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Distributed Constrained Online Learning

Santiago Paternain

Abstract—In this article, we consider groups of agents in a
network that select actions in order to satisfy a set of constraints that
vary arbitrarily over time and minimize a time varying function of
which they have only local observations. The selection of actions,
also called a strategy, is causal and decentralized, i.e., the dynamical
system that determines the actions of a given agent depends only
on the constraints at the current time and on its own actions and
those of its neighbors. To determine such a strategy, we propose a
decentralized saddle point algorithm and show that the correspond-
ing global fit and regret are bounded by functions of the order of
VT i.e., functions whose limit is a constant when divided by v/7T..
Specifically, we define the global fit of a strategy as a vector that
integrates over time the global constraint violations as seen by a
given node. The fit is a performance loss associated with online
operation as opposed to offline clairvoyant operation which can
always select an action, if one exists, that satisfies the constraints
at all times. If this fit grows sublinearly with the time horizon it
suggests that the strategy approaches the feasible set of actions.
Likewise, we define the regret of a strategy as the difference between
its accumulated cost and that of the best fixed action that one
could select knowing beforehand the time evolution of the objective
function. Numerical examples support the theoretical conclusions.

Index Terms—Distributed algorithms,
learning (artificial intelligence).

gradient methods,

I. INTRODUCTION

ISTRIBUTED optimization has applications in several
D engineering problems such as source localization [1],
resource allocation problems in multi cellular communication
networks [2], machine learning [3], [4], multi-robot teams [5]—
[7] and the internet of things [8], [9]. In these problems agents
try to optimize collectively a common objective function that
is separable in local objectives. In cases where a centralized
solution of such problems is acceptable and the objectives and
constraints are convex, the problem reduces to solve a classic
convex optimization problem. Several methods to do so exist,
notably the saddle point algorithm by Arrow and Hurwicz [10],
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which has the advantage of admitting a distributed implemen-
tation [11]-[14]. In this framework the most studied classes of
problems are when the constraints and the objective function
are constant with respect of the time and when their variation
is according to a stationary probability distribution. Solutions
to the former problem have been established [11]-[14]. In the
latter, the problem that is studied is that of selecting actions
that minimize the expectation of the objective while satisfying
the constraints in average. When the problem is unconstrained,
centralized and decentralized implementations of stochastic gra-
dient descent converge to such solutions [15]-[18].

In this paper we consider online formulations in which the cost
and constraints can vary arbitrarily over time, even strategically.
In this case, cost minimization can be formulated in the language
of regret [19]-[21] whereby agents select online actions that re-
sultin a cost chosen by nature. The cost functions are revealed to
the agents after the action are selected and these values are used
to adapt the future strategy. Regret is defined as the difference
between the total cost incurred by each agent and the cost of the
optimal fixed solution that a clairvoyant agent could select. In
that sense, it measures the effect of not knowing the temporal
evolution of the cost function and, therefore, it can be used as
a performance measure for online operation. Likewise, the fit
of a strategy [22], [23] is a vector that integrates over time the
constraint violation incurred by each agent. In that sense the fitis
a performance loss associated with online operation as opposed
to offline clairvoyant operation which can always select an action
that satisfies the constraints at all times, if such action exists. It
is a remarkable fact that online versions of the Arrow-Hurwicz
algorithm for centralized problems achieve regret bounded by a
constant and fit bounded by a function that grows at a sublinear
rate [22]-[24]; this suggests vanishing per play penalties and
constraint violation of online plays with respect to clairvoyant
agent. Since the fit compares the accumulation of the constraints
it is possible to achieve small fit by alternating periods in which
the constraints are satisfied with slack and periods in which
the constraints are violated. This notion is appropriated for
constraints that have a cumulative nature. However, when this is
not the case it is possible to work with the notion of saturated fit,
where only violations of the constraints are accumulated. A tra-
jectory with small saturated fit is one in which the constraints are
violated by a significant amount only for a short period of time.

The problem of distributed online constrained convex op-
timization in continuous time has been studied in [25]-[27].
Continuous time approaches have advantages in the context
of distributed control systems whenever signals are inherently
continuous. Moreover, discrete-time approaches can be char-
acterized as the discretization of continuous-time dynamics.
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The work in [25] considers an unconstrained problem where
agents minimize a time-varying convex loss. Problems with
constraints, also the subject of this work, have been consid-
ered in [26], [27] where Saddle Point algorithms are shown
to achieve sublinear bounds on the network disagreement and
on the regret achieved by the strategy. This work extends the
results in [26] by considering time-varying constraint. Likewise,
instead of imposing exact consensus as in [26], [27], we allow for
small disagreement. This idea has been used for unconstrained
problems in [28]. With this modification we are able to establish
that the trajectories that arise from the distributed online saddle
point dynamics are such that the disagreement of agents, the
regret and the fit are bounded by sublinear functions of the time
horizon (Section I'V). This suggests that our proposed algorithm
achieves consensus, feasibility and optimality as the time goes to
infinity. The feasibility bounds presented in this work are also an
extension with respect to [26], [27]. Central to the development
of this result are the definitions of global fit and regret (Sec-
tion IT). The former is defined as a vector that contains the time
integrals of the constraints of all the agents evaluated across the
trajectory of a specific agent. Having small global fit means that
the agent is able to satisfy the constraints of every other agent,
and thus if it is placed in a different position in the network its
performance is maintained. Likewise, the global regret is the
evaluation of the accumulated global cost of a specific agent’s
trajectory with respected to the optimal centralized clairvoyant
solution.

To solve the constrained online optimization problem under
consideration, we propose an online distributed saddle point
algorithm to control the growth of the global fit and regret.
Saddle point algorithms update the primal variables — the ac-
tions — along the negative of a weighted linear combination
of the gradients of each constraints. Since the feasible set of
actions is typically represented by the intersection of the sub
level sets of the constraints functions, this linear combination
pushes the actions towards feasibility. The weights of this linear
combination are updated according to the current violation of
the constraints. If an action violates a constraint by much, its
corresponding weight is increased faster, whereas if a constraint
is satisfied its corresponding weight is reduced. We start by
showing that if an action that is feasible for all agents and for
all times exists, then the network disagreement is bounded by
a function that is sublinear with respect to the time horizon.
Based on this result we establish sublinear global fit and global
regret. We also illustrate our algorithm on a problem involving a
team of robots driving through an urban environment to perform
real-time texture classification for the purpose of mapping and
object recognition. We show that the team of robots succeeds
in training a common classifier that allows them to distinguish
between grass and pavement images even when some of the
agents have only observed one of the classes. The rest of this
paper is organized as follows. In Section II we formalize the
online distributed optimization problem. Later we present the
Distributed Online Saddle Point Algorithm (Section III) and we
establish that it achieves consensus, feasibility and optimality
in Section I'V. Other than concluding remarks the paper finishes
with numerical examples in section V and VI.

3487

II. CONSTRAINED ONLINE LEARNING IN NETWORKS

We consider a group of NV agents linked by an undirected
connected graph G = {V,€} where V = {1,..., N} is a set of
nodes and & is a set of edges so that (i, j) € £ means that 7
and j are connected to each other. The set N; :={j : (i,7) €
&} contains all nodes that are connected to ¢ and is called the
neighborhood of 7. Note that since the graph is undirected, node
7 is in the neighborhood of 7 if and only if node 7 is in the
neighborhood of j.

We are interested in situations where the agents in G have
access to arbitrarily time varying local constraints and local
objective functions and continuously select actions that are good
not only for their local constraints and costs but for the local
constraints and costs of other agents. To explain this formally,
lett € R be acontinuous time index, and X C R™ aconvex set,
fi(t,-) : X — R™ be a set of m; convex constraints at agent i
and fo;(t,-) : X — R be alocal convex cost incurred at node i.
A local goal of node 7 is to select an action x; € X that satisfies
local constraints f;(t,x;) < 0across a time interval [0, 7] while
minimizing the cost fo; (¢, x;) integrated over the same interval.
This is tantamount to defining the locally optimal solution x}
over the interval [0, T as

T
x! = argmin / foi(t,x;) dt
x; €EX 0
S.t. fi(t,Xi) <0,Vte [O,T] (1)

Problem (1) models situations in which each of the agents is
acting independently since the optimal action of ¢ depends on
its local cost and constraints, and not on those of other agents.
Instead, here we are interested in situations where the actions
of agents are coordinated, so that an action x; of agent ¢ can
affect the costs and constraints of other agents. This results in a
global formulation in which the optimal action of each agent x;
is defined as the one that satisfies the constraints of all agents
and minimizes the integral of the sum cost,

T N
/ Zfoj(t,xi) dt,
0 j=1

s.t. fi(t,x;) 20, Vjandt e [0,T]. (2)

x5 =

3 argmin

XiEX

We say that the problem in (2) is global because the action
x; is evaluated at the constraint and costs of all nodes. This
readily implies that x; = x} and that there is a single global
action that is optimal for all nodes. For future reference we
define the sum cost function fy(t,x;) := Zjvzl Jo;(t,x;) and
the aggregate constraint f(¢,x;) := [f1(t,%;);...; fn (£, %:)]-
With this notation, the problem in (2) can be rewritten as

T
/ fo(t,Xi) dt,
0

st f(t,x;) =0, Ytelo,T). A3)

x .
X; = argmin
x;,eX

While (1) models agents acting in isolation, (2) and (3) model
agents acting in concert. The latter situation arises when local
functions are related to a common variable. E.g., the costs and
constraints can represent local observations of a parameter to
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be estimated [29] or local observations and costs of a plant to
be controlled [30]. Problems having the form of (3) also arise
in large scale optimization where costs and constraints are not
acquired locally but are distributed over several servers to reduce
computation and storage [31].

If the functions fo;(t, ) and f;(¢, -) are available for all times
t € (0,77, solving (3) reduces to solving a distributed convex
optimization problem for which a number of standard algorithms
are applicable; see e.g., [32], [33]. In this paper we consider
problems in which the constraints f;(¢,-) and costs fo(t,-)
are arbitrary and observed causally and locally by node . In
this setting it makes sense to consider time varying strategies
x;(t) that adapt the action of agent 7 to the information that is
revealed at time ¢. In this context the optimal argument in (3)
is a clairvoyant action that would be chosen when agents have
knowledge of the future evolution of the system at time ¢ = 0.
The appropriate figures of merit in this case are the notions of
regret [20], [34], [35] and fit [22] that we generalize to network
settings in the following section. These quantities compare the
performance of the online distributed operation with the offline
centralized solution of (3).

Before proceeding with definitions of network regret and fit,
notice that for the definition in (3) to be valid the function
fo(t,x) has to be integrable with respect to the time variable
t. In subsequent definitions and analyses we further require the
network to be connected and the constraints f; for all 7 € V, to
be integrable, convex and Lipschitz continuous with respect to
x for all times ¢. We formally state these assumptions next.

Assumption 1: The network is connected with diameter D,
i.e., the shortest distance between the two most distant nodes in
the network is D.

Assumption 2: Let X be a compact convex set and the func-
tions fo;(t,x) and f;(¢,x) be integrable with respect to ¢ and
convex with respect to x € X for all ¢ € [0,7]. We further
assume that cost and constraints are Lipschitz continuous over
X with respective constants Ly > 0 and Ly > 0. Le., for any
x,y € X and all ¢ € [0, T] the cost functions satisfy

| foi (£, %) — foi(t,y)| < Lo|x — |, 4)
and the constraint functions satisfy
’fkj(tax)_fkj(t’y)’ SLchX_y ) (5)

where f;(t,-) denotes the jth component of the vector valued
constraint function f(¢, ).

We remark that integrability with respect to ¢ is a weak
condition. We do not require differentiability, not even conti-
nuity. This entails a fundamental difference with time varying
optimization problems that strive to track a time varying optimal
argument under the assumption of smooth time varying costs
and constraints [29], [36], [37]. The goal here is to design an
algorithm that can adapt to unexpected changes in the system,
including, indeed, most importantly, to those that arise because
of discontinuities in the cost and constraint functions. Likewise,
note that we require the functions to be Lipschitz—essentially
gradient bounded—on the compact set X. This assumption
means therefore continuously differentiable almost everywhere
in X'. Another requirement for x7 to be well defined is existence

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

of an action x' € X’ that satisfies the constraints at all times and
for all nodes as we formally state next.

Assumption 3: There exists an action x! € X that satisfies
the constraints of all agents for all times ¢ € [0, 17,

fi(t,x") <0, Viandte [0,T]. (6)

We say that X1 := {x! € &' : f;(¢,x) < 0,Viand t € [0,T].}
is the set of feasible actions.

We require as well that the minimum of the objective function
does not become progressively smaller with time so that a
uniform bound K holds for all times ¢ € [0, T]. The existence
of the bound in (7) is a mild requirement. Since the function
fo(t,x) is convex, for any time ¢ it is lower bounded for
compact set of actions X. The only restriction imposed is that
mingcy~ fo(t,x) does not become progressively smaller with
time so that a uniform bound K holds for all times ¢ € [0, T].

Assumption 4: There exists K > 0 independent of the time
horizon 7" such that for all ¢ € [0, T'] it holds that

fo(t,x*) — min fo(t,x) < K, (7
xexXN

where x* is the solution to the problem (3).

A. Network Regret and Network Fit

To evaluate the cost performance of such trajectories we define
the notions of network regret and network fit. Begin then by
considering a trajectory x;(t) chosen by agent ¢ and the total
accumulated cost fOT foj(t,x;(t))dt that this trajectory incurs
for a possibly different agent j. We define the regret R7.; as the
difference of this accumulated cost relative to the corresponding
cost that would be incurred by the optimal trajectory x of (3)

) T T
%“j = A ij (t, X; (t)) dt — A ij (t, X:) dt (8)

Likewise, we consider the accumulation fOT fi(t, x;(t))dt of
constraint of agent 7 incurred by the trajectory of agent 7. The fit

A ; is defined as the comparison of this constraint accumulation
relative to the corresponding constraint accumulation of the
optimal trajectory x;

_ T T
Fi, ::/0 fj(t,xi(t))dt—/o ftxdt )

The action x] can be considered as an offline reference that
would be chosen by an entity that is clairvoyant, because it
observes the future, and omniscient, because it observes the costs
and constraints of all nodes. Our objective is to consider trajecto-
ries that are chosen online by agents that are causal, because they
observe the past, and local, because they observe their local costs
and exchange information with neighboring nodes only. In this
context regret and fit can be interpreted as performance losses
associated with online causal and local operation as opposed to
offline clairvoyant and omniscient operation. If 77 ; 1s positive
we are in a situation in which, had the constraints of all agents
be known beforehand, we could have selected an action x' to
satisfy all constraints. The fit measures how far the trajectory
x(t) is from achieving that goal. Due to its cumulative nature, it
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is possible to achieve small (local) fit by alternating between
actions for which the constraints take positive and negative
values. This is an appropriate model for quantities that can be
stored — such as energy budgets enforced through average power
constrains. However, in other settings this formulation can be
a limitation. This drawback can be overcome by defining the
saturated fit in which constraints slacks are saturated to a small
negative constant. We discuss this in Section IV-A.

Analogously, if the regret R ; 1s large we are in a situation in
which prior knowledge of the objective functions and constraints
would had resulted in selecting a strategy x* that achieves
much better performance than the one achieved by x;(¢). In
that sense RiTj indicates how much we regret not having had
that information a priori.

A good learning strategy is one that achieves small regret
and fit as that would be an indication that the trajectory x(¢)
approaches x*. Notice however that since the objective function
and the constraints are integrated over a time horizon 7, it
is natural to expect the cost and constraints to grow linearly
with T'. Thus, having regret and fit that grow at a sublinear
rate is sufficient indication of a good learning strategy. This
intuition motivates the following definitions of feasible and
optimal trajectories.

Definition 1: We define an environment as a set of constraints
fi tRx X — R™ and costs fo; : Rx X = R forall j € V.
For a trajectory x;(t) we consider the regret and fit definitions in
(8) and (9) and further define the sum regret R%. := ey Ri;

and the network wide fit 7. = [Fi1, ..., Fin]T. We say that:

Feasibility: The trajectories are feasible in the environment
if all the local fits 77 with ¢ € V) grow sublinearly with T'. Le.,
there exist a function h(7") with lim sup;_, . h(T)/T = 0 and
a constant vector C'y such that for all times 7" it holds,

T

g'p::/ ft,x;(t))dt < Cyh(T). (10)
0

Optimality: The trajectories are optimal in the environment if all

regrets R%. grow sublinearly for all i € V and 7T'. Le. there exist

a function A(T") with limsupy_, ., h(T")/T = 0 and a constant

C such that for all times 7" it holds,

) T T
v [ htexa- | fo<t,x>dts0h<T>(.“)

In the next section we develop the details of a distributed
and online version of the Arrow-Hurwicz algorithm, such that
its generated trajectories are feasible and optimal in the sense
of Definition 1. The latter is formally stated and proved in
Section IV along with an intermediate result that claims that
the disagreement across agents is sublinear with respect to the
time horizon, hence suggesting consensus. Before doing so, we
make a pertinent remark highligthing the differences between
the results in this work and those achieved for the centralized
algorithm.

Remark 1: The centralized version of the problem here con-
sidered (3), can be solved — when affordable — by an online
saddle-point algorithm [22]. The trajectories that arise from such
algorithm achieve (i) regret bounded by a constant independent
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of the time horizon 7" for the unconstrained problem; (ii) fit
bounded by a constant independent of the time horizon 7 if
the objective function is constant with respect to the action,
i.e., feasibility problems and (iii) regret bounded by a constant
independent of the time horizon 7" and fit bounded by a sub-
linear function of 7" otherwise. By considering the distributed
version of the previous algorithm we cannot establish regret
or fit bounded by constants independent of 7" because of the
disagreement across agents.

III. DISTRIBUTED ONLINE SADDLE POINT

The problem defined in (3) is a centralized optimization
problem in which all agents should select the same action. Since
eachagents € V has access only to the local cost and constraints,
a more natural representation of the problem (3) is one where
each agent selects a local decision vector x; € R". Nodes then
try to achieve the minimum of their local objective functions
foi(t, x;) while satisfying the local constraints f;(¢,x;) < 0and
keeping their variables equal to the variables x; of neighboring
nodes j € ;. Definingx = [x{,...,x,] ", this alternative for-
mulation can be written as

T
x* := argmin / fol(t,x) dt
xeXN 0
S.t. fl(t, Xi) = O,Vt € [O,T],VZ € V,

X, =x;,VieV,jeN;. (12)

Since the network is assumed to be connected (cf., Assumption
1), the constraints x; = x; for all ¢ and j € N imply that (3)
and (12) are equivalent. The previous problem can solved in a
distributed manner with a variety of methods, one of which is
he saddle point algorithm of Arrow and Hurwicz [10]. In this
work we aim to extend the saddle point algorithm to control the
growth of regret and fit. In doing so it is convenient to relax
the consensus constraints x; = x; in (12) to allow for some
controlled disagreement. A common alternative to do so it is to
add the disagreement to the objective function weighted by some
positive real number. The main drawback of this approach is that,
the relationship between the regularizer and the disagreement is
not explicit. Instead, we accomplish this by defining the set of
constraints

9i5 (%1, %) = ||x; —x,[|* =y < 0, (13)

where ~ is a positive constant limiting how much constraint
violation is allowed. Notice that the parameter v could be set
to be arbitrarily small. The advantage of using a controlled
disagreement is that it allows for agents to achieve a good
global performance without damaging excessively the local
performance, which in some applications might be important
as well. By allowing larger values of v, we allow more disagree-
ment and therefore we prioritize the local performance, whereas
by making ~ closer to zero the goal is set in the centralized
performance. This is, if «y is large enough, the coupling of the
variables is given only by the constraints that each agent needs
to satisfy. Whereas if v is small we are closer to imposing the
exact consensus constraint. The same relaxation is considered
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in [28] in the case of unconstrained distributed optimization. The
proximity constraints allows us to write the problem of interest
in the following form

T
/O fO(taX) dt

fi(t,Xi) =<0,Vt € [O,T],VZ ev,

X* := argmin
xeXN

9ij (x5, %) = |[x; —x; ]| =7 < 0,¥i,5 € V.
(14)

For the above online optimization problem we can construct the
following time varying Lagrangian

(tXA[l, fotX +Z fztxl +/,ngz( ))7
(15)

where A; € R} fori =1... Nand p; € ler\/”fori =1...N
are the Lagrange multipliers and where g;(x) € RVil is the
vector with components g;;(x;, x;) for all j € N;. Saddle point
methods rely on the fact that for a constrained convex optimiza-
tion problem, a pair is a primal-dual solution if and only if itis a
saddle point of the Lagrangian associated with the problem, see
e.g. [38]. This is the case in problem (14) since fo(-,x), f(+, %)
and ¢(-, x) are convex (c.f. Assumption 2). Notice that A, i = 0,
hence the Lagrangian is convex with respect to x and therefore
the subgradient with respect to x exists for all time ¢ > 0, let us
denoteitby L, (t,x, A, pt). The Lagrangian is linear with respect
to A and p and therefore its partial derivatives with respect to
these variables exist. Let us denote them by £ (¢,x, A, 1) and
L,,(t,x, A, n) respectively. The actions x are updated — as in the
classic Arrow-Hurwicz algorithm — by following the negative
subgradient of the Lagrangian with respect to x

X= — ‘Caj(t,XaAalJ’) = _fO,aZ(t7X)
_Zfza: t Xz >\ _Z Z )U’l]gl], 7 (16)
i=1 jeN;

where N is the set of neighbors of node i. The primal update
interprets the constraints as a potentials with corresponding
weights A and @ and descends along a linear combination of
the gradients of said potentials. The multipliers are then updated
by following the subgradient of the Lagrangian with respect to
them

A= C)\(tvxa)‘vl"') = f(X),
= Eu(t7xv)‘7/1') = g(x).

The intuition behind the latter update is that if a constraint is
violated, for instance f; 1(x) > 0 the corresponding multiplier,
1,1 will be increased, thus weighting more the corresponding
gradient in the linear combination in (16). Which in turn pushes
the action towards satisfying the constraint. On the other hand,
if the constraint is satisfied, the weight of that potential will be
reduced, thus making the direction of the corresponding gradient
less important in the weighted linear combination. Observe that
the multipliers need to remain positive at all time to ensure the

(17a)
(17b)
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convexity of the Lagrangian with respect to x, yet if a multiplier
takes the value zero and its corresponding constraint is satisfied,
the previous update turns the multiplier negative. To avoid this
issue, we will require a projection over the positive orthant. We
formalize this idea next, after making the observation that the
update (16)—(17) is indeed distributed. To see this, write the
Lagrangian as a sum of the following local Lagrangians

Fot %) + ] filt,x;)

2
+ 3 s (i =517 =)

JEN;

£i (ta X, Av l'l’) =

(18)

where to compute each local Lagrangian, agent ¢ needs only
information regarding its variables and those of its neighbors.
Then, each agent can compute locally the gradient of the La-
grangian with respect to its local variable x; and perform the
update described in (16)—(17), with the caveat that to ensure
that the multipliers are always positive we need to consider a
projected dynamical system. We formalize this idea next.
Definition 2 (Projection of a vector at a point): Let K C R"
be a compact convex set. Then, for any y € KL and v € R", we
defined the projection of v over the set K at the point y as

Pe(y +6v) -y

€ )
where the standard projection Py (z) = argminyc ||y — z||* is
always well defined because /C is convex.

The intuition behind the projection is that, if the point y is
in the interior of the set /C then the projection of the vector
v is the vector itself. In cases where y is in the boundary
of the set IC, the projection of v is its component tangential
to the boundary of K. With this definition at hand, and by defining
the gain of the controller to be € > 0 we define the distributed
online saddle point controller as follows. Each agent updates its
action by following the negative subgradient of the Lagrangian
with respect to its local copy of the action x;

Ik [y, v] = lim

£—0t

19)

X; = HX [Xi7 _€£/:Ei (t7 X, >‘7 l'l’)] ) (20)

Likewise, the multipliers \; and p,; are updated by ascending
along the direction of the gradient of the Lagrangian with respect
to A and p respectively, i.e.,

=10, [,\i,g/:& (t,x,/\,u)} :

frij = i [pig Loy (8%, A, p)] -

The three gradients can be computed in a distributed fashion
since they only depend on each agent’s own variables and those
of their neighbors. In [22] it was shown that in the centralized
case, a saddle point algorithm akin to the one described by (20)
and (21) achieves feasible and strongly optimal trajectories, i.e.,
fit bounded by a sublinear function of the time horizon and
regret bounded by function that is constant with respect to the
time horizon. In this work we show that the distributed version
of the aforementioned algorithm (c.f. (20) and (21)) achieves
feasible and optimal trajectories in the sense of Definition 1.
Moreover, the network disagreement is bounded by a function

(21a)

(21b)
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that is sublinear with respect to the time horizon. These results
are the subject of the next section.

IV. FEASIBLE AND OPTIMAL TRAJECTORIES

Let us consider an energy-like function which will be used in
subsequent analysis. Let M = SN m; and A = 3N [N,
Letxe XN, X € Rf, it € R4, where we denote by |\;| the
carnality of the set of neighbors of node ¢, and define the function

= K2 A= A2+ = 1))
(22)
By considering the time derivative of the previous function along
the dynamics (20)—(21) we establish that the integral of the
difference of the Lagrangian evaluated at (x(t), X, fz) and the
Lagrangian evaluated at (X, A(¢), pt(t)) is bounded by a constant
independent of the time horizon 7. The following lemma — key
to establish that the saddle point dynamics yield feasible and
optimal trajectories — formalizes this result.
Lemma 1: Let Assumptions 1-3 hold. Then for any 7" > 0
the solutions of the dynamical system (20)—(21) satisfy

1
Vi,j\,ﬁ(x’/\’u) = § (

T
/0 Lt x(8), A ) — £(6%A(L), (1)) dt

V. 5 ((0), 2(0), 1(0))
A

; (23)
3

where Vi)},ﬂ(x(O), A(0), p(0)) is the energy-function defined
in (22) with arbitrary X, 5\, [t and evaluated at the actions and
multipliers at time zero.

Proof: See Appendix A. ]

By analyzing the expression (23) for different choices of x, A
and fi it is possible to establish that the saddle point dynamics
(20)—(21) yields sublinear network disagreement for all 7" > 0.
We formalize this result in Proposition 1.

Proposition 1 (Sublinear Network Disagreement): Let As-
sumptions 1-4 hold. Then for any 7" > 0 the solutions of the
dynamical system (20)—(21) are such that the network disagree-
ment is sublinear with respect to 7. In particular for A(0) = 0
and p(0) = 0, for any 4, j € VV we have that

T
/ Ixi(t) — ()] dt
0

SD\/(K+7)T+21€ (14 I = xO)), @4
where D is the network diameter defined in Assumption 1.
Proof: Let us consider the expression (23) with X = x*, the
solution of the problem (12), A= 0, and ﬁij = 1 for some 7 €
V and j € N; and f1;, = 0 for all k # j and fi; = O for all
I 1. For this selection of variables the Lagrangian evaluated at

(t,x(t), A, 1) yields

£t x(8) A 1) = folx(®) + (Ix(t) =%, ()] = 7).
(25)
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Applying Lemma 1 for this particular choice of x, Xand i, (23)
reduces to

/oT folx()) + (”Xi(t) —-x;(t)|° - 7) dt

- / (Folx™) + A1) f(x")) dt

T N

— [ ) (I =P =) de

0 =1 jen;

(26)

Since x* is the solution to (12) it holds that x} = x7 and that
f(x*) = 0. Since A(t) and p(t) are always in the positive or-
thant, due to the projection in their update (c.f. (21a) and (21b)),
we have that A(t)" f(x*) <0 and that p,; (t)(||x} — x3|* —
v) = —pj(t)y < Oforallt € [0,T]. These observations imply

that

27

From the definition of minimum and Assumption 4 it follows
that

Folt,x(8)) — folt,x") = min fo(t,x) — fo(t,x") = —K.

(28)
Substituting (28) into (27) yields
T
/0 (K ) + () — x5 (1) dit
V_ 5 - (x(0), X(0), (0))
< FAR (29)

€
Rearranging the terms in the previous expression it holds that

T
/0 Ixi(t) — x; (I dt < (K +7)T

(30)

Because the square function is convex, by virtue of Jensen’s

inequality we have that
4 2
< [ I =01 ar

(/ R —— )
31

The previous inequality provides a lower bound for (30), hence
we have that

(/ " it) — x50 )

V, 2 (0. (0), 2(0)

3

2

2
< (K+0)T

_|_

(32)
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By taking the square root of the previous inequality we observe
that the disagreement among neighbors is sublinear. In partic-
ular, evaluating V_ Xﬂ(x(o),/\(O),u(O)) with the particular

selection of X, A and [t yields

/ " att) -

< \/(K +6)T + % (1 + |lx* — x(O)Hz).

The latter establishes a sublinear disagreement among one hop
neighbors on the network. To show that the result holds for every
pair of nodes use the triangular inequality and the fact that the
diameter of the network is D (Assumption 1). |

The sublinear network disagreement that the previous propo-
sition establishes, along with the result of Lemma 1, allows us
to prove that the local Fit and Regret are bounded by sublinear
functions with respect to the time horizon 7. The latter means
that the trajectories that arise from the Distributed Online Saddle
Point Dynamics (20)—(21) are feasible and optimal in the sense
of definition 1. We formalize these results in theorems 1 and 2
respectively.

Theorem I (Feasibility): Let Assumptions 1-4 hold. Then
for any 7" > 0 the solutions of the dynamical system (20)—(21),
with € > 1/2, are such that the k-th component of the local fit

; forany 4, j € V is bounded by (]-"Z Vi < O(VT).

Proof We evaluate the expression (23) for the particular

choiceof x =x*and ot =0

/ Jo(t,x(t)

xz/
Y [ (gl )

i=1 jeN;
< 2V 50 (<(0), A(0), 4(0)).

By virtue of Assumption 4 and the bound derived in (28), we
can lower bound the difference of the integrals of the objective
functions by

/fotX

Substituting the previous bound in (34) yields

i/OT [S‘jfi(tvxi(t)) -
[ (I o)

i=1 jeN;

1
<V, 5o (X(0), A0),

x;(1)]| dt

(33)

— fo(t,x")dt

§ Filtxi (1) = M (0 it x3)] e

(34)

— fo(t,x*)dt > — /Kdt —KT. (35)

A (1) filtx)] e

p(0)) + KT. (36)

Observe that, since x* is the solution of the decentralized prob-
lem (12), we have that f;(¢,x}) < 0. Moreover, because the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Lagrange Multipliers \; (¢) are in the positive orthant (cf., (21a))
the product —\; () fi(t,x}) is always positive. Likewise, the
product g, ()(y — [|x} — x}||?) = p;(t)y > 0, for all £ > 0.
With these considerations the following bound holds

Z/ )\fztxl (t))dt

(T)M—l

Ve a2 (X(0), A(0), p(0)) + KT

(37

Denote by [-]T the projection over the positive orthant. Then,
for a particular i € V choose \; = [Fi,] T and )\] = 0 for all
J € Vsuch that j # i. Then, (37) reduces to

) 2 1
[ezA

S gvx*,X,O
Without loss of generality assume A(0) =0 and p(0) = 0.
Then, the right hand side of the previous expression reduces
to

(x(0), A(0), u(0)) + KT.  (38)

lx(0) — )+ | ez

2 )
(39)

and (38) can be written as

(1= ) I = 52 (-

Then, for any £ > 1/2, the previous expression yields

e (1%
s

x*H2> +KT. (40)

| —x*|? + 25KT)
H [ Ti 2e -1

Taking the square root of both sides of the previous inequality
shows that the norm of the projection of the fit is bounded by a
sublinear function. In particular we have that each component
k=1...m; of Ft, is also upper bounded by the a sublinear
function that grows as O(v/T). We are left to show that for any
j # i we have fit that is bounded by a function of the order of
/T The latter is a consequence of the Lipschitz continuity and
the sublinear network disagreement as we show next. Add and
subtract f; 1 (¢, x;(t)) to the definition of the local fit to write

(41)

T
o(tx; (6))dt = / St xi(8))dt

/ fir(t,x;(t)

The first term on the right hand side of the previous expression
is, by definition, (F7.,). This term is bounded by a function of
the order as /T as prev1ously shown. On the other hand, the
second integral can be bounded using the Lipschitz continuity
of fi k(t,x) (c.f. Assumption 2) by

— fir(t,xi(t))dt.  (42)

6(t, % (1)) — fir(t,x;(t))dt
< / Lyllei(t) = x,(0) 3
0
Then, the result of Proposition 1 completes the proof. |
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The previous theorem establishes that the local fit achieved
by a system that follows saddle point dynamics (20)—(21) is
bounded by a function whose rate of growth is sublinear, thus
suggesting vanishing penalties. However, as discussed previ-
ously this can be achieved by solutions that oscillate, i.e.,
trajectories that violate the constraints at some times and that
satisfy them with slack at other periods. Since this is not desirable
in some applications, we overcome this limitation by showing
that the saturated global fit has the same property. We address
this in Section IV-A. The fact that the fit grows sublinearly is
equivalent to achieving trajectories that are feasible in the sense
of Definition 1.

We next focus in establishing the optimality of the trajectories
generated by the saddle point dynamics (20)—(21). In the next
theorem we show that this is the case by proving that the growth
of the regret is bounded by a sublinear function of the time
horizon.

Theorem 2 (Optimality): Let Assumptions 1-4 hold. Then
for any 7" > 0 the solutions of the dynamical system (20),(21a)
and (21b) are such that the local regret R%. for any i € V is
bounded by a function of O(v/T). In particular, for A\(0) = 0
and p£(0) = 0 we have that

(14 Ix = x(0) 1)

RE <
T I3

(N - 1)L0D\/(K )T+ % (1 ¥ x - x(0)||2)

(44)

Proof: Letus consider the local regret of agent j, with j € V),
defined in (11)

737T:/O Z fOtXJ

Add and subtract Zf\i Litj f&(t,x;(t)) to the previous equation
and rewrite the previous expression as

— fi(t,x})) dt.  (45)
RJT:/ Jo(t,x(t)) — fo(t,x*)dt

/ Zfotxj

i=1,i#j

— fo(t,x;(t))dt.  (46)

From Lemma 1 and by choosing x = x*, A=0, = 0 it fol-

lows that

/0 Z Falt, xi(t
_i/OTAiT(t)fi(tx:)dt
S [

i=1 jeN;

évx*,o,o (x(0), A(0), p(0)).

— fo(t,x})) dt

’x —XJHQ —’y) dt

IN

(47)
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As it was previously argued, because x* is the solution of
(12) it follows that f;(x*) < 0 and that x} = x}. Combining
these observations with the fact that the multipliers always
lie in the positive orthant due to the projections introduced
in their updates (21), we have that —\;(¢)" f;(t,x¥) > 0 and
i () (x5 — x*||2 ) > 0. Thus it follows that

A Zfotxz

i=1

— folt,x})dt

< lv (x(0), A(0), 12(0)). (48)

Notice that the difference in the left hand side of the previous
expression is equal to the first term in (46). Thus, the local regret
in (46) can be upper bounded by

RY < TV 00 (x(0), A(0). 14(0))

Oy

i=1,i%yj

o(t,x (1) — folt,x;(t)) dt.  (49)

To bound the second term in the previous expression, use the
Lipschitz continuity of the objective function (c.f. Assumption
2)

/ Zfotxj

i=1,i#j

< Z / Lo [1;(t) — x:(t)]| dt.

i=1,i#j

— it x;(t)) dt

(50)

The latter is bounded by a function of the order of /T as a con-
sequence of the sublinear network disagreement established in
Proposition 1. Since Vi« 0,0(x(0), A(0), p£(0))/¢ is a constant,
it holds that (49) is upper bounded by a function of the order of
V/T. To complete the proof of the bound in (44) it suffices to
replace in the previous expression the network disagreement by
the result of Proposition 1. |

We have established that agents operating distributedly
achieve sublinear network disagreement, fit and regret. In the
next section we discuss the case where the constraint is lower
bounded and therefore it cannot be satisfied with slack. This
prevents the fit to be bounded due to trajectories that alternate
between feasibility and large periods of infeasibility.

A. Saturated Fit

We define a saturated function to prevent the constraint to
take negative values smaller than a given threshold. Formally,
let § > 0 and define the function f5(¢,x) = max{f(t,x), —d}.
Then we can define the notion of saturated local fit as

_ /0 Foalt x; () dt

By taking small values of 6 we can arbitrarily reduce the negative
portion of the fit. Ideally one would like to set 6 = 0. We
next establish that the sublinear bound for the fit established
in Theorem 1 holds as well for the saturated fit.

(S
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Corollary 1: Let Assumptions 1-4 hold. Then forany 7" > 0
the solutions of the dynamical system (20)—(21), with & > 1/2,
are such that the k-th component of the saturated fit ]}gj ; for
any 4, € V is bounded by ( ~§,Tj)k < OWT).

Proof: Recall that f5;(t,x) = max{fi(t,x), —4}. Because
f&i (t,x) is the point-wise maximum of two convex functions in
x itis also convex. Thus, it satisfies the hypotheses of Theorem 1
and it follows that the local saturated fit is also bounded by a
function of O(V/T). [ |

In the next section we present numerical examples that
support the theoretical conclusions. Before doing so, we dis-
cuss the bound on the network disagreement established in
Proposition 1.

Remark 2: In Proposition 1 we showed that the network
disagreement depends on T as O(v/T). However, the bound
achieved is a direct consequence of the choice of the relaxation
of the consensus constraint. This choice being arbitrary, it is pos-
sible to chose different relaxations to obtain different bounds on
the network disagreement. If one desires to bound this quantity
by a sublinear function h(T"), it suffices to impose the constraint
9(llxi = x;[[) = v < 0forany g(y) = h~'(y) as long as g(y) is
a convex function. The latter holds because the main component
of the proof of the proposition is Jensen’s inequality.

V. NUMERICAL EXAMPLES: ROBOTIC TEAM

In this section we consider a team of N robots tasked with
classifying in real time and in a distributed manner the different
objects and terrains that compose the environment in which they
are deployed. This problem, has been studied in [5], although
the method presented here is different. Each robot has only
access to information about the environment based on the path
it has traversed and the images gathered. Therefore, its local
information may not be enough to achieve the task of classifi-
cation since the information gathered may omit regions of the
feature space that are crucial. See for instance Fig. 1 where we
depict random trajectories of twenty agents driving around an
intersection. When the agent is on the pavement i.e., the absolute
value of its horizontal or vertical coordinate is less than five,
then it observes pavement images. On the other hand, outside
this region it observes grass. As it can be observed in that figure
only some of the agents visit both regions and the interest is that
the whole team can learn a common classifier. The advantage
of learning such classifier is that a robot can identify if it is on
grass even if it has not seen grass in the training process. In
particular we consider a problem in which each robot receives
features z;(t) € R™ from the scene and corresponding labels
yi(t) € {—1,1} depending on whether the terrain is grass or
pavement. The details of the feature extraction from image data
is provided in Section V-A. The common objective of the agents
can be formulated as training a common linear classifier x € R"
that minimizes a loss function. The loss function is such that its
value is small when the classification is accurate and it takes
large values in the opposite case. In particular for this problem
we consider logistic regression

filt,x) =log (1 -+ ¢ wOx =) (52)
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Fig. 1. Example of 20 robots driving randomly at an intersection. When the

robot is on the street it is observing pavement images, whereas when it outside
of the intersection it has access to grass images.

The classifier is designed so that the prediction is defined by
the sign of the inner product between the classifier x and the
feature vector z;(t) observed by robot 4 at time ¢. This is, the
predicted label is given by 7;(t) = sign(x 'z;(t)). Notice that
if the prediction is correct, both ;(t) and y;(¢) have the same
sign and thus, the exponential in (52) takes a small value. Which
in turn results in f;(¢,x) being small. On the other hand, if the
classification is incorrect, the sign of the exponential is positive,
which results in a large value of f;(¢,x). Hence, the expression
in (52) is a surrogate of the error function since it results in small
values when the prediction is correct and on large values other-
wise. Notice that agents need to exchange their current actions
x(t) with their neighbors to solve the minimization of (52) using
the algorithm defined by (20) and (21). Since the dimensionality
of the actions is as large as the feature vector we want to find
a sparse classifier in order to reduce the communication cost.
A way of doing so is to include a /1 norm regularization in the
cost. This regularizer is known to promote sparsity. Let, o« > 0
and define the following local cost

filt,x) = fi(t, %) + a[[x]]; . (53)
The previous objective introduces a trade-off between classifica-
tion performance and sparsity. Instead, one can define a desired
tolerance for the classification error — by imposing f;(¢,x) to
be smaller than a given tolerance 6 > 0O forall¢ = 1... N—and
by minimizing the objective ||x||1, so to get the sparsest of the
solutions. With this idea we define the following centralized
problem

min |||/,
X

st filt,x) =<0 Vi=1...N. (54)
To solve this problem in a distributed manner, we define — as
done in Section II — local copies of the classifier x; for each
agent. The decentralized version of the previous problem then
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yields

N
i i§ [l
mmXN N , ill1
i=1

X1,X2,...
S.t. fi(t,Xi) —(SS 0 Vi=1...N

Ix; — x> —v<0 Vi=1...N. (55

We evaluate the performance of the saddle-point algorithm
(20)—(21) by solving the problem (55) applied to the team of
robots navigating around the intersection depicted in Fig. 1.
The positions of the N agents is initialized by drawing it from
a uniform distribution on the square [—L, L]? and their paths
are random walks updated every 75 seconds, where each step
is drawn from a two-dimensional Gaussian variable, with zero
mean and covariance matrix diag(o,, 0, ). Ever Ts seconds each
agent has observed I images in the IRA! database [5] of either
grass or pavement. Do notice that even though the algorithm
proposed is derived in continuous time, for this application we
propose to work with a discrete time system. In Section V-B we
present the results achieved by the saddle-point algorithm in the
previously described problem. Before doing so, we describe in
the next section the feature extraction from the images.

A. Data from image database

The feature extraction is done as in [5], a procedure inspired
in the two-dimensional texton [39]. We describe it next for
completeness. The texture features z;(t) are generated as the
sum of a sparse dictionary representation of sub-patches of size
24-by-24. This is, each robot classifies images patches of size
24-by-24 by first extracting the nine non-overlapping 8-by-8
sub-patches within it. Each sub-patch is then vectorized, the
sample mean subtracted off and divided by its norm. Such that
the resulting sub-patch j observed by agent 4, yields a zero-mean
vector z] with norm one. The 9 vectors resulting from each
sub-patch are stacked as columns in a matrix Z; = [z};...;2)].
On the other hand, the agents have a dictionary of textures
that has been trained offline following [5]. An example of this
dictionary can be observed in Fig. 2. The dictionary can be
represented by a matrix D € M™*54) where n is the number
of features that one wants to extract. The feature used for
classification by agent i is the aggregate sparse coding z;(t),
defined as z;(t) = Z?Zl z*(D;z!(t)), where z*(D;z (t)) is
the solution to the following optimization problem.

. . 1
2"(D; 7 (1)) = argmin ||z (t) — D23 + (|lz1,  (56)
where ¢ > 0 is the regularization coefficient.

B. Results

In this section we present the behavior of the Online Dis-
tributed Online Algorithm (20)—(21) for a team of robots that
drive in the intersection as the one depicted in Fig. 1. For this

!Integrated Research Assessment for the U.S. Army’s Robotics Collaborative
Technology Alliance.
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Fig. 2. Example of dictionary for 8-by-8 gray scale patches.
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Fig. 3. Network disagreement per node for a network of 20 agents that
follow the dynamics (20)—(21). The feature vectors z;(t) € IR™ are extracted
from images of the IRA texture database as described in section V-A. The
disagreement is sublinear as expected by virtue of Proposition 1.

particular example we consider N = 20 agents, L = 15, oy,
and T = 1. The parameters of the feature extraction are set
to ¢ = 0.125, n = 128. We chose 6 = 0.001, v = 10 and the
algorithm step size to be n = 0.02, and we consider that each
agent has access to 24 images per sampling period, in this case,
24 images per second.

As it can be observed in Fig. 3 the network disagreement
converges to zero in approximately 6 seconds, which implies
consensus among the agents. This observation supports the
theoretical resultin Proposition 1. In Fig. 4 we depict the network
fit for one randomly selected node. As predicted by Theorem 1
the fit is sublinear. The effectiveness of the algorithm can be
observed in the classification accuracy achieved by the agents
in Fig. 5. Notice that the classification error of all the agents is
bellow 30%. It can be observed as well, that some agents classify
with accuracy above 90%. The latter is the case for agents that
are observing grass. There seems to be an intrinsic difficulty in
classifying pavement in the current data set. To support this claim
we compute the covariance matrix of 512 features of images
selected randomly. We then project the 192-dimensional feature
vector onto the first two principal components. This projection is
depicted in Fig. 6. As it can be observed the points corresponding
to pavement cannot be separated from points corresponding to
grass, yet there is a cluster of points corresponding to grass thatis
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Fig. 4. Localfit ]—'%, /T for arandom node in a network of N = 20 agents that
follow the dynamics (20)—(21). The feature vectors z;(t) € R™ are extracted
from images of the IRA texture database as described in Section V-A. As
predicted by Theorem 1 the fit is sublinear.
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Fig. 5. The accuracy of the prediction per node reaches a minimum of 70%
for a network of N = 20 agents that follow the dynamics (20)—(21). The feature
vectors z;(t) € R™ are extracted from images of the IRA texture database as
described in Section V-A. As it can be observed some agents achieve accuracy of
90%. This agents are observing grass images, whereas those that perform worst
are classifying pavement. The fact that one of the classes is poorly classified can
be understood as not having a cluster of points where there is no grass as it can
be seen in the study of the two principal components of the data set in Fig. 6.

spearated. This suggests that it is harder to classify the pavement
images.

VI. NUMERICAL EXAMPLE: SYNTHETIC DATA

In this section we consider a random network with N agents
with probability of connection p. The constraints are defined by
a time-varying quadratic function

filt,x) =x"Qx —ri(t)?,

for all i = 1,..., N. The matrices QY € S’*" are randomly
selected and we choose 7;(t) = (rp;(T —t) + ro;t) /T where
T is the horizon of the problem and 77, , 7o; are randomly drawn
from a uniform distribution over the interval [ 1, 2]. The selection
of the constraints guarantees that 0 € X f, i.e., the origin is a
strictly feasible solution for all times ¢ € [0, T]. The objective

(57)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

20 ‘ ‘ :
= ° Grass
= ° Pavement
S o oo
S
210 - ° 0o ° 1
E o ° oo ° ° ° °
© o 099 © o
S o o e? @ %8 JTe o o ®
O Coadoin e o o o L5y
& IO o & ° o
— A ﬁ%f%‘é@g""& 60 oo % oiéi
. o %
< @ °o o9 B 06900 8 000” 0 0%0° 8 %0 o ]
o ° S ¢ a > 9o
8 o S0 LoBEREGTES "0 T g, T o, T 0 o700
) ° 008008 g6 o306 6 B0 o °o % ° o
& .08 gogsge 8 ) 080
=] & o o ® ° o
= g0 B0 o /08 0 O
= 00 5 o ° o5 g o % o o
[ ° ®do © o Lo o© o o o
o o © o
= -10 1 St ° e g
o ° °c 8
g ° %o
o
o o
n
-20 I I I

First Principal Component

Fig. 6. We depict the projection of the features extracted from 512 images
onto the two principal components of the data set. As it can be observed in this
picture the images of grass are easier to classify since they present a distinct
cluster without any pavement images. On the other hand, the cluster of points
corresponding to pavement are intertwined with grass images, which makes its
classification harder. We depict as well the projection of the classifier trained by
node 1 after 400 seconds.

functions are quadratic functions of the following form
fort,x) = (x = ei(t) " Qi (x — (1)),

where @; € S7*" are randomly selected for all i = 1,..., N
and c;(t) satisfy

(58)

ci(t) = coicos(0; + wit), (59)

where 6; are uniformly drawn over the interval [0,1]. Note that
the clairvoyant solution can be computed since the objective to
be minimized

T N
fOT(x):/O Y Gl @b — i) &t (60)

can be computed in closed form. Moreover, the constraints
fi(t,x) <0 for all ¢ € [0,T] can be enforced by imposing the
tightest of the constraints. This is,

fi(x) == x"QYx — min {ro;, rp;}* < 0. (61)

Thus, the clairvoyant solution is computed by solving the prob-
lem

2x* := argmin for(x),
X, €EX

st. fi(x) <0, Vi=1,...,N. (62)

For the numerical example in this section we choose N =
10,n=1,p=0.2,w; =0.01 forall i =1... N and cp; =1
forall e = 1...N. The network disagreement parameter is set
toy =0.1.

Fig. 7 depicts the network disagreement in the setup pre-
viously described. As it can be observed, the disagreement
vanishes which implies consensus among the agents. This obser-
vation supports the theoretical result of Proposition 1. In Fig. 8
we depict the network fit for one randomly selected node. The
fit for said node is sublinear since when divided by the time
horizon it converges to zero. This result is in accordance with
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Fig. 7. Network disagreement per node for a network of 10 agents that
follow the dynamics (20)—(21) for the problem described in section VI. The
disagreement is sublinear as expected by virtue of Proposition 1.
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Fig. 8. Local fit ]-'% /T for a random node in a network of N = 10 agents

that follow the dynamics (20)—(21) for the problem described in section VI. As
predicted by Theorem 1 the fit is a sublinear function of the time-horizon.
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Fig. 9. Regret ]-'%/T for all the nodes in a network of N = 10 agents that
follow the dynamics (20)—(21) for the problem described in section VI. As
predicted by Theorem 1 the regret is a sublinear function of the time-horizon.
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the theoretical result established in Theorem 1. Likewise, the
regret for all nodes is sublinear as it can be observed in Fig. 9.

VII. CONCLUSION

We considered the problem of constrained distributed online
learning. Each agent only has access to its local constraints
and objective function, and the aim is to coordinate the actions
among the agents such that the resulting trajectories are feasible
and optimal for the team as a whole. We showed that a distributed
online version of the saddle point algorithm achieves global fit,
regret and network disagreement bounded by functions whose
growth rate is bounded by /7. The latter result suggests van-
ishing constraint violation, optimality and network agreement
in average as time evolves. We evaluate the performance of the
algorithm for a team of robots driving through an urban environ-
ment to perform real time texture classification for the purpose
of terrain recognition. Likewise, we evaluate the performance
of said algorithm in a synthetic example.

APPENDIX

A. Proof of Lemma 1

Let us start by considering the time derivative of the energy
function defined in (22). Using the chain rule yields

N
Ve x (KO AW, 1) = 7 (ilt) = %) (1)
=1
N NT . N
£3 (N0 =X) A0+ D (il — ) ()

(63)

Substituting the time derivatives by those given by the Dis-
tributed Online Saddle Point dynamics (20)—(21) in the previous
expression yields

(x(£), A1), (1))

Vic,X

=

(xi(t) = %) " I [xi (1), —eLa, (£, %(8), A1), po(1))]

|
.MZ

o
Il
i

(M) = &) 114 [AuC0) e, (13000, ), (1)

"
] =

1

.
Il

] =

+ ) (pa(t) — ) 1L [H(t)ﬂfﬁi(t,xi(t)a Xi(t), pi(t))] -

(64)

1

.
Il

Since both x;(t) and x; belong to the convex set X, the inner
product between x;(t) — X; and the projected vector can be
upper bounded by the the product with the field without the
projection (cf., Lemma 1 [22])

(xi(t) — %) Ty [xi(t), —Lo, (£, %(£), A(t), 1a(t))]

< —(x5(t) = %3) " €Ly, (£, x(1), A(t), p(t)). (65)
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Summing across agents on both sides of the previous expression
allows us to upper bound the first term summation in (64)

N
Z (3;(t) — %) " Ty [xi(t), —eLa, (£, (), A(t), p(1))]
N
< —EZ (x(t) = %) " Lo (t,x(t), A(t), pu(t)). (66)

In addition, since the Lagrangian is a convex function with
respect to x;(¢) we can further upper bound the sum of inner
products by the difference between the Lagrangian evaluated at
x; and x;(t). Proceeding in this way for all i € ) yields

N

Y (xilt) = %) T [xi(t), —eLa, (1,

i=1

X(t), At), pu(t))]

€ (‘C(tv 5(3 )‘(t)a H(t)) o ‘C(tv X(t)7 )‘(t)a “’(t))) :

Likewise, for the multipliers the following relationships hold by
virtue of [22, Lemma 1]

(M) = A) T [A0). 2L, (1 x(0), A1) ()

(67)

< (N =X)Ly (bxD. AW ), (68)
and
(1) — ) T [pa0). L0, (1 5(E), M8 ()]
< (ualt) = i) 2L (0 X0 AD. (). (©9)

Because the Lagrangian is linear with respect to A and g (cf.,
(15)) we can write the above inner products as differences of the
Lagrangian evaluated at \;(¢) and \; and as differences of the
Lagrangian evaluated at p;(t) and 1,

fj (M) = A) T [i0). 2Ly, (1 x(0), A(0) )]

i=1
N

+ Z (ki(t) —

=1

)" (), €Ly, (6,%(8), A(D), (1))

< e (L0 A0, 1) ~ LEXOAD) . (0

Substituting the expressions (67) and (70) in (64) reduces to
V. 5 (X0, A1), 1(t)

(L%, A1), p(t)) = L8 x(1), At), (1))

2 (L0 x(0), W), 1) — £t,x(0), A 7))

WA
<e

(71)

Observe that the second and third terms on the right hand side of
the previous expression cancel out for all ¢. Hence, the previous
bound reduces to

V, 5 (K0 A0, (1)
<

e (L‘(t,i,)\(t), (1)) — L(t,x(t), A, ,1)) NG,
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Rearranging the terms in the previous inequality and integrating
both sides from ¢ = 0 until the time horizon ¢ = 7" yields

<1 / V, 5,00 AD), () dr (73)

By virtue of the Fundamental Theorem of Calculus, the right
hand side of the previous expression reduces to the difference
between V_ A H(x(t), A(t), p(t)) evaluated at time 7" and 0.

The proof if completed by observing that for any T,

Vo s ﬂ(x(T), A(T), u(T)) is non-negative and thus, the right

hand side can be upper bounded by the energy function evaluated
att = 0.
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