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Abstract—Low-resolution  digital-to-analog and analog-to-
digital converters (DACs and ADCs) have attracted considerable
attention in efforts to reduce power consumption in millime-
ter wave (mmWave) and massive MIMO systems. This paper
presents an information-theoretic analysis with capacity bounds
for classes of linear transceivers with quantization. The transmit-
ter modulates symbols via a unitary transform followed by a DAC
and the receiver employs an ADC followed by the inverse unitary
transform. If the unitary transform is set to an FFT matrix, the
maodel naturally captures filtering and spectral constraints which
are essential to model in any practical transceiver. In particular,
this model allows studying the impact of quantization on out-
of-band emission constraints. In the limit of a large random
unitary transform, it is shown that the effect of quantization can
be precisely described via an additive Gaussian noise model. This
model in tum leads to simple and intuitive expressions for the
power spectrum of the transmitted signal and a lower bound to
the capacity with guantization. Comparison with non-guantized
capacity and a capacity upper bound that does not make linearity
assumptions suggests that while low resolution quantization has
minimal impact on the achievable rate at typical parameters in
5G systems today, satisfying out-of-band emissions are potentially
much more of a challenge.

Index Terms—Quantization, millimeter wave, analog-to-digital
conversion, digital-to-analog comversion, out of band emission.

I. INTRODUCTION

All digital communications systems rely on digital-analog
and analog-digital converters (ADCs and DACs). In recent
years, there has been considerable interest in systems with
so-called low resolution DACs and ADCs where the number
of bits is very small (typically 3-4 bits in I and Q). These
architectures have atiracted particular atiention in the context
of energy-efficient approaches for next-generation millimeter
wave (mmWave) and massive MIMO systems [1}-[19]. In
particular, mmWave sysiems rely on communication across
wide bandwidths with large numbers of antennas [20], [21].
Power consumption thus becomes a key issue, particularly
in so-called fully digital architectures where signals from all
antennas are digitized for fast beam-tracking, initial access and
spatial multiplexing [11-[3], [7], [12].

At low mesolutions, it is critical to evaluate the effect of
quantization accurately, and there is now a larpe body of
work on characterizing the capacity of such systems [8]-[10],
[13]-[19], [22]. The most common model is to approximate
the guantizer in either the DAC or ADC via an additive
Gaussian noise (AGN) model [23], [24]. There are several
works that provide rigorous analysis of the AGN model under
variety of assumptions such as the high rate regime or dithered
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Fig. 1: System model with transform modulation and demod-
ulation with quantization at both the transmitter and receiver.
The transform modulation is modeled as a multiplication by
VH prior to quantization at the transmitter, while a spectrum
analyzer and receiver employ the inverse transform V.

quantization [23], [25]-[{28]. The AGN model has also been
used in the analysis of low resolution mmWave systems [13]-
[19]. In such systems, while the AGN and other Gaussian noise
predictions match simulations, its use has not been rigorously
justified.

This paper presents a simple, but rigorous method, for
analyzing a large class of linear communication systems.
Specifically, we analyze a general transmitter and receiver
with quantization in conjunction with linear modulation and
demodulation as shown in Fig. 1. A transmitter encodes data
through an unitary transform V™ prior to the DAC. The DAC
is modeled by a function Q. (-). The continuous-valued signal
x is passed through a memoryless channel F(-). The receiver
then uses an ADC Q. (-) followed by an inverse transform V
to recover the transmitted symbols.

If V were an FFT-matrix, then the model can be considered
as a simplified version of a frequency-domain filiering. Also,
the spectrum of the transmitied signal can be modeled through
the transform r = Vx. We find an achievable rate for this
system and the power spectral density of the transmitted
signal as a function of the DAC and ADC functions in a
certain large random limit where V & CV*V is selected
uniformly among the unitary matrices and N — oo. We also
find a capacity upper bound for a given transmitted power
spectral density considering the DAC and the ADC, but not
limiting transmit/receive processing to linear operations. Our
key results are as follows:
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» Rigorous AGN model: We show that the effect of quanti-
zation can be precisely modeled as additive, independent
Gaussian noise. This result makes the AGN analysis of
[23] in the setting of Fig. 1 rigorous, even in the low rate
regime.

» Predictions on the rate and power spectrum: The AGN
model provides asymptotically exact, simple and intuitive
expressions for spectrum of the transmitted signal and a
lower bound for the capacity of the quantized channel.

» Sampling rate and spectral modeling: Many prior in-
formation theoretic analyses of low-resolution commu-
nication systems assume that the symbol rate equals the
sample rate (see, for example, [£], [13]). However, almost
all practical transceivers use a sampling rate higher than
the signal bandwidth to reduce the filtering requirements
in the analog domain. Oversampling is also needed in
systems with variable bandwidths where sub-channels are
selected digitally (see Sec. V for an example based on 5G
New Radio standard [29]). Previous works accounting for
oversampling consider very specific up-sampling methods
[30]. In contrast, our methods enable exact calculations of
the power spectrum and bounds on capacity under general
spectral mask constraints.

» Implications for fully-digital architectures for 5G New
Radio: Several prior simulation studies have predicted
that with 3 — 4 bits, the loss from quantization in achiev-
able rate is minimal for data and control plane operations
in most 5G cellular use cases [11-[3], [7], [12], [16]-
[19]. Our analysis provides a rigorous confirmation of this
minimal loss in achievable rate. However, we also show
that simple linear modulation results in a hard limit on
the degree to which the out-of-band (OOB) noise can be
suppressed. This OOB noise is, in fact, much more of an
issue that the rate loss at most practical parameter values
in 5G systems today, particularlty in licensed spectrum
deployments where adjacent carrier leakape is sirictly
limited.

« Upper bounds on OOB suppression for any transmitter:
The high OOB levels with the simple linear modulator
raises the question if there are any transmitter (possibly
non-linear) that can provide greater OOB suppression.
Interestingly, our capacity upper bound for a given power
spectral density closely matches the achievable rate by the
linear transform transmitter in some regime, but shows
possibility for greater OOB suppression in other regimes.

A full version of this paper can be found in [31] that includes
all proofs.

IT. SYSTEM MODEL

A. Transceiver with Transform Modulation and Demodulation

We consider the general transceiver system with quantiza-
tion and transform modulation and demodulation shown in
Fig. 1. The transmitier constructs a vector of N symbols
g2 = (zp,...,2y_1) wWhich are modulated as u = VHz
where V € CV*V is some unitary matrix. The transformed

values are quantized to result in a transmitted vector x =
Qux(u) = Qu(VHz), where Qi (-) models the DAC. If V
were an FFT matrix, we could consider the symbols = as the
values of the transmitied signal in frequency domain and u
the pre-quantized values in time-domain. The modulation can
thus be regarded as a simplified version of OFDM (where
we ignore the cyclic prefix). In addition, if we zero-pad the
input frequency-domain symbols =, the transformed vector
u = VHz can be seen as an linearly up-sampled version of z.

The transmitted time-domain symbols are passed through a
general channel of the form,

y = F(x,§), (1)

where F(-) is some mapping and £ is noise independent of
the channel input x. Most commonly, we will be interested in
the AWGN case, ¥y = hx + £, where h is the channel gain.
The channel (1) can also model certain non-linearites in the
RF front-end [3]. The receiver first passes the signal through
an ADC Qr(y) and then performs the inverse transform
operation to obtain @ = VQr (y).

B. Spectrum and Capacity

To model the spectrum, let r = Vx which is the transform
of the transmitied signal x. The component |ry|? cam be
regarded as the energy of the signal at frequency k, k =
0,...,N — 1. We assume the frequency is divided into M
sub-bands and let ap = {1,...,M} be the variable that
indicates which sub-band frequency & belongs to. We call
a=(ap,...,ay_1) the sub-band selection vector and let,

g V-1

ﬁm{a]l = ﬁ Z L{sk=m}1 (2’}
k=0

which represents the fraction of the frequency components in

sub-band m. We will call 4., the bandwidth fraction for sub-

band m. We also define,

N-1

1
Bm(r) == N Z L{nk=m}|rk|2:- (3)
k=0
which represents the energy per sample in sub-band m.

An achievable rate for the system can be computed by
fixing some distribution on = and computing the mutual
information I(z;Z) between the transmitted vectors =z and
received frequency-domain vectors, z. For the input distribu-
tion, we will use an independent complex Gaussian in each
frequency. Specifically, we will assume the components z;. are

independent with,
z ~CNI(0, P.) when a; = m, 4

where P, is the symbol energy on any component in sub-band
m. The average per symbol energy is,

M
= 1 a 1 3
P = FElzl" = Ellul —mz=15mpm, (5)

where 4, are the bandwidth fractions (2).
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ITII. ACHIEVABLE SPECTRAL ENERGY AND RATE

A. Large System Limit

To make the analysis tractable, we consider a certain large
system limit of random instances of the system indexed by
the dimension N with N — oo, For each N, instead of
considering the deterministic FFT mairix V', we suppose that
V = V(N) is a random unitary matrix that is uniformly
distributed on the N x N unitary matrices i.e., Haar distributed.
The sub-band selection vectors a = a(/N') are assumed to be
a deterministic sequence satisfying,

(6)

The condition (6) imposes that asymptotically a fraction 4.,
of the components are in sub-band m.

For the DAC function, Qyx(u), we require that it is Lip-
schitz continuous and componentwise separable (or, equiva-
lently memoryless operation) meaning that

1
Jim —Hax(N) = m}] = &

x = Qu(u) <= zn = Qu(un), @

for some scalar-input, scalar-output function (v, (-). The com-
ponentwise function ()i, (-) does not change with N. Similarly,
we assume that the channel F{-) and receiver ADC function
act componentwise with Lipschitz functions F(-) and Qre(-).
This corresponds to 2 memoryless channel. Typical quantizers
are not Lipschitz continuous, but they can be approximated
arbitrarily closely by a Lipschitz function. We will validate
through simulations in Sec. V that our predictions hold true
even for standard discontinuous quantizers.

B. Achievable Spectral Energy Distributions

We first compute the asymptotic power spectral distribution
of the transmitted symbols x. We define:

1 1
Gy 1= _j—jIE[Q"u{U}U], Tix 1= ?Elth{ﬂ}—&t:”lﬂ, (8)

where P is the average per symbol energy in z in (5), Q5 (1)
is the complex conjugate of Qi(L7) and the expectation in (8)
is over U7 ~ CA(D, P).

Theorem 1. Under the above assumptions, let v = Vx be the
frequency-domain representation of the transmitted signal x
Then the energy in each sub-band converges almost surely to,

1 N-1
. 2
sm = Ny D el ey
= b [|otx|* P + Tix P - ()

In particular, the total energy per symbol converges almost
surely as,

(10)

The proof of Theorem 1 in the full paper [31] shows, in fact,
that the frequency-domain representation of the transmitted
symbols can be written as

. 1 2 2
Spot 1= n!l_l;ﬂmﬁ”x" = {|ﬂm| +TT-I}F‘

r=Vx =0z + wy,

(1

where wy, has components that are asymptotically indepen-
dent of z and “Gaussian-like” with distribution CN (0, 7 P).
The vector wy, can be thought as the transmitter quantization
noise. The precise sense in which wy, is Gaussian-like is given
is somewhat technical and given in the full paper [31]. What
is relevant is that the effect of quantizing and retumning to
frequency domain has the effect of scaling the signal =z and
adding Gaussian noise. This makes precise the AGN model
in [23], [24] used in several prior analyzes of low-resolution
digital architectures [7], [12].

From Theorem 1, we see that the fraction of power in sub-
band m is,

Sum (|ttx |* Prn /P + Tex)

e e ™

S
Wy = —— =

Stot
For a given DAC function Q. (-) and input power level P, it
is shown in the full paper [31] that there exists power levels

(12)

P, msulting in an energy fraction vector v = (1, ... ,n1)
if and only if v, > 0, 3 vm =1 and
O
T (13)

FE _—
"7 low|? + Tix

We will call the set of 1 satisfying these constrainis linear
feasible set.

C. Achievable Rate

We next compute the asymptotic achievable rate given by
the per symbol mutual information between the transmitted
symbols z and received symbols z:

el
Riin = lim inf 1 (z;%), (14)
We will call this the linear rate, since it would be the rate
achievable by the linear transmitter and receiver in Fig. 1.

Assuming the components of the noise £, are i.i.d. with some
distribution ¢,, ~ = with E|=|? < oo, similar to (8), we define

_ g — Llps_ 2
Cipy 1= PE[S U], = PE|S e 7], (15)
where S is the complex random variable,
8 =Qn (F(Qux(U),E)), U~CN(0,P), (16)

5* is the complex conjugate of 5, and I7 is independent of =

Theorem 2. Under the above assumptions, the linear rate is
almost surely bounded below by,

M 3
Ryjn = Z B log (1 + %) .
TX

It is shown in the full paper [31] that this bounds also
arise from a simple AGN model of the transceiver. Note that
the presented lower bound is achieved using Gaussian inputs.
However, as we will show in Sec. IV, using Gaussian inputs is
not optimal since it does not achieve the maximum high SNR

rate. Finding the optimal input distribution is left for future
work.

(17)

m=1
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D. Achievable Rate in an AWGN Channel

It is useful to consider the special case when we have an
additive white Gaussian noise (AWGN) channel modeled with
the function F(X,Z) = X + = and = ~ CN(0,¢?). Also, to
make the calculations simple, suppose we assume there is no
quantization at the receiver so that Q' (y,) = y.. Substituting
these distributions into (15), and using the expressions in (8),
we can show that

2

Oirx = itx, Trx = Tix + f (18)
Substituting these values into (17), we obtain,
M
|t |* Prr
Biin > bplog |14+ ———— . 1
Im_z g( —l-’.rt;,[_F+-::l'2 (19

m=1

Hence we pet the AWGN capacity with a loss from the DAC
quantization noise.

E. Achievable Rate When There is No Noise
Theorem 3. In an AWGN channel if o° = (), then the rate

bound in (19) is given by,

2
Ryn > log (1 + M) _D@l), @)
Tix

for any set of power distributions v, is given by (12).

Even with no noise, the rate is finite since linear processing
resulis in Gaussian-like quantization noise. Also, the linear
rate in (20) is only achievable for feasible power allocations
(13).

IV. QUANTIZED CAPACITY UPPER BOUND

The results above show that a linear transceiver in con-
junction with guantization limits system performance in two
key ways: (a) there is a limit (13) to which OOB emissions
can be suppressed; and (b) even in the regimes in which a
desired spectral mask is feasible, there is a rate penalty due
to guantization noise. These shortcomings raise the question
of whether there are transceivers (possibly non-linear) that
can achieve better rate under quantization constraints. To
understand this, consider again transmitting on N complex
symbols, x = (zp,...,Ty—1). Model the DAC constraint as
a constraint, =, = A where A — C are the possible values of
the (complex) DAC. We will write this consiraint as,

xe AV = {x | z, € A}, @n

To impose the spectral mask constraints, let s = (sq,...,sp)
be a vector of target energies in each sub-band. Recall that
@ (Vx) in (3) is the energy in a sub-band for a transmitted
vector x. Thus, the set

Gn(V,e) = {x € AV | $,n(VX) € [5 — €, 8] ¥},
22)
represents the set of vectors x satisfying the DAC constraint
and the sub-band enerpy constraints within some tolerance
€ > 0. If we restrict the modulation to vectors in the set

Gy (V,¢e), then the maximum rate any modulation method
can obtain is,

1
By(V,e) := log|Gn (V. el (23)

where |Gy (V, )| is the cardinality of G (V, €).

As before, assume V e CV*V js Haar-distributed on the
unitary matrices. Since V is random, the rate Ry (V. e) in
{23) is also random. We can use Jensen's inequality to upper
bound the expected rate,

1 1
ERN(V,) = 7Elog|CN(V,6)| < 5 log EICN(V, 6.
Here, the expectation is over V. We will be interested in the
asymptotic value of this upper bound,
B lim lim % log E|G (V, e)].

(24)

e=0 N—oo
In this definition, we take the limit € — 0 to ensure that the
modulator asymptotically matches the target sub-band energy
levels exactly. Note that the order of the limits over N and ¢

is important.

Theorem 4. Let s = (s1,...,50) be a set of target sub-
band energy levels. We define sy as the total energy, and

v = (vy,... ) as the vector of energy distributions
M
Em
Bt = Z Smy Mm@ = — (25)
o tot

Then, under the above assumptions, the asymptotic rate upper
bound in (24) is given by,

F = Hupax(s01) — D(8]0). (26)
Here Hupaxl(s) is given by
Huax(s) = max H(V) st. EV]? = s, @n

where the maximization is over all discrete random variables
V on the set A with second moment E[V |2 = =

We see that the upper bound in Theorem 4 and the achiev-
able noise-free rate in Theorem 3 have a similar form, but with
a constant gap and the fact that achievable rate with linear
transceiver are limited to the feasible region (13).

V. NUMERICAL RESULTS

To illustrate the resulis, consider a system where the trans-
mission bandwidth is divided into two equal sub-bands of
normalized widths §; = 42 = 0.5. The base-band signal u
is designed such that all its energy is concentrated over the
first sub-band (representing an in-band signal). Any leakape
into sub-band 2 (representing an adjacent band) is undesirable.
Most wireless standard specify a minimum ratio of the in-
band to the adjacent band power which defines the spectrum
mask. The transmitter is equipped with a b-bit DAC. The finite
resolution of the DAC introduces quantization noise both in-
band and in the adjacent carrier.

The effect of the quantization noise on the in-band signal is
shown in Fig. 2. The achievable rate over an AWGN channel
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Fig. 2: Achievable rate of a system where all the transmit
power is allocated to one of two sub-band for different number
of DAC bits.

10
—b = & [upper)

— -b =5 (linear)
——b = 4 {upper)
—-b=d (linear)
b= 3 (upper)
b= 3 (linear)

Rate (bits/samp)

o 10 20 0 40 50
10logy, (B} Fy) [dB]

Fig. 3: Rate versus adjacent channel leakage in a two sub-band

system. The solid lines show the upper bounds on the achiev-

able rate (Theorem 4) and the dashed lines show the achievable

rate predicted by the linear AGN model (Theorem 3).

for different SNRs and DAC resolutions () is computed using
(19) assuming a scalar uniform quantizer in both real and
imaginary components (I and Q). We observe that as the
resolution of the DAC increases the achievable rate of the
system becomes closer to the ideal AWGN capacity (ie.,
b = oo). Note that the high SNR achievable rate approaches
b bits per sample instead of 2b (b bits from in-phase and b
bits from quadrature components) since half of the bandwidth
is used due to spectral mask constraints. More interestingly,
we see that in the low SNR regime there is very little or
no loss in rate dee to low resolution quantizers. Practical
mmWave systems generally operate at the low SNR range
[12], particularly when SNR is achieved with beamforming.
The resulis thus confirm that the rate loss will be negligible
in typical low-SNR cellular settings as observed in extensive
simulations mentioned earlier [TH[10], [13}[19].

On the other hand, a more serious issue is the spectral
mask constraint. Fig. 3 plots the no-noise achievable rate from
(20) as a function of the signal to adjacent power, F;/FPs,
sometimes called the adjacent carrier leakage ratio (ACLR).

LA
=

—OFDM Simmlation
—=AGN model

&

10log,( P/ Py (dB)
b L
= =

e

._.
=

b (bits)

Fig. 4: ACLR with a finite DAC resolution (k) for a 200 MHz
3GPP NR OFDM iransmitter compared with the proposed
AGN model.

We see that, with linear modulation, the maximum ACLR with
non-zero rate is strictly limited. Fig. 3 also plots the theoretical
maximum rate vs. ACLR from Theorem 4. In the feasible
regime, the linear rate is within one bit of this upper bound.
But, the upper bound at least permits higher ACLRs suggesting
that more advanced transmitters may be able to suppress OOB
emissions further.

Practical low resolution 5G Systems: Our theory applies
to a theoretical random transform model. We illustrate the
model’'s predictive capabilities in a simulation of 5G New
Radio (NR) [29] configured to transmit a 200 MHz channel
with a sampling rate of 983 Ms/s, 8 common parameter setting
in a multi-carrier deployment. Fig. 4 shows the measured
ACLR and compares the simulated system with linear AGN
model in Theorem 1. We see that the predictions are accurate
with == 1 dB. See details in the full paper [31].

VI. CONCLUSIONS AND FUTURE WORK

We have presented a simple large random limit model
for analyzing the effect of quantization on a class of linear
transceivers. Importantly, the analysis rigorously captures both
the effects on rate and power spectrum, including OOB
emissions — key properties for emerging mmWave sysiems.
The analysis confirms earlier simulations that, for 5G systems,
low-resolution transceivers cause negligible loss in achievable
communication rates. However, OOB emissions are more
problematic. From an information theoretic perspective, this
motivates consideration of more advanced modulation and
demodulation methods used in conjunction with low resolution
DAC and ADC. One approach is to consider approximate
message passing (AMP) algorithms designed for systems with
random unitary transforms [32}-[38] and related theoretical
results [39], [40].
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