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Abstract—In this article, we consider the problem of mass transport
cloaking using mobile robots. The robots move along a predefined curve that
encloses a safe zone and carry sources that collectively counteract a chemical
agent released in the environment. The goal is to steer the mass flux around a
desired region so that it remains unaffected by the external concentration.
We formulate the problem of controlling the robot positions and release
rates as a partial differential equation (PDE)-constrained optimization,
where the propagation of the chemical is modeled by the advection-diffusion
(AD) PDE. We use a neural network (NN) to approximate the solution of
the PDE. Particularly, we propose a novel loss function for the NN that
utilizes the variational form of the AD-PDE and allows us to reformulate
the planning problem as an unsupervised model-based learning problem.
Our loss function is discretization-free and highly parallelizable. Unlike
passive cloaking methods that use metamaterials to steer the mass flux, our
method is the first to use mobile robots to actively control the concentration
levels and create safe zones independent of environmental conditions. We
demonstrate the performance of our method in simulations.

Index Terms—Active robotic cloaking, mass transport cloaking (MTC),
mobile robot planning, neural networks (NNs), partial differential
equations (PDE)-constrained optimization, unsupervised model-based
learning.

I. INTRODUCTION

From natural disasters such as wildfires [1] to environmental pollu-
tion [2] and chemical leaks [3], [4], many life-threatening processes can
mathematically be modeled as distributed parameter systems (DPSs)
using transport equations such as the advection-diffusion (AD) partial
differential equation (PDE) [5]. Creating safe zones in any of these
domains, where the temperature or concentration are maintained within
the survival limits for humans or animals, is a problem of paramount
significance. The goal is to ensure that these zones remain unaffected
by external environmental conditions. In this article, we propose to use
mobile robots to create such safe zones, or cloaks, in mass transport
systems modeled by time-dependent AD-PDEs.

Cloaking in transport systems is an active area of research. Ex-
amples include mass transport cloaking (MTC) [6], thermal transport
cloaking [7], acoustic cloaking [8], and cloaking for elasticity [9]. The
proposed methods typically rely on metamaterials to passively alter
the transport phenomenon around a desired region, decreasing in this
way the effect of the external environment. Mathematically, this is
achieved by exploiting the invariance of the associated PDEs under
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curvilinear transformations. However, these methods generally cannot
maintain desired environmental conditions in the cloaked zone. This
is the case in [6] that creates safe zones in mass transport systems
by enclosing those zones in a cloak consisting of cocentric spheres of
varying diffusivities. While the concentration inside the safe zone is
maintained below the levels of the surrounding environment, it cannot
be precisely controlled. This limitation can be alleviated using active
cloaking methods, specifically using robots that carry sources that coun-
teract the release of a chemical agent in the environment. By controlling
the position of the robots and the release rates of their sources, safe zones
of desired concentration levels can be created, even under changing
external environmental conditions. To the best of our knowledge, this
is the first work to consider the problem of active cloaking in mass
transport systems using mobile robots. We model the propagation of
the chemical agent in the environment by a time-dependent AD-PDE
and assume that the robots move on predefined curves that enclose
the desired safe zone. Then, we formulate the proposed active cloaking
problem as a PDE-constrained optimization problem whose solution re-
turns collision-free optimal robot trajectories and corresponding source
release rates that maintain desired concentration levels in the safe zone.
To solve this optimization problem, we propose a new method that
employs neural networks (NNs) to approximate the solution of the
PDE. A major contribution of the proposed method is a novel loss
function used to train the NN that employs the variational form of
the PDE as opposed to its differential form. Given this loss function,
we formulate the robotic mass transport cloaking (MTC) problem as
an unsupervised model-based learning problem that we solve using
state-of-the-art stochastic gradient descent algorithms [10]. Common
model-based learning approaches in the robotics literature modify a
known model using large amounts of labeled data collected before
training, e.g., samples of robot trajectories, to account for uncertainties
and unmodeled dynamics in the model (see e.g., [11]). To the contrary,
here we train the NN to approximate the solution of the AD-PDE using
unlabeled sample points of the space-time generated during training.
The physics captured by the PDE guide the training of the NN.

The task of creating safe zones has been considered in the robotics
literature, e.g., in containment control [12], [13] and perimeter pa-
trol [14]–[16] problems. In the former, a network of robots are driven
to a target destination while contained within a polygon created by
the leaders. A possible application is to secure and remove hazardous
materials without contaminating the surroundings [13]. In the latter, the
objective is to prevent an adversary from penetrating an area of interest
by periodically monitoring its boundaries using a team of mobile
robots [15]. A closely related problem is considered in [17] where
the objective is to contain a herd of animals within a safe zone. Unlike
these problems, here we are interested in using mobile robots to create
safe zones in DPSs where the time-dependent transport phenomenon
is governed by PDEs.

The MTC problem is closely related to disturbance control of
DPSs [18] and source identification (SI) [19]–[23]. The objective
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in the former is to maintain the equilibrium of a DPS against an
exogenous disturbance moving in the domain whereas in the latter,
it is to identify a source function and a corresponding concentration
field that matches an observed set of concentrations. Similar to SI,
we formulate the MTC problem as a PDE-constrained optimization
problem [24]. The difference is that in the MTC problem, the unknown
source terms are constrained by the predefined robot curves and the
goal is to match the concentration at the safe zone to desired values.
PDE-constrained optimization problems have been studied extensively
in the literature [24]. A major challenge in solving these problems is
dealing with the size of the discretized model obtained using numerical
methods such as the finite-element (FE) method [25]. This so-called
curse of dimensionality is severely exacerbated when the problem is
time-dependent. The only viable solution, currently available, is to use
model reduction techniques but these approaches compromise accuracy
and stability for speed [26].

In this article, we propose an alternative approach to the MTC
problem that employs NNs to approximate the solution of the AD-PDE
constraint. Using NNs we can incorporate the AD-PDE constraint in
the loss function and obtain a penalty method that circumvents the
computational challenges of discretization-based methods to the MTC
problem. Specifically, these methods need to reconstruct and exactly
enforce new time-dependent AD-PDE constraints at every iteration
of the optimization process when the robot positions or release rates
change. Unlike discretization-based methods, our learning-based ap-
proach is highly parallelizable and can be easily extended to account
for different objectives and constraints. An overview of different ap-
proaches for solving PDEs using NNs can be found in [27, Ch. 4].
One group of approaches utilize NNs to memorize the solutions of
PDEs. Particularly, they solve the PDE using a numerical method to
obtain labeled training data and often utilize convolutional NNs, as
powerful image processing tools, to capture the numerical solution
in a supervised learning way [28]. These approaches do not replace
numerical methods but rather rely on them and introduce an extra layer
of approximation. There also exist methods, called FE-NNs, which
represent the governing equations at the element level using artificial
neurons [29]. FE-NNs scale with the number of discretization points
and are similar in spirit to numerical methods.

Most closely related to the method proposed in this article are
approaches that also directly train a NN to approximate the solution
of the PDE in an unsupervised learning process. One of the early works
of this kind is [30] that uses the residual of the PDE to define the
required loss function. In order to remove the constraints from the
training problem, the authors only consider simple domains for which
the boundary conditions (BCs) can be manually enforced by a change
of variables. Although these approaches attain comparable accuracy to
numerical methods, they are impractical since, in general, enforcing the
BCs might be as difficult as solving the original PDE. Following a differ-
ent approach, the work in [31] utilizes a constrained back-propagation
algorithm to enforce the initial and BCs during training. In order to
avoid solving a constrained training problem, the authors in [32] add
the constraints corresponding to BCs to the objective as penalty terms.
Similarly, in [33], the authors focus on the solution of PDEs with
high dimensions using a long short-term memory architecture. Note
that none of the above methods of solving PDEs using NNs, focus on
controlling those PDEs nor do they involve mobile robots in any way.

Compared to the literature discussed above, the contributions of this
article can be summarized as follows. To the best of our knowledge, this
article is the first in the robotics literature to consider the active MTC
problem. Compared to passive cloaking methods that employ meta-
materials to steer the transport phenomenon, our active MTC method
can more precisely control the concentration levels in the safe zone. We

propose a new approach to this problem that relies on NNs to circumvent
the computational challenges involved in using discretization-based
methods to solve time-dependent PDE-constrained optimization prob-
lems. A major contribution of our proposed learning-based method is
a novel loss function that we define to train the NN in an unsupervised
model-based way, using the variational form of the PDE. The advan-
tages of the proposed loss function, compared to existing approaches
that use the differential form of the PDE, are twofold. First, it contains
lower order derivatives so that the solution of the PDE can be estimated
more accurately. Note that it becomes progressively more difficult to
estimate a function from its higher order derivatives since differential
operators are agnostic to translation. Second, it utilizes the integral
(variational) form of the PDE that considers segments of space-time
as opposed to single points and imposes fewer smoothness require-
ments on the solution. Note that variational formulations have been
successfully used in the FE literature for a long time [25]. Compared to
model-based learning approaches in the robotics literature that rely on
supervised learning and large amounts of labeled data, here we propose
an unsupervised method that relies on the physics captured by the PDE
to guide the training. Note that although here we consider a specific
control problem for the AD-PDE, the proposed principals generalize to
other control problems subject to arbitrary dynamics.

The remainder of this article is organized as follows. In Section II,
we formulate the MTC problem. Section III is devoted to the solution
of the MTC problem using NNs. We present our simulation results in
Section IV and finally, Section V concludes this article.

II. PROBLEM FORMULATION

A. Advection-Diffusion Equation

LetΩ ⊂ Rd denote a domain of interest where d is its dimension and
let x ∈ Ω denote a point in this domain and t ∈ [0, T ] denote the time
variable. Furthermore, consider a velocity vector fieldu : [0, T ]× Ω →
Rd and its corresponding diffusivity field κ : [0, T ]× Ω → R+. Then,
the transport of a quantity of interest c : [0, T ]× Ω → R, e.g., a chem-
ical concentration, in this domain is described by the time-dependent
AD-PDE [5]

ċ = −∇ · (−κ∇c+ u c) + s (1)

where ċ = ∂c/∂t denotes the time derivative of the concentration and
s : [0, T ]× Ω → R is the time-dependent source field that models any
chemical reaction or mechanical action that leads to the release or
collection of the chemical [34].

Given an appropriate set of initial conditions (ICs) and BCs, it can be
shown that the AD-PDE (1) is well posed and has a unique solution [5].
In this article, we use the following IC and BCs:

c(0,x) = g0(x) for x ∈ Ω (2a)

c(t,x) = gi(t,x) for x ∈ Γi (2b)

where Γi for i ∈ {1, . . . , nb} denote the boundary segments of Ω and
g0 : Ω → R and gi : [0, T ]× Γi → R possess appropriate regularity
conditions [5]. Equation (2a) describes the state of the concentration
field before the release of the chemical agent whereas (2b) prescribes the
concentration value along the boundary segment Γi as a time-varying
function.

B. Mass Transport Cloaking Using Mobile Robots

Given the AD-PDE (1) and the domain of interestΩ, consider a team
of robots that carry sources that collectively counteract the release of
a chemical. These mobile robots control the source term s(t,x) in the
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Fig. 1. Typical setup for the MTC problem. The robots release or collect
a chemical agent in an optimal rate along their paths pj(t), in response to
changing environmental conditions, so that the concentration at the safe zone
Ωd is maintained at a desired value.

AD-PDE (1). The goal of the robots is to create a safe zone in the
domain where the concentration is controlled to remain at a certain
level. This can be achieved by formulating a planning problem that
controls the robot positions in the domain as well as the release rates
of their sources. Fig. 1 shows a typical scenario where we assume the
chemical agent is released outside Ω and its effect is modeled by the
BCs.1 In this figure, Ωd ⊂ Ω denotes the desired safe zone. The goal is
to maintain the release of the chemical invisible to an observer inside
Ωd. Specifically, let N denote the number of robots. Then, the path of
robot j is denoted by pj : [0, T ] → Ω \Ωd for j ∈ {1, . . . , N}. We
make the following assumptions.

Assumption II.1 (PDE Input-Data): The geometry of the domainΩ
and its boundariesΓi, the velocityu(t,x) and corresponding diffusivity
κ(t,x) fields, and the IC g0(x) and BCs gi(t,x) for i ∈ {1, . . . , nb}
are known.

The assumption that the domain Ω is known is a reasonable one.
Given the knowledge of the domain, the velocity and diffusivity fields
can be estimated using computational fluid dynamics or from measure-
ments. Moreover, knowledge of the release of a chemical agent captured
by the BCs, might be known for a specific task or can be measured.

Assumption II.2 (Robot Paths): The robot paths are constrained on
a curve γ : [0, 1] → Ω \Ωd that is simple, differentiable, and does not
intersect with the safe zone Ωd or other obstacles in the domain.

The curve γ often encloses Ωd and in many robotic applications
corresponds to the perimeter of the safe zone [12], [14]. Given this
curve, we can define the path of robot j as

pj(t) = γ(ξj(t)) (3)

where j ∈ {1, . . . , N} and ξj : [0, T ] → [0, 1] is a parameterization
that maps the time interval [0, T ] to [0,1]. Note that ξj(t) is not
necessarily monotone, i.e., the robot can move back and forth along
the curve γ.

The release of the source, carried by robot j, is limited to the location
of the robot at any given time. In order to capture this local effect, we
model the source term using a Gaussian function centered at the robot.
Particularly, let ls > 0 denote the length-scale of the Gaussian function
and aj : [0, T ] → R the release rate of the source. Then, the source

1Inclusion of the chemical release in the domain is equivalent to adding an
extra source term in (1).

term s(t,x) in (1) is given by

s(t,x) =

N∑

j=1

aj(t) exp

(
−‖pj(t)− x‖2

2 l2s

)
(4)

where pj(t) denotes the location of the robot j at time t.
Problem II.3 (Mass Transport Cloaking): Let cd(t,x) denote the

desired concentration level in the safe zone Ωd. Find the optimal
paths p∗

j(t) and release rates a∗
j(t) to maintain concentration cd(t,x)

inside Ωd.
Problem II.3 can be formulated as the following PDE-constrained

optimization problem:

min
aj(t),pj(t)

‖c(t,x)− cd(t,x)‖2Ωd

s.t. Lc = s(t,x) for x ∈ Ω

c(0,x) = g0(x) for x ∈ Ω

c(t,x) = gi(t,x) for x ∈ Γi (5)

for i ∈ {1, . . . , nb} and j ∈ {1, . . . , N}, where t ∈ [0, T ] in the rele-
vant constraints, Lc = ċ+∇ · (−κ∇c+ u c) is the differential op-
erator corresponding to the AD-PDE (1), and the objective of the
optimization is defined as

‖c(t,x)− cd(t,x)‖2Ωd
=

∫ T

0

∫

Ωd

|c(t,x)− cd(t,x)|2 dx dt. (6)

Note that in (6), the spatial integration is performed only over the safe
zone Ωd.

III. SOLUTION USING NEURAL NETWORKS

In this section, we first discuss the loss function that we use to train
a NN to approximate the solution of the time-dependent AD-PDE (1)
for a given set of PDE input-data. Then, given this loss function, we
address the MTC problem (5). The proposed loss function uses the
variational formulation of the AD-PDE while our solution to problem
(5) relies on adding this loss function, that captures the constraints in
problem (5), to objective (6) in the form of a penalty term, to formulate
an unconstrained training problem that can be solved using stochastic
gradient descent methods.

A. Neural Network Approximation of the AD-PDE

Let θ ∈ Rn denote the weights and biases of the NN, a total of n
trainable parameters. Then the solution of the AD-PDE can be approxi-
mated by the nonlinear function f(t,x;θ), where f : [0, T ]× Ω → R
maps the inputs t and x of the NN to its scalar output. The objective
of training is to learn the parameters θ of the network so that f(·)
approximates the solution of the AD-PDE (1) as well as possible. To
capture this, we need to define a loss function � : Rn → R+ that reflects
how well the function f(t,x;θ) approximates the solution of AD-PDE
(1). A typical approach is to consider the residual of the PDE when
f(t,x;θ) is substituted into the differential form (1). This approach
has two problems. First, for the AD-PDE (1) it requires evaluation
of second-order derivatives of f(t,x;θ). Estimating a function from
its higher order derivatives is inefficient since differentiation only
retains slope information and is agnostic to translation. Second, training
the differential form of the PDE amounts to learning a complicated
field by only considering the PDE-residual at training points, i.e., a
measure-zero set, which is ineffective in capturing the physics of the
transport phenomenon.
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We follow a different approach here that addresses both of these
issues. Particularly, we rely on the variational form of the PDE. Let
v : [0, T ]× Ω → R be an arbitrary compactly supported test function.
Multiplying (1) by v(t,x) and integrating over the spatial and temporal
coordinates we get

∫ T

0

∫

Ω

v [ċ+∇ · (−κ∇c+ u c)− s] dx dt = 0 ∀v.

Performing integration by parts we have
∫ T

0

∫

Ω

ċ vdx dt =

∫

Ω

[c(T )v(T )− c(0)v(0)] dx

−
∫ T

0

∫

Ω

c v̇dx dt = −
∫ T

0

∫

Ω

c v̇dx dt.

Note that v(0) = v(T ) = 0 since v(t,x) is compactly supported over
the temporal coordinate. Similarly

∫ T

0

∫

Ω

v∇ · κ∇c dx dt = −
∫ T

0

∫

Ω

∇v · κ∇c dx dt

where again the boundary terms vanish since v(t,x) is compactly
supported. Finally, note that for velocities far below the speed of sound
the incompressibility assumption holds and∇ · u = 0. Putting together
all of these pieces, we get the variational form of the time-dependent
AD-PDE as

l(c, v) =

∫ T

0

∫

Ω

[∇c · (κ∇v + u v)− c v̇ − s v] dx dt = 0. (7)

The variational form (7) only requires the first-order spatial deriva-
tive and also an integration over a nonzero measure set, i.e., the support
of the test function, as opposed to a single point used in the differential
form. The test function acts as a weight on the PDE residual and the
idea is that if (7) holds for a reasonable number of test functions v(t,x)
with their compact supports located at different regions in space-time
[0, T ]× Ω, the function f(t,x) has to satisfy the PDE. A very important
feature of the test function v(t,x) is that it is compactly supported. This
allows local treatment of the PDE as opposed to considering the whole
space-time at once and is the basis of the FE method [25]. More details
regarding our proposed loss function and its advantages can be found
in [35].

Given the variational form (7), we can now define the desired loss
function to approximate the solution of the AD-PDE (1) for a given set
of input data. Consider a set of nv test functions vk(t,x) sampling the
space-time [0, T ]× Ω, a set of n0 points xk ∈ Ω corresponding to the
IC, and sets of nb,i points (tk,xk) ∈ [0, T ]× Γi for the enforcement
of the BCs. Then, we define the loss function � : Rn → R+ as

�(θ) = w1

nv∑

k=1

|l(f, vk)|2 + w2

n0

n0∑

k=1

|f(0,xk)− g0(xk)|2

+
w3

n̄b

nb∑

i=1

nb,i∑

k=1

|f(tk,xk)− gi(tk,xk)|2 (8)

where l(f, vk) is given by (7), w ∈ R3
+ stores the penalty weights

corresponding to each term, and n̄b =
∑nb

i=1 nb,i is the total number
of training points for the BCs. Note that in the first term in (8), the
integration is limited to the support of v(t,x) which is computationally
very advantageous. Furthermore, this loss function is lower-bounded
by zero. Since this bound is attainable for the exact solution of the
AD-PDE (1), the value of the loss function is an indicator of how well
the NN approximates the solution of the PDE.

Training using the loss function (8) is an instance of unsupervised
learning since the solution is not learned from labeled data. Instead, the

training data here are unlabeled samples of space-time and the physics
captured by the AD-PDE (1) guides learning of the parameters θ. In
that sense, our approach is a model-based method as opposed to a
merely statistical method that automatically extracts features and cannot
be easily interpreted. Moreover, unlike common robotic model-based
learning approaches that modify a known model to account for the
labeled data, obtained through numerous experiments, our approach
proposes a novel use of NNs to learn the model from scratch without
relying on labeled data.

Remark III.1 (Convergence): By the universal approximation the-
orem, for a large enough number of trainable parameters n, the NN can
approximate any smooth function [36]. Given that the AD-PDE (1) has
a unique smooth solution given an appropriate set of input data, the NN
should converge to this solution when n → ∞ (see [33] for details).

Remark III.2 (Parallelization): Referring to (8), parallelization of
the training process is trivial. We can choose the number of samples
nv, n0, and nb,i in accordance to the available computational resources
and decompose and assign the summations to different processing units.
The locations of the training points are also arbitrary and can be selected
through random drawing or from a fixed grid over space-time.

B. Mass Transport Cloaking using Neural Networks

So far we have described how to approximate the solution of the
AD-PDE (1) using a NN for a given set of input data. Next, we discuss
how to use this approximation to solve the MTC problem (5). The
idea is to add the NN loss function that captures the constraints of
the problem (5) to the objective in the form of a penalty term, and
obtain an unconstrained optimization problem that can be solved using
state-of-the-art stochastic gradient descent algorithms. Such algorithms
have been very effective in the deep learning literature [10].

Specifically, to solve the PDE-constrained optimization problem
(5), we parameterize the release rate aj(t) by a polynomial aj(t) =∑nα

k=0 αjkt
k, where αj ∈ Rnα is the vector of coefficients corre-

sponding to robot j. We also parameterize ξj(t) in the definition of
the robot paths (3) by the composition of another polynomial bj(t) =∑nβ

k=0 βjkt
k with parameters βj ∈ Rnβ and the sigmoid function

σ : R → [0, 1] defined as σ(b) = 1/1 + exp(−b). Thus

ξj(t) = σ

( nβ∑

k=0

βjkt
k

)
. (9)

Furthermore, we use a set of nd points (tk,xk) ∈ [0, T ]× Ωd for the
discrete approximation of the integral (6). Noting that the loss function
(8) captures the constraints in (5), to solve the MTC problem we
optimize the following objective function:

J(αj ,βj ,θ) =
1

nd

nd∑

k=1

|f(tk,xk)− cd(tk,xk)|2 + �(θ). (10)

Optimizing (10) provides the solution of the AD-PDE (1) for the time-
dependent source term (4), with intensities specified by α∗

j and paths
specified by β∗

j , that maintains the concentration at the desired level
cd across the safe zone Ωd. Note that for simplicity we used the same
length scale ls and number of parameters nα and nβ for all robots in
the source term (4); generalization is trivial.

Proposition III.3 (Bounded Velocity): Robots following the paths
(3) with parameterizations (9) have bounded velocities.

Proof: Noting that p(t) = γ(ξ(t)), for the speed of the robot
we have ‖ṗ(t)‖ = |ξ̇(t)|‖∇ξγ‖, where we drop the subscript j for
simplicity. Since γ(ξ) is differentiable and defined over the compact
set [0, 1], it is bounded. Thus, we need to show that |ξ̇(t)| is bounded.
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Fig. 2. BC value g3(t,x) for Γ3 as a function of spatial coordinate for two
different time instances t = 0.2 and t = 0.7 before and after 0.5T .

To see this, note that

ξ̇(t) = ḃ exp(−b)σ2(b) =
ḃ exp(−b)

[1 + exp(−b)]2

where b(t) is the polynomial that parameterizes the path of the robot.
Then, since

lim
t→∞

ḃ

b
= lim

t→∞
nβ βnβ

tnβ−1 + o(tnβ−1)

βnβ
tnβ + o(tnβ )

= 0

and limb→+∞ b/ exp(b) = 0, we have limt→∞ ξ̇(t) = 0. Since ξ̇(t) is
also continuously differentiable, it has to be bounded. Intuitively, when
b → ±∞, the sigmoid function saturates and the robot approaches one
end of the curve γ. �

IV. NUMERICAL EXPERIMENTS

In this section, we present simulation results that illustrate our ap-
proach to solving the MTC problem (5). The domain is depicted in Fig. 1
where we selectΩ = [−1, 1]× [−1, 1] andT = 1. Before the release of
the chemical agent, the system is at rest with zero concentration across
the domain, i.e., g0(x) = 0 in (2a). At time t = 0 the release occurs
causing the concentration to rise linearly at the corner xc = [−1, 1] of
the boundaries Γ3 and Γ4 as c(t,xc) = min{1, 2t/T} for t ∈ [0, T ].
Note that the concentration c(t,xc) reaches the maximum value of
1 at t = 0.5T and stays constant afterward. For the boundary Γ3,
the concentration decreases linearly to zero when moving from xc

toward the corner between Γ3 and Γ2, i.e., in (2b) we have g3(t,x) =
−0.5 c(t,xc) (x1 − 1) for x ∈ Γ3 (see Fig. 2). A similar expression is
used for g4(t,x) along Γ4. The opposite boundaries Γ1 and Γ2 are set
to zero for all time, i.e., g1(t,x) = g2(t,x) = 0 in (2b). Finally, we set
the diffusivity field to a constant value of κ(t,x) = 1 and define the
velocity vector field for t ∈ [0, 0.5T ] as

u(t,x) = [cos(−πt/T ), sin(−πt/T )] (11)

and u(t,x) = [0,−1] for t > 0.5T , i.e., it has a constant magnitude
‖u(t,x)‖ = 1 but its direction rotates 90° from [1,0] to [0,−1] within
t ∈ [0, 0.5T ] and then stays constant. Note that variations in the BCs
and velocity field stop at t = 0.5T allowing c(t,x) to move toward
steady state.

We define the safe zone Ωd as a square centered at xd = [−0.4, 0.3]
with side length of 0.2 and set cd = 0, i.e., we wish to maintain
zero concentration at the safe zone as it was before the release
of the chemical. In the following simulations, we use N = 2 mo-
bile robots that collaboratively cloak the safe zone Ωd. Referring to

Fig. 3. Concentration level at xd obtained from the NN and FE solutions as a
function of time. The dashed lines delineate the maximum deviations from the
desired value cd = 0 across the safe zone Ωd according to the FE solution.

Fig. 4. Optimal source parameters as a function of time to maintain the
concentration levels at Ωd at the specified level cd. (a) Optimal release rates
a∗j(t). (b) Optimal angular positions ϑ∗

j(t).

Assumption II.2, we constrain the robots to move along a circular path
with radius r = 0.4 around xd. Particularly, the admissible path for
robot j is defined as

pj(t) = γ(ξj) = xd + r [cos(2πξj), sin(2πξj)]

where ξj ∈ [0, 1] is the parameterization corresponding to robot j. In
order to describe the source term (4), we use nα = 5 parameters for the
release rates of the robots and nβ = 4 parameters for their paths, where
we fix the interceptsβ10 = 0 and β20 = ln(3) of the polynomials in (9)
to specify the initial angular positions of the robots on the curveγ. These
values correspond to ϑ1(0) = 180◦ and ϑ2(0) = 270◦ where ϑj(t) =
2πξj(t). We also set the characteristic length of the Gaussian source (4)
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Fig. 5. Evolution of the concentration field as the solution of the AD-PDE (1) at different time instances. The black square denotes the safe zone Ωd whereas the
black circle and star denote the location of robots 1 and 2, respectively. Moreover, the dashed circle shows the curve γ. Note that in all snapshots the c(t,x) = 0
level set passes through Ωd. (a) t = 0. (b) t = 0.2. (c) t = 0.4. (d) t = 0.6. (e) t = 0.8. (f) t = 1.0.

to ls = 0.04 (see Section III-B for details). Then, the robots optimally
adjust their velocities along this curve and their release rates in response
to the change in the BCs g3(t,x) and g4(t,x) and the velocity field
u(t,x) to maintain the concentration cd in Ωd. In order to prevent
collision among the robots, we add the following penalty term (with an
appropriate weight) to the training objective (10):

Jc(t) =
N∑

j=1

N∑

k=j+1

exp

[
−
(
2π[ξj(t)− ξk(t)]

ϑ0

)2
]

measuring the mutual angular distance of the robots, where ϑ0 de-
termines the angle margin among robots and is set to ϑ0 = 4◦ in the
following results.

We utilize the TENSORFLOW software to solve the desired MTC
problem (5) (see [37]). The test functions vi(t,x), introduced in
Section III-A, are selected to be trilinear FE basis functions for three-
dimensional (3-D) hexagonal elements that are centered at arbitrary
points in space-time and, the numerical integration in (7) is performed
using a two-point Gauss–Legendre quadrature at each dimension
(see [35] for more details). We use a multilayer perceptron (MLP) NN
architecture consisting of three dense hidden layers with 10, 20, and 30
neurons, respectively, and sigmoid activation functions. In order to train
the NN, we use 50 samples of the temporal coordinate as well as40× 40
samples of the spatial domain resulting in nv = 50× 40× 40 training
points in the domain interior, n0 = 40× 40 training points for the IC,
nb,i = 50× 40 training points for each BC, and finally nd = 50× 16
training points for the discrete approximation of the objective (6) at the
safe zone Ωd. We set w = [1, 1, 10]. Then, the unsupervised training
for the MTC problem (5) is performed using the AdamOptimizer
(see [10] for details). To validate the resulting optimal control inputs for
the robots, we solve the AD-PDE (1) for these inputs using an in-house
FE solver that we have developed using an explicit forward Euler

scheme and DIFFPACK libraries [38, Ch. 3.10]. We use a mesh with 50×
40× 40 nodes corresponding to the number of training points above.

Fig. 3 shows the evolution of the concentration at xd obtained
from the NN and FE solutions along with maximum and minimum
(worst case) concentration values across the safe zone according to
the FE solver. It can be seen that the concentration stays close to the
desired value cd = 0. The highest concentration levels in Ωd are more
than an order of magnitude smaller than the maximum concentration
c(T,xc) = 1, meaning that external concentration levels are effectively
invisible in the safe zone Ωd. Next, Fig. 4 shows the optimal release
rates a∗

j(t) and angular positions ϑ∗
j(t) = 2πξ∗j(t) as functions of

time. Note that the release rates in Fig. 4(a) decrease to negative
values in response to the growth of the concentration at the corner
xc of the boundary Γ3. This corresponds to robots acting as sinks
and collecting the extra chemical to maintain desired concentration
levels in Ωd. Referring to Fig. 4(b), the angular positions are adjusted
in response to the rotation of the velocity field u(t) so that the
safe zone Ωd is positioned between the robots. Not that since robot
2 is positioned downstream of the safe zone, for cloaking it relies
on diffusive transport, which is as strong as advection here. Finally,
Fig. 5 shows snapshots of the concentration field, given by the NN
approximation of the solution of the AD-PDE (1), at different time
instances. Note that the maximum concentration that occurs at corner
xc, grows up to t = 0.5T . After this time, the concentration field
evolves toward steady state and the variations become smaller. As a
result, the designed optimal controls also reach a steady state after
t = 0.5T , as is evident from Fig. 4. An animation of the optimal source
field and the corresponding concentration field is given in [39]. Also
an animation comparing the NN and FE solutions can be found in [40].
Note that the NN solution f(t,x) obtained by softly enforcing the PDE
constraint in (5), closely matches the FE solution f̂(t,x) for the final
optimal source field. Specifically, the L2-error between the solutions is
(
∫ T

0

∫
Ω
[f(t,x)− f̂(t,x)]2dx dt)0.5 = 1.02× 10−02.
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TABLE I
NUMBER OF TRAINING POINTS AND AVERAGED OBJECTIVE VALUES PER TRAINING POINT FOR THE TERMS IN OBJECTIVE (10)

Table I presents a comparative study of the performance of the
NN as a function of the number of trainable parameters n and the
number of training points. Particularly, it summarizes the individual
terms in the objective function (10). The first two cases correspond
to a MLP with two hidden layers with 10 and 20 neurons whereas
the last NN, used in the previous simulations, has three hidden layers
with 10, 20, and 30 neurons. The third column in this table reports
the deviation of the predicted concentration from the desired value
cd = 0 in the safe zone, given by objective (6). Comparing the first two
cases, we observe that for a fixed architecture and number of trainable
parametersn, the normalized objective values get smaller as the number
of training points increases. Moreover, comparing the last two cases,
it can be seen that as the number of trainable parameters n increases,
the capacity of the NN increases, which amounts to smaller objective
values.

Note that based on the above simulations, a simple feed-forward
MLP-NN with only n = 921 trainable parameters continuously cap-
tures the 3-D concentration field across space-time. Solving the same
problem using the FE method would require a mesh with nv =
50× 40× 40 = 8× 104 nodes and a separate interpolation for points
outside the mesh. Note also that the proposed NN solution to the MTC
problem can easily account for additional objectives and constraints,
such as collision avoidance, as we already demonstrated, temporally
and spatially varying concentrations in the safe zone, minimization of
control effort, e.g., traveled distance or release amount, parametric PDE
input-data, and desired ranges, rather than exact values, of concentration
in the safe zone. For instance, the integrand in objective (6) can be
replaced with

w̄1 max [c(t,x)− cd(t,x), 0]
2 + w̄2 max [cd(t,x)− c(t,x), 0]2

where w̄1 and w̄2 are weights separately penalizing concentrations
above and below the desired value, respectively. If concentrations below
cd are desirable, we set w̄2 = 0. Note that by setting w̄1 = w̄2 = 1, we
recover the least-square objective (6).

V. CONCLUSION

In this article, we considered the MTC problem using teams of
mobile robots that carried sources that counteract the release of a
chemical in the environment. The goal of the robots was to steer the mass
flux around a desired region, also called a safe zone, so that it remains
unaffected by the external concentration. We utilized the AD-PDE to
mathematically model the transport of a chemical in the domain and
formulated the problem of planning the paths and release rates of the
robots as a PDE-constrained optimization. We proposed a new approach
to this problem using a NN to approximate the solution of the AD-PDE.
Particularly, we defined a novel loss function based on the variational
form of the PDE that facilitated the training process by lowering the
differentiation order and using the integral form of the PDE as opposed
to its differential form. Given this loss function, we reformulated the

planning problem as an unsupervised model-based learning problem.
We presented simulation results that demonstrated the ability of our
method to solve the desired MTC problem.
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