m a n di n g hi g h b a n d wi dt h, l o w l at e n c y
c o m m u ni c ati o ns f o r vi d e o a n d s e ns o r d at a t r a nsf e r as w ell as r e al-
ti m e c o nt r ol. U A Vs m a y als o b e us e d as m o bil e a e ri al B as e St ati o n
( B S) f o r m ai nt ai ni n g t h e c o m m u ni c ati o n i n e m e r g e n c y s c e n a ri os.
T h e milli m et e r w a v e ( m m W a v e) b a n ds, i n cl u di n g t h e s u b- T H z
f r e q u e n ci es a b o v e 1 0 0 G H z, a r e a n att r a cti v e t e c h n ol o g y f o r hi g h
d at a r at e U A V c o n n e cti vit y d u e t o t h e wi d e b a n d wi dt hs a v ail a bl e
at t h es e f r e q u e n ci es. T his p a p e r st u di es a nt e n n a a n d c o d e b o o k
d esi g n f o r U A V c o m m u ni c ati o n at b ot h 2 8 a n d 1 4 0 G H z wit h
r e alisti c a nt e n n a si m ul ati o ns a n d fli g ht p att e r ns. T h e a n al ysis
s h o ws t h at m ulti- a r r a y c o n fi g u r ati o ns wit h p r o p e r c o d e b o o k
d esi g n a r e n e c ess a r y f o r u nif o r m s p h e ri c al c o v e r a g e a n d b e c o m e
p a rti c ul a rl y i m p o rt a nt i n l o n g r a n g e a p pli c ati o ns. T h e p a p e r t h us
p r o p os es a f o u r a r r a y d esi g n wit h p at c h a nt e n n as. Si m ul ati o ns
i n di c at e t h at t h e d esi g n c a n a c hi e v e i n e x c ess of 1 G b ps d at a r at es
at a r a n g e of 1 k m, wit h r e as o n a bl e p o w e r l e v els a n d m o d e r at e
r ai n f a d es. A si m ul ati o n wit h a r e al p u bli c s af et y missi o n fli g ht
s h o ws t h at b e a m t r a c ki n g c a n b e m ai nt ai n e d e v e n u n d e r hi g h
d r o n e m o v e m e nts a n d r ot ati o ns.

I n d e x Ter ms — U A V, m m W a v e, s u b- T H z, b e a mf o r mi n g, c o d e-
b o o k d esi g n, a nt e n n a pl a c e m e nt

I. I N T R O D U C T I O N

Hi g h- d at a r at e c o n n e cti vit y is b e c o mi n g i n cr e asi n gl y i m-
p ort a nt i n U A Vs t o s u p p ort r e al-ti m e s e ns or a n d c a m er a d at a
tr a nsf er, r e m ot e c o ntr ol, a n d sit u ati o ns w h e n t h e U A V a cts as
a n a eri al b as e st ati o n. F or t h es e a p pli c ati o ns, t h e milli m et er
w a v e ( m m Wa v e) b a n ds off er l ar g e b a n d wi dt hs t h at c a n s u p p ort
m assi v e d at a r at es at l o w l at e n c y [ 1], [ 2]. I n a d diti o n, li n ks t o
U A Vs ar e oft e n li n e- of-si g ht ( L O S) a n d t h us a v oi d bl o c k a g e
pr o bl e ms c o m m o n i n m m Wa v e c ell ul ar a n d L A N d e pl o y m e nts
[ 3], [ 4]. N e v ert h el ess, m m Wa v e U A V c o m m u ni c ati o n pr es e nt
s e v er al t e c h ni c al c h all e n g es i n cl u di n g r a n g e, p o w er c o ns u m p-
ti o n a n d dir e cti o n al tr a c ki n g i n hi g h m o bilit y s c e n ari os. T h e
g o al of t his w or k is t o e v al u at e t h e p erf or m a n c e of U A V
m m Wa v e c o m m u ni c ati o ns wit h r e alisti c i m pl e m e nt ati o ns of
c o d e b o o k- b as e d b e a mf or mi n g, b e a m s e ar c h t e c h ni q u es, a n d
a nt e n n a r a di ati o n p att er ns.

Pri or w or k i n m m Wa v e U A V c o m m u ni c ati o n is r el ati v el y
r e c e nt. F or e x a m pl e, [ 4] p erf or m e d l a b or at or y e x p eri m e nts
a n d e v al u at e d t h e b e a m tr a c ki n g p erf or m a n c e. Si mil arl y, [ 3]
p erf or m e d r a y tr a ci n g a n d c h a n n el s o u n di n g t o e v al u at e 2 8
a n d 6 0 G H z U A V- gr o u n d c h a n n els. T h e w or k [ 5] d e v el o p e d
a c o d e b o o k d esi g n pr o c e d ur e f or b e a m c o v er a g e f or a gi v e n
t ar g et ar e a. M ulti- us er MI M O c o m m u ni c ati o n wit h s e v er al
air cr afts c o n n e ct e d t o a c e ntr al h u b w as st u di e d i n [ 6]. S e v er al

a p pli c ati o ns h a v e als o b e e n si m ul at e d: f or e x a m pl e, [ 7] e v al-
u at e d U A V- gr o u n d c o m m u ni c ati o n i n a p u bli c s af et y s c e n ari o
a n d [ 8] st u di e d t h e p ossi bilit y of m m Wa v e U A V b a c k h a ul.

T his p a p er c o nsi d ers m ulti- arr a y d esi g ns a n d m or e d et ail e d
a nt e n n a m o d eli n g. We d e m o nstr at e t h at t h e a nt e n n a d esi g n
a n d pl a c e m e nt c a n gr e atl y aff e ct t h e c o m m u ni c ati o n r a n g e a n d
m ulti- arr a y d esi g ns c a n off er si g ni fi c a nt b e n e fits i n l o n g-r a n g e
a p pli c ati o ns. I n c o ntr ast t o m ost pri or w or k, w e als o c o nsi d er
c o m m u ni c ati o n a b o v e 1 0 0 G H z w h er e t h e b a n d wi dt hs ar e
e v e n l ar g er t h a n t h e l o w er m m Wa v e fr e q u e n ci es. S p e ci fi c all y,
w e st u d y t w o s yst e ms: ( a) a 2 8 G H z s yst e m si mil ar t o
t h e c o n fi g ur ati o n f or a 5 G N e w R a di o ( N R) [ 9] m m Wa v e
d e pl o y m e nt t o d a y; a n d ( b) a h y p ot h eti c al 1 4 0 G H z s yst e m,
als o usi n g a n N R-t y p e li n k. T h e 1 4 0 G H z b a n d is t h e m ost
li k el y s u b- T H z fr e q u e n c y f or f ut ur e 6 G s yst e ms [ 1 0].

II. A N T E N N A A N D B E A M F O R M I N G M O D E L

We us e t h e 3 G P P N e w R a di o ( N R) t er mi n ol o g y [ 9] w h er e
t h e U A V is t h e us er e q ui p m e nt ( U E) a n d t h e gr o u n d b as e
st ati o n is t h e g N B. We f o c us o n t h e u pli n k ( U E → g N B) si n c e
it is t h e m ost p o w er c o nstr ai n e d. We s u p p os e t h e U A V h as
N a r r a nt e n n a arr a ys, e a c h arr a y wit h N U E a nt e n n a el e m e nts.
We i n d e x t h e arr a ys b y k = 1 , . . . , Na r r a n d ass u m e all
el e m e nts i n t h e s a m e arr a y h a v e t h e s a m e ori e nt ati o n. T h us,
i n e a c h arr a y k , t h e el e m e nts h a v e a n i d e nti c al el e m e nt g ai n ,

A
( k )
E (θ, φ ), r e pr es e nti n g t h e p o w er g ai n of a pl a n e w a v e

arri vi n g wit h el e v ati o n a n d a zi m ut h a n gl es θ a n d φ o nt o a n
el e m e nt i n arr a y k . I n a d diti o n e a c h arr a y is c h ar a ct eri z e d b y
a s p ati al si g n at ur e , u k (θ, φ ) ∈ C N U E w hi c h r e pr es e nts t h e
c o m pl e x r es p o ns e of t h e N U E a nt e n n as t o a pl a n e w a v e wit h
a n gl es θ a n d φ . We will ass u m e t h e c o m p o n e nts of t h e s p ati al
si g n at ur e ar e n or m ali z e d as |u k |= 1 . T h us, e a c h dir e cti o n
r es ults i n a v e ct or of p h as e s hifts d e fi ni n g its s p ati al si g n at ur e.

We ass u m e t h e U A V tr a ns mits fr o m o nl y o n e arr a y at a
ti m e. T h us, at e a c h ti m e, t h e U E will s el e ct a n arr a y k a n d
a p pl y a b e a mf or mi n g v e ct or w ∈ C N U E . We ass u m e w = 1 .
T h e r es ulti n g t ot al tr a ns mit g ai n i n a dir e cti o n (θ, φ ) is t h e n,

G (θ, φ, w ) = A
( k )
E (θ, φ ) + A

( k )
B F (θ, φ, w ), ( 1)

w h er e A
( k )
B F (·) is t h e b e a mf or mi n g g ai n,

A
( k )
B F (θ, φ, w ) : = 1 0 l o g 1 0 |u k (θ, φ ) · w |2 , ( 2)

w h er e a · b d e n ot es t h e d ot pr o d u ct b et w e e n v e ct ors a a n d b .

2 0 2 0 I E E E 2 1 s t I n t e r n a ti o n al W o r k s h o p o n Si g n al P r o c e s si n g A d v a n c e s i n Wi r el e s s C o m m u ni c a ti o n s ( S P A W C)

9 7 8- 1- 7 2 8 1- 5 4 7 8- 7/ 2 0/ $ 3 1. 0 0 © 2 0 2 0 I E E E

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w Y or k U ni v er sit y. D o w nl o a d e d o n S e pt e m b er 1 8, 2 0 2 0 at 1 3: 4 7: 4 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



( a) G e o m etr y of cir c ul ar p o-
l ari z e d p at c h a nt e n n a el e m e nt
o p er ati n g at 2 8 G H z.

( b) R e fl e cti o n c o ef fi ci e nt f or p at c h a nt e n n as
o pti mi z e d at 2 8 (r e d li n e) a n d 1 4 0 G H z ( bl u e
li n e).

Fi g. 1: Pr o p os e d a nt e n n a str u ct ur e.

We will ass u m e a li n e- of-si g ht ( L O S) c h a n n el wit h a si n gl e
dir e cti o n of arri v al (θ, φ ). I n t his c as e, t h e m a xi m u m of t h e
t ot al tr a ns mit g ai n i n ( 1) is,

G m a x (θ, φ ) = m a x
k

m a x
w

A
( k )
E (θ, φ ) + A

( k )
B F (θ, φ, w ) , ( 3)

w h er e t h e m a xi mi z ati o n is o v er t h e arr a y s el e cti o n k a n d t h e
b e a mf or mi n g v e ct or w . We will us e t h e v al u e of t h e m a xi m u m
( 3) t o e v al u at e v ari o us d esi g n p ar a m et ers i n cl u di n g t h e a nt e n n a
el e m e nt d esi g n, arr a y l a y o ut, pl a c e m e nt a n d b e a mf or mi n g
c o d e b o o k.

III. A N T E N N A D E S I G N

A nt e n n a El e m e nt d esi g n: F or t h e 2 8 G H z c as e, w e
c o nsi d er a si n gl e cir c ul ar p ol ari z e d p at c h a nt e n n a el e m e nt
o n a l o w l oss Pr e p er m 2 5 5 s u bstr at e ( r = 2. 5 5, a n d t a n δ =
0. 0 0 0 5) wit h t hi c k n ess of 0. 5 m m. P at c h a nt e n n a el e m e nt h as
t w o o p p osit e c or n ers tr u n c at e d t o pr o vi d e cir c ul ar p ol ari z ati o n
( C P) [ 1 1] a n d t h e f e e di n g p oi nt of t h e p at c h is offs et fr o m
t h e c e nt er b y 1. 0 5 m m f or a nt e n n a o pti mi z e d at 2 8 G H z
( Fi g. 1 a). Si mil ar a nt e n n a g e o m etr y is c o nsi d er e d at 1 4 0
G H z, a nt e n n a is d esi g n e d o n a 3 l a y er M e gtr o n 7 s u bstr at e
wit h r = 3. 4 a n d t a n δ = 0. 0 0 2. T h e C P a nt e n n as m a y b e
b e n e fi ci al f or c o m m u ni c ati o ns si n c e t h e p ositi o n of t h e dr o n e
c a n b e ar bitr ar y d uri n g t h e fli g ht. T h e f oll o wi n g p ar a m et ers
ar e o bt ai n e d d uri n g t h e el e ctr o m a g n eti c si m ul ati o ns i n A ns ys
H F S S: a xi al r ati o is 5. 5 d B; m a xi m u m g ai n is 7. 2 d Bi; a n d
t h e h alf p o w er b e a m wi dt h ( H P B W) is 8 2◦ f or si n gl e a nt e n n a
el e m e nt o p er ati n g at 2 8 G H z. T h e a xi al r ati o is 1. 2 5 d B a n d
t h e g ai n is 5. 2 d Bi f or t h e a nt e n n a o p er ati n g at 1 4 0 G H z.
T h e r e fl e cti o n c o ef fi ci e nt of t h e d e v el o p e d a nt e n n a el e m e nts
is pr es e nt e d i n Fi g. 1 b. F urt h er o pti mi z ati o n of t h e a nt e n n a
el e m e nt c a n b e p erf or m e d ( e. g. b y a d di n g a p arti all y r e fl e cti n g
s urf a c e [ 1 2]) t o a c hi e v e l ar g er b a n d wi dt h a n d hi g h er g ai n of
t h e arr a y, h o w e v er, t his is o ut of t h e s c o p e of t his w or k b ut
will b e c o nsi d er e d i n t h e f ut ur e.

Arr a y c o n fi g ur ati o n a n d pl a c e m e nt: We c o nsi d er t w o
r e alisti c arr a y c o n fi g ur ati o ns:

• A si n gl e a r r a y l o c at e d o n t h e b ott o m of t h e dr o n e t o
pr o vi d e c o v er a g e of t h e b ott o m h e mis p h er e ( Fi g. 2 a);

• F o u r a nt e n n a a r r a ys l o c at e d o n t h e si d es of t h e dr o n e
a n d tilt e d b y − 4 5 ◦ r el ati v e t o t h e dr o n e pl a n e ( Fi g. 2 b).
E a c h arr a y c o v ers a n a p pr o xi m at el y 9 0 ◦ s e ct or.

( a) Si n gl e a nt e n n a arr a y u n d er t h e
dr o n e.

( b) F o ur a nt e n n a arr a ys o n t h e si d es
of t h e dr o n e.

( c) R a di ati o n p att er n of a si n gl e p at c h
a nt e n n a el e m e nt m o u nt e d o n t h e b ott o m
of t h e dr o n e.

( d) R a di ati o n p att er n f or si n gl e el-
e m e nt at θ ∈ [− 1 8 0 , 1 8 0] ◦ , φ =
0 ◦ . Bl a c k li n e-i niti al p att er n, r e d
li n e- a nt e n n a o n t h e dr o n e.

( e) R a di ati o n p att er n of si n gl e p at c h a n-
t e n n a el e m e nt tilt e d t o − 4 5 ◦ m o u nt e d o n
o n e si d e of t h e dr o n e.

(f) R a di ati o n p att er n f or si n gl e el-
e m e nt m o u nt e d wit h − 4 5 ◦ tilt at
θ = 1 3 5 ◦ , φ ∈ [− 1 8 0 , 1 8 0] ◦ .
Bl a c k li n e-i niti al p att er n, r e d li n e-
a nt e n n a o n t h e dr o n e.

Fi g. 2: A nt e n n a c o n fi g ur ati o ns a n d esti m at e d r a di ati o n p att er ns o n a
c o m m er ci al dr o n e at 2 8 G H z.

I n or d er t o esti m at e t h e eff e ct of t h e dr o n e fr a m e o n t h e
a nt e n n a p ar a m et ers, w e p erf or m e d s h o oti n g a n d b o u n ci n g
r a y ( S B R) si m ul ati o ns usi n g g e o m etri c al o pti cs ( G O) usi n g
a r e al 3 D m o d el f or a c o m m er ci al dr o n e. T his is a t y pi c al
q u a d c o pt er wit h t h e di a g o n al di m e nsi o n of 6 5 0 m m. Us u all y,
l ar g e dr o n es ar e m a d e of c ar b o n fi b er, w hil e i n t h e si m ul ati o ns
w e us e P E C m at eri al t o si m plif y t h e m o d el a n d a n d si mil ar
c h ar a ct eristi cs. At t h e c urr e nt ti m e, o ur S B R si m ul ati o ns ar e
o nl y p erf or m e d at 2 8 G H z. We ass u m e t h at w e c a n o bt ai n
si mil ar r a di ati o n p att er ns at 1 4 0 G H z, h o w e v er t h e eff e ct of
t h e dr o n e fr a m e mi g ht b e s e v er e at hi g h er fr e q u e n ci es. O ur
f ut ur e w or k i n cl u d es st u di es m e nti o n e d a b o v e. Fi gs. 2 c a n d 2 e
s h o ws t h e esti m at e d 3 D r a di ati o n p att er ns, as w ell as, a zi m ut h
a n d el e v ati o n c uts of t h e si n gl e a nt e n n a el e m e nt l o c at e d i n
t h e si n gl e a n d f o ur arr a y c as es. F or t h e f o ur arr a y c as e, t h e
p att er ns fr o m o nl y o n e of t h e f o ur arr a ys ar e s h o w n – t h e
ot h ers ar e i d e nti c al b y s y m m etr y. Fi gs. 2 d a n d 2f als o c o m p ar e
t h e r a di ati o n p att er ns ( d as h bl a c k li n e - a nt e n n a i n t h e fr e e
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s p a c e a n d s oli d r e d li n e - a nt e n n a o n t h e dr o n e). We s e e t h at
dr o n e b o d y aff e cts o n t h e r a di ati o n p att er ns m a y b e si g ni fi c a nt.

I V. M U L T I - A R R A Y C O D E B O O K D E S I G N

I n m a n y c as es, s e ar c h c a n o nl y b e p erf or m e d o v er a dis-
cr et e s et of b e a mf or mi n g v e ct ors or c o d e b o o k . G o o d c o d e-
b o o k d esi g n is n e c ess ar y t o o bt ai n g o o d b e a mf or mi n g i n
all dir e cti o ns of i nt er est. T o t his e n d, w e e xt e n d t h e Ll o y d-
t y p e c o d e b o o k d esi g n al g orit h m i n [ 1 3] f or m ulti- arr a ys. L et

S ( k ) = { w
( k )
1 , . . . , w

( k )
M } b e t h e c o d e b o o k f or arr a y k , w h er e

M is t h e n u m b er of b e a mf or mi n g v e ct ors i n t h e c o d e b o o k.
T y pi c all y, w e s et M = N U E s o t h at t h e n u m b er of c o d e b o o k
v e ct ors e q u als t h e n u m b er of s p ati al d e gr e es of fr e e d o m. T h e
g o al is t o s el e ct t h e s et of c o d e b o o ks, S = ( S ( 1 ) , . . . , S ( N a r r ) ).

T o t his e n d, w e s el e ct a l ar g e n u m b er of r a n d o m a n gl es
(θ i , φi ), i = 1 , . . . , N , fr o m t h e distri b uti o n o v er w hi c h w e
d esir e c o v er a g e. I n t his st u d y, w e dr a w t h e v e ct ors u nif or ml y
o v er t h e b ott o m h e mis p h er e of t h e U A V, s p e ci fi c all y θ ∈
[− 9 0 , 0] a n d φ ∈ [− 1 8 0 , 1 8 0] . We us e t his distri b uti o n si n c e
i n m a n y a p pli c ati o ns ( o n e of w hi c h is si m ul at e d i n S e c. V- D),
t h e dr o n e r e c ei v es c o m m u ni c ati o n si g n als fr o m a n e g ati v e
el e v ati o n a n gl e f or m ost of its fli g ht.

T h e n, gi v e n a s et of c o d e b o o ks, S , t h e e x p e ct e d m a xi m u m
b e a mf or mi n g g ai n is,

J (S ) : =
1

N

N

i = 1

m a x
k

m a x
j

|w
( k )
j · u k (θ i , φi )|

2 , ( 4)

w h er e u k (θ i , φi ) is t h e s p ati al si g n at ur e f or t h e i-t h dir e cti o n
o n arr a y k . T h e e x p e ct e d b e a mf or mi n g g ai n is t h e n m a xi mi z e d
it er ati v el y:

• Gi v e n a s et of c o d e b o o ks, S , f or e a c h dir e cti o n i, w e
s el e ct t h e arr a y k̂ i a n d c o d e b o o k v e ct or i n d e x ĵ i t h at
a c hi e v es t h e m a xi m u m b e a mf or mi n g g ai n i n ( 4);

• F or e a c h k a n d j , l et I k j b e t h e s et of dir e cti o ns i s u c h
t h at k̂ i = k a n d ĵ i = j .

• U p d at e t h e c o d e b o o k v e ct or w
( k )
j t o m a xi mi z e,

w
( k )
j = ar g m a x w

i ∈ I j k

|w · u k (θ i , φi )|
2 . ( 5)

T his m a xi m u m i n ( 5) is gi v e n b y t h e m a xi m u m ei g e n v e ct or
of

i ∈ I j k

u k (θ i , φi )u k (θ i , φi )
H . ( 6)

T h e a b o v e t hr e e st e ps ar e r e p e at e d u ntil c o n v er g e n c e.

V. S I M U L A T I O N R E S U L T S

A. P ar a m et ers

We e v al u at e t h e a nt e n n a a n d c o d e b o o k d esi g n f or t h e p ar a m-
et ers i n Ta bl e I. As d es cri b e d i n t h e I ntr o d u cti o n, w e c o nsi d er
b ot h a 5 G-li k e 2 8 G H z s yst e m a n d a h y p ot h eti c al 1 4 0 G H z
s yst e m f or p ossi bl e 6 G a p pli c ati o ns. N ot e t h at t h e 1 4 0 G H z
s yst e m r e q uir es si g ni fi c a ntl y m or e p o w er t o s u p p ort t h e wi d er
b a n d wi dt hs a n d w o ul d b e i nt e n d e d f or l ar g er dr o n es. F or b ot h
s yst e ms, w e ass u m e a n N R-li k e c h a n n el all o c ati o n w h er e t h e
b a n d wi dt h w o ul d b e t y pi c all y di vi d e d i nt o c o m p o n e nt c arri ers

T A B L E I: S yst e m p ar a m et ers

P a r a m et e r V al u e R e m a r ks
C arri er fr e q u e n c y f c 2 8 G H z 1 4 0 G H z

O c c u pi e d b a n d wi dt h,
B ( G H z)

0. 4 0 0 1. 6
T y p. f or 1 0 0 or
2 0 0 M H z c o m p o n e nt
c arri ers.

U A V T X t ot al p o w er,
P U E ( d B m)

2 3 2 6

P A ef fi ci e n c y ( %) 2 0 9. 7
Val u es fr o m [ 1 4],
[ 1 5] wit h b a c k off

U A V P A p o w er ( W) 1. 0 4. 1
N u m b er U A V / U E
a nt e n n as, N U E

1 6 6 4
4 × 4 a n d 8 × 8
U P As

N u m b er gr o u n d /
g N B a nt e n n as, N g N B

6 4 2 5 6

R ai n F a d e ( d B/ k m) 0. 7 5
Val u es fr o m [ 1 6],
[ 1 7] at 4 m m/ hr

N ois e Fi g ur e ( d B) 3. 1 5. 2 Fr o m [ 1 8] –[ 2 0]
R at e m o d el E q n. ( 8)

- 5 0 5 1 0 1 5 2 0

M a xi m u m T ot al G ai n [ d B]

0

0. 2

0. 4

0. 6

0. 8

1

C
D

F

1 Arr a y( s)
4 Arr a y( s)

Fi g. 3: C u m ul ati v e Distri b uti o n F u n cti o n ( C D F) of t h e c o v er a g e f or
m ulti- arr a y c o n fi g ur ati o ns

usi n g c arri er a g gr e g ati o n [ 2 1], [ 2 2]. Si mil ar p ar a m et ers ar e
us e d i n [ 2 3]. We ass u m e st at e- of-t h e- art r e p ort e d m m Wa v e
d e vi c e p ar a m et ers f or b ot h t h e p o w er a m pli fi er ( P A) [ 1 4],
[ 1 5] a n d l o w n ois e a m pli fi er ( L N A) [ 1 8] –[ 2 0]. T h e p at h l oss
i n cl u d es at m os p h eri c l oss at m o d er at e r ai n l e v els ( 4 m m/ hr)
[ 1 7].

B. Dir e cti o n al C o v er a g e

Usi n g t h e a nt e n n a p att er ns i n S e cti o n III a n d t h e m ulti- arr a y
b e a mf or mi n g c o d e b o o k d esi g n pr o c e d ur e i n S e cti o n I V, Fi g. 4
s h o ws t h e t ot al dir e cti o n al g ai n G m a x (θ, φ ) i n ( 3) f or a n gl es
(θ, φ ) u nif or ml y o v er t h e l o w er h e mis p h er e. T h e fi g ur e pl ots
t h e g ai ns f or 2 8 G H z c arri er f or o n e a n d f o ur arr a ys wit h 4 × 4
el e m e nts p er arr a y. As e x p e ct e d, t h e si n gl e arr a y c o n fi g ur ati o n
h as p o or c o v er a g e al o n g t h e h ori z o nt al of t h e arr a y at θ cl os e
t o 0 ◦ i n Fi g. 4 a. As w e will s e e b el o w, at l o n g dist a n c es fr o m
t h e b as e st ati o ns, t h e si g n al oft e n arri v es cl os e t o h ori z o nt al
a n d t h e l o w g ai n at t h es e a n gl e c a n si g ni fi c a ntl y r e d u c e t h e
r a n g e. T h e m ulti- arr a y c o n fi g ur ati o n i n c o ntr ast off ers m u c h
m or e u nif or m l o w er h e mis p h er e c o v er a g e. F or e x a m pl e, t h e
C D F i n Fi g. 3 cl e arl y s h o ws t h at t h e si n gl e arr a y c o n fi g ur ati o n
h as a b o ut 2 0 % of t h e h e mis p h er e h a vi n g m a xi m u m t ot al g ai n
l ess t h a n 5 d B. I n c o ntr ast, n e arl y all of t h e dir e cti o ns f or
t h e f o ur- arr a y c o n fi g ur ati o n a c hi e v e a m a xi m u m g ai n of o v er
1 0 d B wit h a m e di a n g ai n of a b o ut 1 5 d B.

2 0 2 0 I E E E 2 1 s t I n t e r n a ti o n al W o r k s h o p o n Si g n al P r o c e s si n g A d v a n c e s i n Wi r el e s s C o m m u ni c a ti o n s ( S P A W C)

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w Y or k U ni v er sit y. D o w nl o a d e d o n S e pt e m b er 1 8, 2 0 2 0 at 1 3: 4 7: 4 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



0 5 1 0 1 5 2 0

- 1 8 0 - 9 0 0 9 0 1 8 0

- 9 0

- 4 5

0

( a) Si n gl e 4 × 4 arr a y

- 1 8 0 - 9 0 0 9 0 1 8 0

- 9 0

- 4 5

0

( b) F o ur 4 × 4 arr a ys

Fi g. 4: T ot al dir e cti o n al g ai ns at 2 8 G H z

1 0 2 1 0 3 1 0 4

Di st a n c e [ m]

0

1

2

3

4

5

6

7

R
at

e 
[

G
b
ps

]

f
c
 = 2 8 G H z, 1 Arr a y( s)

f
c
 = 2 8 G H z, 4 Arr a y( s)

f
c
 = 1 4 0 G H z, 1 Arr a y( s)

f
c
 = 1 4 0 G H z, 4 Arr a y( s)

Fi g. 5: R at e vs. dist a n c e f or 2 8 a n d 1 4 0 G H z s yst e ms

C. Li n k B u d g et

T o ass ess t h e li n k b u d g et, Fi g. 5 s h o ws t h e e x p e ct e d d at a
r at e as a f u n cti o n of dist a n c e f or t h e 2 8 a n d 1 4 0 G H z s yst e ms
usi n g t h e p ar a m et ers i n Ta bl e I. I n e a c h c as e, w e ass u m e t h e
U A V is at a n altit u d e of 3 5 m a b o v e t h e gr o u n d b as e st ati o n.
We ass u m e t h e S N R is gi v e n b y,

S N R = 1 0 l o g 1 0

P U E G U E G g N B

L B (k T )(N F )
, ( 7)

w h er e P U E is t h e U E tr a ns mit p o w er; G U E a n d G g N B ar e t h e
t ot al dir e cti o n al g ai n ( el e m e nt g ai n + b e a mf or mi n g g ai n) at t h e
U E a n d g N B; L is t h e fr e e s p a c e p at h l oss, B is t h e b a n d wi dt h;
k T is t h e t h er m al n ois e s p e ctr al d e nsit y (f or T = 2 9 3 K )
a n d N F is t h e n ois e fi g ur e. F or t h e U E at 2 8 G H z, t h e g ai n
G U E = G m a x (θ, φ ) is t h e g ai n wit h o pti m all y s el e ct e d arr a y
a n d c o d e b o o k v e ct or as c o m p ut e d i n S e cti o n V- B. We ass u m e d
t h e g ai n f or 1 4 0 G H z w o ul d s c al e wit h t h e n u m b er of a nt e n n as.
F or t h e g N B, w e ass u m e w e c a n o bt ai n a t ot al g ai n (i n d Bi)
gi v e n b y G g N B = 1 0 l o g 1 0 (N g N B ) + A E w h er e N g N B is t h e
n u m b er of a nt e n n as at t h e g N B a n d A E is t h e g N B el e m e nt
g ai n w hi c h w e t a k e as A E = 5 d Bi. Gi v e n t h e S N R, t h e r at e
is t h e n c o m p ut e d b y t h e L T E-li k e m o d el [ 2 4],

R = ( 1 − α )B mi n { ρ m a x , l o g ( 1 + 1 00 .1 ( S N R − ∆ ) } , ( 8)

w h er e α = 0 .2 is t h e b a n d wi dt h l oss ( d u e t o c o ntr ol si g n ali n g),
∆ = 6 d B is t h e S N R l oss ( d u e t o r e c ei v er i m pl e m e nt ati o ns)

a n d ρ m a x = 4 .8 b ps/ H z is t h e m a xi m u m s p e ctr al ef fi ci e n c y.
U n d er t h es e ass u m pti o ns, w e s e e t h at t h e f o ur- arr a y c o n fi g-

ur ati o n off ers si g ni fi c a ntl y gr e at er r a n g e t h a n t h e si n gl e arr a y
c o n fi g ur ati o n d u e t o its a bilit y t o o bt ai n hi g h dir e cti vit y at
h ori z o nt al a n gl es. We als o s e e t h at t h e 1 4 0 G H z c o n fi g ur ati o n
c a n o bt ai n p e a k r at es i n e x c ess of 6 G b ps, a n d b ot h t h e 2 8
a n d 1 4 0 G H z s yst e ms c a n a c hi e v e o v er 1 G b ps at a dist a n c e
of 1 k m.

D. Missi o n Fli g ht E x a m pl e

We c o n cl u d e wit h a n e v al u ati o n i n a r e al dr o n e tr a c e usi n g
d at a t h at w as pr o vi d e d b y t h e A usti n Fir e D e p art m e nt ( A F D)
f or a p u bli c s af et y c o m m u ni c ati o n s c e n ari o. T his dr o n e fli g ht
w as first st u di e d i n [ 7]. I n t his si m ul ati o n, t h e gr o u n d b as e
st ati o n ( g N B) is l o c at e d at (− 7 0 0 , 0 , 2 5) m a n d t h e U A V h as
a fli g ht p at h s h o w n i n Fi g. 6. It is i m p ort a nt t o cl arif y t h at
t h e b as e st ati o n is p ositi o n e d at x = − 7 0 0 a n d is t h us a b o ut
7 0 0 m a w a y fr o m t h e st arti n g p ositi o n of t h e U A V fli g ht p at h.

Fi g. 6: P u bli c S af et y Missi o n Fli g ht

Usi n g t h e i d e nti c al ass u m pti o ns as i n t h e li n k b u d g et
c al c ul ati o ns, Fi g. 7 pl ots t h e Si g n al t o N ois e R ati o ( S N R)
f or a U A V t a ki n g t h e fli g ht p at h s h o w n b y Fi g. 6. T h e S N R is
c o m p ut e d f or c arri er fr e q u e n ci es of b ot h 2 8 G H z a n d 1 4 0 G H z
a n d t h e S N R tr a c e is c ol or- m at c h e d t o t h e diff er e nt p arts of
t h e fli g ht p at h f or r ef er e n c e. Si n c e t h e U A V is fl yi n g m ostl y
p er p e n di c ul ar t o t h e v e ct or fr o m t h e U A V t o t h e g N B , t h e t ot al
dist a n c e d o es n ot c h a n g e si g ni fi c a ntl y o v er t h e fli g ht. H e n c e
t h e a v er a g e S N R is r o u g hl y c o nst a nt. H o w e v er, t h e s m all S N R
v ari ati o n is d u e t o r ot ati o n al m oti o n of t h e dr o n e. We als o
h a v e m o d el e d t h e b e a mf or mi n g tr a c ki n g err or. S p e ci fi c all y, w e

2 0 2 0 I E E E 2 1 s t I n t e r n a ti o n al W o r k s h o p o n Si g n al P r o c e s si n g A d v a n c e s i n Wi r el e s s C o m m u ni c a ti o n s ( S P A W C)

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w Y or k U ni v er sit y. D o w nl o a d e d o n S e pt e m b er 1 8, 2 0 2 0 at 1 3: 4 7: 4 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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Fig. 7: Signal-to-Noise Ratio for public safety mission "Crowd
Overwatch" from [7]

assume there is a 20 ms delay in beam search consistent with
Primary Synchronization Signal (PSS) beam search in the NR
standard [25]. We see that the SNR fluctuations are somewhat
higher in the 140 GHz case due to the narrower beams.

VI. CONCLUSIONS

To assess the feasibility of mmWave communication to
UAVs, we have conducted detailed simulations of a circularly
polarized patch antenna element to evaluate the radiation
pattern while also considering the effect of a real drone
frame on the coverage. Using this antenna design, we propose
and simulate two possible configurations for antenna array
placement on a UAV and provide results for hemispheric
coverage and gain distribution, link budget, and finally SNR
for a real Public Safety Communication (PSC) flight for both
mmWave and sub-THz bands. Our results show significant
benefits for multi-array systems, particularly at long ranges.
Indeed, with four arrays, we can maintain high gain throughout
the lower hemisphere and obtain over 1 Gbps even at a 1 km
distance and moderate rain fades. Using the proposed multi-
array design, the maximum distance for which the system
maintains the highest achievable throughput is in fact extended
by over 600 m and 200 m for mmWave and sub-THz models,
respectively. Future work will include more detailed modeling
of the 140 GHz antennas as well as blockage analysis for low
altitude flights.
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