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Abstract—A key challenge in mmWave systems is the rapid
variations in channel quality along different beam directions.
MmWave links are highly susceptible to blockage and small
changes in the orientation of the device or appearance of
blockers can lead to dramatic changes in link quality along any
given direction. Many low-latency applications need to accurately
predict link quality from multiple directions and multiple cells.
This paper presents a novel long short term memory (LSTM)-
based method for predicting multi-directional link quality in
mmWave systems. The method is validated on two problems: A
realistic simulation of multi-cell link tracking in an environment
with randomly moving human and vehicular blockers at 28 and
140 GHz, and beam prediction in a real indoor setting at 60
GHz.

Index Terms—Millimeter wave; LSTM; machine learning;
cellular wireless

[. INTRODUCTION

Millimeter wave (mmWave) bands and other frequencies
above 6 GHz have emerged as key components of emerging
fifth generation (5G) cellular standards [1]-[3]. The vast
available bandwidths in these frequencies provide both lower
latency and high throughput. These capabilities are hoped
to enabled new applications in vehicle to everything (V2X),
robotics, drones and other areas.

However, one of the key challenges of supporting reliable
communication in mmWave bands is the high sensitivity of
signal blockages caused by humans, hand and many com-
mon building materials [4]-[6]. Thus, small changes in the
orientation of the device or appearance of blockers can result
in a rapid degradation of link quality in any given direction.
mmWave systems thus need to track and predict link quality
along multiple directions to sustain the link.

In addition, most mmWave systems rely on dense cell
deployments combined with multi-connectivity to provide
macro-diversity resistance to blockage [7]. Multi-connectivity
can be supported via carrier aggregation [8] where a mobile
(UE) can be simultaneously connected to multiple cells. While
carrier aggregation was introduced in 4G systems, its use in
5G mmWave networks presents an additional challenge: the
mobile must track link quality from multiple cells and multiple
directions.

This paper considers a general multi-link prediction problem
where links can either be from different cells or different
directions from a cell. The problem is to estimate future
link quality from past (possibly noisy or incomplete) mea-
surements. Traditional statistical prediction approaches are

difficult, since link statistics are complex and difficult to
estimate. We thus propose a machine learning approach.
Specifically, we formulate the multi-link prediction problem
as a vector-valued sequence-to-sequence problem. Recurrent
neural networks (RNNs) in deep learning are commonly used
for such problems [9], [10]. In this work, we use a well-known
RNN called Long Short Term Memory (LSTM). LSTMs can
capture long-term dependencies and have been successful in a
range of problems, particularly in natural language processing,
speech recognition and robotics.

Previous work on single link quality predictions have been
done for sub 6 GHz frequency for a vehicular scenario in
[11]. Work on link prediction based on LTE and WiMax
measurements has been done in [12]. CSI estimation using
deep learning has also been addressed in [13] and tested on
sub 6 GHz measurements. For mmWave networks, [14] uses
Gated Recurrent Unit (GRU) for single link prediction and
discusses applications like blockage prediction and proactive
hand-over. This work goes beyond these results in studying
multi-link problems, which are essential in the mmWave range.
The prediction capability will help in processes like proactive
beam switching, handovers and uses in V2X, robotics and
drone communications.

The paper is organized as follows. We describe the prob-
lem formulation and use cases in Section II. We will setup
an LSTM network for multi-link prediction and test it on
simulations at mmWave and sub THz frequencies based on
3GPP channel model with mobile blockers. The prediction
power of LSTM will be compared with one of the generic
prediction methods (moving average). We will then test the
prediction ability of LSTM on real life measurement data
from a beamformed system operating at 60 GHz with multiple
links. It is observed that the LSTM prediction performance
is better than that of the conventional moving average for
both simulations and measurement data. It is also established
that LSTM prediction is more robust to carrier frequency as
compared to a linear estimator like moving average.

II. PROBLEM FORMULATION AND USE CASES
A. Multi-Link Prediction Problem

Assume time is divided into discrete intervals of period T’
and we index the intervals ¢ = 0,1,2,.... We assume there
are K links. In a single cell scenario, there could be one link
for each direction. In a multi-cell scenario, there could be one
link for each cell or for each direction and cell. In any case,
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we let y(k, t) be some measure of channel quality on link k =
1,2,..., K in time interval ¢. The channel quality could be
the SNR for a flat fading channel or wideband SNR or muitual
information for a frequency selective fading channel. With any
definition, the link quality is a vector-valued process with K
values at each time. The major difference between multi-link
and single link predictions is that instead of a single value
prediction, we have to do a K dimensional vector prediction.

We consider a one-step ahead prediction problem, where the
zoal is to estimate the link quality (%, t) from channel quality
measurements from past time steps: (£, s) for s < ¢t and £ =
1,..., K. In some cases, you may only have measurements
on a subset of the links.

This scenario can be naturally applied to link tracking in the
5G NR standard [3]. First consider tracking the link guality
from a single cell. Suppose that the transmitter has N, TX
directions, and the receiver has N,. RX directions so theme
is exactly one codeword in each orthogonal spatial degree of
freedom. Hence there is a total of K = N N,. links. To
track link quality, each 5G cell periodically transmits a set of
synchronization signal bursts (S5Bs) [15]. Let T be the S5B
period (typically T = 20 ms) and assume the cell transmits
one SSB in each of the Ny, directions. Now, suppose that the
UE has a fully digital receiver. Then, in each SSB period T,
the UE can measure the channel quality ~(k, t) in all TX-RX
direction pairs. If the UE performs the beamforming in analog
{e.g. via RF phase shifters), the UE can measure some subset
of the directions k in each time ¢. In either case, the one-step
ahead prediction problem is to estimate the directional link
quality vector one SSB period in advance. The problem can
be extended to multiple cells by tracking one channel quality
for each TX-RX pair for each cell

B. Use Cases

Several important applications like V2X, robotics/Internet
of things (IoT), drone communications, etc. require reliable
tracing of time-varying link quality.

For example in a wehicular setup the mliability of the
mmWave link is compromised due to beam alignment errors
and blockages [16]. As most blockages occumring in V23X
environments are either caused by the terrain or building
infrastructure, they do not alter frequently. Thus, the predicted
channel characteristics can be relied upon because the train-
ing and test environments are very similar. Moreover, these
parameters can be used to detect beam or link failures and
trigger early beam switching or handovers (HO).

In robotics and drones communication, mobile units require
huge amounts of processing power to perform mechanical
tasks such as balancing, moving, etc. Since the computational
power that these mobile robots or drones can carry is limited
by the power/energy demands of high-end computing systems
such as CPUs or GPUs, these large computational units are
moved to the edge server But the latency requirements for
transmission between the robot/drone and the edge server ame
extremely strict. [17] shows that a communication link serving
a drone is unable to support the application when the round

trip delay exceeds 5 ms. For example assume that the latency
of a communication link is severely effected by a blockage
event. If this event can be predicted earlier, a dronefrobot can
alter the robot kinematics[18] or do a handover beforehand
such that the link latency does not deteriorate. The predicted
channel state information specific to beams can be useful in
determining the most reliable link from a dronefrobot to an
access point hence catering to the requirements of the given
applications.

In the cellular context, “Early handover™ has been actively
discussed as a solution to the challenges posed by mobility
in 5G NR. It is popularly known as conditional handover
{CHO). [19],[20] define conditional handover as an additional
step before the handover procedure where the UE initiates
a CHO request to multiple target cells based on an early
trigger condition. On reception of this request the target cells
request for the UE context from the source BS to prepare for
actual HO [21]. 3GPP RAN2#106 meeting agreements state
that the value of trigger condition for CHO would be defined
statically and stay fixed. This opens the CHO procedure to
major challenges such as unnecessary measurement reports,
frequent RRCReconfiguration failures etc., which in-turn lead
to more latency. Thus, SNR prediction and thereby RSRP
values for the serving BS and the best beam of target BSs can
be very useful in determining the best candidates for CHO in
advance. The predicted channel state can help create a more
accurate trigger condition for CHO, which can further lead to
reduced handover delay.

In the rest of this paper, we show how an LSTM network can
help with the multi-link prediction problem, which will help
us cater the communication requirements of the applications
mentioned above.

ITI. PROPOSED LSTM NETWORK

The one-step ahead prediction problem can be naturally for-
mulated as a sequence-to-sequence problem. At each time step
t, we will use the notation ') to denote the K-dimensional
vector with components ~(k, t), & = 1,..., K. For simplicity,
we will assume we measure the directional quality on all
links at each time. We then take the past values of ) as
the input sequence and have it penerate an output sequence
~') representing the predicted value of the vector +(9), If the
model is strictly causal, so that o) only depends on past
values v'*) for s < ¢, then the network will be performing
prediction. The prediction performance as the function of the
number of timesteps is left for future work.

In this work, we consider an LSTM [9], which is widely
used for sequence-to-sequence problems with long-term mem-
ory. We use the standard LSTM:

g9 = (WA 4 wehpE 4 p,) 0
i) = (W)  Wikpke1 4 gy )
_f{ﬂ _ giwf*:r,}.(ﬂ + W fh gk e—1) + Et_;} (3)
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The network maps the input sequence +'*) to the output predic-
tion ') through a number of interval or hidden variables that
have various functions to model past dependencies in the data.
The signal flow is illustrated in Fig. 1. The hidden variables
are the forget gate f'), input gate i'*), input node ¢'*!, hidden
layer h'*), output gate o' and memory cell state s} [22],
[23]. The input gate decides whether the current incoming data
is contributing new information to the network. The forget gate
flushes out unwanted data from the memory. The output gate
dictates what to show at the network output.

Each interval variable is the output of a linear combination
of the hidden state hf and input +* followed by an activation
function. The activation function is penerally either a sigmoid
((-)) or tanh ($(-)). We use the notation that W=¥ is the
weight matrix between = and y. b, is the bias of the gate
or node = and < translates to pointwise multiplication. For
convenience, we use the following short-hand:

v (k,t) = L{y(k, 1)), (8)

where L{-~(t)) means the input has been passed through (1)-
(7).

The complexity of the LSTM network is determined on the
number of units of the different types. The dimensions can be
determined via cross-validation. For a piven set of internal
dimensions during the training phase, the LSTM network
learning optimizes all the weights and biases of all the layers,
nodes and gates in such a manner that the loss is minimized.
For this work, we will be using mean squared error (MSE)
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Fig. 1: Process diagram of a memory cell of an LSTM network
based on the (1)+7). Figure from [22].

as the loss function. Mathematically, for the total number of
samples N »x K, MSE is given by,

N K
1 ,
MSE = 5 n§=1: k§=1:nir.~ (k,n) —v(k,m)®. )

IV. EXPERIMENTS

We evaluate the LSTM leaming of a multi-link model on
two datasets. The first is synthetic, and the second is from real
mmWave measurements.

A, Simulated multi-cell tracking with blockers

End-to-end communication network simulations are used to
generate the dataset on which the LSTM link quality prediction
is tested. 100 channel trajectories are generated using the
3GPP channel model [24] at 28 GHz and 140 GHz'. The
BSs are dropped randomly on a 200 x 200m?® grid, in such a
way that the cell radius for each BS is 100m. The number
of antennas at BS is M, = 64(256) and the number of
antennas at UE is M, = 8(64) for 28 GHz (140 GHz). BS
and UE codebooks have M} and M, beams respectively. The
simulated time T, for each trajectory is 100 seconds.

The UE has a height of 1.7 m and is dropped randomly
within the BS grid. We do not consider the impact of the
array geometry for the sake of simplicity. In this static model,
the UE tracks one direction for each cell, which we assume it
pre-determines from beam search.

Blockers are then deployed within the cell using a Poisson
point process with density A;. The blockers can either be
human or vehicular, with equal probability. The blockers are
modeled as a rectangular screen with specific height and width;
these numbers are provided by 3GPE The heights of the
human(vehicular) blockers are 1.7m{l.4m) while the widths
are 0.3m(4.5m). The blockage loss is modeled by the Double
Knife Edge Diffraction (DKED) model provided by 3GPP

The blockers follow random waypoint model. Over all the
trajectories, the human(vehicular) blockers have their veloci-
ties uniformly distributed between 0 — 3 kmvhr (0-100 km/hr).
For each channel trajectory, let =;(0) € B? be the position of
the j-th blocker at time ¢ = 0. A destination point d; € R?
is generated randomly within the cell for the blocker d; is
a 2D uniform random variable, which is restricted inside the
BS grid. As time progresses, the blocker moves toward the
destination with velocity +. Let At be the sampling interval for
simulation. Then the evolution of the position of the blocker
follows the equation:

z;(t) = z;(t — 1) + £AL (10}

At is chosen to be 20ms(T") since it corresponds to the value
of synchronization signal burst (SSB) period in the most recent
IGPP specification report [25], meaning the UE gets an update
of the link guality every 20 ms.

!The specifications of the 3GPP chanrel model in [24] are valid up to
100G Hz only, we continue to use it even for 140GHz because of the absence
of standardized channel models for the spectrum above 100 GHz
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Fig. 2: Venue for experimental setup with multiple paths(links)
and human blocker trajectories. (LOS path not shown). The
start point of blocker is tail of the arrow and end point is head
of the arrow.

Parameters 28 GHz [ 140 GHz
Scenario UMi
M, 8 64
M, 64 256
Bandwidth 400MHz 1.6GHz
N 9
UE height 1.7m
BS height 10 m
Sampling interval 20 ms
Temperature 298 K
Cell radius, r 100 m
Blocker density, Ay 0.01 m~2 [27]
Blocker height 1.4 m (Vehicular), 1.7 m (Human)
Blocker width 4.8 m (Vehicular), 0.3 m (Human)
0-28 m/s (0-100 km /h)[Vehicular
Blocker speed 0-1 I{I/S( (0-3 km//h))[l[-luman] }
Transmitted Power 23dBm [28]
Noise Figure 9dB [29]

TABLE I: Values of different parameters for the generation of
channel trajectories

Once z;(t) = dj, d; is reset along with the velocities of
the blockers. This process is repeated until the running time
of the simulation for the given trajectory is over. Both kinds
of blockers follow a similar mobility model; they are only
distinguished by the distribution of their velocities.

List of parameters for generating the channel trajectories has
been provided in Tab. I. Similar simulation setup was done in
[26].

B. Indoor Multi-Direction Tracking with Real Data

In this test, we evaluate the link tracking on real indoor
measurements using a phased-array system in [5], [30]. The
operating frequency of the system is 60 GHz, the frequency
for mmWave WiFi (802.11ad and 802.11ay). The TX and RX
both have 12 antenna elements and have predefined codebooks
(12 beams at TX and 12 at RX) for beamforming (a total of
144 beam pairs).

The transmitter (TX) and receiver (RX) have been placed
in an ideal cubicle jungle inside an office. The top-view of the
measurement venue is shown in Fig. 2. The distance between
TX and RX is 5Sm. The TX and RX are aligned in such a
way that they are facing each other. The TX is located at
a height of 2.63m which is very close to the ceiling. The
purpose of putting TX at such a height is replicating a real-
life access point. The RX is located at a height of 1.37m from
the ground?, which is done to replicate a human holding a cell
phone or any other communication device. The measurement
venue consists of many objects capable of reflection like
cubicle walls, pillars, metal shelving, drawers, floor etc.

We could use the link tracking algorithm to track all 144
TX-RX direction pairs. However, to simplify the problem, we
pre-process the data to identify a small number of dominant
paths and then track the link qualities on these directions. This
method would work in a quasi-static environment where the
only variations in link quality are caused by blockers.

The paths are determined by the algorithm given in [31].
The dominant paths discovered by the algorithm are shown
in Fig. 2. As shown there is one LOS path and 4 NLOS
paths for a total of K = 5 links. For each path (link), we
identify the best TX/RX transmit/receive direction and analyze
the received power on the identified direction. So the nature
of multi-link tracking is a bit different from that of simulated
mult-cell tracking. In simulations, we predict on one link from
each BS (9 BS in total) but for measurements, we predict on
5 links from a single TX (is analogous to BS of simulations).

Fig. 2 also shows two blocker trajectories, in which the Rx is
blocked by human blocker moving in the direction shown. The
data from one of these trajectories will be chosen as training
data for the LSTM network and the other trajectory will be
used to test the prediction power of the LSTM network. The
evolution of power for all the paths with blocker trajectory I
can be observed in Fig. 3. Each sample of data is 3.2ms apart
and the total number of samples for each blocker trajectory are
1750. In case of blocker trajectory I, the blocker moves from
left to right as seen in Fig. 2 with a distance of 1m from the
Rx, in case of blocker trajectory II, the blocker moves from
right to left with a distance of 30 cm from the Rx causing
a different kind of blockage event as compared to blocker
trajectory I.

V. RESULTS AND DISCUSSION

We discuss the performance of the LSTM network for both
tests. For both tests, we report the RMSE, the root mean
squared error (in dB). The parameters for creation and training
of the LSTM network are given in Table II. The suitable values
have been selected from [11], [12].

A. Simulated multi-cell tracking with blockers

We proceed to analyze the performance of the multi-link
prediction using LSTM on simulation data. For each channel

21t should be noted that measurement were performed before hand so the
data available is only for the heights mentioned. The camera in the Fig 2 was
placed to observe the motion of blocker with live measurements and does not
play any role in the current analysis
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Fig. 3: Evolution of the received power with time, on all links
for the measurement setup with blocker trajectory 1

trajectory generated, we use 50% of the data for training and
the rest of the data is for testing purposes. For example each
channel trajectory has a simulation time of T, = 100s sampled
at T = 20ms, meaning we will have a total of N = 5000
samples. Ny = 2500 of these samples will be used for training
the LSTM network and N;, = 2500 will be used to test the
prediction capability of the LSTM network.

We compare the prediction capability of the LSTM with a
simple linear moving average. We use a moving average of
a sliding window of M samples to predict the future values.
The value of SNR f;rff""j on kth links with sample of interest
at time ¢, is predicted by moving average using the equation:
ta—1

2

G=ta—M—1

The LSTM network is designed to predict one timestep ahead
meaning we will get the prediction of the multi-link SNR after
T = 20 ms. The visualization of the LSTM prediction during
testing phase for one BS for a single trajectory at 28 GHz
is shown in Fig. 4. The comrespondence between the actual -
and predicted ~+' can clearly be observed. The intermitiency
of the channel is also predicted by the LSTM network which
the moving average fails to capture. Blockage events can also
be observed from the figure and it can be seen that LSTM
network is also able to predict these events.

Table III shows how the prediction performance of LSTM
compares to moving average method *. The values of RMSE
shown in the table are over the total 100 channel trajectories

(kte) _ 1

(k)
. 7] T (11)

The sample code for multi-link implementation using LSTM can
be found at hwrpsAgithub.com/shaapilSTM-Based-Muln-Link- Predicrion-
for-mmWave-and-Sub- THz- Wirele s5-Systems

Parameter Value | Parameter Value
Loss MSE | Lookback 1]
Optimizer Adam | Baich Size 0

| Training Epochs | 50 Normalization | minmax

TABLE II: LSTM network parameters

0

o
=2
~-10

-20 — Actual -~

—LSTM Predicted
30 —Moving Average Predicted o | |
6 8 10 12 14
Time (s)

Fig. 4: Prediction of SNR using LSTM network vs moving
average

generated from simulation at 28 GHz and 140 GHz. Ther is a
difference of about 1 dB in performance of LSTM at 28 GHz
and 140 GHz while the difference is 4 dB for moving average.
This change is because the channel becomes more and more
intermittent as the frequency is increased. The comparison of
LSTM with moving average at respective carrier frequency
shows that the difference increases from 5 dB at 28 GHz to 9
dB at 140 GHz. It can clearly be seen that LSTM has a better
prediction capacity as compared to moving average. Another
interesting point worth noting is that the LSTM prediction is
much more robust to the carrier frequency as compared to the
moving average.

B. Measurement Data

In this subsection, we will measure the predicting capacity
of the LSTM network on real measurement data obtained from
measurement setup in section IV-B. The quantity of interest

Frequency | Method ﬁ?}n
Train 4.65

weH | ™ g 160
Moving Average T0I9

Train .58

190 Gz | ™ g 506
Moving Average 14719

TABLE II: Prediction performance of LSTM vs moving
average at 28 GHz and 140 GHz simulated data

Frequency | Method ?:En RMSE |
Train 211
Case 1 | 5™ meg TRA
Moving Average ENES
Train ]
Case m | B™ g 118
Moving Average 413

TABLE IV: Performance of LSTM and moving average pre-
diction on measurement data for both cases
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in this case will be the received power which in turn can be
translated into SNR. We will perform prediction testing on
experimental data in two cases, which will be differentiated
on the basis of training data. In case I, we will train the LSTM
network on the data obtained from blocker trajectory I, and
testing will be performed on data from blocker trajectory II.
In case II, training will be done on blocker trajectory II and
testing will be done on blocker trajectory I. It is to be noted
that blocker trajectories should not be confused with cases.
The parameters used for training the LSTM network are same
given in table IT except for the training epochs since the size of
the data is now smaller compared to the simulation case. The
difference between the blocking trajectories is the direction of
motion and the distance of the blocker from the Rx. The data
is downsampled by a factor of 6 so that the sampling interval
matches that of simulations. The LSTM network predicts one
timestep ahead 7' = 19.2ms. The results for the train and
test prediction for the LSTM network and the moving average
method have been summarized in table IV .

We can see from table IV that the RMSE values are
approximately the same magnitude for case I and case II. The
RMSE is expected to be better than simulation data since there
are a lot of random events, for example random blockages,in
simulation which the network needs to take into account for
accurate prediction. In both the cases, the LSTM predictor
outperforms the moving average by a margin of 1 dB.

VI. CONCLUSIONS

Link prediction in the mmWave and sub-THz frequencies
requires predicting link quality from multiple cells and multi-
ple directions. Classical statistical prediction methods for link
quality evaluation are difficult since the underlying process has
complex dependencies in time and across links. We propose
an LSTM method and evaluate the technique and both realistic
multi-cellular simulations at 28 and 140 GHz and actual indoor
data at 60 GHz. The results show that LSTMs can offer
significantly better link prediction performance than simple
baseline linear estimators.
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