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Abstract—A key challenge in mmWave systems is the rapid
variations in channel quality along different beam directions.
MmWave links are highly susceptible to blockage and small
changes in the orientation of the device or appearance of
blockers can lead to dramatic changes in link quality along any
given direction. Many low-latency applications need to accurately
predict link quality from multiple directions and multiple cells.
This paper presents a novel long short term memory (LSTM)-
based method for predicting multi-directional link quality in
mmWave systems. The method is validated on two problems: A
realistic simulation of multi-cell link tracking in an environment
with randomly moving human and vehicular blockers at 28 and
140 GHz, and beam prediction in a real indoor setting at 60
GHz.

Index Terms—Millimeter wave; LSTM; machine learning;
cellular wireless

I. INTRODUCTION

Millimeter wave (mmWave) bands and other frequencies
above 6 GHz have emerged as key components of emerging
fifth generation (5G) cellular standards [1]–[3]. The vast
available bandwidths in these frequencies provide both lower
latency and high throughput. These capabilities are hoped
to enabled new applications in vehicle to everything (V2X),
robotics, drones and other areas.

However, one of the key challenges of supporting reliable
communication in mmWave bands is the high sensitivity of
signal blockages caused by humans, hand and many com-
mon building materials [4]–[6]. Thus, small changes in the
orientation of the device or appearance of blockers can result
in a rapid degradation of link quality in any given direction.
mmWave systems thus need to track and predict link quality
along multiple directions to sustain the link.

In addition, most mmWave systems rely on dense cell
deployments combined with multi-connectivity to provide
macro-diversity resistance to blockage [7]. Multi-connectivity
can be supported via carrier aggregation [8] where a mobile
(UE) can be simultaneously connected to multiple cells. While
carrier aggregation was introduced in 4G systems, its use in
5G mmWave networks presents an additional challenge: the
mobile must track link quality from multiple cells and multiple
directions.

This paper considers a general multi-link prediction problem
where links can either be from different cells or different
directions from a cell. The problem is to estimate future
link quality from past (possibly noisy or incomplete) mea-
surements. Traditional statistical prediction approaches are

difficult, since link statistics are complex and difficult to
estimate. We thus propose a machine learning approach.
Specifically, we formulate the multi-link prediction problem
as a vector-valued sequence-to-sequence problem. Recurrent
neural networks (RNNs) in deep learning are commonly used
for such problems [9], [10]. In this work, we use a well-known
RNN called Long Short Term Memory (LSTM). LSTMs can
capture long-term dependencies and have been successful in a
range of problems, particularly in natural language processing,
speech recognition and robotics.

Previous work on single link quality predictions have been
done for sub 6 GHz frequency for a vehicular scenario in
[11]. Work on link prediction based on LTE and WiMax
measurements has been done in [12]. CSI estimation using
deep learning has also been addressed in [13] and tested on
sub 6 GHz measurements. For mmWave networks, [14] uses
Gated Recurrent Unit (GRU) for single link prediction and
discusses applications like blockage prediction and proactive
hand-over. This work goes beyond these results in studying
multi-link problems, which are essential in the mmWave range.
The prediction capability will help in processes like proactive
beam switching, handovers and uses in V2X, robotics and
drone communications.

The paper is organized as follows. We describe the prob-
lem formulation and use cases in Section II. We will setup
an LSTM network for multi-link prediction and test it on
simulations at mmWave and sub THz frequencies based on
3GPP channel model with mobile blockers. The prediction
power of LSTM will be compared with one of the generic
prediction methods (moving average). We will then test the
prediction ability of LSTM on real life measurement data
from a beamformed system operating at 60 GHz with multiple
links. It is observed that the LSTM prediction performance
is better than that of the conventional moving average for
both simulations and measurement data. It is also established
that LSTM prediction is more robust to carrier frequency as
compared to a linear estimator like moving average.

II. PROBLEM FORMULATION AND USE CASES

A. Multi-Link Prediction Problem

Assume time is divided into discrete intervals of period T
and we index the intervals t = 0, 1, 2, . . .. We assume there
are K links. In a single cell scenario, there could be one link
for each direction. In a multi-cell scenario, there could be one
link for each cell or for each direction and cell. In any case,
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w e l et γ (k, t ) b e s o m e  m e as ur e of c h a n n el q u alit y o n li n k k =
1 , 2 , . . . , K i n ti m e i nt er v al t.  T h e c h a n n el q u alit y c o ul d b e
t h e S N R f or a fl at f a di n g c h a n n el or  wi d e b a n d S N R or  m ut u al
i nf or m ati o n f or a fr e q u e n c y s el e cti v e f a di n g c h a n n el.  Wit h a n y
d e fi niti o n, t h e li n k q u alit y is a v e ct or- v al u e d pr o c ess  wit h K
v al u es at e a c h ti m e.  T h e  m aj or diff er e n c e b et w e e n  m ulti-li n k
a n d si n gl e li n k pr e di cti o ns is t h at i nst e a d of a si n gl e v al u e
pr e di cti o n,  w e h a v e t o d o a K di m e nsi o n al v e ct or pr e di cti o n.

We c o nsi d er a o n e-st e p a h e a d pr e di cti o n pr o bl e m,  w h er e t h e
g o al is t o esti m at e t h e li n k q u alit y γ (k, t ) fr o m c h a n n el q u alit y
m e as ur e m e nts fr o m p ast ti m e st e ps: γ ( , s) f or s < t a n d =
1 , . . . , K. I n s o m e c as es, y o u  m a y o nl y h a v e  m e as ur e m e nts
o n a s u bs et of t h e li n ks.

T his s c e n ari o c a n b e n at ur all y a p pli e d t o li n k tr a c ki n g i n t h e
5 G  N R st a n d ar d [ 3]. First c o nsi d er tr a c ki n g t h e li n k q u alit y
fr o m a si n gl e c ell. S u p p os e t h at t h e tr a ns mitt er h as N t x T X
dir e cti o ns, a n d t h e r e c ei v er h as N r x R X dir e cti o ns s o t h er e
is e x a ctl y o n e c o d e w or d i n e a c h ort h o g o n al s p ati al d e gr e e of
fr e e d o m.  H e n c e t h er e is a t ot al of K = N t x N r x li n ks.  T o
tr a c k li n k q u alit y, e a c h 5 G c ell p eri o di c all y tr a ns mits a s et of
s y n c hr o ni z ati o n si g n al b ursts ( S S Bs) [ 1 5].  L et T b e t h e S S B
p eri o d (t y pi c all y T = 2 0 ms) a n d ass u m e t h e c ell tr a ns mits
o n e S S B i n e a c h of t h e N t x dir e cti o ns.  N o w, s u p p os e t h at t h e
U E h as a f ull y di git al r e c ei v er.  T h e n, i n e a c h S S B p eri o d T ,
t h e  U E c a n  m e as ur e t h e c h a n n el q u alit y γ (k, t ) i n all  T X- R X
dir e cti o n p airs. If t h e  U E p erf or ms t h e b e a mf or mi n g i n a n al o g
( e. g. vi a  R F p h as e s hift ers), t h e  U E c a n  m e as ur e s o m e s u bs et
of t h e dir e cti o ns k i n e a c h ti m e t. I n eit h er c as e, t h e o n e-st e p
a h e a d pr e di cti o n pr o bl e m is t o esti m at e t h e dir e cti o n al li n k
q u alit y v e ct or o n e S S B p eri o d i n a d v a n c e.  T h e pr o bl e m c a n
b e e xt e n d e d t o  m ulti pl e c ells b y tr a c ki n g o n e c h a n n el q u alit y
f or e a c h  T X- R X p air f or e a c h c ell.

B.  Us e  C as es

S e v er al i m p ort a nt a p pli c ati o ns li k e  V 2 X, r o b oti cs/I nt er n et
of t hi n gs (I o T), dr o n e c o m m u ni c ati o ns, et c. r e q uir e r eli a bl e
tr a ci n g of ti m e- v ar yi n g li n k q u alit y.

F or e x a m pl e i n a v e hi c ul ar s et u p t h e r eli a bilit y of t h e
m m Wa v e li n k is c o m pr o mis e d d u e t o b e a m ali g n m e nt err ors
a n d bl o c k a g es [ 1 6].  As  m ost bl o c k a g es o c c urri n g i n  V 2 X
e n vir o n m e nts ar e eit h er c a us e d b y t h e t err ai n or b uil di n g
i nfr astr u ct ur e, t h e y d o n ot alt er fr e q u e ntl y.  T h us, t h e pr e di ct e d
c h a n n el c h ar a ct eristi cs c a n b e r eli e d u p o n b e c a us e t h e tr ai n-
i n g a n d t est e n vir o n m e nts ar e v er y si mil ar.  M or e o v er, t h es e
p ar a m et ers c a n b e us e d t o d et e ct b e a m or li n k f ail ur es a n d
tri g g er e arl y b e a m s wit c hi n g or h a n d o v ers ( H O).

I n r o b oti cs a n d dr o n es c o m m u ni c ati o n,  m o bil e u nits r e q uir e
h u g e a m o u nts of pr o c essi n g p o w er t o p erf or m  m e c h a ni c al
t as ks s u c h as b al a n ci n g,  m o vi n g, et c. Si n c e t h e c o m p ut ati o n al
p o w er t h at t h es e  m o bil e r o b ots or dr o n es c a n c arr y is li mit e d
b y t h e p o w er/ e n er g y d e m a n ds of hi g h- e n d c o m p uti n g s yst e ms
s u c h as  C P Us or  G P Us, t h es e l ar g e c o m p ut ati o n al u nits ar e
m o v e d t o t h e e d g e s er v er.  B ut t h e l at e n c y r e q uir e m e nts f or
tr a ns missi o n b et w e e n t h e r o b ot/ dr o n e a n d t h e e d g e s er v er ar e
e xtr e m el y stri ct. [ 1 7] s h o ws t h at a c o m m u ni c ati o n li n k s er vi n g
a dr o n e is u n a bl e t o s u p p ort t h e a p pli c ati o n  w h e n t h e r o u n d

tri p d el a y e x c e e ds 5  ms. F or e x a m pl e ass u m e t h at t h e l at e n c y
of a c o m m u ni c ati o n li n k is s e v er el y eff e ct e d b y a bl o c k a g e
e v e nt. If t his e v e nt c a n b e pr e di ct e d e arli er, a dr o n e/r o b ot c a n
alt er t h e r o b ot ki n e m ati cs[ 1 8] or d o a h a n d o v er b ef or e h a n d
s u c h t h at t h e li n k l at e n c y d o es n ot d et eri or at e.  T h e pr e di ct e d
c h a n n el st at e i nf or m ati o n s p e ci fi c t o b e a ms c a n b e us ef ul i n
d et er mi ni n g t h e  m ost r eli a bl e li n k fr o m a dr o n e/r o b ot t o a n
a c c ess p oi nt h e n c e c at eri n g t o t h e r e q uir e m e nts of t h e gi v e n
a p pli c ati o ns.

I n t h e c ell ul ar c o nt e xt, “ E arl y h a n d o v er ” h as b e e n a cti v el y
dis c uss e d as a s ol uti o n t o t h e c h all e n g es p os e d b y  m o bilit y
i n 5 G  N R. It is p o p ul arl y k n o w n as c o n diti o n al h a n d o v er
( C H O). [ 1 9],[ 2 0] d e fi n e c o n diti o n al h a n d o v er as a n a d diti o n al
st e p b ef or e t h e h a n d o v er pr o c e d ur e  w h er e t h e  U E i niti at es
a  C H O r e q u est t o  m ulti pl e t ar g et c ells b as e d o n a n e arl y
tri g g er c o n diti o n.  O n r e c e pti o n of t his r e q u est t h e t ar g et c ells
r e q u est f or t h e  U E c o nt e xt fr o m t h e s o ur c e  B S t o pr e p ar e f or
a ct u al  H O [ 2 1]. 3 G P P  R A N 2 # 1 0 6  m e eti n g a gr e e m e nts st at e
t h at t h e v al u e of tri g g er c o n diti o n f or  C H O  w o ul d b e d e fi n e d
st ati c all y a n d st a y fi x e d.  T his o p e ns t h e  C H O pr o c e d ur e t o
m aj or c h all e n g es s u c h as u n n e c ess ar y  m e as ur e m e nt r e p orts,
fr e q u e nt R R C R e c o n fi g ur ati o n f ail ur es et c.,  w hi c h i n-t ur n l e a d
t o  m or e l at e n c y.  T h us, S N R pr e di cti o n a n d t h er e b y  R S R P
v al u es f or t h e s er vi n g  B S a n d t h e b est b e a m of t ar g et  B Ss c a n
b e v er y us ef ul i n d et er mi ni n g t h e b est c a n di d at es f or  C H O i n
a d v a n c e.  T h e pr e di ct e d c h a n n el st at e c a n h el p cr e at e a  m or e
a c c ur at e tri g g er c o n diti o n f or  C H O,  w hi c h c a n f urt h er l e a d t o
r e d u c e d h a n d o v er d el a y.

I n t h e r est of t his p a p er,  w e s h o w h o w a n  L S T M n et w or k c a n
h el p  wit h t h e  m ulti-li n k pr e di cti o n pr o bl e m,  w hi c h  will h el p
us c at er t h e c o m m u ni c ati o n r e q uir e m e nts of t h e a p pli c ati o ns
m e nti o n e d a b o v e.

III.  P R O P O S E D L S T M  N E T W O R K

T h e o n e-st e p a h e a d pr e di cti o n pr o bl e m c a n b e n at ur all y f or-
m ul at e d as a s e q u e n c e-t o-s e q u e n c e pr o bl e m.  At e a c h ti m e st e p
t,  w e  will us e t h e n ot ati o n γ ( t ) t o d e n ot e t h e K - di m e nsi o n al
v e ct or  wit h c o m p o n e nts γ (k, t ), k = 1 , . . . , K. F or si m pli cit y,
w e  will ass u m e  w e  m e as ur e t h e dir e cti o n al q u alit y o n all
li n ks at e a c h ti m e.  We t h e n t a k e t h e p ast v al u es of γ ( t ) a s
t h e i n p ut s e q u e n c e a n d h a v e it g e n er at e a n o ut p ut s e q u e n c e
γ ( t ) r e pr es e nti n g t h e pr e di ct e d v al u e of t h e v e ct or γ ( t ) . If t h e
m o d el is stri ctl y c a us al, s o t h at γ ( t ) o nl y d e p e n ds o n p ast
v al u es γ ( s ) f or s < t , t h e n t h e n et w or k  will b e p erf or mi n g
pr e di cti o n.  T h e pr e di cti o n p erf or m a n c e as t h e f u n cti o n of t h e
n u m b er of ti m est e ps is l eft f or f ut ur e  w or k.

I n t his  w or k,  w e c o nsi d er a n  L S T M [ 9],  w hi c h is  wi d el y
us e d f or s e q u e n c e-t o-s e q u e n c e pr o bl e ms  wit h l o n g-t er m  m e m-
or y.  We us e t h e st a n d ar d  L S T M:

g ( t ) = φ ( W g γ γ ( t ) + W g h h ( k, t − 1 ) + b g ) ( 1)

i( t ) = σ ( W i γ γ ( t ) + W i h h ( k, t − 1 ) + b i ) ( 2)

f ( t ) = σ ( W f γ γ ( t ) + W f h h ( k, t − 1 ) + b f ) ( 3)

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w Y or k U ni v er sit y. D o w nl o a d e d o n S e pt e m b er 1 8, 2 0 2 0 at 1 4: 1 7: 0 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



o ( t ) = σ ( W o γ γ ( t ) + W o h h ( k, t − 1 ) + b o ) , ( 4)

s ( t ) = g ( t ) i( t ) + s ( k, t − 1 ) f ( t ) ) ( 5)

h ( t ) = φ ( s ( t ) ) o ( t ) ( 6)

γ ( t ) = s ( t ) o ( t ) ) ( 7)

T h e n et w or k  m a ps t h e i n p ut s e q u e n c e γ ( t ) t o t h e o ut p ut pr e di c-
ti o n γ ( t ) t hr o u g h a n u m b er of i nt er v al or hi d d e n v ari a bl es t h at
h a v e v ari o us f u n cti o ns t o  m o d el p ast d e p e n d e n ci es i n t h e d at a.
T h e si g n al fl o w is ill ustr at e d i n Fi g. 1.  T h e hi d d e n v ari a bl es
ar e t h e f or g et g at e f ( t ) , i n p ut g at e i( t ) , i n p ut n o d e g ( t ) , hi d d e n
l a y er h ( t ) , o ut p ut g at e o ( t ) a n d  m e m or y c ell st at e s ( t ) [ 2 2],
[ 2 3].  T h e i n p ut g at e d e ci d es  w h et h er t h e c urr e nt i n c o mi n g d at a
is c o ntri b uti n g n e w i nf or m ati o n t o t h e n et w or k.  T h e f or g et g at e
fl us h es o ut u n w a nt e d d at a fr o m t h e  m e m or y.  T h e o ut p ut g at e
di ct at es  w h at t o s h o w at t h e n et w or k o ut p ut.

E a c h i nt er v al v ari a bl e is t h e o ut p ut of a li n e ar c o m bi n ati o n
of t h e hi d d e n st at e h t a n d i n p ut γ t f oll o w e d b y a n a cti v ati o n
f u n cti o n.  T h e a cti v ati o n f u n cti o n is g e n er all y eit h er a si g m oi d
(σ (·)) or t a n h (φ (·)).  We us e t h e n ot ati o n t h at W x y i s t h e
w ei g ht  m atri x b et w e e n x a n d y . b x i s t h e bi as of t h e g at e
or n o d e x a n d tr a nsl at es t o p oi nt wis e  m ulti pli c ati o n. F or
c o n v e ni e n c e,  w e us e t h e f oll o wi n g s h ort- h a n d:

γ (k, t ) = L (γ (k, t )), ( 8)

w h er e L (γ (t)) m e a ns t h e i n p ut h as b e e n p ass e d t hr o u g h ( 1)-
( 7).

T h e c o m pl e xit y of t h e  L S T M n et w or k is d et er mi n e d o n t h e
n u m b er of u nits of t h e diff er e nt t y p es.  T h e di m e nsi o ns c a n b e
d et er mi n e d vi a cr oss- v ali d ati o n. F or a gi v e n s et of i nt er n al
di m e nsi o ns d uri n g t h e tr ai ni n g p h as e, t h e  L S T M n et w or k
l e ar ni n g o pti mi z es all t h e  w ei g hts a n d bi as es of all t h e l a y ers,
n o d es a n d g at es i n s u c h a  m a n n er t h at t h e l oss is  mi ni mi z e d.
F or t his  w or k,  w e  will b e usi n g  m e a n s q u ar e d err or ( M S E)

Fi g. 1: Pr o c ess di a gr a m of a  m e m or y c ell of a n  L S T M n et w or k
b as e d o n t h e ( 1)-( 7). Fi g ur e fr o m [ 2 2].

as t h e l oss f u n cti o n.  M at h e m ati c all y, f or t h e t ot al n u m b er of
s a m pl es N × K ,  M S E is gi v e n b y,

M S E =
1

N K

N

n = 1

K

k = 1

( γ ( k,  n ) − γ (k,  n )) 2 . ( 9)

I V.  E X P E R I M E N T S

We e v al u at e t h e  L S T M l e ar ni n g of a  m ulti-li n k  m o d el o n
t w o d at as ets.  T h e first is s y nt h eti c, a n d t h e s e c o n d is fr o m r e al
m m Wa v e  m e as ur e m e nts.

A. Si m ul at e d  m ulti- c ell tr a c ki n g  wit h bl o c k ers

E n d-t o- e n d c o m m u ni c ati o n n et w or k si m ul ati o ns ar e us e d t o
g e n er at e t h e d at as et o n  w hi c h t h e  L S T M li n k q u alit y pr e di cti o n
is t est e d. 1 0 0 c h a n n el tr aj e ct ori es ar e g e n er at e d usi n g t h e
3 G P P c h a n n el  m o d el [ 2 4] at 2 8  G H z a n d 1 4 0  G H z 1 .  T h e
B Ss ar e dr o p p e d r a n d o ml y o n a 2 0 0 × 2 0 0 m 2 gri d, i n s u c h a
w a y t h at t h e c ell r a di us f or e a c h  B S is 1 0 0 m .  T h e n u m b er
of a nt e n n as at  B S is M b = 6 4( 2 5 6) a n d t h e n u m b er of
a nt e n n as at  U E is M u = 8( 6 4) f or 2 8  G H z ( 1 4 0  G H z).  B S
a n d  U E c o d e b o o ks h a v e M b a n d M u b e a ms r es p e cti v el y.  T h e
si m ul at e d ti m e T o , f or e a c h tr aj e ct or y is 1 0 0 s e c o n ds.

T h e  U E h as a h ei g ht of 1. 7  m a n d is dr o p p e d r a n d o ml y
wit hi n t h e  B S gri d.  We d o n ot c o nsi d er t h e i m p a ct of t h e
arr a y g e o m etr y f or t h e s a k e of si m pli cit y. I n t his st ati c  m o d el,
t h e  U E tr a c ks o n e dir e cti o n f or e a c h c ell,  w hi c h  w e ass u m e it
pr e- d et er mi n es fr o m b e a m s e ar c h.

Bl o c k ers ar e t h e n d e pl o y e d  wit hi n t h e c ell usi n g a P oiss o n
p oi nt pr o c ess  wit h d e nsit y λ b .  T h e bl o c k ers c a n eit h er b e
h u m a n or v e hi c ul ar,  wit h e q u al pr o b a bilit y.  T h e bl o c k ers ar e
m o d el e d as a r e ct a n g ul ar s cr e e n  wit h s p e ci fi c h ei g ht a n d  wi dt h;
t h es e n u m b ers ar e pr o vi d e d b y 3 G P P.  T h e h ei g hts of t h e
h u m a n( v e hi c ul ar) bl o c k ers ar e 1. 7 m( 1. 4 m)  w hil e t h e  wi dt hs
ar e 0. 3 m( 4. 5 m).  T h e bl o c k a g e l oss is  m o d el e d b y t h e  D o u bl e
K nif e  E d g e  Diffr a cti o n ( D K E D)  m o d el pr o vi d e d b y 3 G P P.

T h e bl o c k ers f oll o w r a n d o m  w a y p oi nt  m o d el.  O v er all t h e
tr aj e ct ori es, t h e h u m a n( v e hi c ul ar) bl o c k ers h a v e t h eir v el o ci-
ti es u nif or ml y distri b ut e d b et w e e n 0 − 3 k m/ hr ( 0- 1 0 0 k m/ hr).
F or e a c h c h a n n el tr aj e ct or y, l et x j ( 0) ∈ R 2 b e t h e p ositi o n of
t h e j -t h bl o c k er at ti m e t = 0 .  A d esti n ati o n p oi nt d j ∈ R 2

i s g e n er at e d r a n d o ml y  wit hi n t h e c ell f or t h e bl o c k er. d j i s
a 2 D u nif or m r a n d o m v ari a bl e,  w hi c h is r estri ct e d i nsi d e t h e
B S gri d.  As ti m e pr o gr ess es, t h e bl o c k er  m o v es t o w ar d t h e
d esti n ati o n  wit h v el o cit y ẋ .  L et Δ t b e t h e s a m pli n g i nt er v al f or
si m ul ati o n.  T h e n t h e e v ol uti o n of t h e p ositi o n of t h e bl o c k er
f oll o ws t h e e q u ati o n:

x j ( t) = x j ( t − 1)  + ẋ Δ t ( 1 0)

Δ t is c h os e n t o b e 2 0 m s (T ) si n c e it c orr es p o n ds t o t h e v al u e
of s y n c hr o ni z ati o n si g n al b urst ( S S B) p eri o d i n t h e  m ost r e c e nt
3 G P P s p e ci fi c ati o n r e p ort [ 2 5],  m e a ni n g t h e  U E g ets a n u p d at e
of t h e li n k q u alit y e v er y 2 0 ms.

1 T h e s p e ci fi c ati o ns of t h e 3 G P P c h a n n el  m o d el i n [ 2 4] ar e v ali d u p t o
1 0 0 G H z o nl y,  w e c o nti n u e t o us e it e v e n f or 1 4 0 G H z b e c a us e of t h e a bs e n c e
of st a n d ar di z e d c h a n n el  m o d els f or t h e s p e ctr u m a b o v e 1 0 0  G H z
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Fig. 2: Venue for experimental setup with multiple paths(links)
and human blocker trajectories. (LOS path not shown). The
start point of blocker is tail of the arrow and end point is head
of the arrow.

Parameters 28 GHz 140 GHz
Scenario UMi
Mu 8 64
Mb 64 256

Bandwidth 400MHz 1.6GHz
N 9

UE height 1.7m
BS height 10 m

Sampling interval 20 ms
Temperature 298 K

Cell radius, r 100 m
Blocker density, λb 0.01 m−2 [27]

Blocker height 1.4 m (Vehicular), 1.7 m (Human)
Blocker width 4.8 m (Vehicular), 0.3 m (Human)

Blocker speed 0-28 m/s (0-100 km/h)[Vehicular]
0-1 m/s (0-3 km/h)[Human]

Transmitted Power 23dBm [28]
Noise Figure 9dB [29]

TABLE I: Values of different parameters for the generation of
channel trajectories

Once xj(t) = dj , dj is reset along with the velocities of
the blockers. This process is repeated until the running time
of the simulation for the given trajectory is over. Both kinds
of blockers follow a similar mobility model; they are only
distinguished by the distribution of their velocities.

List of parameters for generating the channel trajectories has
been provided in Tab. I. Similar simulation setup was done in
[26].

B. Indoor Multi-Direction Tracking with Real Data

In this test, we evaluate the link tracking on real indoor
measurements using a phased-array system in [5], [30]. The
operating frequency of the system is 60 GHz, the frequency
for mmWave WiFi (802.11ad and 802.11ay). The TX and RX
both have 12 antenna elements and have predefined codebooks
(12 beams at TX and 12 at RX) for beamforming (a total of
144 beam pairs).

The transmitter (TX) and receiver (RX) have been placed
in an ideal cubicle jungle inside an office. The top-view of the
measurement venue is shown in Fig. 2. The distance between
TX and RX is 5m. The TX and RX are aligned in such a
way that they are facing each other. The TX is located at
a height of 2.63m which is very close to the ceiling. The
purpose of putting TX at such a height is replicating a real-
life access point. The RX is located at a height of 1.37m from
the ground2, which is done to replicate a human holding a cell
phone or any other communication device. The measurement
venue consists of many objects capable of reflection like
cubicle walls, pillars, metal shelving, drawers, floor etc.

We could use the link tracking algorithm to track all 144
TX-RX direction pairs. However, to simplify the problem, we
pre-process the data to identify a small number of dominant
paths and then track the link qualities on these directions. This
method would work in a quasi-static environment where the
only variations in link quality are caused by blockers.

The paths are determined by the algorithm given in [31].
The dominant paths discovered by the algorithm are shown
in Fig. 2. As shown there is one LOS path and 4 NLOS
paths for a total of K = 5 links. For each path (link), we
identify the best TX/RX transmit/receive direction and analyze
the received power on the identified direction. So the nature
of multi-link tracking is a bit different from that of simulated
mult-cell tracking. In simulations, we predict on one link from
each BS (9 BS in total) but for measurements, we predict on
5 links from a single TX (is analogous to BS of simulations).

Fig. 2 also shows two blocker trajectories, in which the Rx is
blocked by human blocker moving in the direction shown. The
data from one of these trajectories will be chosen as training
data for the LSTM network and the other trajectory will be
used to test the prediction power of the LSTM network. The
evolution of power for all the paths with blocker trajectory I
can be observed in Fig. 3. Each sample of data is 3.2ms apart
and the total number of samples for each blocker trajectory are
1750. In case of blocker trajectory I, the blocker moves from
left to right as seen in Fig. 2 with a distance of 1m from the
Rx, in case of blocker trajectory II, the blocker moves from
right to left with a distance of 30 cm from the Rx causing
a different kind of blockage event as compared to blocker
trajectory I.

V. RESULTS AND DISCUSSION

We discuss the performance of the LSTM network for both
tests. For both tests, we report the RMSE, the root mean
squared error (in dB). The parameters for creation and training
of the LSTM network are given in Table II. The suitable values
have been selected from [11], [12].

A. Simulated multi-cell tracking with blockers
We proceed to analyze the performance of the multi-link

prediction using LSTM on simulation data. For each channel

2It should be noted that measurement were performed before hand so the
data available is only for the heights mentioned. The camera in the Fig 2 was
placed to observe the motion of blocker with live measurements and does not
play any role in the current analysis
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Fi g. 3:  E v ol uti o n of t h e r e c ei v e d p o w er  wit h ti m e, o n all li n ks
f or t h e  m e as ur e m e nt s et u p  wit h bl o c k er tr aj e ct or y I

tr aj e ct or y g e n er at e d,  w e us e 5 0 % of t h e d at a f or tr ai ni n g a n d
t h e r est of t h e d at a is f or t esti n g p ur p os es. F or e x a m pl e e a c h
c h a n n el tr aj e ct or y h as a si m ul ati o n ti m e of T o = 1 0 0 s s a m pl e d
at T = 2 0 m s ,  m e a ni n g  w e  will h a v e a t ot al of N = 5 0 0 0
s a m pl es. N t r = 2 5 0 0 of t h es e s a m pl es  will b e us e d f or tr ai ni n g
t h e  L S T M n et w or k a n d N t s = 2 5 0 0 will b e us e d t o t est t h e
pr e di cti o n c a p a bilit y of t h e  L S T M n et w or k.

We c o m p ar e t h e pr e di cti o n c a p a bilit y of t h e  L S T M  wit h a
si m pl e li n e ar  m o vi n g a v er a g e.  We us e a  m o vi n g a v er a g e of
a sli di n g  wi n d o w of M s a m pl es t o pr e di ct t h e f ut ur e v al u es.

T h e v al u e of S N R γ
( k, t o )
m o n k t h li n ks  wit h s a m pl e of i nt er est

at ti m e to i s pr e di ct e d b y  m o vi n g a v er a g e usi n g t h e e q u ati o n:

γ ( k, t o )
m =

1

M

t o − 1

j = t o − M − 1

γ ( k, j ) ( 1 1)

T h e  L S T M n et w or k is d esi g n e d t o pr e di ct o n e ti m est e p a h e a d
m e a ni n g  w e  will g et t h e pr e di cti o n of t h e  m ulti-li n k S N R aft er
T = 2 0 ms.  T h e vis u ali z ati o n of t h e  L S T M pr e di cti o n d uri n g
t esti n g p h as e f or o n e  B S f or a si n gl e tr aj e ct or y at 2 8  G H z
is s h o w n i n Fi g. 4.  T h e c orr es p o n d e n c e b et w e e n t h e a ct u al γ
a n d pr e di ct e d γ c a n cl e arl y b e o bs er v e d.  T h e i nt er mitt e n c y
of t h e c h a n n el is als o pr e di ct e d b y t h e  L S T M n et w or k  w hi c h
t h e  m o vi n g a v er a g e f ails t o c a pt ur e.  Bl o c k a g e e v e nts c a n als o
b e o bs er v e d fr o m t h e fi g ur e a n d it c a n b e s e e n t h at  L S T M
n et w or k is als o a bl e t o pr e di ct t h es e e v e nts.

Ta bl e III s h o ws h o w t h e pr e di cti o n p erf or m a n c e of  L S T M
c o m p ar es t o  m o vi n g a v er a g e  m et h o d 3 .  T h e v al u es of  R M S E
s h o w n i n t h e t a bl e ar e o v er t h e t ot al 1 0 0 c h a n n el tr aj e ct ori es

3 T h e s a m pl e c o d e f or  m ulti-li n k i m pl e m e nt ati o n usi n g  L S T M c a n
b e f o u n d at htt ps:// git h u b. c o m/s h ast pi/ L S T M- B as e d- M ulti- Li n k- Pr e di cti o n-
f or- m m W a v e- a n d- S u b- T Hz- Wir el ess- S yst e ms

P a r a m et e r Val u e P a r a m et e r Val u e
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Fi g. 4: Pr e di cti o n of S N R usi n g  L S T M n et w or k vs  m o vi n g
a v er a g e
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m o vi n g a v er a g e.
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di cti o n o n  m e as ur e m e nt d at a f or b ot h c as es
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in this case will be the received power which in turn can be
translated into SNR. We will perform prediction testing on
experimental data in two cases, which will be differentiated
on the basis of training data. In case I, we will train the LSTM
network on the data obtained from blocker trajectory I, and
testing will be performed on data from blocker trajectory II.
In case II, training will be done on blocker trajectory II and
testing will be done on blocker trajectory I. It is to be noted
that blocker trajectories should not be confused with cases.
The parameters used for training the LSTM network are same
given in table II except for the training epochs since the size of
the data is now smaller compared to the simulation case. The
difference between the blocking trajectories is the direction of
motion and the distance of the blocker from the Rx. The data
is downsampled by a factor of 6 so that the sampling interval
matches that of simulations. The LSTM network predicts one
timestep ahead T = 19.2ms. The results for the train and
test prediction for the LSTM network and the moving average
method have been summarized in table IV .

We can see from table IV that the RMSE values are
approximately the same magnitude for case I and case II. The
RMSE is expected to be better than simulation data since there
are a lot of random events, for example random blockages,in
simulation which the network needs to take into account for
accurate prediction. In both the cases, the LSTM predictor
outperforms the moving average by a margin of 1 dB.

VI. CONCLUSIONS

Link prediction in the mmWave and sub-THz frequencies
requires predicting link quality from multiple cells and multi-
ple directions. Classical statistical prediction methods for link
quality evaluation are difficult since the underlying process has
complex dependencies in time and across links. We propose
an LSTM method and evaluate the technique and both realistic
multi-cellular simulations at 28 and 140 GHz and actual indoor
data at 60 GHz. The results show that LSTMs can offer
significantly better link prediction performance than simple
baseline linear estimators.

ACKNOWLEDGEMENTS

This work was supported by the National Science Foun-
dation under Grants 1302336, 1564142, and 1547332, NIST,
SRC and the industrial affiliates of NYU WIRELESS.

REFERENCES

[1] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular
wireless networks: Potentials and challenges,” Proc. IEEE, vol. 102,
no. 3, pp. 366–385, Mar. 2014.

[2] T. S. Rappaport et al., “Millimeter Wave Mobile Communications for
5G Cellular: It Will Work!” IEEE Access, vol. 1, pp. 335–349, May
2013.

[3] 3GPP, “TS 38.300 NR; overall description; stage-2.”
[4] T. S. Rappaport et al., Millimeter Wave Wireless Communications.

Pearson Education, 2014.
[5] C. Slezak et al., “Empirical effects of dynamic human-body blockage

in 60 GHz communications,” IEEE Commun. Mag., vol. 56, no. 12, pp.
60–66, 2018.

[6] T. Bai and R. W. Heath, “Coverage analysis for millimeter wave cellular
networks with blockage effects,” in Proc. IEEE Global Conference on
Signal and Information Processing. IEEE, 2013, pp. 727–730.

[7] J. Choi, “On the macro diversity with multiple bss to mitigate blockage
in millimeter-wave communications,” IEEE communications letters,
vol. 18, no. 9, pp. 1653–1656, 2014.

[8] G. Yuan et al., “Carrier aggregation for LTE-advanced mobile commu-
nication systems,” IEEE communications Magazine, vol. 48, no. 2, pp.
88–93, 2010.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[10] C. E. Zachary C. Lipton, John Berkowitz, “A critical review of recurrent
neural networks for sequence learning,” ArXiv, 2015.

[11] J. Joo et al., “Deep learning-based channel prediction in realistic
vehicular communications,” IEEE Access, vol. 7, pp. 27 846–27 858,
2019.

[12] J. D. Herath, A. Seetharam, and A. Ramesh, “A deep learning model
for wireless channel quality prediction,” in ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), May 2019, pp. 1–
6.

[13] C. Luo et al., “Channel state information prediction for 5g wireless
communications: A deep learning approach,” IEEE Transactions on
Network Science and Engineering, pp. 1–1, 2018.

[14] A. Alkhateeb, I. Beltagy, and S. Alex, “Machine learning for reliable
mmwave systems: Blockage prediction and proactive handoff,” Proc.
IEEE Global Conference on Signal and Information Processing (Glob-
alSIP), pp. 1055–1059, 2018.

[15] M. Giordani et al., “A tutorial on beam management for 3gpp nr
at mmwave frequencies,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 1, pp. 173–196, 2018.

[16] C. K. Anjinappa and I. Guvenc, “Millimeter-wave v2x channels: Prop-
agation statistics, beamforming, and blockage,” IEEE 88th Vehicular
Technology Conference (VTC-Fall), 2018.

[17] W. Xia et al., “Millimeter wave remote uav control and communications
for public safety scenarios,” in 2019 16th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON),
June 2019, pp. 1–7.

[18] K. Antevski et al., “Enhancing edge robotics through the use of context
information,” in Proc. Wkshp. Experimentation and Measurements in
5G, ser. EM-5G’18, 2018, pp. 7–12.

[19] 3GPP, “Radio resource control (RRC); protocol specification,” Technical
Specification TS38.300 Project (3GPP), 2018.

[20] ——, “TS 38.331 project (3gPP)Radio Resource Control (RRC); proto-
col specification,” 2018.

[21] H. Martikainen et al., “On the basics of conditional handover for 5g
mobility,” IEEE 29th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), 2018.

[22] Z. C. Lipton, “A critical review of recurrent neural networks for sequence
learning,” ArXiv, vol. abs/1506.00019, 2015.

[23] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,”
Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks. IJCNN 2000. Neural Computing: New Challenges and
Perspectives for the New Millennium, vol. 3, pp. 189–194 vol.3, 2000.

[24] 3GPP, “TR 38.901, study on channel model for frequencies from 0.5 to
100 GHz (release 15) document,” Jun. 2018.

[25] ——, “TS 38.213, NR - physical layer procedures for control - (release
15) document,” Jun. 2018.

[26] S. H. Ali Shah et al., “Power efficient discontinuous reception in thz and
mmwave wireless systems,” in 2019 IEEE 20th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC),
July 2019, pp. 1–5.

[27] I. K. Jain, R. Kumar, and S. Panwar, “Limited by capacity or blockage?
a millimeter wave blockage analysis,” Proc. Intl. Teletraffic Congress,
pp. 153–159, 2018.

[28] 3GPP, “TR 38.214,, NR - Physical layer procedures for data - (release
15) document,” Jun. 2018.

[29] ——, “TR 38.900, study on channel model for frequency spectrum
above 6 GHz release,” Jun. 2018.

[30] C. Slezak, A. Dhananjay, and S. Rangan, “60 ghz blockage study using
phased arrays,” in 2017 51st Asilomar Conference on Signals, Systems,
and Computers, Oct 2017, pp. 1655–1659.

[31] S. H. A. Shah et al., “Beamformed mmwave system propagation at 60
GHz in an office environment,” in 2020 IEEE International Conference
on Communications (ICC), June 2020, pp. 1–7.

Authorized licensed use limited to: New York University. Downloaded on September 18,2020 at 14:17:08 UTC from IEEE Xplore.  Restrictions apply. 


