
Bit-Error Aware Quantization for DCT-based Lossy
Compression

Jialing Zhang1 Jiaxi Chen1 Aekyeung Moon2 Xiaoyan Zhuo1 Seung Woo Son1

1University of Massachusetts Lowell 2ETRI
Lowell, MA, USA Daegu, South Korea

Abstract—Scientific simulations run by high-performance com-
puting (HPC) systems produce a large amount of data, which
causes an extreme I/O bottleneck and a huge storage burden.
Applying compression techniques can mitigate such overheads
through reducing the data size. Unlike traditional lossless com-
pressions, error-controlled lossy compressions, such as SZ, ZFP,
and DCTZ, designed for scientists who demand not only high
compression ratios but also a guarantee of certain degree
of precision, is coming into prominence. While rate-distortion
efficiency of recent lossy compressors, especially the DCT-based
one, is promising due to its high-compression encoding, the
overall coding architecture is still conservative, necessitating the
quantization that strikes a balance between different encoding
possibilities and varying rate-distortions. In this paper, we aim
to improve the performance of DCT-based compressor, namely
DCTZ, by optimizing the quantization model and encoding
mechanism. Specifically, we propose a bit-efficient quantizer
based on the DCTZ framework, develop a unique ordering
mechanism based on the quantization table, and extend the
encoding index. We evaluate the performance of our optimized
DCTZ in terms of rate-distortion using real-world HPC datasets.
Our experimental evaluations demonstrate that, on average, our
proposed approach can improve the compression ratio of the
original DCTZ by 1.38x. Moreover, combined with the extended
encoding mechanism, the optimized DCTZ shows a competitive
performance with state-of-the-art lossy compressors, SZ and ZFP.

Index Terms—Lossy Compression, DCT, Quantization Table,
Rate-Distortion.

I. INTRODUCTION

High-performance computing (HPC) systems are used in
various domains for scientists to validate theories and in-
vestigate new phenomena in the scale, which was not con-
ceivable in the past. Terabytes or even petabytes of analysis
data would be easily produced by this process. For instance,
climate scientists need to run large ensembles of high-fidelity
simulations, estimating one ensemble member per simulated
day may generate 260 TB of data every 16 seconds across
the ensemble [1], [2]. Storing or transferring such big datasets
may cause a huge overhead of storage space and I/O time.
Applying compression techniques can reduce the size of data,
thereby mitigating such overhead [3]–[6].

Lossy compression techniques, such as JPEG compres-
sion [7], are widely used for visualization data (i.e., image
and video) as human eyes are less sensitive to minor changes
(i.e., high frequencies) [8]. Recently, the consideration of lossy
compression for scientific data has been increased. One main
reason is that data need to be considerably compressed before
transferring to the storage system because of the slow increase

in storage bandwidth compared with other components in
supercomputers [9].

While conventional lossy compressions, such as IS-
ABELA [10] and FPZIP [11], are less capable of bounding
errors, error-controlled lossy compression which is designed
for domain scientists who have high compression precision
demands, is coming into prominence. SZ [2], [12], [13] and
ZFP [6] are two well-known error controllable lossy com-
pressors designed for scientific data. SZ is a prediction-based
compressor that has been widely evaluated in the scientific
data compression community [14]–[16], showing a promising
compression performance. However, the speed of SZ decreases
largely when the error bound is tightened. ZFP is a transform-
based compressor that combines a decorrelation scheme with
an embedded coding scheme. ZFP is fast but hard to fix the
compression ratio using its error-bound mode.

Motivated by image/video compression algorithms, a dis-
crete cosine transform (DCT) based lossy compressor, namely
DCTZ [17], [18], that combines two specific task-oriented
quantizers, is designed for scientific data. DCTZ can achieve
high compression ratios while guaranteeing specified error
bounds, showing a comparable performance with SZ and ZFP.
However, several areas for potential improvement exist as the
quantization approach employed in DCTZ is still conservative
(error introduced is much lower than the error bound) com-
pared with ZFP [15] (also considered as a conservative lossy
compressor).

In this work, we focus on the optimization of DCTZ.
We first exploit the potential improvements in DCTZ by
understanding its compression framework as well as its quan-
tization and encoding process. We then present our proposed
approach, namely DCTZ+. Specifically, we design a bit-
efficient quantizer that employs normalization of outbound
high-frequency coefficients into small areas close to global
bound. Moreover, we develop a unique ordering mechanism
based on the quantization table to improve redundancy. We
also extend the encoding index from 1-byte to 2-byte to
further improve the compression ratio. To demonstrate the
effectiveness of our optimization, we experiment on MIT
Supercloud [19] using real-world scientific datasets, and com-
pare the performance of DCTZ+ with state-of-the-art lossy
compressors, SZ and ZFP. Our experimental results show that
our proposed mechanisms can improve the compression ratio
of DCTZ by 1.38x on average, and shows a very competitive
performance with SZ and ZFP in terms of rate-distortion.

Our implementation of the proposed approach is available at
https://github.com/swson/DCTZ.

II. ANALYSIS OF DCT-BASED LOSSY COMPRESSOR:
DCTZ

A. DCTZ compression framework

State-of-the-art lossy compressors used for scientific data
often apply strategies such as prediction, binary representa-
tion, data transform, energy compaction representation, vector
quantization, and encoding. In DCTZ, an effective data trans-
form, an error-controlled quantization, and an efficient encod-
ing are implemented. The procedure is shown in Figure 1.
DCTZ performs compression based on the following steps:
• Apply block decomposition to decorrelate data content.

The input data is partitioned into small blocks with 64
datapoints (i.e., 8× 8 in 2D and 4× 4× 4 in 3D).

• Adopt a discrete cosine transform (specially DCT-II) on
the block-based data for effective representation [20]–
[22]. The first coefficient in each block is defined as DC
coefficient and the remaining ones are AC coefficients.

• Quantize AC coefficients with either an error-controlled
Quantizer-EC (EC) to guarantee maximum relative errors
within specified bounds or a quantization table based
Quantizer-QT (QT) to achieve high compression ratios
within acceptable error rates.

• Use a customized encoding model to increase redundan-
cies in bin indices and exploit lossless compressor (e.g.,
zlib [23]) for further compression.

B. Quantization and Encoding Process in DCTZ

The quantization step is often used to compress a range
of values to a single quantum value [24]. Rounding and
truncation used in image compression (e.g., JPEG) are ex-
emplars of quantization, but they introduce large errors which
are hard to control. In DCTZ, as the DC coefficients (low
frequency) are saved as is to preserve the most informative
data, the quantization step thus plays an important role for
AC coefficients (high frequency) on compression ratios and
error control.

DCTZ has an adaptive quantization that includes two quan-
tizers. EC is an error-controlled quantizer where the difference
between an AC coefficient and its quantized value is strictly
limited within a specified error bound. Specifically, EC is
a uniform quantizer where AC coefficients that fall into the
global bound (the range of quantization area) will be saved
as its corresponding bin center value, and its represented bin
index will be mapped to an integer with a value from 0 to 255
(1-byte unsigned char). The global bound (GB) is determined
by the number of bins (B) and the specified error bound (P),
which is defined as [−P ∗ B,P ∗ B]. This global bound is
calculated once and fixed during the compression process.

To achieve higher compression ratios, DCTZ provides QT
(an aggressive approach based on EC). Unlike EC, where
the outbound (outside the global bound) AC coefficients will
be saved as is, these coefficients in QT will be divided by
a corresponding quantization table (qt). The qt is generated

Fig. 1: Compression procedure (DCTZ with Quantizer-QT as
an example, decompression is in reverse order).

Fig. 2: The procedure of generating quantization table.

0

0.2

0.4

0.6

0.8

1

C
D

F

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 11

Relative Compression Error 10
-5

10
0

10
1

10
2

10
3

10
4

10
5

C
o

u
n

ts

Fig. 3: The distribution of relative compression errors, with
the error bound of 1E-5. The primary y-axis (left) shows
the histogram and the secondary y-axis (right) shows the
cumulative distribution function (CDF).

by finding the maximum value of the nth AC coefficient
over all blocks as shown in Figure 2. This way, some of the
AC coefficients will be mapped into the global bound and
represented by the bin index as EC does. For the remaining
AC coefficients that are still outside the global bound, we save
them as is. As a result, QT can achieve higher compression
ratios than EC but introduces extra compression errors.

However, due to the transform property of DCT [17], even
with QT, DCTZ is still conservative regarding to the accuracy
requirement. Figure 3 shows the distribution of compression
error (relative compression error between the original data
and decompressed data). As shown in the figure, most of the
compression errors are smaller than 4E-6, which is about 2.5x
smaller than the specified error bound of 1E-5. Also, from
the cumulative distribution function (CDF), we can see that

2

0 50 100 150 200 255

bin index

10
0

10
1

10
2

10
3

10
4

10
5

C
o

u
n

ts

0

0.2

0.4

0.6

0.8

1

C
D

F

Fig. 4: The distribution of bin index, with error bounds of 1E-
3 (blue line) and 1E-5 (red line), respectively. The primary
y-axis shows the histogram and the secondary y-axis shows
the cumulative distribution function (CDF).

most compression errors are centered around zero, showing a
potential improvement in the quantization.

Moreover, we investigate the potential improvements in the
encoding mechanism of DCTZ. Figure 4 presents the distribu-
tion of the bin index. For each outbound AC coefficient, we as-
sign it with the index of 255; for each inbound one, we assign
it using equal-width-binning. As shown in the figure, when
the error bound gets tight, the number of coefficients falling
within the global bound gets reduced, so do the compression
ratios. Therefore, increasing extra redundancy is needed in the
encoding mechanism to improve the compression ratio further.

III. PROPOSED APPROACH

In this section, we propose our optimized quantization
model as well as ordering and extended encoding mechanism
to improve the performance of DCTZ, particularly under QT.

A. Proposed Quantization Model

Unlike the original DCTZ with QT that applied the quanti-
zation table (qt) to map the outbound AC coefficients into
global bound (as shown in Figure 5a), we develop a bit-
efficient quantizer that maps those coefficients into small areas
close to the global bound. We achieve this by including a
normalization process after the quantization table step.

Specifically, we first divide the outbound AC coefficients by
qt so that they will be mapped into the area of [-1, 0) or (0,
1]. Then we multiply them by the specified error bound (P),
thus ensuring these outbound AC coefficients are still within
[-P , 0) or (0, P]. If the mapped value falls in the area [-
P , 0), we increment it by the lower global bound (GB min);
otherwise, we increment it by upper global bound (GB max).
As a result, these outbound AC coefficients will be mapped
into two small areas, as shown in Figure 5b. The detailed
algorithm is illustrated in Algorithm 1. Figure 5 shows the
distribution of the DCT block coefficient. The x-axis range is
from 1 to 64, which represents the index of the 64 coefficients,
whereas the y-axis represents each DCT coefficient value.

Next, we employ zlib on these outbound coefficients for
further compression. Since they are mapped from a relatively
large range into a small one closer to the global bound, it
makes zlib much easier to compress as the normalization

1 8 16 24 32 40 48 56 64

block coefficient

-2

0

2

4

6

8

c
o

e
ff

ic
ie

n
t

v
a

lu
e

(a)

1 8 16 24 32 40 48 56 64

block coefficient

-2

-1

0

1

2

c
o

e
ff

ic
ie

n
t

v
a

lu
e

(b)

Fig. 5: An example of the distribution of DCT block coef-
ficients (after applying transform with block size of 64) and
its compression procedure in (a) original DCTZ with QT. (b)
proposed DCTZ with QT.

Algorithm 1 The normalization process applied to the out-
bound AC coefficients after divided by quantization table
Input: BA: Outbound AC block coefficients. qt: quantization table. M : the number

of blocks. N : the number of block coefficient in each block, also the number of qt’s
coefficient. GB: the global bound. P : a user-defined error bound.

Output: BA′: approximated coefficients.
for n = 1, 2, . . . , N do

for m = 1, 2, . . . ,M do
if BAn,m > GBmax then

BAn,m′ ← BAn,m
qtn,1 ∗ P + GBmax

else if BAn,m < GBmin then
BAn,m′ ← BAn,m

qtn,1 ∗ P + GBmin

end if
end for

end for

Algorithm 2 The algorithm of bin index ordering.
Input: C: bin index. qt: quantization table. M : the number of blocks. N : the number

of block coefficient in each block.
Output: ax: array index of the qt. SC: sorted bin index based on ax′. C′: bin index

after ordering
ax←sort(qt)
for m = 0, 1, . . . ,M − 1 do

for n = 1, 2, . . . , N do
ax′mN+n ← axn + mN

end for
end for
SC←sort(C) based on ax′

for n = 1, 2, . . . , N do
for m = 0, 1, . . . ,M − 1 do

C′(n−1)M+m+1 ← SCmN+n

end for
end for

increases redundancy in the AC coefficients. Note that this
approach would not introduce any extra compression error as
no additional coefficient will be mapped into the global bound
and saved as its approximated value.

3

B. Ordering Mechanism

To further improve the compression ratio, in particular, the
bin indices, we develop a unique ordering step in the QT
encoding mechanism. We take advantage of the consistent
distribution pattern exhibited among block coefficients in the
same dataset [17]. In other words, we order the block index
based on the descending order of qt before applying to zlib.
By doing this, we cluster indexes that are close together to
increase the redundancy. The detailed algorithm is illustrated
in Algorithm 2. Since the size of the block is fixed, the
theoretical complexity of the ordering step is O(n), which is
faster than sorting the whole block index with the complexity
of O(nlogn).

C. Extended Data Encoding

From Section II-B, we observe that the number of inbound
AC coefficients impacts the compression ratios of DCTZ, and
the size of the global bound is determined by the number of bin
indices and the user-defined error bound. Therefore, allocating
more bin indices will result in a larger global bound, thus
potentially a higher compression ratio. In the original DCTZ,
we use 1-byte (i.e., unsigned char) to represent a bin index
such that the range of the bin index is from 0 to 255. For
example, if the error bound is set to 1E-3, the global bound
is [-0.255,0.255]. If we use 2-byte (i.e., unsigned short) to
represent a bin index, the range of the bin index would be
from 0 to 65535, and the global bound would be [-65.535,
65.535] when the error bound is 1E-3. Since bin indices are all
compressed using zlib in the optimized DCTZ, we employ the
2-byte bin index option to improve compression ratios further.
We note that extending to 2-byte is sufficient as the majority
of AC coefficients are covered by the increased global bound.

IV. EXPERIMENTAL EVALUATION

A. Experiment Setup

We conduct our experiments on MIT Supercloud with two
Intel Xeon Gold 6248 processors and a total of 384 GB of
memory. We compare our DCTZ+ (optimized DCTZ) with
DCTZ (version 0.1) as well as two state-of-the-art methods, SZ
(version 2.0) and ZFP (version 0.5). We use Z-checker [25], a
framework for assessing lossy compression of scientific data,
to evaluate the performances. We analyze our compression
approach using the following schemes:
• DCTZ QT: DCTZ-0.1 with Quantizer-QT.
• DCTZ QT+ & DCTZ QT+ 2bytes: optimized DCTZ

with proposed bit-efficient quantizer (QT based) using 1-
byte and 2-byte indexing, respectively.

B. Datasets and Metrics

We perform the evaluation with six real-world scien-
tific datasets (all in double-precision floating-point) from
three HPC code packages: FLASH [26], CMIP5 [27], and
Nek5000 [28], as summarized in Table I.

The quality of lossy compression approaches is measured
with several metrics: Compression Ratio (CR), which is de-
fined as the original data size divided by the compressed

TABLE I: Dataset and its characteristics.

Code Dataset Value Range Avg Value Dimension

FLASH sedov 4.239 1.000 8×8×485×154
cellular 2.648E7 2.208E7 8×8×512×295

CMIP5 rlds 361.230 285.884 144×90×100
mrsos 44.500 7.692 144×90×100

Nek5000 eddy 4.835 3.237E−8 256×8×8×1×999
vortex 0.055 0.002 140×8×8×8×99

Fig. 6: The performance improvement of DCTZ QT+ com-
pared with original DCTZ QT in terms of compression ratio,
with error bounds of 1E-3, 1E-4, and 1E-5.

data size; Peak Signal-to-Noise Ratio (PSNR), which mea-
sures the overall distortion between the original data and the
decompressed data (expressed in terms of logarithmic decibel
scale); Bit-rate, which refers to the average number of bits
used to represent a data point after the compression. For a fair
comparison, we set the error bound at 1E-3, 1E-4, and 1E-
5. Here, the error bound refers to the maximum relative error
(calculated as the maximum absolute error divided by the value
range of the data). To assess the overall compression quality,
we use rate-distortion (PSNR vs. bit-rate), a critical metric
used for evaluating the quality of compressed data.

C. Evaluation Results

a) Compression Ratio & Error Bound: Figure 6 shows
the improvements in compression ratio (CR) brought by the
proposed approach (DCTZ QT+) compared with the original
DCTZ QT, with error bounds of 1E-3, 1E-4, and 1E-5. As
shown in the figure, DCTZ QT+ shows a better compres-
sion ratios than DCTZ QT on evaluated datasets, except
for one case: vortex with error bound of 1E-3. Especially
for cellular, the CRs of DCTZ QT+ are 119%, 201%, and
338%, respectively, higher than DCTZ QT. On average, the
compression ratio of our proposed approach is 138% higher
than the original one. We also observe an overall trend that
DCTZ QT+ generates improved CR with stricter error bound
on all six evaluated datasets. This demonstrates that our bit-
efficient quantizer reduces those save-as-is coefficients and
improves the space efficiency of bin indices on outbound AC
coefficients.

We next present the compression ratios of SZ, ZFP, and
DCTZ QT+, as shown in Figure 7. We first compare our
compressor with SZ. As shown in the figure, DCTZ QT+

shows the highest CRs on cellular for all three error bounds we

4

(a) error bound=1E-3

(b) error bound=1E-4

(c) error bound=1E-5

Fig. 7: The compression ratios for SZ, ZFP and DCTZ QT+ with the error bounds of (a) 1E-3, (b) 1E-4 and (c) 1E-5.

(a) sedov

(b) cellular

(c) rlds

(d) mrsos

(e) eddy

(f) vortex

Fig. 8: Comparison of rate-distortion using different lossy compression methods on selected datasets with different error bounds.

evaluated. When error bound is tight (e.g., 1E-5), DCTZ QT+

achieves higher CRs than SZ, while SZ shows better per-
formance when error bound is relatively loose (e.g., 1E-3).
We then compare our approach with ZFP. We observe that
DCTZ QT+ achieves higher CRs than ZFP on five datasets
(sedov, cellular, rlds, eddy, and vortex) when error bound is
set to 1E-3, while ZFP shows higher CRs on datasets rlds,
mrsos and eddy when error bound is set to 1E-4 and 1E-5.

b) Rate Distortion & Indexing: To illustrate how our
quantization and extended indexing mechanism would af-
fect the performance of our algorithm, we compare over-
all compression qualities of SZ, ZFP, DCTZ QT+, and
DCTZ QT+ 2bytes. Figure 8 presents the rate-distortion of
different compressors. From the figure, we can observe that
higher PSNR usually needs a higher bit-rate, thus the curve
on the upper left part with a higher positive slope is better than
the ones on the lower right with a lower positive slope. We can

see that DCTZ QT+ 2bytes outperforms DCTZ QT+ (1-byte
by default) on most evaluated datasets, showing a competitive
performance, in particular, on sedov, cellular and vortex when
comparing with SZ, and outperforms ZFP. As discussed in
Section III-C, increasing the number of bin indices will enlarge
the global bound. Hence, mapping more AC coefficients into
the global bound results in a higher compression ratio (i.e.,
lower bit-rate). We also notice that different datasets show
different compression qualities, which indicates that the design
of lossy compression largely depends on the characteristics of
the dataset as well as the error bound.

Table II compares the percentage of AC coefficient mapped
into the global bound using 1-byte and 2-byte for bin in-
dices. As we can see, more AC coefficients are mapped
into the bound with 2-byte indexing, which explains why
DCTZ QT+ 2bytes outperforms DCTZ QT+ in terms of com-
pression ratio. Since we use the bin center value to represent

5

TABLE II: The percentage (%) of AC coefficient that mapped into the global bound.
Indexing sedov cellular rlds mrsos eddy vortex

1E−3 1E−4 1E−5 1E−3 1E−4 1E−5 1E−3 1E−4 1E−5 1E−3 1E−4 1E−5 1E−3 1E−4 1E−5 1E−3 1E−4 1E−5
1-byte 86.3 67.9 56.5 95.9 82.8 59.8 84.6 31.6 6.7 57.3 29.2 25.4 74.7 30.3 7.0 81.2 53.3 25.1
2-byte 100 98.8 93.4 100 98.4 97.5 100 98.4 93.7 100 98.9 80.5 100 99.6 89.8 100 99.6 91.4

(a) error bound=1E-3

(b) error bound=1E-5

Fig. 9: Comparison of compression rate with error bounds of
1E-3 and 1E-5.

AC coefficient during decompression, extra compression error
would be introduced in 2-byte indexing. Thus, there is a trade-
off between bin indexing selection and achievable compression
ratios.

c) Compression Rate & Error Bound: Figure 9 presents
the average compression rate (excluding disk I/O) on
all evaluated datasets using SZ, ZFP, DCTZ QT+, and
DCTZ QT+ 2bytes, with error bounds of 1E-3 and 1E-5. ZFP
is overall the fastest due to its efficient mechanism (transform-
based and fixed-rate representation). We also observe that our
approach outperforms SZ when error bound is set to 1E-5,
while SZ is faster than our approach when error bound is set
to 1E-3. Based on all evaluated metrics so far, we can conclude
that DCTZ QT+ outperforms SZ in terms of compression ratio
and compression rate with a tight error bound (e.g., 1E-5)
on evaluated datasets. SZ, on the other hand, shows better
performance with a less tight error bound (e.g., 1E-3).

V. RELATED WORK

Applying lossy compression on scientific data (single and
double-precision floating-point numbers) is becoming popular.
SZ [2], [12], [13] is a prediction-based compressor that relies

on the prediction for the decorrelation stage. For each value,
SZ quantizes the difference between the predicted and actual
value using a linear scale, and each difference is strictly
limited in a user-set error bound. ZFP [6] is a transform-
based compressor that combines a decorrelation scheme with
an embedded coding scheme. It fixes the compression rate
by truncating the precision of transformed coefficients based
on the error bound. With the same error bound setting, ZFP
is usually faster than SZ (about 3x more), while SZ often
has more than 2x higher compression ratios than those of
ZFP [29]. DCTZ [17], [18], [30] is a DCT-based lossy com-
pressor that is designed to obtain high compression quality in
both speed and compression ratios. It can seamlessly work for
checkpoint/restart on evaluated application but is conservative
on error control. MGARD [31] is a multigrid based error-
controlled lossy compressor that provides different norms to
control data distortion. It is particularly applicable to the case
of turbulence modeling and has guaranteed and computable
bounds on the errors generated by the reduction. Unlike the
other error controllable compressors, FRaZ [32] is a lossy
compression framework that provides high-fidelity fixed-ratio
for scientific data. It can identify the optimum error setting of
selected lossy compressors. Although slower than fixed error
compression, it has lower runtime for very large scientific
floating-point datasets.

VI. CONCLUSION

In this work, we improve the performance of DCT-based
compressor by optimizing the quantization model as well
as the encoding process. We design a bit-efficient quantizer
based on the framework of DCTZ, develop a unique ordering
mechanism based on the quantization table, and extend the
encoding index. We conduct the experiment using real-world
scientific datasets and compare the performance of optimized
DCTZ (DCTZ+) with state-of-the-art lossy compressors, SZ
and ZFP. Our experiments show that DCTZ+ can improve
the compression ratio of DCTZ by 1.38x on average, and the
extended bin indexing combined with the proposed quantizer
shows a very competitive performance with SZ and ZFP,
especially when error bound is tight.

In our future work, we plan to improve DCTZ with dynamic
bin indexing for different datasets. We also plan to apply non-
uniform quantizer rather than equal-width binning to make the
reconstructed data more accurate.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No.1751143. The authors
acknowledge the MIT SuperCloud and Lincoln Laboratory
Supercomputing Center for providing (HPC, database, consul-
tation) resources that have contributed to the research results
reported within this paper.

6

REFERENCES

[1] I. Foster, “Computing just what you need: Online data analysis and re-
duction at extreme scales,” in 2017 IEEE 24th International Conference
on High Performance Computing (HiPC), 2017, pp. 306–306.

[2] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data (Big Data), 2018, pp. 438–447.

[3] X. Ni, T. Islam, K. Mohror, A. Moody, and L. V. Kale, “Lossy
Compression for Checkpointing: Fallible or Feasible?” in Proceedings
of the International Conference For High Performance Computing,
Networking, Storage and Analysis (SC), 2014.

[4] S. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-K. Liao, and A. Choud-
hary, “Data compression for the exascale computing era - survey,”
Supercomputing Frontiers and Innovations, vol. 1, no. 2, pp. 76–88,
January 2014.

[5] D. Ibtesham, D. Arnold, K. B. Ferreira, and P. G. Bridges, On the
Viability of Checkpoint Compression for Extreme Scale Fault Tolerance.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 302–311.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-29740-3 34

[6] P. Lindstrom, “Fixed-Rate Compressed Floating-Point Arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, Dec 2014.

[7] D. Taubman and M. Marcellin, JPEG2000 Image Compression Fun-
damentals, Standards and Practice. Springer Publishing Company,
Incorporated, 2013.

[8] S. Wahlstrom, “Optimising JPEG image compression by identifying
image characteristics,” Master’s thesis, VU University Amsterdam and
Mälardalens University, 2015.

[9] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao,
C. H. Yoon, X.-C. Wu, Y. Alexeev, and F. T. Chong, “Use
cases of lossy compression for floating-point data in scientific data
sets,” The International Journal of High Performance Computing
Applications, vol. 33, no. 6, pp. 1201–1220, 2019. [Online]. Available:
https://doi.org/10.1177/1094342019853336

[10] S. Lakshminarasimhan, N. Shah, S. Ethier, S.-H. Ku, C. S. Chang,
S. Klasky, R. Latham, R. B. Ross, and N. F. Samatova, “Isabela
for effective in situ compression of scientific data,” Concurrency and
Computation: Practice and Experience, vol. 25, pp. 524–540, 2013.

[11] P. Lindstrom and M. Isenburg, “Fast and Efficient Compression of
Floating-Point Data,” IEEE Trans. Vis. Comput. Graph., vol. 12, no. 5,
pp. 1245–1250, 2006.

[12] S. Di and F. Cappello, “Fast Error-Bounded Lossy HPC Data Com-
pression with SZ,” in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2016, pp. 730–739.

[13] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly Improving
Lossy Compression for Scientific Data Sets Based on Multidimensional
Prediction and Error-Controlled Quantization,” in Proceedings of the
31th IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE Computer Society, 2017.

[14] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov 2019.
[Online]. Available: http://dx.doi.org/10.1145/3295500.3356155

[15] P. Lindstrom, “Error distributions of lossy floating-point compressors,”
10 2017.

[16] A. H. Baker, H. Xu, D. M. Hammerling, S. Li, and J. P. Clyne, “Toward
a multi-method approach: Lossy data compression for climate simulation
data,” in High Performance Computing, J. M. Kunkel, R. Yokota,
M. Taufer, and J. Shalf, Eds. Cham: Springer International Publishing,
2017, pp. 30–42.

[17] J. Zhang, X. Zhuo, A. Moon, H. Liu, and S. W. Son, “Efficient Encoding
and Reconstruction of HPC Datasets for Checkpoint/Restart,” in 35th
International Conference on Massive Storage Systems and Technology,
2019.

[18] J. Chen, “Optimizing DCT-based Lossy Compression for Scientific
Datasets,” Master’s thesis, University of Massachusetts Lowell, 2020.

[19] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor,
B. Bergeron, V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein,
L. Milechin, J. S. Mullen, A. Prout, A. Rosa, C. Yee, and P. Michaleas,
“Interactive supercomputing on 40, 000 cores for machine learning and

data analysis,” CoRR, vol. abs/1807.07814, 2018. [Online]. Available:
http://arxiv.org/abs/1807.07814

[20] J. Zhang, A. Moon, X. Zhuo, and S. W. Son, “Towards improving
rate-distortion performance of transform-based lossy compression for
hpc datasets,” in 2019 IEEE High Performance Extreme Computing
Conference (HPEC), 2019, pp. 1–7.

[21] A. Moon, J. Kim, J. Zhang, and S. W. Son, “Lossy compression on iot
big data by exploiting spatiotemporal correlation,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), Sep. 2017, pp.
1–7.

[22] X. Cai and J. S. Lim, “Algorithms for transform selection in
multiple-transform video compression,” Trans. Img. Proc., vol. 22,
no. 12, p. 5395–5407, Dec. 2013. [Online]. Available: https:
//doi.org/10.1109/TIP.2013.2284073

[23] M. A. Greg Roelofs, “zlib,” https://github.com/madler/zlib, 2017.
[24] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.

USA: Kluwer Academic Publishers, 1991.
[25] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A

framework for assessing lossy compression of scientific data,” CoRR,
vol. abs/1707.09320, 2017. [Online]. Available: http://arxiv.org/abs/
1707.09320

[26] Flash Center for Computational Science, “FLASH User’s Guide: Version
4.4,” 2016.

[27] G. A. Meehl, C. Covey, B. McAvaney, M. Latif, and R. J. Stouffer,
“Overview of the Coupled Model Intercomparison Project,” Bulletin of
the American Meteorological Society, vol. 86, no. 1, pp. 89–93, 2005.

[28] P. Fischer, J. Lottes, S. Kerkemeier, O. Marin, K. Heisey, A. Obabko,
E. Merzari, and Y. Peet, “Nek5000 User Documentation,” Argonne
National Laboratory, Tech. Rep. ANL/MCS-TM-351, 2015.

[29] X. Zou, T. Lu, W. Xia, X. Wang, W. Zhang, H. Zhang, S. Di, D. Tao,
and F. Cappello, “Performance optimization for relative-error-bounded
lossy compression on scientific data,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 7, pp. 1665–1680, 2020.

[30] “DCTZ,” https://github.com/swson/DCTZ, 2019.
[31] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel

techniques for compression and reduction of scientific data—the un-
structured case,” in preparation, dec 2018.

[32] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “Fraz: A generic
high-fidelity fixed-ratio lossy compression framework for scientific
floating-point data,” 2020.

7

