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ABSTRACT

Mobile Augmented Reality (AR), which overlays digital content on

the real-world scenes surrounding a user, is bringing immersive

interactive experiences where the real and virtual worlds are tightly

coupled. To enable seamless and precise AR experiences, an image

recognition system that can accurately recognize the object in the

camera view with low system latency is required. However, due

to the pervasiveness and severity of image distortions, an effec-

tive and robust image recognition solution for mobile AR is still

elusive. In this paper, we present CollabAR, an edge-assisted sys-

tem that provides distortion-tolerant image recognition for mobile

AR with imperceptible system latency. CollabAR incorporates both

distortion-tolerant and collaborative image recognition modules in

its design. The former enables distortion-adaptive image recogni-

tion to improve the robustness against image distortions, while the

latter exploits the ‘spatial-temporal’ correlation among mobile AR

users to improve recognition accuracy. We implement CollabAR on

four different commodity devices, and evaluate its performance on

two multi-view image datasets. Our evaluation demonstrates that

CollabAR achieves over 96% recognition accuracy for images with

severe distortions, while reducing the end-to-end system latency

to as low as 17.8ms for commodity mobile devices.
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•Computingmethodologies→Distributed algorithms;Mixed

/ augmented reality.

KEYWORDS
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1 INTRODUCTION

Mobile augmented reality (AR), which overlays digital content with

the real world around a user, has recently jumped from the pages

of science fiction novels into the hands of consumers. To enable

seamless contextual AR experience, an effective image recognition

system that can accurately recognize objects in the camera view

of the mobile device with imperceptible latency is required [1, 2].

While this may come across as a solved problem given the recent

advancements in deep neural networks (DNNs) [3, 4] and mobile

offloading [1, 5, 6], there are three practical aspects that have been

largely overlooked in existing solutions.

First, in real-world mobile AR scenarios, a large proportion of

images taken by the smartphone or the head-mounted AR device

contains distortions. For instance, images frequently contain mo-

tion blur caused by the motion of the user [1, 7]. Gaussian blur

appears when the camera is de-focusing, or is used in an underwa-

ter AR scenario [8]. Gaussian white noise is also inevitable in low

illumination conditions [9]. Indeed, using two different commodity

mobile AR devices, our measurement study (Section 3.3) indicates

that over 70% of the images can be corrupted by distortions in different

practical scenarios. Given the high distortion proportion, simply

filtering out the distorted images, as has been suggested in prior

work [1, 2, 10], can hardly solve the problem.

Second, for image recognition, applying DNNs trained on large

scale datasets, e.g., ImageNet [11] and Caltech-256 [12], directly

to mobile AR images that contain severe multiple distortions is

difficult, and often results in dramatic performance degradation [9,

13, 14]. This deficiency results from the domain adaptation problem,

where distorted images fail to share the same feature distribution

with the clear training images [13, 15, 16]. Indeed, when testing

distorted images with a pre-trained MobileNetV2 [4] network on

the Caltech-256 dataset, we observe that even a small amount of

distortion in the images can significantly affect the recognition

accuracy (Section 3.2). Although deblurring methods and spatial

filters [17] can be used to reduce distortions, they also remove the

fine-scaled image details that are useful for image recognition.

Lastly, to achieve imperceptible recognition latency for resource-

constrained mobile AR devices, a number of works have explored

computation offloading [1, 5, 18] and approximate computation

reuse [6, 19] to reduce the system overhead. Although the state-of-

the-art solutions have reduced the end-to-end system latency to

below 33ms [5, 18], such performance is achieved in distortion-free

or distortion-modest environments. The challenge in mitigating

the trade-off between recognition accuracy and system latency for

mobile AR with severe multiple distortions has not been addressed.

To fill this the gap, we present CollabAR, an edge-assisted Col-

laborative image recognition framework for mobile Augmented

Reality. Due to recent advances in AR development platforms, AR

applications have become accessible on a wide range of mobile de-

vices. We have seen many dedicated AR devices, such as Microsoft

HoloLens [20] and Magic Leap [21], as well as Google ARCore [22]

and Apple ARKit [23] SDKs that work on a wide range of mobile

phones and tablets. The pervasive deployment of mobile AR will

offer numerous opportunities for multi-user collaboration [10, 24].

Moreover, mobile users that are in close proximity usually exhibit

301

2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

978-1-7281-5497-8/20/$31.00 ©2020 IEEE
DOI 10.1109/IPSN48710.2020.00-26

Authorized licensed use limited to: Duke University. Downloaded on September 07,2020 at 16:38:28 UTC from IEEE Xplore.  Restrictions apply. 



a strong correlation in both device usage and spatial-temporal con-

text [25]. The requested image recognition tasks are usually cor-

related temporally or spatially. Thus, unlike conventional image

recognition systems where individual users independently com-

plete their tasks to recognize the same object [1, 5, 18], CollabAR

embraces the concept of collaborative image recognition in its design,

and exploits the temporally and spatially correlated images captured

by the users to improve the image recognition accuracy.

Bringing this high-level concept into a holistic system requires

overcoming several challenges. First, we need to address the domain

adaptation problem [15] caused by the image distortions. As DNNs

can adapt to a particular distortion type, but not multiple types at

the same time [9, 15], we need to adaptively select a DNN that has

been fine-tuned to recognize a specific type of distorted images

in runtime. We introduce the distortion-tolerant image recognizer

which incorporates the image distortion classifier and a set of dedi-

cated recognition experts. CollabAR employs the image distortion

classifier to identify the most significant distortion contained in

the image, and triggers one of the dedicated recognition experts to

handle the distorted image. This distortion-adaptive selection of a

recognizer ensures a lower feature domain mismatch between the

image and the DNN, and a better robustness against distortions.

Second, to enable collaborative image recognition, we need to

identify a set of spatially and temporally correlated images that con-

tain the same object. Prior works rely on image feature vectors [19]

or feature maps [6] to identify temporally correlated images (e.g.,

continuous frames in a video). However, image features are vulner-

able to distortions, and result in high lookup errors in practical AR

scenarios. CollabAR introduces the anchor-based pose estimation

and the spatial-temporal image lookup module to efficiently identify

correlated images.

Third, as the correlated images suffer from various distortions

with different severity levels, they lead to heterogeneity in the recog-

nition confidence and accuracy. Conventional multi-view image

recognition systems [26, 27] lack a reliable metric to differentiate

the heterogeneity, and are not able to optimally aggregate the multi-

view results [28]. In this work, we propose the Auxiliary-assisted

Multi-view Ensemble Learning (AMEL) to dynamically aggregate

the heterogeneous recognition results of the correlated images.

Lastly, having all the system building blocks in mind, we aim to

provide imperceptible system latency (i.e., below 33ms to ensure

30fps continuous recognition), without sacrificing accuracy. The

targeted low system latency can leave more time and space for

many other computation-intensive tasks (e.g., virtual object ren-

dering) that are running on mobile AR devices. We explore several

design options (i.e., selection of DNN models, what to offload and

what to process locally) and conduct a comprehensive system pro-

filing to guide the final optimized implementation. We propose an

edge-assisted system framework to mitigate the trade-off between

recognition accuracy and system latency.

In this paper, we presents CollabAR, a collaborative image recog-

nition system for mobile AR. Our main contributions are:

• We propose the distortion-tolerant image recognizer to resolve the

domain adaptation problem caused by image distortions. Com-

pared to conventional methods, the proposed solution improves

the recognition accuracy by 20% to 60% for different settings.

• To further boost the recognition accuracy, CollabAR embraces col-

laboration opportunities among mobile AR devices, and exploits

the spatial-temporal correlation among images for multi-view

image recognition. CollabAR introduces the anchor-based image

lookup module to effectively identify the spatially and temporally

correlated images, and the auxiliary-assisted multi-view ensemble

learning framework to dynamically aggregate the heterogeneous

multi-view results. Compared to the single-view-based recogni-

tion, the proposed method can improve the recognition accuracy

by 16% to 20% in severe multiple distortions scenario.

• We implement CollabAR on four different commodity devices,

and evaluate its performance on two multi-view image datasets,

one public and one collected by ourselves. The evaluation demon-

strates that CollabAR achieves over 96% recognition accuracy for

images that contain severe multiple distortions, while reducing

the end-to-end system latency to as low as 17.8ms.

The research artifacts, including our own collected multi-view

multiple distortions image dataset (Section 7), and the source codes

for both the distortion-tolerant image recognizer and the auxiliary-

assisted multi-view ensemble learning framework, are available at

https://github.com/CollabAR-Source/.

2 RELATEDWORK

As a holistic image recognition system for multi-user mobile AR,

CollabAR builds on a body of prior work in mobile AR, distortion-

tolerant image recognition, and distributed image recognition.

Image Recognition forMobile AR. Before overlaying the ren-

dered virtual objects on the view of a user, mobile AR systems lever-

age image recognition to identify the object appearing in the view.

For this purpose, image retrieval [1, 18], image localization [2], and

DNN-based image recognition methods [5] are widely used in prior

work. Image retrieval-based solutions, such as OverLay [1] and

Jaguar [18], exploit salient feature descriptors to match image in

with the annotated image stored in the database. However, salient

descriptors are vulnerable to image distortions; a large proportion of

images cannot be correctly recognized but is simply filtered out [1].

Image localization-based methods require the server to maintain

the annotated image dataset of the service area [29], which is com-

putationally heavy and involves a large volume of data [2]. Lastly,

DNN-based solutions [5] perform well with pristine images, but

even a small amount of distortion can lead to a dramatic perfor-

mance drop [9, 13]. Instead of filtering out the distorted images,

CollabAR incorporates the distortion-tolerant image recognizer to

enable image recognition for mobile AR systems.

Distortion-tolerant Image Recognition: Recent efforts have

been made by the computer vision community in resolving the neg-

ative impacts of image distortion on DNNs [9, 13, 14, 16]. Dodge et

al. [9] propose a mixture-of-experts-based model, in which recogni-

tion experts are fine-tuned to handle a specific image distortion, and

their outputs are aggregated using a gating network. In [13], Ghosh

et al. propose a similar master-slave CNN architecture for distorted

image recognition. Brokar et al. [14] propose an objective metric

to identify the most distortion-susceptible convolutional filters in

the CNNs. Correction units are added in the network to correct

the outputs of the identified filters. However, prior works mainly

focus on the single-view scenario, and fail when the image contains
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multiple distortions or the distortion level is high [9, 13, 14]. In

contrast, CollabAR can dynamically aggregate the spatially and

temporally correlated images to improve recognition accuracy in

multiple distortions scenario.

Distributed Image Recognition: Using distributed informa-

tion collected from multi-camera setups for image and object recog-

nition is a widely studied topic. For instance, in DDNNs [27], dis-

tributed deep neural networks are deployed over cloud, edge, and

end devices for joint object recognition. By leveraging the geograph-

ical diversity of a multi-camera network, DDNNs improves the

object recognition accuracy. To improve the accuracy for distortion-

tolerant pill image recognition, MobileDeepPill [30] relies on a

multi-CNN model to collectively capture the shape, color, and im-

print characteristics of pills. Kestrel [31] incorporates a video ana-

lytics system that detects and tracks vehicles across heterogeneous

multi-camera networks. These existing systems only perform in

distortion-free [27] or distortion-modest environments [30]. They

are not able to recognize the image if it contains severe or multiple

distortions. Moreover, many of them suffer from high end-to-end

latency (i.e., 200ms) [31].

3 BACKGROUND AND CHALLENGES

3.1 Image Distortions

In this paper, we consider three different types of image distor-

tion that commonly appear in mobile AR scenarios: motion blur,

Gaussian blur, and Gaussian noise.

Motion blur (MBL): images taken by the smartphone or the

head-mountedAR set camera frequently containmotion blur caused

by the motion of the user [1]. Given a pristine image F (x ,y) with
pixel coordinates x and y, the corresponding motion-blurred image,
FMBL(x ,y), can be modeled as FMBL(x ,y) = F (x ,y) ∗ H (l ,a) [16],
where H (l ,a) is the non-uniform motion blur kernel that charac-

terizes the length (l) and orientation (a) of the motion when the
camera shutter is open, and ∗ is the convolution operator. The dis-

tortion level of FMBL(x ,y) is determined by the length of the blur
kernel l , while the angle a defines the direction in which the motion
blur affects the image. Figure 1(a) shows the pristine image (l=0)
and four motion-blurred images with different kernel lengths (the

angle a is randomly selected). Motion blur dramatically reduces the
sharpness of the image and distorts its spatial features.

Gaussian blur (GBL): Gaussian blur appears when the camera

is de-focusing or the image is taken underwater (e.g., in underwater

AR [8]) or in a foggy environment [17]. For a pristine image F (x ,y),
the corresponding Gaussian-blurred image, FGBL(x ,y), can be mod-
eled as FGBL(x ,y) = F (x ,y) ∗Gσ (x ,y) [17], where Gσ (x ,y) is the
two-dimensional circularly symmetric centralized Gaussian kernel.

The distortion level of FGBL(x ,y) is determined by the aperture
size k of the circular Gaussian kernel. Figure 1(b) shows an example
of images containing different levels of Gaussian blur. Note that k
must be odd to maintain the circularly symmetric property.

Gaussian noise (GN): noise is also inevitable in images. Pos-

sible sources of noise include poor illumination conditions [9],

digital zooming, and the use of a low quality image sensor [32]. In

most cases, noise can be modeled as zero-mean additive Gaussian

noise [32]. Given a pristine image F (x ,y), the corresponding noisy
image is expressed as FGN (x ,y) = F (x ,y) + N (x ,y), where N (x ,y)

(a)

l=0

(b)

l=10 l=20 l=30 l=40

(c)

k=0 k=11 k=21 k=31 k=41

σGN2=0 σGN2=0.01 σGN2=0.02 σGN2=0.03 σGN2=0.04
Figure 1: Examples of images containing different types of

distortions at different severity levels: (a) motion blur with

blur kernel length l , (b) Gaussian blur with aperture size k ,
and (c) Gaussian noise with variance σ 2

GN
.
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Figure 2: Impacts of image distortion on the recognition per-

formance of MobileNetV2 with the Caltech-256 dataset.

is the additive noise which follows a zero-mean Gaussian distribu-

tion. The distortion level of FGN (x ,y) is decided by the standard
deviation σGN . As shown in Figure 1(c), the Gaussian noise adds

random variation in both brightness and color of the image.

3.2 Impact of Distortion on Image Recognition

Deep neural networks (DNN), such as the AlexNet [3] and the

MobileNetV2 [4], have shown state-of-the-art performance in image

recognition. However, as DNNmodels are usually trained and tested

on the images that are pristine, e.g., ImageNet [11], directly applying

them to mobile AR images that contain severe multiple distortions

often leads to dramatic performance degradation [14, 17, 33]. This

deficiency results from the domain adaptation problem where real

world distorted images fail to share the same feature distribution

with the pristine training images [13, 15, 16].

As a case study to quantify this impact, we investigate the image

recognition accuracy of MobileNetV2 on distorted images. We pre-

train the MobileNetV2 using the images from the Caltech-256 [12]

dataset, and synthesize distorted images using the methods intro-

duced in Section 3.1. For each type of distortion, we adjust the

distortion level by configuring the corresponding parameter. The

synthesized images are used as the test dataset. The results are

shown in Figure 2. We can observe that even a small amount of

distortion in the images could significantly affect the recognition ac-

curacy. For instance, the accuracy of MobileNetV2 drops from 73.6%

to 33.0% with a blur kernel length of 10, even though the distortion

at this level does not hinder the human eyes’ ability to recognize

the object [34] (e.g., see an example in Figure 1(a)).
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Table 1: Measurements of image distortions in real-world

mobile AR scenarios. A large proportion of images suffers

from severe distortions.

Distortion Setting
Hardware

Nokia 7.1 Magic Leap One

Gaussian noise

(σ 2
GN

� 0.003)

Dark room (7lux) 617/1558=39.6% infeasible

Camera zoom-in (509lux) 1755/2185=97.2% infeasible

Motion blur

(l � 5)

Corridor (178lux) 2681/3452=77.6% 3760/3776=99.6%

Sunny outdoor (9873lux) 16/2687=0.5% 957/2766=34.6%

Gaussian blur

(k � 5)

Foggy 762/935=81.6% infeasible

Underwater 1250/1524=82.0% infeasible

3.3 Image Distortion for Real-world Mobile AR

Below, we quantify the extent of image distortion in real-word mo-

bile AR scenarios. We use two commodity AR devices, the Nokia 7.1

smartphone and the Magic Leap One head-mounted AR set, to

record videos (at 30 frames per second) in different environments,

and measure the proportion of recorded frames that suffer from

severe image distortions.

First, to quantify Gaussian noise, we use the Nokia 7.1 to record

videos in environments with poor illumination conditions, i.e., in-

door dark room (with 7lux). In addition, to study Gaussian noise

resulting from digital zooming, we conduct an experiment in an

indoor environment at daytime (with 509lux), and turn on the built-

in digital zoom function of the Nokia 7.1 to record videos of objects

that are three meters away. We cannot record video using Magic

Leap One as its image and video recording service is unavailable

when the light condition is low, and it does not support image

zooming. Second, to quantify motion blur, we ask one user to hold

the Nokia 7.1 in her hand and ask another user to wear the Magic

Leap One. They record videos using the device front-camera in both

indoor corridor (with 178lux) and sunny outdoor (with 9873lux)

environments when walking at a normal pace. Lastly, to quantify

Gaussian blur, we put the Nokia 7.1 in a waterproof case, and record

videos in both underwater and foggy environments.1 The collected

images comprise the MobileDistortion dataset, which is available

at https://github.com/CollabAR-Source/Distortion.

To determine if an image suffers from severe distortion, we use

distortion levels σ 2
GN
= 0.003, l = 5, and k = 5 as the thresholds,

for the three types of distortion, respectively. The thresholds corre-

spond to the distortion levels that lead to a 10% accuracy drop in

the experiments shown in Figure 2. The results are summarized in

Table 1. The illumination of the environment is measured using the

smartphone light sensor that is adjacent to the smartphone camera.

First, we apply the image spatial quality estimator [35] to quantify

Gaussian noise. In poor illumination conditions, over 39% of the

images recorded by the Nokia 7.1 suffer from severe Gaussian noise.

Moreover, when using digital zooming, 97% of the images suffer

from severe Gaussian noise due to the additive noise introduced

in digital image processing. Second, we apply the partial-blur im-

age detector [36] to quantify motion blur. As shown in Table 1, for

Magic Leap One, 99.6% and 34.6% of the recorded images suffer from

severe motion blur in the corridor and the outdoor environments,

respectively. For Nokia 7.1, 77.6% and 0.5% of the images contain

severe motion blur in these two environments. We can notice that

there is less motion blurring in the sunny outdoor environment

1We do not conduct this experiment with a Magic Leap One as we are unaware of the
availability of waterproof cases for it.
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Figure 3: System architecture of CollabAR.

(9873lux) than in the corridor (178lux): as the camera exposure time

is shorter with a higher illumination, and the impact of motion on

the image is proportional to the exposure time, there is less motion

blurring in high illumination environment. Lastly, we apply the

local binary pattern-based blur detector [37] to detect Gaussian

blur. The results show that 82% and 81.6% of the images suffer from

severe Gaussian blur in the underwater and foggy environments,

respectively. Our measurements highlight the pervasiveness and

severity of image distortions in real-world scenarios. Given the high

distortion proportion, simply filtering out the distorted images, as

has been suggested in prior work [1, 2, 10], can hardly solve the

distortion problem for practical AR applications.

4 SYSTEM OVERVIEW

The architecture of CollabAR is shown in Figure 3, which incor-

porates three major components: (1) the distortion-tolerant image

recognizer, (2) the correlated image lookup module, and (3) the

auxiliary-assisted multi-view ensembler. They are deployed on the

edge server to mitigate the trade-off between recognition accuracy

and end-to-end system latency (detailed system measurements are

given in Section 8.4). In addition to the server, the client is running

an anchor-based pose estimation module which leverages the Cloud

anchors provided by the Google ARCore [22] to track the location

and orientation of the mobile device.

When the user takes an image of the object, the mobile client

sends the image along with the IDs of the anchors in the camera

view to the server. Having received the data, the server marks

the image with a unique image ID and a timestamp. The image

is used as the input for the distortion-tolerant image recognizer,

while the anchor IDs and the timestamp are used as references

for spatial-temporal image lookup. In CollabAR, anchor IDs and

timestamps are stored in the anchor-time cache in the format of

< imageID, {anchorIDs}, timestamp >, while the recognition re-

sults of the images are stored in the results cache in the format of

< imageID, inferenceResult > for future reuse and aggregation. In

our design, we do not share information among the clients. Instead,

clients communicate directly with the edge server to ensure high

recognition accuracy and low end-to-end latency.

Distortion-tolerant image recognizer: the distortion image

recognizer incorporates an image distortion classifier (Section 5.1)

and four recognition experts (Section 5.2) to resolve the domain
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adaptation problem [15] caused by the image distortions. As DNNs

can adapt to a particular distortion, but not multiple distortions

at the same time [9, 15], we need to identify the most significant

distortion in the image, and adaptively select a DNN that is dedi-

cated to the detected distortion. As shown in Figure 3, for a new

image received from the client, the distortion classifier detects if

the image is pristine or if it contains any type of distortion (i.e.,

motion blur, Gaussian blur, or Gaussian noise). Then, based on

the detected distortion type, one of the four recognition experts is

triggered for the recognition. Each of the recognition experts is a

Convolutional Neural Network (CNN) that has been fine-tuned to

recognize a specific type of distorted images. The inference result

of the expert is sent to the auxiliary-assisted multi-view ensembler

for aggregation, and is stored in the results cache for reuse.

Correlated image lookup: to enable collaborative image recog-

nition, the correlated image lookup module (Section 6.1) searches

the Anchor-time cache to find previous images that are spatially

and temporally correlated with the new one. The anchor IDs are

used as the references to identify the spatial correlation, while the

timestamps are used to determine the temporal correlation. The

correlated images could be the images that are captured by differ-

ent users or the continuous image frames that are obtained by a

single device. The IDs of the correlated images are forwarded to

the multi-view ensembler.

Auxiliary-assistedmulti-view ensembler: based on the iden-

tified image IDs, the multi-view ensembler retrieves the inference

results of the correlated images from the results cache. Together

with the recognition result of the new image, the retrieved results

are aggregated by the multi-view ensemble learning module to

improve the recognition accuracy. Specifically, as the correlated

images suffer from various distortions with different severity lev-

els, they are unequal in quality and lead to heterogeneity in the

recognition accuracy. CollabAR leverages the Auxiliary-assisted

Multi-view Ensemble Learning (AMEL) (Section 6.2) to dynamically

aggregate the heterogeneous results provided by the correlated

images. Below, we describe the design of CollabAR in detail.

5 DISTORTION-TOLERANT RECOGNIZER

5.1 Image Distortion Classifier

Different types of distortion have distinct impacts on the frequency

domain features of the original images. For instance, as discussed

in Section 3.1, Gaussian blur can be considered as having a two-

dimensional circularly symmetric centralized Gaussian convolution

on the original image in the spatial domain. This is equivalent to

applying a Gaussian-weighted, circularly shaped low pass filter

on the image, which filters out the high frequency components

in the original image. Similarly, motion blur can be considered

as a Gaussian-weighted, directional low pass filter that smooths

the original image along the direction of the motion [7]. Lastly,

the Fourier transform of additive Gaussian noise is approximately

constant over the entire frequency domain, whereas the original

image contains mostly low frequency information [38]. Hence, an

image with severe Gaussian noise will have higher signal energy

in the high frequency components.

Figure 4 gives the Fourier spectrum of images containing differ-

ent distortions. The spectrum is shifted such that the DC-value is

Pristine Motion blur Gaussian blur Gaussian noise

R
G
B

Sp
ec
tr
um

Figure 4: The Fourier spectrum of images containing differ-

ent distortions. Different distortions have distinct impacts

on the frequency domain features of the images. The pat-

terns are independent of the semantic content in the image.

RGB Grayscale Spectrum

Rec. 601
Coding

DFT

Distortion 
classifier

Distortion 
type

Figure 5: The pipeline of the image distortion classification.

displayed in the center of the image. For any point in the spectrum,

the farther away it is from the center, the higher is its corresponding

frequency. The brightness of the point in the spectrum indicates the

energy of the corresponding frequency component in the image.

We can see that the pristine image contains components of all fre-

quencies, and most of the high energy components are in the lower

frequency domain. Differently, Gaussian blur removes the high

frequency components of the image in all directions. The remain-

ing two dominating lines in the spectrum, one passing vertically

and one passing horizontally through the center of the spectrum,

correspond to the vertical and horizontal patterns in the original

image. Similarly, motion blur removes the high frequency compo-

nents in the image along the direction of motion. Thus, in addition

to the vertical and horizontal lines, we can see a strong diagonal

line which is perpendicular to the direction of the motion blur.

Lastly, Gaussian noise introduces more high energy components in

the high frequency domain. We leverage these distinct frequency

domain patterns for distortion classification.

Figure 5 shows the pipeline of the image distortion classification.

First, we convert the original RGB image into grayscale using the

standard Rec. 601 luma coding method [39]. Then, we apply the two-

dimensional discrete Fourier transform (DFT) to obtain the Fourier

spectrum of the grayscale image, and shift the zero-frequency com-

ponent to the center of the spectrum. The centralized spectrum is

used as the input for the distortion classifier. As shown in Table 2,

the distortion classifier adopts a shallow CNN architecture which

consists of three convolutional layers (conv1, conv2, and conv3), two

pooling layers (pool1 and pool2), one flatten layer, and one fully

connected layer (fc). This shallow design avoids over-fitting and

ensures low computation latency.

5.2 Recognition Experts

Based on the output of the distortion classifier, one of the four

dedicated recognition experts is selected for the image recognition.

We consider either the lightweight MobileNetV2 or the AlexNet as

the base DNN model for the recognition experts. Although deeper

models (e.g., ResNet [40] and VGGNet [41]) can achieve higher
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Table 2: The architecture of the image distortion classifier.
Layer Size In Size Out Filter

conv1 224 × 224 × 3 111 × 111 × 32 3 × 3, 2

conv2 111 × 111 × 32 109 × 109 × 16 3 × 3, 1

pool1 109 × 109 × 16 54 × 54 × 16 2 × 2, 2

conv3 54 × 54 × 16 54 × 54 × 1 1 × 1, 1

pool2 54 × 54 × 1 27 × 27 × 1 2 × 2, 2

flatten 27 × 27 × 1 729

fc 729 4

accuracy on pristine images, they are still susceptible to image dis-

tortions [9, 42]. Recent studies have shown more than 40% accuracy

drop on ResNet [42] and VGGNet [9] when the images contain

distortion. In contrast, CollabAR ensures better robustness against

distortions while maintaining a lower computation latency. We

initialize all the CNN layers with the values trained on the full

ImageNet dataset. Then, to fine-tune the experts on a target dataset,

we add a fully connected layer as the last layer with the number of

units corresponding to the number of classes in the target dataset.

In the fine-tuning process, we first train the pristine expert,

ExpertP , using pristine images in the target dataset. Then, the

three distortion experts, i.e., motion blur expert ExpertMBL , Gauss-

ian blur expert ExpertGBL , and Gaussian noise expert ExpertGN ,

are initialized with the weights of ExpertP , and fine-tuned using
the corresponding distortion images. During the fine-tuning, half

of the images in the mini-batch are pristine and the other half are

distorted with a random distortion level. This ensures better ro-

bustness against variations in the distortion level (i.e., it helps in

minimizing the effect of domain-induced changes in feature dis-

tribution [15]) and helps the CNNs to learn features from both

pristine and distorted images [43]. For ExpertMBL , the distortion

level is configured by varying the blur kernel length l and the mo-
tion angle a. Their values are randomly selected from the uniform

distributions where l ∼ U (0, 40) and a ∼ U (0, 180). Similarly, for

ExpertGBL , the distortion level is controlled by the aperture length

k ∼ U (0, 41). Lastly, for ExpertGN , the distortion level is decided

by the variance of the additive Gaussian noise σ 2
GN

∼ U (0, 0.04).

6 COLLABORATIVE MULTI-VIEW IMAGE
RECOGNITION

Mobile users that are in close proximity usually exhibit a strong cor-

relation in both device usage and spatial-temporal contexts [19, 25].

This is especially true in mobile AR scenario where the requested

image recognition tasks are usually correlated temporally (e.g., con-

secutive image frames from the same user [5, 6, 44]) and spatially

(e.g., different users aim to recognize the same object [10, 19]). For

instance, in a museum, visitors that are in close proximity may use

the AR application to recognize and augment information of the

same artwork. Although images are taken from different positions

or at different times, they contain the same object [19]. CollabAR ex-

ploits the spatial-temporal correlation among the images to enable

collaborative multi-view image recognition. Note that CollabAR

is not limited to the multi-user scenario. It can also aggregate the

consecutive image frames captured by a single user as long as they

are spatially and temporally correlated.

6.1 Correlated Image Lookup
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Figure 6: An example of correlated image lookup. Images

of the same artwork are taken from different poses, view1
and view2, at different times, t1 and t2. The anchors in the
image views are used to check the spatial correlation, and

the timestamps are used to check the temporal correlation.

6.1.1 Anchor-based Pose Estimation. To identify the spatially and

temporally correlated images, CollabAR exploits the Google AR-

Core [22] to estimate the pose (the position and orientation) of

the device when the image was taken. When the user is moving

in space, ARCore leverages a process called concurrent odometry

and mapping (COM) which aggregates the image frames taken by

the camera and the inertial data captured by the device’s motion

sensors to simultaneously estimate the orientation and location of

the mobile device relative to the world.

Specifically, CollabAR leverages the Cloud anchors [45] provided

by ARCore as the references for pose estimation. An anchor is a

virtual identifier which describes a fixed pose in the physical space.

The numerical pose estimation of the anchor is updated by the

ARCore over time, which makes the anchor a stable pose reference

against cumulative tracking errors [2, 46]. In our design, anchors

are created and managed by the administrator in advance. When

running the application, anchors in the space can be resolved by

the users to establish a common spatial reference among them. As

a toy example shown in Figure 6, three cloud anchors have been

placed in space to identify three different poses. When the user is

taking an image of the artwork from view1 at time t1, the anchors
in the camera view will be sent to the edge and associated with the

timestamp t1. As shown previously in Figure 3, the anchors and
the timestamps are stored in the anchor-time cache in the format

of < imageID, {anchorIDs}, timestamps >. When a new image,

imaдe2, is taken at time t2 from view2 either by the same or by a
different user, the spatial-temporal image lookup module searches

the anchor-time cache to find previous images that are spatially

and temporally correlated with the new one.

6.1.2 Spatial-temporal Image Lookup. For any image in the cache,

imaдeCached , it is considered as spatially correlated with the new
image, imaдeNew , if the images satisfy:

{anchorIDs}New ∩ {anchorIDs}Cached � ∅, (1)

where {anchorIDs}New and {anchorIDs}Cached are the sets of an-

chors that appeared in views of imaдeNew and imaдeCached , re-
spectively. If two images contain the same anchor in their views,

they are spatially correlated. For instance, in Figure 6, imaдe1 con-
tains the same anchor, anchor#2, that also appears in the view of
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Figure 7: The architecture of the Auxiliary-assisted Multi-

view Ensemble Learning (AMEL).

imaдe2. Thus, they are spatially correlated. Similarly, the cached
image is considered as temporally correlated to the new image if

the images satisfy:

Δt = tNew − tCached and Δt � Tfresh, (2)

where tNew and tCached are the timestamps of the new and cached

images, respectively. Δt is the freshness of imaдeCached with re-
spect to imaдeNew . If the freshness Δt is within the freshness

threshold, Tfresh, imaдeCached is considered as temporally corre-
lated with imaдeNew . Note that the setting of the freshness thresh-

old Tfresh varies with the application scenarios. In cases where the

object at a given position changes frequently, e.g., animals in the

zoo, we should use a lower freshness threshold. Differently, in sce-

narios where the positions of the objects do not change very often,

e.g., exhibited items in a museum or large appliances in a build-

ing, a higher freshness threshold can be tolerated. An image in the

anchor-time cache is considered as spatially and temporally corre-

lated to the new image if they satisfy Equations 1 and 2 at the same

time. The IDs of the identified correlated images are forwarded to

the multi-view ensembler for aggregation.

6.2 Auxiliary-assisted Multi-view Ensemble
Learning

In image recognition, ensembling the results of multiple base clas-

sifiers is a widely used approach to improve the overall recognition

accuracy [27, 47]. Following this trend, CollabAR aggregates the

recognition results of the spatially and temporally correlated images

to improve the recognition accuracy of the current image.

As shown previously in Figure 3, using the image IDs identi-

fied by the correlated image lookup module as the key, the multi-

view ensembler retrieves the results of the correlated images from

the results cache. This is done by retrieving any stored records in

the result cache, i.e., < imageID, inferenceResult >, with imageID

matches to the identified images. As shown in Figure 7, assuming

thatm − 1 correlated images are identified, the inference result of

the current image (the probability vector Pm ) is aggregated with

that of them−1 correlated images (P1, ...,Pm−1) by the ensembler.

However, given the heterogeneity of them images (i.e., images

are captured from different angles, suffer from different distortions

with different distortion levels), the images lead to unequal recog-

nition performance. To quantify their performance and help the

Table 3: Summary of the MVMDD dataset. It has 32,400 im-

ages in total, including 1,296 pristine and 31,104 distorted

images that are generated using data augmentation.

Pristine image set

Object categories 6

Number of views 6

Background complexity 2

Size of object in image 3

Number of instances 6

Total pristine images 6×6×2×3×6=1,296

Augmented image set
Types of distortion 3

Distortion levels 8

Total augmented images 1,296×3×8=31,104

Total images 32,400

ensembler in aggregating the results dynamically, auxiliary fea-

tures [28, 48] can be used. We propose to use the normalized

entropy as the auxiliary feature. The normalized entropy Sk mea-

sures the recognition quality and the confidence of the distortion-

tolerant image recognizer on the recognition of the kth image in-

stance. Sk can be calculated from the probability vector as follows:

Sk (Pk ) = −

|C |∑

i=1

pi logpi
log |C|

, (3)

where Pk = {p1, ...,p |C | } is the probability vector of the kth base
learner on the image instance, and |C| is the number of object cate-

gories in the dataset. The value of normalized entropy is between

0 and 1. A value close to 0 indicates that the distortion-tolerant

image recognizer is confident about its recognition on the image

instance, whereas a value close to 1 means that it is not confident.

In AMEL, the set of normalized entropy, (S1, ...,Sm ), is used

as the weight in averaging heterogeneous outputs of the spatial-

temporal correlated images. Specifically, given the current image

and them − 1 correlated images, the final aggregated recognition

output P can be expressed as P =
∑
m

i=1(1 − Si )Pi , where Pi is the

probability vector of the ith image and (1 − Si ) is the associated

weight. This allows AMEL to dynamically adjust the weights in

aggregating them images during the classification. As the images

result in unequal recognition accuracy, AMEL ismore robust against

this variance than standard averaging methods which would assign

equal weights to multi-view images during the aggregation [26].

We evaluate AMEL in Section 8.3.3.

7 MULTI-VIEWMULTI-DISTORTION IMAGE
DATASET

We create a Multi-View Multi-Distortion image Dataset (MVMDD)

to study the impact of image distortion on multi-view AR. Our

dataset includes a pristine image set and an augmented distortion

image set. The details are summarized in Table 3.

Pristine image set:we collect pristine images (i.e., images with-

out distortion) using a commodity Nokia 7.1 smartphone. Six cate-

gories of everyday objects are considered, cup, phone, bottle, book,

bag, and pen. Each category has six instances. For each instance,

images are taken from six different views (six different angles with

a 60◦ angle difference between any two adjacent views), two differ-

ent background complexity levels (a clear white table background

and a noisy background containing other non-target objects), and

three distances. We adjust the distance between the camera and
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bag book bottle cup pen phone
Figure 8: Examples of the pristine images that are collected

in our MVMDD dataset.

the object such that the sizes of the object in the images are dif-

ferent. For the three distances, the object occupies approximately

the whole, half, and one-tenth of the total area of the image. The

resolution of the images is 3024×4032. As summarized in Table 3,

we collect 6×6×6×3×2 = 1,296 pristine images in total. Figure 8

provides examples of the collected images.

Data augmentation for image distortion: to ensure robust-

ness against image distortion, a large volume of distorted images is

required to train the DNNs. However, in practice, it is difficult to

collect a large number of images with different types of distortions.

To address this challenge, we apply the three distortion models

introduced in Section 3.1 to synthesize images with different dis-

tortions. We consider eight severity levels for each distortion type.

Specifically, for motion blur, we adjust the motion blur kernel length

l from 5 to 40, with a step size of 5, to create eight levels of blur. Sim-

ilarly, we configure the aperture size of the 2D circularly symmetric

centralized Gaussian function from 6 to 41, with a step size of 5,

for the Gaussian blur, and change the variance of the zero-mean

Gaussian distribution from 0.005 to 0.04, with a step size of 0.005,

for the Gaussian noise. As summarized in Table 3, we generate

1,296×3×8=31,104 distorted images in total. The dataset is publicly

available at https://github.com/CollabAR-Source/MVMDD.

8 EVALUATION

8.1 Experimental Setup

8.1.1 Implementation. The client of CollabAR is implemented on

Android smartphones. We leverage the Google ARCore SDK to

realize the anchor-based pose estimation module introduced in

Section 6.1.1. The edge server is a desktop with an Intel i7-8700k

CPU and a Nvidia GTX 1080 GPU.We realize the server of CollabAR

using the Python Flask framework. The distortion-tolerant image

recognizer and the multi-view ensembler are implemented using

Keras 2.3 on top of the TensorFlow 2.0 framework. The client and

the server communicate through the HTTP protocol.

8.1.2 Benchmark dataset. Four datasets are considered in the eval-

uation: Caltech-256 [12], MIRO [49], MobileDistortion (collected in

Section 3.3), andMVMDD (collected in Section 7). TheCaltech-256

dataset has 257 categories of objects with more than 80 instances

per category. TheMIRO dataset has 12 categories of objects with

ten instances per category. For each instance, it contains multi-view

images that are captured from ten elevation angles and 16 azimuth

angles. In the evaluation, we randomly select six distinct angles to

represent six different views. Our own MVMDD dataset has six

categories of objects with six instances per category. Each object

instance is captured from six views and three different distances,

with two different backgrounds. In addition to the original pristine

images, for both Caltech-256 and MIRO, we apply the data aug-

mentation methods (Section 3.1) to generate new sets of distorted

images. Lastly, we also prepare 300 image instances for each dis-

tortion type from the MobileDistortion image set we collected

in Section 3.3. We use it to examine the distortion classifier on

distorted images in real-world mobile AR scenarios.

8.2 Distortion Classifier Performance

First, we evaluate the performance of the image distortion classi-

fier using all four benchmark datasets. We perform 3-fold cross

validation on each of the four datasets.

The confusion matrix and the accuracy of the image distortion

classifier are shown in Figure 9. The classifier achieves 95.5%, 94.2%,

92.9%, and 93.3% accuracy on the MobileDistortion, Caltech-256,

MIRO, and MVMDD datasets, respectively. Moreover, the confu-

sion matrix indicates that most of the classification errors happen

in differentiating Motion blur (MBL) and Gaussian blur (GBL). As

shown in Figure 9, for the four different datasets, 15.3%, 3.9%, 18.1%,

and 15.3% of the GBL distorted images are misclassified as MBL.

In our experiments we observe that MBL and GBL can be misclas-

sified as each other regardless of the distortion level. This is due

to the similarity between these two distortions. Specifically, MBL

and GBL have similar impact on the image spectrum and result in

misclassification when the direction of the motion blur is parallel

or perpendicular to the central horizontal line of the image. In addi-

tion, we also notice that when the distortion level is low, i.e., l<10
for MBL and σ 2

GN
<0.01 for GN, the distorted images are sometimes

misclassified as pristine images. This is intuitive, as the impact of

the image distortion on the Fourier spectrum is limited when the

distortion level is low, and thus, results in similar spectrum feature

as pristine images. Overall, on all four image datasets, the distortion

classifier achieves 94% accuracy on average.

8.3 Image Recognition Accuracy

Below, we evaluate the image recognition accuracy of CollabAR. As

Caltech-256 does not contain multi-view images, we use MIRO and

MVMDD as the datasets. We first examine the performance of the

distortion-tolerant image recognizer, followed by the evaluation

of CollabAR in multi-view and multiple distortions scenarios. We

perform 3-fold cross validation in this experiment.

8.3.1 Performance of Distortion-tolerant Image Recognizer. We ex-

amine the recognition accuracy of bothMobileNet-based andAlexNet-

based implementations. We consider the single-distortion scenario

and gradually increase the distortion level to investigate its impact

on the recognition accuracy.

The results are shown in Figure 10. First, regardless of the dis-

tortion type, the MobileNet-based implementation outperforms

the AlexNet-based one by 15% and 40% on MVMDD and MIRO,

308

Authorized licensed use limited to: Duke University. Downloaded on September 07,2020 at 16:38:28 UTC from IEEE Xplore.  Restrictions apply. 



Accuracy: 95.50%

100.0%
100

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
82

0.0%
0

0.0%
0

0.0%
0

15.3%
18

84.7%
100

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
100

Pristine MBL GBL GN
Target Class

Pristine

MBL

GBL

GN

O
ut

pu
t C

la
ss

(a) MobileDistortion

Accuracy: 94.21%

93.2%
723

3.9%
30

0.1%
1

2.8%
22

3.5%
28

93.1%
743

3.4%
27

0.0%
0

0.0%
0

3.9%
31

96.1%
755

0.0%
0

5.4%
44

0.1%
1

0.0%
0

94.5%
775

Pristine MBL GBL GN

Target Class

Pristine

MBL

GBL

GN

O
ut

pu
t C

la
ss

(b) Caltech-256

Accuracy: 92.92%

95.6%
172

0.0%
0

0.0%
0

4.4%
8

2.7%
4

97.3%
143

0.0%
0

0.0%
0

0.0%
0

18.1%
39

81.9%
176

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
178

Pristine MBL GBL GN
Target Class

Pristine

MBL

GBL

GN

O
ut

pu
t C

la
ss

(c) MIRO

Accuracy: 93.33%

98.6%
72

1.4%
1

0.0%
0

0.0%
0

0.0%
0

100.0%
91

0.0%
0

0.0%
0

0.0%
0

15.3%
17

84.7%
94

0.0%
0

7.0%
8

0.0%
0

0.0%
0

93.0%
107

Pristine MBL GBL GN
Target Class

Pristine

MBL

GBL

GN

O
ut

pu
t C

la
ss

(d) MVMDD

Figure 9: Confusionmatrix and accuracy of the image distor-

tion classifier on different datasets: (a) MobileDistortion, (b)

Caltech-256, (c) MIRO, and (d) MVMDD. On average, the dis-

tortion classifier achieves 94% accuracy on both real-world

and synthesized distorted images.
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Figure 10: Accuracy of distortion-tolerant image recognizer

when image contains (a) Motion blur, (b) Gaussian blur, and

(c) Gaussian noise, respectively.MobileNet-based implemen-

tation outperforms the AlexNet-based one by 15% and 40%

on MVMDD and MIRO datasets, respectively.

respectively. The improvement can be attributed to the use of the

depthwise separable convolution as an efficient building block for

image feature extraction, and the use of a linear bottleneck for

better feature transformation [4]. Second, MobileNet-based recog-

nition experts are more robust against image distortions. With the

highest examined distortion level, i.e., l = 40 for MBL, k = 41 for
GBL, and σ 2

GN
= 0.04 for GN, we achieve 94.4% and 86.9% accuracy

on average across the three distortions on MVMDD and MIRO,

respectively. However, we still experience a modest accuracy drop

when the distortion level is high. With the highest examined distor-

tion level, CollabAR suffers 5% and 9% drop in accuracy on average

on the two datasets, respectively. The accuracy drop will become

much more severe when the image contains multiple distortions,

but it can be resolved with the help of multi-view collaboration.

8.3.2 Performance of Multi-view Collaboration. Below, we evaluate

the performance of CollabAR in the multi-view scenario where spa-

tially and temporally correlated images are aggregated to improve
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Figure 11: Accuracy of CollabAR in the multi-view single-

distortion scenario on (a) MIRO and (b) MVMDD datasets.

the single-view accuracy. Moreover, we investigate how multi-view

collaboration can help in multiple distortions cases.

Setup: we apply MobileNet-based implementation for the recog-

nition experts, as it demonstrates a higher accuracy than theAlexNet-

based one. To microbenchmark the end-to-end system design, we

evaluate CollabAR with two design options: (1) with and without

the image distortion classifier, and (2) with and without the aux-

iliary feature for the multi-view ensembler. We consider up to six

views to be aggregated for collaborative recognition.

Multi-view Single-distortion: in the single-distortion case,

the image of each view contains one of the three distortions (i.e.,

MBL, GBL, or GN). We set the image distortion to a high level (i.e.,

30 < l < 40 for MBL, 31 < k < 41 for GBL, and 0.03 < σ 2
GN
< 0.04

for GN) to evaluate CollabAR with the most severe distortions.

The performance is shown in Figure 11. First, with the image

distortion classifier, CollabAR can correctly select the recognition

expert that is dedicated to the examined distortion image, and

can significantly improve the recognition accuracy. Given different

number of views aggregated, CollabAR with the distortion classifier

can improve the overall accuracy by 20% to 60% when compared to

the case without a distortion classifier. Second, with the auxiliary

feature, CollabAR can dynamically adjust the weights in multi-view

aggregation, and can improve the overall accuracy up to 5% and 14%

on MIRO and MVMDD, respectively. Lastly, the accuracy increases

with the number of aggregated views. In case where CollabAR is

incorporated with both the distortion classifier and the auxiliary

feature, the overall accuracy can be improved by 15% and 7% with

six views aggregated, on MIRO and MVMDD, respectively.

Multi-view Multi-distortion: below, we examine CollabAR,

with both the distortion classifier and the auxiliary feature, in the

multiple distortions scenario. We consider four multiple distortion

combinations: MBL+GN, GBL+GN, GBL+MBL, and GBL+MBL+GN.

Figure 12 shows the performance of CollabAR given different

distortion combinations in the testing image. The distortion is set

to a modest level (i.e., 5 < l < 15 for MBL, 6 < k < 16 for GBL, and
0.005 < σ 2

GN
< 0.015 for GN). First, we observe a significant drop in

the accuracy compared to that in the single-distortion scenario. This

is expected: since the dedicated recognition experts are fine-tuned

on imageswith specific types of distortions, multiple distortionswill

cause a mismatch in the feature distribution between the corrupted

testing images and the dedicated recognition experts, and will thus

result in a performance drop. Fortunately, the accuracy improves

with the number of views aggregated. For different combinations
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Figure 12: Accuracy in multi-view multiple distortions sce-

nario. With six views aggregated, the accuracy improves by

up to 16.5% and 20.3% on MIRO and MVMDD, respectively.
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Figure 13: Accuracy improvement of CollabAR in multi-

view multi-distortion scenario given different distortion

combinations and distortion levels (i.e., by configuring l and
k from 5 to 40 with a step size of 10). With six views aggre-

gated, the overall accuracy is improved by 9.5% on average

across different scenarios.

of image distortions, the accuracy can improve by up to 16.5% and

20.3% on MIRO and MVMDD, respectively.

Figure 13 shows the accuracy improvements of the multi-view

aggregation given different distortion combinations and distortion

levels. Overall, with six views aggregated, the overall recognition

accuracy can be improved by 9.5% on average. Specifically, the im-

provements become modest when the distortion level is high. This

is reasonable: if all the aggregated images suffer from severe distor-

tions, simply aggregating the multi-view results would not improve

the overall performance by much. One exception in our experiment

is the ‘GBL+MBL’. This is because our distortion-tolerant image

recognizer is robust against the ‘GBL+MBL’ when the distortion

level is low (as shown in Figure 12), and thus we achieve a higher

improvement when the distortion level of ‘GBL+MBL’ is higher. In

practical mobile AR scenarios, we believe that the probability of all

the correlated images suffering severe multiple distortions is fairly

low. Thus, as it will be shown in the following section, CollabAR

achieves over 96% accuracy as long as there is one low-distortion

image in the multi-view collaboration.

8.3.3 Advantages of AMEL. Below, we investigate the performance

of CollabAR in heterogeneous multi-view multiple distortions sce-

narios, where images from different views are diverse in distortion

type and distortion level. We define a ‘good view’ if the image is

pristine and we define a ‘bad view’ if the image contains high dis-

tortion levels (i.e., 30 < l < 40 for MBL, 31 < k < 41 for GBL, and
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Figure 14: CollabAR accuracy on the MVMDD dataset with

and without the auxiliary feature. The images contain mul-

tiple distortions and are diverse in the distortion level.

0.03 < σ 2
GN
< 0.04 for GN). We also demonstrate the advantages

of the proposed auxiliary-assisted multi-view ensemble over the

conventional ensemble method without the auxiliary feature.

Figure 14 compares the performance of CollabAR on theMVMDD

dataset with and without the auxiliary feature. CollabAR can al-

ways achieve a higher accuracy with the auxiliary feature. The

improvement is most pronounced when there are more ‘bad views’

than ‘good views’ in the multi-view aggregation (e.g., ‘1g2b’, ‘1g3b’,

‘2g3b’, and ‘2g4b’, where ‘1g2b’ refers to ‘one good view and two bad

views’). For instance, as shown in Figure 14(d), in a scenario where

the image contains three types of distortion, the auxiliary feature

can improve the performance by 8% on average and up to 26% in

a more diverse case (‘1g3b’). Overall, CollabAR achieves 96% and

88% accuracy on average, with and without the auxiliary feature,

respectively. We achieve similar results on the MIRO dataset.

8.4 System Profiling

Below, we present a comprehensive profiling of CollabAR in terms

of computation and communication latency. We consider two de-

ployments of CollabAR: (1) the whole system is deployed on the mo-

bile client, and (2) the edge-assisted design inwhich the computation-

intensive recognition pipeline is deployed on the server. We im-

plement CollabAR on four different platforms. In addition to the

edge server, we also consider three different commodity smart-

phones, Nokia 7.1, Google Pixel 2 XL, and Xiaomi 9, as the mobile

clients. The three smartphones are heterogeneous in both computa-

tion and communication performance. We leverage the TensorFlow

Lite [50] as the framework when implementing CollabAR on the

smartphones.

8.4.1 Computation Latency. To examine the computation latency

of CollabAR, we tear down its image recognition pipeline into two

processing components: (1) the image distortion classifier and

(2) the AMEL image recognition. Two possible implementations of

the AMEL, i.e., AlexNet-based and MobileNetV2-based, are consid-

ered. We run 30 trials of the end-to-end image recognition pipeline

and report the average time consumed by each of the components.

Table 4 shows the computation latency (in ms) when we deploy the
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Table 4: The computation latency (in ms) of CollabAR

when deployed on different hardware platforms. The edge-

assisted design achieves the lowest overall latency of 8.1ms.
Processing

Component

Processing

Unit

Hardware Platform

Edge server Nokia 7.1 Pixel 2 XL Xiaomi 9

AMEL

(AlexNet)

CPU 48.0 255.4 189.9 124.2

GPU 6.8 331.0 127.5 71.2

AMEL

(MobileNetV2)

CPU 28.1 108.4 81.9 33.7

GPU 4.7 46.9 26.0 33.1

Distortion

classifier

CPU 4.4 29.3 22.33 13.1

GPU 3.4 20.3 8.7 8.4

Lowest

overall latency

CPU 32.5 137.7 104.2 46.8

GPU 8.1 67.2 34.7 41.5

system on different hardware platforms. First, regarding the latency

of AMEL, MobileNet-based design can always achieve lower latency

than AlexNet-based one, for the same hardware platform and pro-

cessing unit used. This is because MobileNetV2 is more lightweight

and is well-optimized for running on resource-limited devices [51].

Second, the edge server achieves the lowest overall computation

latency of 8.1ms when using its GPU for the computation. Our edge-

assisted design achieves more than four times speedup over the best

examined mobile platform. Although the latency for individual mo-

bile platforms can be reduced when more efficient DNN model and

powerful mobile GPU are used, the edge-assisted design ensures

low computation latency when mobile devices are heterogeneous

in computation power.

8.4.2 Communication Latency. Communication latency is a factor

of delay when we deploy the recognition process on the edge. There

are three phases involved in a single end-to-end image recognition:

• Network delay: client transmits either the resized image or the

original image to the edge server, and the server sends the recog-

nition result back to the client.

• Image resizing: resizing process is needed when the client decides

to transmit the resized image. The resizing converts the original

image from 3,024×4,032×3 to the size of 224×224×3.

• Image encoding: the encoding compresses the raw image using

the JPEG lossless compression.

In our experiment, the client and the server are connected through

a single-hopWi-Fi network in our lab.Wemeasure the latencywhen

using both 2.4GHz and 5GHz wireless channels. Table 5 shows the

latency of the mobile clients when communicating with the edge

server. First, because of the higher data rate, the 5GHz channel

achieves a lower latency than the 2.4GHz. Second, comparing to

resizing and sending the resized image, sending the original image

directly to the server increases the latencies in both network delay

and image encoding. Overall, with more advanced wireless chips,

Pixel 2 XL and Xiaomi 9 achieve similar round-trip communication

latencies of 13.4ms and 9.7ms, respectively. Nokia 7.1 has the high-

est latency of 24.6ms. The communication latency is largely affected

by the wireless network condition. Our current measurement is

conducted under modest background traffic load. To address the

high communication latency in congested networks, we can com-

press the images with a higher ratio. For instance, one can apply

a higher degree of compression to parts of the image that are less

likely to contain important features [5].

8.4.3 End-to-end Latency. Putting all together, when executing

on the edge, the end-to-end system latency is 32.7ms, 21.5ms, and

Table 5: Communication latency (inms) for different clients.

The results are averaged over 30 trials. For each recognition

request, the clients take 10ms to 25ms in communication.

Content
Hardware Platform

Nokia 7.1 Pixel 2 XL Xiaomi 9

Image resizing 4.1 2.5 2.3

Image encoding
Resized image 10.3 4.6 2.4

Original image 722.5 348.1 182.5

Network delay

(Resized image)

2.4GHz 14.3 6.6 5.0

5GHz 10.2 6.3 5.0

Network delay

(Original image)

2.4GHz 120.7 60.3 32.0

5GHz 91.2 29.1 30.4

Lowest round-trip latency 24.6 13.4 9.7

17.8ms, for Nokia 7.1, Pixel 2 XL, and Xiaomi 9, respectively. The

results indicate that our edge-assisted design can provide accurate

image recognition without sacrificing the end-to-end system la-

tency. Overall, for all the three commodity smartphones that we

have examined, the edge-assisted design allows us to achieve 30fps

continuous image recognition.

9 DISCUSSION

In this section, we discuss our limitations and outline potential

solutions for future work.

Real-world image distortions. In the current presentation,

CollabAR is evaluated with distortion images that are synthesized

using simple distortion models (namely, the zero-mean additive

Gaussian noise model for Gaussian noise [32], the non-uniform

motion blur kernel for Motion blur [16], and the two-dimensional

Gaussian kernel for Gaussian blur [17]). However, there is a non-

negligible gap between the artificial and the real-world distor-

tions [42, 52]. Inevitably, the gap may result in poor recognition

performance when the system is applied to ‘in-the-wild’ AR sce-

narios. To alleviate this problem, instead of modeling the image

distortions using simple noise models, one can leverage the Gener-

ative Adversarial Network (GAN) to generate more realistic image

distortions using real-world distortion images as input [52–54]. The

distortion images generated from GAN can be further used to train

CollabAR and make it more robust to real-world distortions.

Mobile device heterogeneity. By aggregating multi-view im-

ages, CollabAR has shown great improvement in recognition accu-

racy. However, the current evaluation is performed on multi-view

images taken from a single type of device (i.e., Nokia 7.1). In practice,

owing to the heterogeneity in the underlying hardware and signal

processing pipelines, different mobile devices are showing varia-

tions in their image outputs on the same physical object/scene [55].

For image recognition system, this device heterogeneity may lead

to feature mismatch among images captured by different devices.

For the future work, a potential solution is leveraging the cycle-

consistent adversarial networks [53, 56] to learn the translation

function among different mobile devices, and use it to reduce the

domain shift caused the device heterogeneity.

Impact of image offloading on recognition. During image

offloading, the information loss due to image resizing and compres-

sion process (e.g., the JPEG compression) may also lead to accuracy

degradation [42, 54]. However, its impact on CollabAR is small. In

our design, since all images are processed with the same offloading

procedure, they suffer the same information loss during resizing
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and compression. The domain shift and feature mismatch between

the training and testing images are largely eliminated, and thus,

the accuracy loss due to image offloading is negligible.

10 CONCLUSION

In this paper, we presented CollabAR, an edge-assisted collabo-

rative image recognition system that enables distortion-tolerant

image recognition with imperceptible system latency for mobile

augmented reality. To achieve this goal, we propose the distortion-

tolerant image recognition to improve robustness against real-world

image distortions, and the collaborative multi-view image recog-

nition to improve the overall recognition accuracy. We implement

the end-to-end system on four different commodity devices, and

evaluate its performance on two multi-view image datasets. Our

evaluation demonstrates that CollabAR achieves over 96% recogni-

tion accuracy for images with severe distortions, while reducing

the end-to-end system latency to as low as 17.8ms.
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