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Inflatable soft jumper inspired by shell snapping
Benjamin Gorissen1*, David Melancon1*, Nikolaos Vasios1, Mehdi Torbati1, Katia Bertoldi1,2,3†

Fluidic soft actuators are enlarging the robotics toolbox by providing flexible elements that can display highly 
complex deformations. Although these actuators are adaptable and inherently safe, their actuation speed is 
typically slow because the influx of fluid is limited by viscous forces. To overcome this limitation and realize 
soft actuators capable of rapid movements, we focused on spherical caps that exhibit isochoric snapping when 
pressurized under volume-controlled conditions. First, we noted that this snap-through instability leads to both 
a sudden release of energy and a fast cap displacement. Inspired by these findings, we investigated the response 
of actuators that comprise such spherical caps as building blocks and observed the same isochoric snapping 
mechanism upon inflation. Last, we demonstrated that this instability can be exploited to make these actuators 
jump even when inflated at a slow rate. Our study provides the foundation for the design of an emerging class of 
fluidic soft devices that can convert a slow input signal into a fast output deformation.

INTRODUCTION
Inflatable soft actuators have emerged as an ideal platform to realize 
active structures capable of safe interactions with unstructured 
environments (1–3). Their compliance and ability to achieve 
complex deformations has enabled the design of flexible machines 
for a wide spectrum of applications (4), ranging from minimally 
invasive surgical tools (5) and exoskeletons (6) to warehouse grip-
pers (7) and add-ons for video games (8). However, existing fluidic 
soft actuators are typically slow, because a substantial amount of 
fluid has to be supplied for their operation, the influx of which is 
restricted by viscous forces in tubes and valves. To overcome this 
limitation, it has been shown that fast actuation can be achieved 
either by modifying the geometry to reduce the amount of fluid 
needed for inflation (9) or by using chemical reactions to generate 
explosive bursts of pressure (10). Alternatively, snapping insta-
bilities can also provide a powerful nonlinear mechanism that 
decouples the slow input signal from the output deformation and 
triggers rapid events (11–15).

Inspired by recent progress using snapping instabilities to in-
crease the speed of actuation (11, 16), we investigated the snapping 
of spherical caps as a mechanism to realize fluidic soft actuators 
capable of rapid movements. We first showed that the snapping 
of elastomeric spherical caps upon pressurization results in a 
sudden release of energy, the amount of which can be controlled 
by tuning the caps’ geometry, material stiffness, and boundary 
conditions at the edges. We then realized fluidic soft actuators 
by combining two spherical caps (see Fig. 1A) and found that 
the energy released upon snapping of the inner cap leads to a rapid 
inversion of its pole that ultimately enables jumping. Last, we 
identified geometric and material parameters that result in substan-
tial energy release and jump height, providing a rich design domain 
for fluidic soft actuators capable of extremely fast movements re-
gardless of inflation rate.

RESULTS
Snapping of spherical caps as a platform for fast fluidic  
soft robots
To create fast inflatable soft actuators, we started by conducting 
finite element (FE) analyses to investigate the response upon 
pressurization of elastomeric spherical caps with radius, R, thickness, 
t, and polar angle,  (see Fig. 1B). In our simulations (which were 
conducted using the commercial package ABAQUS 2018/Standard), 
we assumed the deformation to be axisymmetric, discretized the 
models with four-node bilinear axisymmetric solid elements, and 
used an incompressible Gent material model with initial shear 
modulus,  (17). We pressurized the caps by supplying incompress-
ible fluid to a cavity above them (highlighted in gray in the inset in 
Fig. 1B) and simulated the quasi-static pressure-volume curve via 
the modified Riks algorithm (18, 19). In Fig. 1B, we consider a thin 
cap with polar angle  = 60∘, normalized radius  = R/t = 30, 
and clamped boundary conditions at the base. We found that 
the pressure-volume curve of this cap is qualitatively identical to 
those recently reported for pressurized spherical shells (20–22) and 
is characterized by a limit point when inflating under volume-
controlled conditions (indicated by a black circular marker in 
Fig. 1B). This volume limit causes an instability, leading the system 
to snap to a point of lower pressure (white circular marker in 
Fig. 1B). This occurs while conserving the volume in the cavity and 
results in a partial inversion of the cap, which we characterize by 
quantifying the distance traveled by the pole during the instability, 
ypole (see insets in Fig. 1B). Further, we note that the isochoric 
snapping of the cap is accompanied by a sudden release of energy, 
E, that graphically corresponds to the green highlighted area in 
Fig. 1B and can be obtained as

	​ E = ​ ∫ 

​ ​​ p dV​	 (1)

where  is the equilibrium path that connects the limit point in 
volume and the corresponding isochoric point on the lower branch 
(highlighted by a dashed black line in Fig. 1B). For the considered 
cap, we find E = 1.50 × 10−5R3 and ypole = 1.31 × 10−1R.

Next, to investigate the effect of geometry on E and ypole, we 
compared the response of the thin spherical cap with that of a thicker 
one with  = 8.5 and both with clamped and roller boundary condi-
tions at the base. The results reported in Fig. 1C indicate that the 
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boundary conditions play a major role on the snapping behavior. 
The clamped thick cap is characterized by a very large maximum 
pressure, but a very small energy release and pole displacement 
upon snapping (E = 4.78 × 10−6R3 and ypole = 6.30 × 10−2R). On 
the other hand, roller boundary conditions lower the maximum 
pressure but lead to a much higher energy release and pole dis-
placement (E = 8.00 × 10−4R3 and ypole = 2.67 × 10−1R). As a 
result, our simulations indicate not only that isochoric snapping of 
spherical caps provides opportunities to realize systems capable 
of suddenly releasing a substantial amount of energy through their 

inversion but also that by tuning geometry and boundary conditions, 
we can control and maximize the response of these systems.

Inflatable soft actuators inspired by shell snapping
Having demonstrated numerically that snapping of a spherical cap 
results in a sudden energy release and pole displacement, we then 
investigated the mechanical response of fully soft actuators com-
prising two spherical caps connected at their base to form a cavity 
that we inflate with an incompressible fluid (see Fig. 1A). We began 
by considering three actuators with inner caps identical to those in-
troduced in Fig. 1C (with Ri = 30 mm) with outer caps characterized 
by o = 90∘ and o = 16.5 (note that here and in the following, the 
subscripts o and i are used to indicate properties of the outer and 
inner caps, respectively). Specifically, design A has a thin inner cap 
with i = 60∘ and i = 30, whereas designs B and C have a thick cap 
with i = 60∘ and i = 8.5. Further, we assumed that both caps of 
designs A and B are made of the same elastomeric material (i.e., 
i/o = 1); however, for design C, we consider an outer cap made 
of a softer rubber, resulting in i/o = 5.8. The numerically obtained 
pressure-volume curves for the three actuators (shown in Fig. 2A as 
blue lines) share many features with those reported in Fig. 1C for 
the individual pressurized caps and are all characterized by a limit 
point near the maximum pressure when considering volume-
controlled conditions. Hence, our actuators also exhibit isochoric 
snapping upon inflation, and this again results in a sudden release 
of elastic energy and the inversion of the inner cap. By comparing 
the responses of the three actuators, we find that design C exhibits 
the largest energy release and displacement of the inner cap’s pole 
(E = 0.875, 5.67, and 31.4 mJ for designs A, B, and C, respectively, 
whereas ypole = 7.68, 7.55, and 20.89 mm for designs A, B, and C, 
respectively). These results agree with the trends observed for the 
individual pressurized caps (see Fig. 1C), because both E and 
ypole increase for thicker caps that are allowed to rotate at their 
base (note that in our actuators, such boundary conditions are not 
directly controlled but rather determined by the outer cap; see 
fig. S13). Furthermore, the results highlight the important role of 
the outer caps and indicate that both E and ypole can be enhanced 
by increasing their compliance. This is because compliant outer 
caps can sustain more deformation before snapping (see insets in 
Fig. 2A) and, therefore, enable the actuator to store more elastic 
energy that can be potentially released upon instability.

Next, to experimentally validate our analyses, we fabricated the 
three actuators using molds and inflated them with water while sub-
merged in water to eliminate the effects of gravity (see the Supple-
mentary Materials for details). In this experimental analysis, all caps 
were fabricated out of Zhermack Elite Double 32 (with green color 
and initial shear modulus  = 0.35 MPa), except for the outer cap of 
design C, where we used Zhermack Elite Double 8 (with purple col-
or and initial shear modulus  = 0.06 MPa). Note that these values 
were obtained by minimizing the error between experiments and 
simulations for design C and are within the range previously reported 
in the literature (21, 23–25). In Fig. 2A, we compare the numerical 
(blue lines) and experimental (red lines) pressure-volume curves 
for the three actuators, whereas in Fig. 2B, we display snapshots 
that are taken during the tests. We found good agreement between 
simulations and experiments, with pressure measurements that 
show a sudden drop near the numerically predicted limit point. The 
small discrepancies between experiments and simulations can be 
attributed to unavoidable imperfections introduced during fabrication, 
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Fig. 1. Snapping of spherical caps for fast fluidic soft robots. (A) Our soft fluidic 
actuators comprise two spherical caps connected at their base. Upon inflation, the 
inner cap snaps and enables our simple device to take off. (B) The pressure-volume 
curve, normalized by initial shear modulus, , and radius, R, of a given pressurized 
spherical cap is characterized by a limit point when inflating under volume-
controlled conditions. This volume limit point causes an isochoric snapping 
instability, which leads to a sudden release of energy, E (highlighted in green), 
and the inversion of the inner cap (which we characterize by quantifying the 
distance travelled by the cap’s pole, ypole). (C) Comparison between the pressure-
volume curves of thin (solid green line) and thick spherical caps with both clamped 
(dotted green line) and roller (dashed green line) boundary conditions. Note 
that the normalized radius  is defined as the ratio of cap radius over cap thickness 
(i.e.,  = R/t).
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visco-elasticity of the rubber, and slight asymmetric buckling of 
the inner cap. Furthermore, in all of our tests, as observed in the 
simulations, snapping is also accompanied by the sudden inversion 
of the inner cap. For design A, ypole is such that the inner cap’s pole 
remains above the base plane of the actuator upon snapping; for 
designs B and C, however, the large value of ypole allows for their 
inner cap’s pole to cross it (see Fig. 2B).

Motivated by these results, we investigated how snapping can be 
exploited to enhance the functionality of our simple robots and to 
make them jump even when inflated at a slow rate. To this end, we 
positioned our actuators on a flat surface and slowly inflated them 
with air (see the Supplementary Materials for details). The snapshots 
reported in Fig. 2C reveal that, despite the slow rate of inflation 
(10 ml/min with a syringe pump), the isochoric snapping makes design 
C jump and reach a maximum height of yjump = 42.9 mm. On the 
other hand, although the inner cap of designs A and B snaps upon 
inflation, their E and ypole are not large enough to enable them to 
take off. Although this last set of tests was conducted using a com-
pressible fluid (air), the effect of fluid compressibility on the response 
of the system’s energy release was negligible and only led to a slight 
increase of volume during snap-through (see Fig. 2A and the Sup-
plementary Materials for details). Hence, the experiments and analyses 
conducted using an incompressible fluid can be also used to under-
stand and improve the performance of our air-inflated jumpers.

Improving the actuators’ response
Thus far, we have shown that the geometry and material properties 
of the caps strongly affect the snapping behavior and that by tuning 
E and ypole, we can harness the instability to make our actuators 
jump. Motivated by these findings, we proceeded by systematically 
exploring the parameter space to identify designs that can jump higher 
than design C. Figure 2C indicates that jumping requires large enough 
E and ypole, and Fig. 2A indicates that E and ypole can be en-
hanced by combining an inner cap that releases a large amount of 
energy upon snapping with an outer cap that stores a large amount 
of energy before snapping. Therefore, we started by considering the 
two caps separately and used axisymmetric FE analyses to investi-
gate their behavior for a wide range of geometric parameters (i.e., 
40∘ ≤ i ≤ 80∘, 5 ≤ i ≤ 12.5, 40∘ ≤ o ≤ 90∘, and 5 ≤ o ≤ 20).

Focusing on the inner cap, we found that by varying i and i, its 
response undergoes several transitions (see Fig. 3, A and B). For low 
values of i and i (i.e., for thick and shallow caps), the inner cap does 
not exhibit isochoric snapping (see light gray region in Fig. 3, A and B). 
By increasing i at constant i, snapping is eventually triggered upon 
inflation. Within this domain, both the energy released by the inner 
cap, Ei, and its pole displacement, ypole, increase monotonically 
as a function of i, suggesting that the response of our actuators can 
be enhanced by considering deep and sufficiently thick inner caps. 
Last, for high values of i and i (i.e., for thin and deep caps), the 
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Fig. 2. Our inflatable soft actuators. (A) Experimental (red) and numerical (blue) pressure-volume curves for the inflation with water of three actuators (all with inner 
cap radius Ri = 30 mm) characterized by normalized radii, polar angles, and ratio of shear moduli (i, i, o, o, i/o) = (30, 60∘, 16.5, 90∘, 1) (design A), (8.5, 60∘, 16.5, 90∘, 1) 
(design B), and (8.5, 60∘, 16.5, 90∘, 5.8) (design C). The energy released upon snapping, E, is highlighted by the shaded blue region. The volume limit point upon inflation 
is identified with a black circular marker, whereas its corresponding isochoric point on the lower branch is identified with a white circular marker. For design C, we also 
report the experimental pressure-volume curve obtained when inflating the actuator with air (black line). (B) Experimental snapshots of the three design during inflation 
with water at different amounts of supplied fluid. (C) Experimental snapshots of the three designs during inflation with air. The isochoric snapping makes design C jump 
and reach a maximum height denoted yjump.
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pressure-volume curves become self-crossing (see dark gray region 
in Fig. 3, A and B), which is an indication of the existence of a 
more favorable asymmetric deformation path with low Ei and ypole 
(see fig. S16).

Next, we turned our attention to the outer cap and found that its 
response is less rich and resembles that of an inflated thin spherical 
balloon (26, 27). Because the outer cap in our actuators acts as an 
energy reservoir, in Fig. 3C, we report the evolution of the stored 
energy in the outer cap, Eo, at a normalized pressure of p/o = 0.5, as 
a function of the polar angle, o, and the normalized radius, o. The 
results indicate that Eo increases monotonically with o (almost 
irrespective of o), therefore suggesting that the response of our 
actuators can be enhanced by focusing on deep outer caps.

Although the results of Fig. 3 enabled us to identify promising 
regions of the design space (i.e., inner caps with i ≥ 70∘ and i ≤ 8 
and outer ones with o ≥ 76∘), they could not be directly used to 
realize the best possible jumper because they neglect the coupling 
between the two caps. Therefore, as next step, we used axisymmetric 
FE analyses to simulate the response of 4800 actuators constructed 
by combining inner and outer caps within the identified promising 
regions (highlighted by black contours in Fig. 3). In Fig. 4A, we 
report E and ypole for all simulated actuators with both i/o = 1 
(green markers) and 5.8 (purple markers). Four key features emerge 
from the plot. First, by comparing the results with those obtained 
for the three actuators considered in Fig. 2 (indicated by square 
markers in Fig. 4A), we find that both E and ypole can be greatly 
increased when the geometry is properly tuned. Second, the results 
show that, on one hand, there is a strong correlation between E 
and ypole and, on the other hand, there is a disconnection between 
them and the drop in pressure associated with the snapping insta-
bility. Specifically, by inspecting the pressure-volume curves for the 
actuators (shown as insets in Fig. 4A), we found that for the designs 
with large E and ypole, the drop in pressure is small, whereas the 
area enclosed by the pressure-volume curve between the limit point 
and the corresponding isochoric point on the lower branch is large. 
Third, the results confirmed the importance of a flexible outer cap 
because both E and ypole span a much larger domain for the actu-
ators with i/o = 5.8. Fourth, we found that the inner cap plays a 
crucial role and that by choosing i = 80∘ to optimize its response, 
we can further improve the performance of the actuators (see black 
contour markers in Fig. 4A). At the same time, however, the results 
also highlight that for actuators with i/o = 5.8, the outer cap 

geometry is important, because some design choices lead to notice-
ably lower E and ypole.

Our quasi-static FE simulations allowed us to efficiently explore 
the design space and calculate E and ypole for a large number of 
designs. However, because they do not account for dynamic effects, 
they cannot be used to directly characterize the ability of the actua-
tors to jump. To overcome this limitation, we established a simple 
mass-spring model that takes the FE results of Fig. 4A as input and 
predicts the jump height, yjump. This reduced order model comprises 
two concentrated masses, mi and mo, connected by a spring with 
stiffness ks and rest length L0 (Fig. 4B). We chose mi and mo to 
be equal to the mass of the inner and outer cap, respectively, and 
to be located at their corresponding poles. We then focused on the 
numerically predicted configurations immediately before and after 
snapping and assumed that the mechanical system stores an amount 
of energy equal to E in the former and is stress free in the latter. It 
follows that L0 is equal to the distance between the poles immediately 
before snapping and that (see Fig. 4B)

	​​ k​ s​​ = ​  2E ─ 
​( ​y​ pole​​)​​ 2​

 ​.​	 (2)

Last, we consider the spring to be initially precompressed by 
ypole and mi to be positioned at a distance himp from the ground 
(himp being the numerically predicted distance of the inner cap’s 
pole from the ground immediately before snapping). At time t = 0, 
we released the system and analytically determined the position of 
the two masses, yi(t) and yo(t), as a function of time while accounting 
for contact with a rigid surface.

To verify the validity of our simplified mass-spring model, we 
first focused on three designs with (i, i, o, o, i/o) = (8.5, 60∘, 
16.5, 90∘, 5.8) (design C), (5.4, 80∘, 15.3, 87∘, 5.8), and (5.8, 80∘, 10.5, 
85∘, 5.8) and compared the experimentally measured jump heights 
(hjump = 42.9, 160, and 209 mm, respectively) to the predicted ones. 
When choosing a coefficient of restitution  = 0.5 and approximating 
the effect of dissipation with a linear dashpot with damping coeffi-
cient cd = 0.4 kg/s, we found excellent agreement between the two 
sets of data, with the model predicting yjump = max (yi(t)) = 41.4, 
175, and 226 mm (see the Supplementary Materials for details). 
Hence, these results indicate that our simple mass-spring model, 
despite the fact that it cannot capture the complex dynamic behavior 
typical of shells (14, 28, 29), can accurately predict the jump height 
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Fig. 3. Mechanical response of the inner and outer caps upon inflation. (A and B) Evolution of the inner cap’s normalized (A) energy release, ​ ​E​ i​​ / (​​ i​​ ​R​i​ 
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of our soft jumpers. Having confirmed the validity of our model, we 
then used it to calculate the yjump for all 4800 actuators considered 
in Fig. 4A. The results reported in Fig. 4C indicate that a high jump 
requires both E and ypole to be large. Specifically, we found that 
the jump height is highest for an actuator with (i, i, o, o, i/o) = 
(6.2, 80∘, 12.1, 82∘, 5.8) for which E = 324 mJ and ypole = 31.7 mm. 
For such an actuator, our model predicts yjump = 275 mm, a jump 
height that is one order of magnitude larger than that previously 
recorded for design C. Our experimental results fully confirmed the 
numerical predictions for this design for both the pressure-volume 
curve (see Fig. 5A) and the jump height yjump = 283 mm (see Fig. 5B), 
further reinforcing the validity and efficiency of our numerical 
scheme to identify actuators with improved performance.

CONCLUSION
In summary, we have introduced a new family of inflatable soft 
actuators that harness isochoric snapping to move rapidly and 
even jump when inflated slowly. This behavior is encoded in their 
pressure-volume relationship, which exhibits two limit points in 
volume. Although fluidic actuators are typically characterized by 
a monotonic pressure-volume curve (9, 30), it has been recently 
shown that limit points in pressure can be exploited to enhance 
their functionality and enable sequencing (31–33). Here, we 
show that by introducing limit points in volume, we can realize soft 
robots capable of suddenly releasing a given amount of energy. Be-
cause the instability occurs at constant volume and does not involve 
transfer of fluid, the release of energy is extremely fast and enables 
us to convert the slow input signal into exceptionally rapid events 
such as jumps. Last, our actuators can be simply reset and brought 
back to the initial configuration through vacuum and, therefore, 
can take off repetitively (see movie S6).

In this study, we have demonstrated the concept for spherical 
caps at the centimeter scale; however, our approach can be extended 
to any shape and does not depend on size. Because both E and the 
gravitational potential energy are proportional to the mass, the jump 
height is independent of size (34). Thus, we expect the relative jump, 
yjump/Ri, to monotonically increase as the actuators are scaled down. 
On the other hand, on-board actuation and control may be embedded 
in larger jumpers (as the mass of these additional elements become 
negligible compared with that of the actuators) and open the way to 
real-world applications requiring untethered soft robots (35, 36). 
Last, in this work we have focused on the response of spherical caps 
under inflation; however, similar highly nonlinear behavior (i.e., 
force-displacement curves characterized by limit points in displace-
ment) has been reported for the indentation of shallow arches (37) 
and shells with curved creases (38). Because structural elements with 
limit points in force have already been used to realize mechanical 
metamaterials with unique properties (39–43), we believe that by 
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Fig. 4. Improving the response of the actuators. (A) Normalized energy release, 
​E / (​​ i​​ ​R​i​ 

3​)​, versus normalized pole displacement, ypole/Ri, for actuators with inner 
polar angle i ≥ 70∘, normalized inner radius i ≤ 8, and normalized outer radius 
o ≥ 76∘. (B) Reduced order mass-spring model used to predict jump height based 
on the numerical results reported in (A). The model comprises two masses mi and 
mo connected via a spring with stiffness ks and a dashpot with damping coefficient 
cd. (C) Normalized jump height, yjump/Ri, as a function of energy release and pole 
displacement for the 4800 actuators considered in (A).
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integrating these new building blocks into their design, we can 
further expand their modes of functionality.

MATERIALS AND METHODS
Details of the design, materials, and fabrication methods are sum-
marized in sections S1 and S2. The experimental procedures, in-
cluding the inflation with water to measure the pressure-volume 
curve and the inflation with air to measure jump height, are de-
scribed in section S3. FE procedures and jumper mass-spring model 
are detailed in sections S4 and S5. Validation of the FE model and 
jumper mass-spring model is reported in section S6.
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Section S1. Design

Our fluidic actuators are made out of two spherical caps: an inner cap that buckles under internal positive pressure and an
outer cap that stretches under the same internal positive pressure. In this Section, we first describe the ideal design in which the
two caps are connected through a single line contact and then detail the modifications introduced to facilitate their fabrication.
Note that throughout this manuscript, we will use the subscripts i and o to indicate the inner and outer caps, respectively.
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Fig. S1. Ideal design of the inflatable actuators. Schematics of the ideal design highlighting the seven points of the axisymmetric cross-section.

A. Ideal design. As shown in Fig. S1, our actuators consist of two axisymmetric spherical caps. As such, their geometry is
fully defined by the opening angles θi and θo, the radii of the spheres Ri and Ro, the cap thicknesses ti and to, and the
center-to-center distance between the two spheres, ∆. More specifically, the coordinates of the seven points indicated in Fig. S1,
which define the cross section of the actuator are given by
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where ηi = Ri/ti and ηo = Ro/to are the normalized radii, and (xi6, yi6) and (xo6, yo6) are the coordinates of point 6 expressed in
terms of the inner cap and outer cap, respectively. However, an inflatable cavity is formed only if

xi6 = xo6, and yi6 = yo6 [2]

and we solve these two equations by substituting equations [1f] and [1g] to express the radius of the outer cap, Ro, and the
center-to-center distance between the spheres, ∆, as a function of the other parameters:

Ro = Ri

√√√√√√√√
(

1 + 1
2ηi

)2

− cos2(θi)(
1− 1

2ηo

)2

− cos2(θo)
, [3a]

∆ = Ri

cos(θi)− cos(θo)

√√√√√√√√
(

1 + 1
2ηi

)2

− cos2(θi)(
1− 1

2ηo

)2

− cos2(θo)

 . [3b]

It follows that the geometry of the actuators is fully defined by 4 dimensionless and independent parameters:

θi, θo, ηi = Ri
ti
, ηo = Ro

to
. [4]

Further, in order for the two caps to not intersect, we need to respect the following inequality constraints:

θi < θo,

y2 < y3.
[5]

B. Modifications to facilitate fabrication. As shown in Fig. S1, the inner and outer caps are only connected through a line
contact, which provides no structural integrity. To this end, we modify the geometry to enhance the robustness of the actuator,
but also facilitate its fabrication. In particular, we extend the inner cap by introducing a ring around its base with thickness
tring and width wring (see Fig. S2). As such, the base of the inner cap’s cross section is defined by the three vertices:

(x8, y8) =

(
Ri

√(
1− 1

2ηi

)2

− cos2(θi), Ri
(

cos(θi)−
1

t̄ring

))
[6a]

(x9, y9) =

(
Ri

√(1 + 1
2ηi

)2

− cos2(θi) + 1
w̄ring

 , Ri

(
cos(θi)−

1
t̄ring

))
[6b]

(x10, y10) =

(
Ri

√(1 + 1
2ηi

)2

− cos2(θi) + 1
w̄ring

 , Ri cos(θi)

)
, [6c]

[6d]

where t̄ring = Ri/tring and w̄ring = Ri/wring.
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inflatable cavity
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Fig. S2. Manufacturable design of the inflatable actuators. Schematic of the design with the modifications made to facilitate fabrication.



Section S2. Fabrication

The actuators tested in this study are made of nearly incompressible silicone rubbers. Specifically, we use both Elite Double 32
from Zhermack (with green color and initial shear modulus µ = 0.35 MPa) and Elite Double 8 from Zhermack (with purple
color and initial shear modulus µ = 0.06 MPa). The two caps are casted with a two-part mold, which is designed using NX 12
(Siemens) and 3d printed in VeroClear with a Connex3 Objet500 printer (Stratasys). The inner cap and outer cap are molded
separately and combined afterwards to form an enclosed, inflatable cavity. Specifically, our actuators are fabricated using the
following 12 steps (see Fig. S3):

• Step 1: we coat all inner mold surfaces with a release agent (Ease Release 200 spray, Mann Release Technologies) to
facilitate demolding in a later step.

• Step 2: we fill the bottom halves of the molds with uncured polymer. In the case shown in Fig. S3, we use Elite Double
32 (Zhermack) for the inner cap and Elite Double 8 (Zhermack) for the outer cap.

• Step 3: we close both molds with pressure clamps to ensure accurate layer thickness and wait 15 minutes for the polymer
to cure.

• Step 4: we remove both cured caps from the molds.

• Step 5: we puncture the outer cap to create an access hole for a tube.

• Step 6: we insert the tube in the outer cap.

• Step 7: we apply glue (Sil-Poxy Silicone Adhesive - Smooth-On) around the edges of the top surface of the ring at the
base of the inner cap.

• Step 8: we connect the outer cap to the inner cap and wait 15 minutes for the glue to cure.

• Step 9: we apply glue (Sil-Poxy Silicone Adhesive -Smooth-On) to fix the tube to the outer cap.

• Step 10: we wait 15 minutes for the glue to cure.

• Step 11: we connect the actuator to a syringe pump.

• Step 12: we inflate the actuator to make sure there are no leaks.

As part of this study, we fabricate four prototypes, all with Ri = 30mm, t̄ring = Ri
tring

= 30, w̄ring = Ri
wring

= 10, and (see
Fig. S4)

• Design A: ηi = 30, ηo = 16.5, θi = 60◦, θo = 90◦ and µi/µo = 1;

• Design B: ηi = 8.5, ηo = 16.5, θi = 60◦, θo = 90◦ and µi/µo = 1;

• Design C: ηi = 8.5, ηo = 16.5, θi = 60◦, θo = 90◦ and µi/µo = 5.8;

• Design D: ηi = 6.2, ηo = 12.1, θi = 80◦, θo = 82◦ and µi/µo = 5.8;

where µi/µo is the ratio between the initial shear modulus of the rubber used to fabricate the inner and outer caps, respectively.
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step 4b step 5 step 6
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Fig. S3. Fabrication of the inflatable actuators. Snapshots of the 12 steps required to fabricate our actuators
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Fig. S4. Baseline designs of the inflatable actuators. Schematics of the four designs fabricated as part of this study.



Section S3. Testing

In order to fully characterize the response of the fabricated actuators under quasi-static inflation, we first inflate them with
water to measure their pressure-volume relation and then with air to assess their ability to jump.

A. Inflation with water. First, to decouple the effect of the geometry of the actuators from that of the compressibility of the
fluid, we determine the pressure-volume curve by inflating the actuators with water. As depicted in Fig. S5, we use a syringe
pump (Pump 33DS, Harvard Apparatus) to displace water into the actuator at 10 mL/min and measure the pressure using a
pressure sensor (MPXV7002DP with a measurement range of ±2 kPa and MPXV7025DP with a measurement range of ±25
kPa, both by NXP USA). Note that to eliminate the influence of gravity, we submerge the entire actuator in a water tank.
Moreover, to accurately determine the pressure-volume relation, air is eliminated from all supply tubes and the pressure is
calibrated to atmospheric pressure before each measurement cycle.

1

2

3

4

Fig. S5. Experimental setup of the inflation with water. Schematic of the test setup used to characterize the pressure-volume characteristic of the prototype actuators. (1)
Syringe pump. (2) Pressure sensor. (3) Water tank. (4) Actuator.

In Fig. S6, we report the experimentally measured pressure-volume curves for Designs A-D, with the blue lines corresponding
to inflation and the red ones to deflation. To make sure the response is repeatable, for each design we test three specimens
across three inflation-deflation cycles. The continuous lines correspond to the mean of the responses recorded in all tests and
the shaded region to the standard deviation.

Design C 

403020100
0

2

4

6

volume ΔV [mL]

pr
es

su
re

 p
 [

kP
a]

 

experiments (inflation)
experiments (deflation)

Design B 

20151050 25

1

3

5

6

4

2

0

7

volume ΔV [mL]

pr
es

su
re

 p
 [

kP
a]

 

Design A 

3020100

1

2

0

volume ΔV [mL]

pr
es

su
re

 p
 [

kP
a]

 

volume ΔV [mL]
0 50 100 150

0

-2

2

4

6

8

10

pr
es

su
re

 p
 [

kP
a]

 

Design D 

Fig. S6. Experimental pressure-volume curves of the inflatable actuators. Pressure vs. volume relationships measured for Designs A-D. The shaded region represents
the standard deviation obtained from testing three specimens for each geometry.



B. Inflation with air. To investigate how snapping can be exploited to make our actuators jump even when inflated at a slow rate,
we position them on a flat surface (to minimize the effect of viscous forces) and slowly inflate them with air (to minimize the
effect of gravity). Specifically, we inflate them with air at 10 mL/min using a syringe pump (Pump 33DS, Harvard Apparatus),
while capturing their deformation with a high speed camera (SONY RX100 V) recording at 240 frames per second (see Fig. S7).
The jump height, yjump, is defined as the distance between the flat surface and the lowest point of the inner cap measured
when the actuator reaches its highest point (see Fig. S9). In Fig. S8, we show frames extracted from the recorded movies for
the four different designs that we fabricated as part of this study. We find that only Designs C and D are able to jump and
that yjump = 42.9 mm and 283 mm for Design C and Design D, respectively.

Finally, we note that, although this last set of test was conducted using a compressible fluid (air), the effect of fluid
compressibility on the response of the system energy release is negligible. To demonstrate this important point, we also measure
the pressure-volume curve of Design C while inflating with air at 10 mL/min and taking into account its compressibility to
measure the volume inside the actuator. Specifically, the current volume of the system (which comprises the actuator, syringe,
and connecting tube), V , at a given pressure p can be expressed as,

V = V sys0 + ∆V −∆V syringe, [7]
where V sys0 is the initial pressure and volume of the system (which comprises the actuator, syringe, and connecting tube), ∆V
is the change in volume of the actuator and ∆V syringe is the amount of volume dispense by the syringe. Since our system is a
closed one

p0V
sys

0 = pV, [8]
which we combine with Eq. (7) to obtain

∆V = ∆V syringe −
(
p− p0

p

)
V sys0 . [9]

where p0 is the initial pressure of the system. Given the fast time-scale of snapping, we can assume that during the instability
∆V syringe is constant. Then, it follows that the change in volume of the actuator during snapping is

∆V + −∆V − =
(
p+ − p0

p+ − p− − p0

p−

)
V sys0 = p0(p+ − p−)

p+p− V sys0 , [10]

where the superscripts − and + are used to indicate quantities evaluated immediately before and after snapping, respectively.
Eq. (10) reveals that the drop in pressure that accompanies snapping results in a change in the volume of the actuator that
scales with the initial volume V sys0 .

In Fig. S9 we report the pressure-volume curves for Design C as measured in three different tests in which we vary the initial
volume of air in the syringe (so that V sys0 =40, 45 and 100 ml). We find that in all three cases the response of the actuator is
close to that measured when inflating with air.
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Fig. S7. Experimental setup of the inflation with air. Schematic of the test setup used to characterize the ability of the actuators to jump.



Design A

Design B

Design D

yjump=283mm

10 mm
no jump

10 mm

no jump10 mm

10 mm

Design C

yjump
=42.9mm

Fig. S8. Jumping tests of the inflatable actuators. Snapshots of the actuators before inflation, just before snapping of the inner cap, and at their highest point.
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Fig. S9. Effect of air compressibility. Pressure vs. volume relationships measured for Design C inflated with water and air for three different tests in which we vary V sys
0 by

controlling the initial volume of air in the syringe.

Section S4. FE simulations

To gain a deeper understanding of the mechanical response of the inflatable actuators and calculate their release of energy
and pole displacement during snapping, we perform Finite Element (FE) simulations using the commercial package ABAQUS
2018/Standard. In all our analyses, the response of the silicone rubber used to fabricate the caps (Elite Double 32 and Elite
Double 8 from Zhermack) is modeled using an incompressible Gent material model [17] with strain energy density function W
given by

W = −µJlim2 ln
(

1− I1 − 3
Jlim

)
, [11]

where µ and Jlim represent the small strain shear modulus and a material parameter related to the limiting stretch, respectively,
and I1 = tr(FTF), F being the deformation gradient. We find that the response of the pink Elite Double 8 and the green Elite
Double 32 is accurately captured using (µ, Jm) = (0.06 MPa, 24) and (0.35 MPa, 24), respectively. Note that these values
are obtained by minimizing the error between experiments and simulations for Design C and that the obtained values for the
shear modulus are within the range previously reported in the literature [21,23-25]. An in-house ABAQUS user subroutine
(UHYPER) is used to define the hyperelastic material behavior given by Eq. [11] in the FE simulations.



In the following, we present the different types of simulations used to determine the behavior off the actuator upon quasi-satic
inflation.

A. 3D simulations. We start by conducting full 3D FE simulations of the actuators. To this end, we create 3D models and
discretize them using a non-structured mesh of 4-node linear tetrahedron elements (ABAQUS element type: C3D4H), with
mesh size adapted to ensure that at least four elements are used to discretize the thickness of the thinnest cap.

To remove rigid body translations and rotations, we impose a no vertical displacement boundary condition (uy = 0) at the
nodes located on the line of contact between the two caps (defined by point 6 in Fig. S1). All models are inflated via a fluid
cavity interaction with an hydraulic fluid (of density ρ = 1000 kg/m3 and bulk modulus B = 2000 MPa). The volume-controlled
inflation is driven by a fictitious thermal expansion of the hydraulic fluid, relating to the change in volume ∆V in the cavity
through,

∆V
V cav0

= 3αT∆T, [12]

where ∆T is the change in temperature, αT is the coefficient of thermal expansion of the fluid and V cav0 is the initial volume
of the cavity. In the simulations, we set αT = 1 m/(m· K) and gradually increase the temperature ∆T until the isochoric
snap-through is reached. We simulate the inflation using the dynamic implicit solver (using a density of ρ = 1000 kg/m3 for
the silicone rubber) and ensure quasi-static conditions by monitoring the kinetic energy of the model (note that quasi-static
conditions are achieved by using a time period of 1 second, minimum increment size of 1e−10 s, maximum increment size of
0.01 s, and 10, 000 maximum number of increments).

In Figs. S10, S11, and S12 we report the pressure vs. volume curves, pole displacement vs. volume relations, and numerical
snapshots of the deformed configurations for Designs A-D. First, in Fig. S10, we find very good agreement between the
pressure-volume curve measured in experiments and predicted by our simulations, with the numerical analyses that correctly
capture the isochoric snap-through instability. Second, in in Fig. S11, the numerical predictions for the evolution of the pole
displacement of Designs C and D suggest that the snap-through instability is accompanied by a sudden and large change in the
displacement of the pole, which ultimately enables these Designs to jump. Finally, by looking at the deformation experienced by
the actuators during inflation and deflation (Fig. S12), we find that Designs C and D maintain an axisymmetric configurations
also during the isochoric snap-through.
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Fig. S10. Numerical and experimental pressure-volume curves of the inflatable actuators. Pressure-volume relations for Designs A-D as predicted by our 3D (blue
dashed lines for inflation and orange dashed lines for deflation) and axisymmetric (black line) simulations and measured in experiments (blue solid lines for inflation and orange
solid lines for deflation). The numbers on the plots indicate the deformation states shown in Fig. S10.
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Fig. S12. Three-dimensional simulations of the inflatable actuators. Numerical snapshots showing the deformation of Designs A-D as predicted by our 3D FE simulations
for inflation and deflation. The numbers next to the snapshots correspond to the numbers indicated in Figs. S10 and S11.

B. Axisymmetric simulations. While our 3D FE simulations accurately capture and predict the response of our actuators, their
high computational cost prohibits their use for efficient exploration of the design space. To this end, we assume that the
deformation of the actuators is axisymmetric and discretize the models using using 4-node bilinear axisymmetric solid elements
(ABAQUS element type: CAX4H), with the mesh size adapted to make sure the thinnest cap has at least four elements through
thickness. To predict the energy released during the isochoric snap-through, we determine the full pressure-volume relation
using the modified Riks algorithm [18-19] as implemented in Abaqus. As for the 3D simulations, the axisymmetric models are
inflated via a fluid cavity interaction with an hydraulic fluid (of density ρ = 1000 kg/m3 and bulk modulus B = 2000 MPa)
and we stop inflating when the pressure p is equal to

p = 1.5 pc, [13]

where pc is the critical pressure for a thin spherical shell and the factor 1.5 is introduced to account for the fact that most of
the caps we are simulating are not thin (i.e. R/t < 25). For a spherical shell of radius R and thickness t, such critical pressure
can be estimated as [22]

pc = 2E√
3(1− ν2)

(
t

R

)2
, [14]

where E and ν are the Young’s modulus and Poisson’s ratio, respectively (for the considered incompressible hyperelastic
material E = 3µ and ν = 0.5).

Full actuators. To simulate the response of the actuators, we impose roller boundary conditions (ux = 0) on the rotational
axis of symmetry. Moreover, to eliminate rigid-body translations and rotations, we impose a no vertical displacement boundary
condition at the point of contact between the two caps (Fig. S13A). In Fig. S13, we focus on Design C and report numerical
snapshots at different levels of inflation (Fig. S13B), the pressure-volume curve (Fig. S13C), the evolution of the strain energy
as a function of volume (Fig. S13D), and the evolution of the pole displacement as a function of volume (Fig. S13E) as



predicted by our axisymmetric simulations. Since the Riks analyses is able to trace the entire pressure-volume curve, we can
direcly extract the energy released ∆E during the isochoric snap-through (see highlighted area in blue in Fig. S13C and
step-by-step method in Fig. S14). Moreover, in Figs. S11 and S13 we compare the numerical predictions of our axisymmetric
analyses with those of the 3D simulations. The good agreement between the two sets of data validates the axisymmetric
analyses.
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Separate inner and outer caps. To gain further insights into the response of our actuators, we investigate separately the inner
and the outer caps via axisymmetric simulations for a wide range of geometric parameters (i.e.40◦ ≤ θi ≤ 80◦, 5 ≤ ηi ≤ 12.5,
40◦ ≤ θo ≤ 90◦, 5 ≤ ηo ≤ 20). Similarly to the actuator, the models in these cases are discretized with 4-node bilinear
axisymmetric solid elements (CAX4H element type) with mesh size adapted to ensure at least four elements through thickness.
For both inner and outer caps, we capture the materials response using the Gent model (Eq. [11]) and impose ux = 0 on the
rotational axis of symmetry. Moreover, for the inner cap we impose uy = 0 at the connection between the base of the cap and
the angular ring (inset in Fig. S15F), whereas for the outer cap we assume that the base is completely fixed (Fig. S17B).

Focusing on the inner cap, the numerical results summarized in Fig. S15A-B indicate that by varying the polar angle θi and
the radius to thickness ratio ηi, the response of the cap undergoes several transitions. For low values of θi and ηi (i.e. for
thick and shallow caps), the inner cap does not exhibit the snap-through behavior (see light grey region in Fig. S15B-C). By
increasing θi at constant ηi, a snap-through instability is eventually triggered upon inflation, which results in a sudden release
of energy and fast cap’s pole displacement. Within this domain, ∆Ei and ∆ypole both increase monotonically as a function
of θi (see Fig. S15C). Finally, for high values of θi and ηi (i.e. for thin and deep caps) the pressure-volume curves become
self-crossing (see dark grey region in Fig. S15-B). By comparing the results of axisymmetric and 3D simulations we find that a
highly complex, self-crossing pressure-volume response indicates the existence of a more favorable asymmetric deformation
path with low energy release upon snapping (Fig. S16).
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radius, ηi, and the polar angle, θi. C-D. Pressure-volume curves of the inner cap for (D) varying polar angle and (E) normalized radius. E. Numerical snapshots of an inner cap
characterized by ηi = 5.4 and θi = 74◦ at (1) rest, (2) before snapping, (3) after snapping, and (4) upon further inflation.
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Fig. S16. Asymmetric deformation emerges in designs with self-crossing pressure-volume curves. Pressure-volume curve for an inner cap with (ηi, θi) = (10, 60◦)
(left) and (12.5, 70◦) (right) as predicted by our axisymmetric (back solid lines) and 3D (dashed blue lines) simulations. We find that caps for which the axisymmetric
simulations predict a self crossing pressure-volume curve typically deform asymmetrically.

Finally, in Fig. S17 we present results for the outer cap. More specifically, in Fig. S17A we show the evolution of the
stored energy at po/µo = 0.5, E0, as a function of the polar angle θo and the normalized radius ηo. The energy increases
monotonically with increasing θo, almost irrespective of ηo.
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Section S5. Mass-spring model to predict the jump height

Our quasi-static FE simulations allow us to efficiently explore the design space and calculate ∆E and ∆ypole for a large number
of designs. However, since they do not account for dynamic effects, they cannot be used to directly characterize the ability of
the actuators to jump. To overcome this limitation, as described in the main text we establish a simple mass-spring model (see
Fig. S18) that takes the FE results as input and predicts the jump height.
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Fig. S18. Mass-spring model to predict jump height. A. Pressure-volume curve for Design C as predicted by our FE simulations. B. Our spring-mass model comprise two
rigid masses, mi and mo, constrained to move vertically. We choose mi and mo to be equal to the mass of the inner and outer cap, respectively, and to be located at their
corresponding poles. C. We assume that the mechanical system stores an amount of energy equal to ∆E in the numerically predicted configuration immediately before
snapping. D. We assume that the mechanical system is stress-free in the numerically predicted configuration immediately after snapping.

Specifically, to solve for the jumping height of the actuator we determine the position of the individual masses, yi(t) and
yo(t) as a function of time. The differential equations describing the motion of the model are[

mi 0
0 mo

][
ÿi
ÿo

]
+
[
cd −cd
−cd cd

][
ẏi
ẏo

]
+
[
ks −ks
−ks ks

][
yi
yo

]
=
[
−mig − ksL0
−mog + ksL0

]
, [15]

where g is the gravitational acceleration (g = 9.81 m/s2). To determine yi(t) and yo(t), we define vi = ẏi and vo = ẏo and
transform Eqs. [15] into a first-order ODE system of the type

Ẏ = AY + B, [16]

where

Y =

yiyovi
vo

 , A =


0 0 1 0
0 0 0 1

−ks
mi

ks
mi

−cd
mi

cd
mi

ks
mo

−ks
mo

cd
mo

−cd
mo

 , B =


0
0

−g − ksL0
mi

−g + ksL0
mo

 . [17]

We then write the solution for the homogeneous system Ẏ = AY as

Yh = aP1 + b [P1t+ P2] + cP3e
λ3t + dP4e

λ4t, [18]

where λi are the eigenvalues obtained by solving the characteristic equation det (A− λI) = 0

λ1 = λ2 = 0,

λ3 =
−cdmi − cdmo −

√
mi +mo

√
c2
dmi + c2

dmo − 4ksmimo

2mimo
,

λ4 =
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√
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√
c2
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dmo − 4ksmimo

2mimo
,

[19]

and Pi are the corresponding eigenvectors

P1 =
[
1 1 0 0

]T
,
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[
0 0 1 1

]T
,
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Moreover, a, b, c, d are constants of integration. Next, we determine the particular solution Yp of the system of ODE through
the method of variation of parameters as

Yp = Φ(t)
∫

Φ−1(t)Bdt, [21]

where Φ(t) is the fundamental matrix of the system

Φ(t) =
[
P1 P1t+ P2 P3e

λ3t P4e
λ4t
]
. [22]

We then write the general solution of the system of ODE as

Y = Yh + Yp [23]

and determine the constants of integration by applying the initial condition

Y0 =
[
y0
i y0

o v0
i v0

o

]T =
[
himp himp + L 0 0

]T
. [24]

In all our analyses, we release the system at t = 0 and account for the collision between mi and the ground by resetting the
variables when a negative height yi(t) is calculated:

if yi(ti) < 0 :
{

yi(ti) = 0
vi(ti) = −α · vi(ti−1) , [25]

where α is the coefficient of restitution. Note that α = 0 is equivalent to a fully plastic collision and α = 1 corresponds to a
fully elastic collision with conservation of linear momentum. In all our analyses we use α = 0.5, as we find that this gives good
agreement between the predicted and experimentally measured jumping height.

In Fig. S19 we show the evolution of both yi and yo as predicted by the spring-mass model for Designs C and D. In the
plots, we also compare the analytical solution to that obtained by integrating Eqs. (17) with the numerical solver ODE45 of
Matlab and, as expected, find perfect agreement between the two.
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Fig. S19. Jump height prediction of the inflatable actuators. Evolution of both yi and yo as predicted by solving Eq. (17) analytically (continuous lines) and numerically
via ODE45 of Matlab (dashed lines) for Designs C and D.



Section S6. Additional results
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Fig. S20. Validation of the spring-mass model. To verify the validity of our simple mass-spring model, we focus on three designs with (A)
(ηi, θi, ηo, θo, µi/µo)= (8.5, 60◦, 16.5, 90◦, 5.8) (Design C), (B) (5.4, 80◦, 15.3, 87◦, 5.8), and (C) (5.8, 80◦, 10.5, 85◦, 5.8) and compare the experimentally mea-
sured jump heights (hjump = 42.9 mm, 160 mm, and 209 mm, respectively) to the predicted ones (hjump = 41.4 mm, 175 mm, and 226 mm, respectively). On the top,
for each actuator we show the numerical (blue lines) and experimental (red lines) pressure-volume relations. On the bottom, we show experimental snapshots of the actuators
before ischoric snap-through and at the highest point after jump. The good agreement between numerical and experimental results for all designs confirms the validity of our
analyses.
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Fig. S22. Influence of the outer cap stiffness on the actuators’ response. Energy release vs. ratio of the caps’ stiffness for an actuator with (ηi, θi, ηo, θo) =
(8.5, 60◦, 16.5, 90◦). Note that for µi/µo = 1 and 5.8 the actuator corresponds to Designs B and C, respectively. We find that for this geometry, there exists a stiffness ratio
(µi/µo ∼ 9) for which the energy released by the system during snapping is maximized.

Movie S1. Snapping of spherical caps results in a sudden release of elastic energy. When subjected to uniform
external pressure, a spherical cap undergoes isochoric snap-through, i.e. a sudden loss of internal pressure at constant volume.
This instability causes the sudden release of elastic energy as well as a fast displacement of the cap’s pole.

Movie S2. Fast fluidic soft robots inspired by shell snapping. Our soft fluidic actuators comprise two spherical caps
connected at their base. Upon inflation, the inner cap snaps at constant volume and the system suddenly releases elastic energy.
To characterize the highly non-linear mechanical response of our actuators we use a combination of finite element simulations
and experiments.

Movie S3. Isochoric snapping enables jumping in fluidic soft robots. Snapping can be exploited to make our actuators
jump even when inflated at a slow rate. For this to happen, both the amount of energy released during isochoric snapping and
the magnitude of the pole displacement during the transition have to be large enough.



Movie S4. Simplified mass-spring model to predict jump height. To characterize the ability of our actuators to jump,
we use a simplified mass-spring model that takes the FE results as inputs and predicts the jump height.

Movie S5. Improving design to increase jump height. By exploring the design space and simulating
the jumper through finite element analysis and a simplified mass-spring model, we identify a design with a 5-fold increase in
jump height compared to Design C.

Movie S6. Inflatable actuator with repetitive jumping. Most of our actuators can be simply reset and brought back
to the initial configuration through vacuum and, therefore, can take off repetitively. ,

jumper
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