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Dark-field microscopy is a standard imaging technique widely 
employed in biology that provides high image contrast for a 
broad range of unstained specimens1. Unlike bright-field micros-
copy, it accentuates high spatial frequencies and can therefore 
be used to emphasize and resolve small features. However, the 
use of dark-field microscopy for reliable analysis of blood cells, 
bacteria, algae and other marine organisms often requires spe-
cialized, bulky microscope systems, as well as expensive addi-
tional components, such as dark-field-compatible objectives or 
condensers2,3. Here, we propose to simplify and downsize dark-
field microscopy equipment by generating the high-angle illu-
mination cone required for dark-field microscopy directly within 
the sample substrate. We introduce a luminescent photonic 
substrate with a controlled angular emission profile and dem-
onstrate its ability to generate high-contrast dark-field images 
of micrometre-sized living organisms using standard optical 
microscopy equipment. This new type of substrate forms the 
basis for miniaturized lab-on-chip dark-field imaging devices 
that are compatible with simple and compact light microscopes.

In contrast to bright-field microscopy, which primarily relies on 
variations in optical absorption within the specimen to create image 
contrast, dark-field microscopy exploits the scattering of incident 
light from localized variations in the refractive index2–5. For weakly 
scattering materials, this approach provides a significant improve-
ment in signal-to-noise ratio. This is particularly useful for speci-
mens that display little or no absorption and allows for imaging of 
weakly scattering biological samples6–9 and metallic nanoparticles10–12. 
Because dark-field microscopy is based on the rejection of incident 
and reflected unscattered light, only light that is scattered by the sam-
ple’s features contributes to the image. In essence, dark-field micros-
copy emphasizes the high-spatial-frequency components associated 
with small features in the specimen morphology and in some imaging 
scenarios can provide resolution beyond the diffraction limit13–15.

In a typical dark-field microscope, light is incident on the sample 
at oblique polar angles (measured with respect to the sample surface 
normal) that are larger than the objective’s maximum light collection 
angle θmax, given by the objective’s numerical aperture NA = nsinθmax, 
where n is the refractive index of the imaging medium4,5,16. 
Consequently, only light that is scattered by the sample into a cone 
of apex angle 2θmax centred around the microscope’s optical axis is 
collected. A typical dark-field microscope requires a specialized filter 
cube and dedicated objectives or condensers, which permit shaping 
of the incident light cone2,3,16. Dark-field objectives usually have a 
smaller numerical aperture than comparable bright-field objectives 

to ensure that specularly reflected light is not collected2,3. However, 
a smaller numerical aperture results in a reduced spatial resolution.

In the last few years, newly developed plasmonic-based 
approaches17–20 have opened up new paths to overcoming the equip-
ment complexity and size limitations of conventional dark-field 
microscopy. In these methods, evanescent surface plasmon waves 
are not captured in the far field, which results in a dark background, 
but can be scattered into propagating far-field modes by objects 
within the surface plasmon field, which consequently appear bright. 
These techniques have clear advantages compared to classic dark-
field imaging devices, but they are not free of limitations. First, they 
rely on elaborate data analysis for the reconstruction of an image 
from scans of the sample surface17, including deconvolution and 
noise reduction algorithms20. Second, they involve additional com-
plex optical components17–19, which significantly increase the size 
of the whole imaging system and limit widespread implementation.

Here, we propose to simplify and miniaturize dark-field micros-
copy instrumentation by integrating the dark-field light source into 
the sample substrate. We introduce a luminescent micropatterned 
photonic surface with a controlled angular emission profile. This 
novel type of substrate forms the basis for miniaturized lab-on-chip 
dark-field microscopy devices that are compatible with simple and 
compact light microscopes. The light emitted by the substrate is 
confined to high polar angle ranges due to the interplay between 
three different structural components: (1) a flat Bragg mirror that, 
by its spectrally selective and angle-dependent transmission char-
acteristics, determines the angular emission profile of the surface; 
(2) a light-emitting layer beneath the Bragg reflector, which in our 
system is composed of light-emitting cadmium selenide/cadmium 
sulfide (CdSe/CdS) core–shell quantum dots (QDs)21 dispersed in a 
poly(methyl methacrylate) (PMMA) matrix; (3) a micropatterned 
bottom reflector under the light-emitting layer to recycle light into 
propagation angle ranges that are transmitted by the Bragg reflec-
tor (Fig. 1a). The design is inspired by colour mixing structures 
found in the wing scales of Papilio butterflies22,23 and builds on 
recent findings on how to enhance the underlying optical effects in 
bio-inspired materials24. We call this dark-field imaging technique, 
which relies on the unique light-emission characteristics of the sub-
strate, ‘substrate luminescence-enabled dark-field’ imaging (SLED).

To evaluate the potential of this substrate design for integrated 
dark-field microscopy devices, we first investigated the surface’s opti-
cal performance theoretically. A custom-made optical modelling 
environment developed in MATLAB allowed us to study the opti-
cal behaviour and interplay of individual structural components. 
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The system’s Bragg reflector was modelled with 13 layers of titanium 
dioxide (TiO2, refractive index nTiO2 ¼ 2:2

I
) and silicon dioxide 

(SiO2, nSiO2 ¼ 1:49
I

) to match the structure and parameters that were 
subsequently realized experimentally, while its reflection characteris-
tics were found using Rouard’s technique25. By tuning the layer thick-
nesses in the Bragg reflector, the spectral position of its reflection 
band was matched to the experimentally determined emission spec-
trum of the QDs, which only permits light to escape at large polar 
angles. In other words, the light emitted by the QDs is reflected back 
into the polymer matrix, unless its propagation angle (with respect 
to the Bragg reflector’s surface normal) is larger than a critical angle 
θc and smaller than the critical angles of total internal reflection θa 
for air or θw for water as the imaging medium (Fig. 1b,c). This angle 
is determined by the design of the Bragg reflector and the emission 
wavelength of the QDs. The luminescent substrate thus channels all 
light into a hollow emission cone with minimum and maximum apex 
angle defined by the Bragg mirror’s reflection band.

We used a custom 3D ray-tracing code to model the light 
propagation within the QD-doped polymer medium between the 

Bragg reflector and the concave reflectors forming the gold-coated 
micropatterned bottom surface, taking into account the spectrally 
varying refractive index and the absorption coefficient of gold26. 
We made the assumption that the concentration of QDs was small 
enough to not affect the refractive index of the PMMA layer. 
Combining wave optics-based modelling (Rouard’s technique25) 
to establish the interactions of light with the Bragg reflector and 
geometrical optics-based approaches (ray tracing) to approximate 
light propagation within the semi-spherical cavities, we obtained 
an estimate of the optical response of the complete structure com-
posed of Bragg reflector, light-emitting QDs and micropatterned 
metallic bottom surface. A comparison of the theoretical emission 
characteristics of two different designs, one with a patterned and 
one with a flat gold bottom surface, indicates that the micropatterns 
drastically amplify the intensity of light emitted at high angles. In a 
structure with a flat reflecting bottom surface, most of the emitted 
light is coupled out from the substrate’s side edges (Fig. 1d). In con-
trast, substrates featuring concave, hemispherical cavities recycle 
the majority of light reflected by the Bragg mirror, until it impinges 
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Fig. 1 | The concept of SLeD. a, Three-dimensional (3D) schematic of the device design. b, Grey-scale encoded reflectivity of a Bragg mirror with a reflection 
band centred at 585 nm, as a function of light incidence angle and wavelength. Solid white vertical lines mark the critical angles θa and θw beyond which total 
internal reflection occurs if the upper medium is air or water. The spectral emission range of the QDs is marked with horizontal dashed white lines and the 
red overlay represents the angle range at which emitted light can escape from the Bragg reflector. c, Selected spectra from b (numbered 1–3) at incidence 
angles θ = 0°, θc = 28° (where the Bragg reflector exhibits a reflectivity of 50% for the QD’s spectral emission range) and θ = 37°, marked by dotted lines in 
b. The QD emission spectrum is represented as the red-hatched area. d, Schematic depicting a possible optical path of a light beam emitted by a QD in the 
case of a flat-bottomed reflector. If the light is emitted at an angle θ1, with which it is reflected by the Bragg mirror, the beam will keep bouncing between 
the two reflective surfaces, until it escapes at the sample edge. For a higher incidence angle θ2, light can couple out. e, In the case of a bottom reflector 
patterned with semi-spherical cavities, the light emitted at an angle θ1 can—through scattering from the patterned bottom surface—reach an incident angle 
θ2 large enough to transmit through the Bragg reflector. f, Simulated angular emission profiles comparing the angle-dependent intensity of light emitted by a 
substrate with a flat-bottomed reflector (black) and a substrate with a micropatterned bottom reflector (red). The insets show visualizations of the emitted 
light intensity and colour as a function of the angle of incidence onto the Bragg reflector, which increases from 0° at the centre of the images to 90° at the 
edges. g, Emission profiles in air, water and oil. The dashed line corresponds to an output angle of 90° in air, and the solid line corresponds to 90° in water.
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on the Bragg reflector at an angle larger than θc, at which point the 
light escapes (Fig. 1e). Therefore, light can exit from the top of the 
surface after multiple reflections from the micropatterned surface. 
This redistribution of light into incidence angle ranges for which 
the Bragg reflector is transmissive enables a much more intense 
wide-angle illumination compared to a flat gold bottom surface for 
identical QD excitation strength (Fig. 1f). Finally, optical model-
ling helped us to design the Bragg filter’s reflection band so that the 
substrate’s angular emission profile forms a hollow emission cone 
located in any desired polar angle range. To use the substrates for 
dark-field microscopy with common bright-field objectives, the 
emission angle range should be located outside of the objective’s 
numerical aperture. As expected, the emission profile depends on 
the medium above the device. We based our design on three media 
common in optical microscopy—air, water and oil—as well as on 
the numerical aperture of the high-NA objectives commonly avail-
able to validate this proposed concept experimentally (Fig. 1g).

To experimentally demonstrate the proposed substrate lumines-
cence-enabled dark-field imaging technique, we developed a repeat-
able fabrication technique to create surfaces with various controlled 
light emission profiles (Fig. 2a). The structure’s optical properties 
can be altered by modifying the design parameters. First, changing 
the QD type or mixing different QDs together allows for adjustment 
of the emission spectrum. Second, the thickness of individual oxide 
layers in the Bragg reflector can be varied to modify the angular 
emission profile associated with a specific spectral emission range. 
Finally, the geometry of the micropatterned bottom reflector can 
also be modified to change the angular distribution of the emitted 
light intensity within the angle range for which the Bragg reflector 
allows light to transmit.

A cross-section of a representative sample obtained by scanning 
electron microscopy (SEM) shows the microscale concavities filled 
with the QD-containing polymer matrix topped off by the Bragg 
reflector (Fig. 2b). Based on our theoretical investigations, the 
Bragg reflector was designed to have a bandgap centred at 585 nm 
to achieve a hollow emission cone with the large apex angle needed 
for dark-field imaging, while still allowing us to characterize the 
surface’s optical properties using high-NA objectives. A laser diode 
with an emission wavelength of λ = 405 nm (continuous-wave out-
put power 5 mW) was used to excite the QDs in the sample, result-
ing in light emission in the red spectral range (Fig. 2c).

We evaluated our concept of enhancing the surface’s emission 
characteristics using micropatterned bottom structures by compar-
ing the emission resulting from a device with a flat gold reflector 
at the bottom with the emission from a design with a micropat-
terned reflective bottom surface. Both samples were excited with 
the laser diode at an incident power of <5 mW at the surface of the 
sample. The sample with the patterned bottom surface shows a sig-
nificantly higher emission intensity and signal-to-noise ratio than 
the substrate with a flat-bottomed reflector (Fig. 3a–c), in excel-
lent agreement with the optical modelling (Fig. 1f). Furthermore, 
the surfaces’ emission profiles in air and in immersion oil match 
the predicted optical response in these media (Fig. 3d–i). The 
experimental data are truncated at higher angles due to the limited 
numerical aperture of the microscope objectives (white ring, Fig. 
3d,e,g,h). We also note that the experimentally obtained angular 
emission profile in air deviates from the predictions at lower angles 
(Fig. 3f). We speculate that this escape of light from the Bragg 
reflector at lower angles is indicative of scattering defects in the 
Bragg reflector layers.
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Fig. 2 | The fabricated SLeD surface. a, Schematic of the manufacturing procedure. The patterned epoxy substrate was obtained by a three-step replica 
moulding procedure, consisting of casting polydimethylsiloxane (PDMS) on a glass master, PDMS casting on PDMS, and epoxy casting on the PDMS 
replica. The SLED surface was then assembled by adding the metal reflector, QDs and Bragg reflector on top of the patterned epoxy. b, Cross-sectional 
SEM view of the SLED device showing the patterned bottom surface, the QD-doped PMMA layer and the Bragg reflector. Scale bar, 1 µm. c, Top view of the 
complete device obtained by fluorescence microscopy with the microscope’s focus plane on the bottom reflector. Scale bar (main panel), 10 µm. Inset: a 
macroscopic top view of the assembled SLED surface. Scale bar (inset), 1 mm.
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Fig. 3 | optical characteristics of the light-emitting surfaces. a,b, Comparison of the emission profile of substrates with a flat bottom reflector (a) and 
micropatterned reflecting bottom surface (b). c, Polar plot comparing the two specimens’ angular emission profiles extracted as an average of radial 
emission patterns from a and b. Red and black curves represent data from samples with patterned and flat-bottomed reflectors, respectively.  
d, Experimentally determined emission profile for a sample with patterned bottom reflector in air imaged with a ×100 objective (NA 0.95). The objective’s 
numerical aperture is marked with a white circle. e, Corresponding modelling results for a Bragg reflector centred at 585 nm. f, Polar plot extracted from 
d (red) and e (black). g, Experimentally determined emission profile for a sample with a patterned bottom reflector in immersion oil imaged with a ×100 
objective (NA 1.3). h, Corresponding modelling results for a Bragg reflector centred at 585 nm. i, Polar plot extracted from g (red) and h (black).
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Fig. 4 | Application of the SLeD surfaces to image colloids and marine microorganisms. a, Schematic of the optical set-up used for imaging. In the 
case of biological samples, a drop of water containing the microorganisms is deposited on the SLED surface and imaged using an immersion lens. SLED 
measurements rely on exposure of the substrate with blue light from a laser diode. b–m, Bright-field images (b,e,h,k) and SLED images (c,f,i,l) together 
with the corresponding intensity profiles (d,g,j,m) (black lines, bright-field; red lines, SLED) extracted along the white dashed lines are shown for a single 
colloid (b–d), a colloid cluster (e–g), a colony of E. coli bacteria in water (h–j) and micro-algae in sea water (k–m). Scale bars, 1 µm (b,c,e,f), 5 µm (h,i), 
10 µm (k,l). The dashed black lines in d, g, j and m indicate the levels used to determine the image contrasts specified in the main text. These levels are 
chosen based on image dimensions so that 5% of the intensity values lie above and below for the images of colloids and 15% for the images of bacteria 
and micro-algae, which generously accounts for camera noise levels. Based on these thresholds, standard deviations of the bright-field and SLED contrast 
values stated in the main text result from at least five (single colloid) and more than 15 (bacteria and micro-algae) discrete values above and below the 
upper and lower intensity thresholds.
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To demonstrate the utility of the proposed luminescent sur-
faces for dark-field microscopy, we imaged colloids and biologi-
cal samples with low refractive index contrast (Fig. 4). The Bragg 
reflector was designed to obtain optimal optical performances for 
use with a ×100 air objective (NA 0.9) and a ×60 water immersion 
objective (NA 1.0) (Fig. 4a). Images obtained with standard bright-
field microscopy and with the SLED approach were compared to 
demonstrate the ability of our substrates to provide high-contrast 
images for specimens with little absorption and low refractive index 
contrast (Fig. 4). First, using the ×100 air objective, 1 μm poly-
styrene colloids were imaged in both bright-field and with SLED  
(Fig. 4b–g). Images obtained by SLED and bright-field microscopy 
were used to extract the reciprocal intensity profiles, demonstrating 
the dark-field character of our approach. The image contrast, calcu-
lated as the difference between the maximum and minimum image 
intensity values divided by their sum, was significantly improved 
when the colloids were imaged with SLED (Fig. 4d,g). Although 
bright-field illumination resulted in a contrast of 0.20 ± 0.01 
(mean ± s.d.), SLED illumination provided a contrast of 0.60 ± 0.02.

Second, a drop of water containing marine microorganisms or 
Escherichia coli (E. coli) was positioned on top of the light-emitting 
surface and imaged with the water immersion lens (Fig. 4h,i,k,l). In 
the case of biological samples, which due to weak absorption and low 
refractive index contrast in water are difficult to image with bright-
field illumination, the contrast improvement obtained with SLED is 
even more striking. For the E. coli sample (Fig. 4h–j), bright-field illu-
mination only provided a contrast of 0.021 ± 0.003, while SLED light 
enabled an image contrast of 0.57 ± 0.02. The contrast enhancement 
when imaging marine microorganisms (Fig. 4k–m) was similarly 

high; SLED illumination resulted in a contrast of 0.76 ± 0.03, while 
for bright-field light it was only 0.040 ± 0.004. Hence, SLED illumina-
tion permits the visualization of submicrometre features in weakly or 
non-absorbing specimens with low refractive index difference to the 
surrounding medium, which cannot be easily imaged using bright-
field microscopy and standard numerical contrast enhancement tech-
niques (see Supplementary Information and Fig. 4).

The imaging characteristics of the SLED substrate in combination 
with a standard light microscope can be modelled in the theoreti-
cal framework of imaging with partially coherent, quasi-monochro-
matic light pioneered by Hopkins27 and educationalized elegantly by 
Born and Wolf28 and Goodman29. We describe the microscope set-
up as consisting of the SLED light source transilluminating a pure 
phase object, which is imaged by the objective and tube lens onto 
a charge-coupled device array (Fig. 5a). Focusing on the capacity 
to achieve image contrast, we neglect the imaging system’s magni-
fication and regard it as a simple space-invariant 4f system, which 
simplifies the problem’s mathematical complexity without compro-
mising any contrast comparison. The source’s coherence proper-
ties can be quantified through the mutual intensity that is incident 
on the object. For quasi-monochromatic illumination originating 
from a large uniform spatially incoherent source, such as the SLED 
surfaces, the source’s mutual intensity spectrum J s u; vð Þ

I
 is propor-

tional to its angular emission profile (Fig. 5b)27,28. Here, the spatial 
frequencies are u ¼ n

λ0
sin θ cosφ

I
 and v ¼ n

λ0
sin θ sinφ

I
, where n is 

the refractive index of the surrounding medium and θ and φ are 
the polar and azimuthal angles marked in Fig. 1a. Furthermore, 
the normalized mutual intensity js in the object plane (Fig. 5c) is 
proportional to the Fourier transform of J s u; vð Þ

I
 and only depends 
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degree of mutual spatial coherence js(x2 – x1,y2 – y1) for the SLED surface (left) and the bright-field illumination (right). The bottom plot displays normalized 
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on the space coordinate differences of any two object points (x1,x1) 
and (x2,x2), that is js x1; x2; y1; y2ð Þ ¼ js x1 � x2; y1 � y2ð Þ

I
. Finally, the 

normalized spatial intensity distribution I(xim,yim) in the image of a 
pure phase object with complex amplitude transmission function 
A(x,y) (Fig. 5d) imaged through a space-invariant 4f system with 
amplitude transfer function h (Fig. 5e) is given by

I xim; yimð Þ ¼ R R R R

Illuminated area
js x � x0; y � y0ð ÞA x; yð ÞA? x0; y0ð Þ

h xim � x; yim � yð Þh? xim � x0; yim � y0ð Þdxdydx0dy0

The 4D integration in the object coordinates x, y and x′, y′ 
runs over the whole illuminated area (for a detailed derivation see 
Supplementary Information). Images of a spherical pure phase 
object akin to the experimentally imaged colloids but with signifi-
cantly smaller refractive index contrast (diameter, 1 µm; refractive 
index, 1.37) for SLED illumination and for bright-field light are 
shown in Fig. 5f. These modelling results show that the partially 
coherent light field emitted by the SLED surfaces enables imaging 
of phase objects analogous to dark-field illumination by translating 
phase disturbances at the object plane into intensity contrast at the 
image plane. Especially for transparent objects with weak refrac-
tive index difference to the surrounding medium, such as bacteria, 
cells or marine microorganisms, this technique enables enhanced 
contrast compared to standard bright-field imaging (Fig. 5g). The 
emission characteristics of SLED surfaces are akin to the light fields 
achieved with a dark-field condenser in Köhler’s illumination, for 
which it can be shown that the illumination does not cause image 
aberrations28. Consequently, only the microscope objective and tube 
lens contribute to aberrations. The resolution obtained with SLED 
illumination is comparable to the resolution in bright-field light.

In conclusion, we have shown that luminescent surfaces with 
tailored angular emission profiles can be generated by using pro-
cesses that allow for control of the structures’ composition and 
micro-morphology. The theoretical modelling of the surface’s opti-
cal characteristics, complemented and confirmed by our experi-
mental work, demonstrates the potential of the proposed substrate 
design to enable a novel type of dark-field microscopy, which we 
have termed ‘substrate luminescence-enabled dark-field’ imaging 
(SLED). This approach facilitates dark-field imaging with simple 
and compact light microscopes that are not equipped with dark-
field components. Preliminary experiments suggest that a surface 
with an area of 25 × 25 mm2 can be designed to exhibit up to 10 
different spectrally and angularly distinct emission profiles. Such 
multi-spectral emitter surfaces could be used with a wide variety of 
light collection equipment available on the market. Randomly rough 
surfaces such as the bottom reflector could be a viable alternative to 
the concave microstructures presented here, provided their rough-
ness is well controlled (see Supplementary Information and Fig. 
3). In this study, light emission from the QDs was achieved using 
a low-budget laser diode; however, electrical excitation of the QDs 
could greatly enhance this approach and could be implemented 
with minor design changes to the device30,31. Combining electrical 
excitation with the use of a mixture of QDs for spectral multiplexing 
could open new avenues towards the design of a fully integrated on-
chip simultaneous dark-field and multi-spectral imaging device32.
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Methods
Fabrication of micropatterned bottom reflectors. A glass master covered with 
convex hexagonally packed semispheres with a diameter of 4.6 µm was fabricated 
by Papierfabrik Louisenthal. A first moulding step was performed by casting PDMS 
Sylgard 184 from Dow Corning after mixing the elastomer base and the curing 
agent in a weight ratio of 10:1. After curing for 3 h at 70 °C, the PDMS was carefully 
peeled off from the master, revealing the inverted structure (hexagonally packed 
semispherical concavities). To perform PDMS double-casting, the elastomer 
master was plasma-etched with oxygen for 10 s before being left for a minimum 
of 3 h in a desiccator with a few drops of Aquapel Glass Treatment on a glass 
slide. This commercial fluorinated compound increases the hydrophobicity of the 
PDMS elastomer to enable PDMS double-casting. Then, a new mixture of Sylgard 
184 was cast on the treated PDMS master and cured for 3 h at 70 °C. This could 
be easily peeled off from the initial PDMS master and preserved the geometry of 
the structure, creating an imprint as on the initial glass master. Finally, high-
temperature-resistant optical epoxy OG142-87 from Epotek was cast on the final 
PDMS mould cured under ultraviolet light for 3 h and easily peeled off to obtain 
a hard micropatterned sample covered with hexagonally packed semispherical 
concavities. The temperature resistance of the epoxy is an important factor for 
the next fabrication step of electron-beam evaporation of a gold coating, which 
involves working at high temperature (~100 °C); other common polymers expand, 
affecting the quality of the thin film deposited on it. The PDMS masters were 
reused up to eight times without any noticeable degradation of the microstructure. 
The Aquapel-fluorinated PDMS master could be reused without any further 
treatment for PDMS double-casting, even a month after its first replication.

Electron-beam evaporation of gold on the patterned epoxy. Patterned epoxy 
samples were coated with a 15 nm-thick seed layer of titanium and 200 nm of gold 
by electron-beam evaporation. All deposition materials were purchased from Kurt 
J. Lesker. The deposition was performed with an electron-beam evaporator (AJA 
ATC) in the clean room of the Exploratory Materials Laboratory (EML) of the 
Microsystems Technology Laboratories (MTL) at MIT. The deposited thickness 
was determined with a Dektak 150 mechanical surface profilometer and through 
SEM cross-section imaging.

Spin-coating of the QD polymer matrix. PMMA (average molecular weight 
of 15,000 g mol−1 determined by gel permeation chromatography) and toluene 
(anhydrous 99.8%) were purchased from Sigma-Aldrich and used without 
further purification. The QDs were synthesized by the Bawendi group at the 
MIT Department of Chemistry following the recipe reported in ref. 21. The 
photoluminescence emission peak of the QDs in solution was located at a 
wavelength of 630 nm. PMMA powder was mixed at 25 wt% in toluene and stirred 
until fully dissolved. The solution was then filtered and added to a vial containing 
dry QDs to obtain 5 wt% of QDs in the PMMA-toluene solution. The mixture 
was stirred for a few minutes until the QDs were fully dispersed. Using a spin 
coater (Laurell Technologies WS-650MZ-23NPP), 200 µl of the final solution was 
spin-coated on the gold patterned surface at 2,000 r.p.m., until the solvent fully 
evaporated and the colour of the film did not change anymore.

Bragg reflector fabrication by electron-beam evaporation and assembly. The 
titania (TiO2) and silica (SiO2) used for the deposition were purchased from Kurt 
J. Lesker. Electron-beam evaporation was performed on the same equipment used 
for the deposition of gold on the patterned surface. Bragg reflectors were obtained 
by alternating 13 layers of TiO2 and SiO2, always starting and finishing with a 
TiO2 layer, as it is the higher-refractive-index material. The Bragg reflectors can 
be deposited directly on top of the PMMA/QD-covered metal bottom reflectors. 
Alternatively, they can be formed on thin glass coverslips. The coverslips can then 
be cut and assembled with the QD/PMMA-coated bottom reflectors by putting 
them in physical contact with the Bragg reflector side on the PMMA film and 
fusing them in a toluene environment for ~1 h. The thicknesses and refractive 
indices of the constituent layers in the multilayer reflectors were measured using 
a custom-made ellipsometer. In addition, the thicknesses were confirmed by 
profilometry performed with a Dektak 150 mechanical surface profilometer and 
through SEM cross-sectional imaging. For our samples, the refractive indices were 
2.2 ± 0.02 for TiO2 and 1.49 ± 0.01 for SiO2.

Optical characterization set-up. All optical measurements were performed on 
an Olympus BX51 optical microscope. Images were acquired with a RGB Allied 
Vision Technologies Prosilica GT camera mounted on the microscope’s imaging 
port. A high-NA oil immersion lens (Olympus UPlanFL ×100/NA 1.30) and a 
regular air objective (UMPlanFl ×100/NA 0.95) in conjunction with a Bertrand 
lens were used to image the samples’ angular emission profiles. The excitation 
source was a Sony SLD3236VF laser diode, used with a Thorlabs ITC4005 laser 

controller. The beam created by the laser diode was collimated through a lens 
with 30 mm focal length and its position and angle were controlled with two 
adjustable 45° mirrors before coupling it into the optical microscope. A customized 
microscope filter cube consisting of a short-pass filter (<450 nm, Thorlabs 
FESH0450), a long-pass dichroic mirror (>425 nm, Thorlabs DMLP425R) and 
a long-pass filter (>570 nm, Thorlabs FGL570) was also used. The standard 
excitation power used to excite the QDs was <5 mW to avoid heating and intensity 
variation of the laser diode. In addition, some tests were run with an excitation 
power of up to 20 mW without witnessing any photobleaching of the QDs. A ×60 
water immersion lens (Olympus LUMPlanFl N ×60/NA 1.00) was used for the 
imaging of marine microorganisms and bacteria.

Optical modelling. Modelling of the emission characteristics of the sample 
geometries with spherical concavities, flat surfaces and randomly rough surfaces 
with a Gaussian height distribution was performed using a custom MATLAB code. 
This code allows to calculate the reflection and transmission characteristics of the 
top Bragg reflector based on Rouard’s method25, while employing ray tracing to 
model light propagation within the structures and reflection of the bottom gold 
surface (taking into account the wavelength-dependent refractive indices and 
absorption coefficients of gold26). To assess the emission characteristics of the 
different geometries we generated 100,000 rays with random position and direction 
within the volume enclosed by the Bragg filter and the bottom gold reflectors. We 
assumed incoherent superposition of different rays emitted from the surface in 
the same angular direction (that is, adding their intensities), because we expect 
no phase relation between light that is emitted fluorescently from different points 
within the cavity structures. The number of 100,000 rays was chosen after testing 
for selected geometries that the resulting emission profiles had converged to the 
same result as for modelling runs with 150,000 and 200,000 rays. The theoretical 
modelling of image formation with partially coherent light is described in detail in 
the Supplementary Information.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.

Code availability
The MATLAB codes used to model the surfaces’ emission properties and 
partially coherent imaging are available for download from https://github.com/
mathiaskolle/substrate-luminescence-enabled-darkfield-imaging.
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Sample size A collection of images of colloids, colloid assemblies, E. coli bacteria and unidentified marine micro-organisms was taken and representative 
images were further analyzed. 

Data exclusions No data were excluded.  

Replication SLED surfaces were used to image different types of specimen (colloids, bacteria, marine micro-organism) and for each type of sample 
multiple images were acquired from different areas on the samples. 

Randomization n/a
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Laboratory animals The study did not involve laboratory animals. 

Wild animals The study did not involve wild animals. 

Field-collected samples The study involved the collection of  marine micro-organisms of undetermined specification that were present in a 100ml sample 
of seawater collected in Boston harbor. Such marine micro-organisms represented an ideal study object to determine the utility 
of SLED surfaces for dark-field imaging. The sample was acquired on the day of the experiments. It was refrigerated to 4ºC until 
imaging.  
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