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ABSTRACT

Mobile Augmented Reality (AR), which overlays digital content on
the real-world scenes surrounding a user, is bringing immersive
interactive experiences where the real and virtual worlds are tightly
coupled. To enable seamless and precise AR experiences, an image
recognition system that can accurately recognize the object in the
camera view with low system latency is required. However, due
to the pervasiveness and severity of image distortions, an effec-
tive and robust image recognition solution for mobile AR is still
elusive. In this paper, we present CollabAR, an edge-assisted sys-
tem that provides distortion-tolerant image recognition for mobile
AR with imperceptible system latency. CollabAR incorporates both
distortion-tolerant and collaborative image recognition modules in
its design. The former enables distortion-adaptive image recogni-
tion to improve the robustness against image distortions, while the
latter exploits the ‘spatial-temporal’ correlation among mobile AR
users to improve recognition accuracy. We implement CollabAR on
four different commodity devices, and evaluate its performance on
two multi-view image datasets. Our evaluation demonstrates that
CollabAR achieves over 96% recognition accuracy for images with
severe distortions, while reducing the end-to-end system latency
to as low as 17.8ms for commodity mobile devices.
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1 INTRODUCTION

Mobile augmented reality (AR), which overlays digital content with
the real world around a user, has recently jumped from the pages
of science fiction novels into the hands of consumers. To enable
seamless contextual AR experience, an effective image recognition
system that can accurately recognize objects in the camera view
of the mobile device with imperceptible latency is required [1, 2].
While this may come across as a solved problem given the recent
advancements in deep neural networks (DNNs) 3, 4] and mobile
offloading [1, 5, 6], there are three practical aspects that have been
largely overlooked in existing solutions.

First, in real-world mobile AR scenarios, a large proportion of
images taken by the smartphone or the head-mounted AR device
contains distortions. For instance, images frequently contain mo-
tion blur caused by the motion of the user [1, 7]. Gaussian blur
appears when the camera is de-focusing, or is used in an underwa-
ter AR scenario [8]. Gaussian white noise is also inevitable in low
illumination conditions [9]. Indeed, using two different commodity
mobile AR devices, our measurement study (Section 3.3) indicates
that over 70% of the images can be corrupted by distortions in different
practical scenarios. Given the high distortion proportion, simply
filtering out the distorted images, as has been suggested in prior
work [1, 2, 10], can hardly solve the problem.

Second, for image recognition, applying DNNs trained on large
scale datasets, e.g., ImageNet [11] and Caltech-256 [12], directly
to mobile AR images that contain severe multiple distortions is
difficult, and often results in dramatic performance degradation [9,
13, 14]. This deficiency results from the domain adaptation problem,
where distorted images fail to share the same feature distribution
with the clear training images [13, 15, 16]. Indeed, when testing
distorted images with a pre-trained MobileNetV2 [4] network on
the Caltech-256 dataset, we observe that even a small amount of
distortion in the images can significantly affect the recognition
accuracy (Section 3.2). Although deblurring methods and spatial
filters [17] can be used to reduce distortions, they also remove the
fine-scaled image details that are useful for image recognition.

Lastly, to achieve imperceptible recognition latency for resource-
constrained mobile AR devices, a number of works have explored
computation offloading [1, 5, 18] and approximate computation
reuse [6, 19] to reduce the system overhead. Although the state-of-
the-art solutions have reduced the end-to-end system latency to
below 33ms [5, 18], such performance is achieved in distortion-free
or distortion-modest environments. The challenge in mitigating
the trade-off between recognition accuracy and system latency for
mobile AR with severe multiple distortions has not been addressed.

To fill this the gap, we present CollabAR, an edge-assisted Col-
laborative image recognition framework for mobile Augmented
Reality. Due to recent advances in AR development platforms, AR
applications have become accessible on a wide range of mobile de-
vices. We have seen many dedicated AR devices, such as Microsoft
HoloLens [20] and Magic Leap [21], as well as Google ARCore [22]
and Apple ARKit [23] SDKs that work on a wide range of mobile
phones and tablets. The pervasive deployment of mobile AR will
offer numerous opportunities for multi-user collaboration [10, 24].
Moreover, mobile users that are in close proximity usually exhibit
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a strong correlation in both device usage and spatial-temporal con-
text [25]. The requested image recognition tasks are usually cor-
related temporally or spatially. Thus, unlike conventional image
recognition systems where individual users independently com-
plete their tasks to recognize the same object [1, 5, 18], CollabAR
embraces the concept of collaborative image recognition in its design,
and exploits the temporally and spatially correlated images captured
by the users to improve the image recognition accuracy.

Bringing this high-level concept into a holistic system requires
overcoming several challenges. First, we need to address the domain
adaptation problem [15] caused by the image distortions. As DNNs
can adapt to a particular distortion type, but not multiple types at
the same time [9, 15], we need to adaptively select a DNN that has
been fine-tuned to recognize a specific type of distorted images
in runtime. We introduce the distortion-tolerant image recognizer
which incorporates the image distortion classifier and a set of dedi-
cated recognition experts. CollabAR employs the image distortion
classifier to identify the most significant distortion contained in
the image, and triggers one of the dedicated recognition experts to
handle the distorted image. This distortion-adaptive selection of a
recognizer ensures a lower feature domain mismatch between the
image and the DNN, and a better robustness against distortions.

Second, to enable collaborative image recognition, we need to
identify a set of spatially and temporally correlated images that con-
tain the same object. Prior works rely on image feature vectors [19]
or feature maps [6] to identify temporally correlated images (e.g.,
continuous frames in a video). However, image features are vulner-
able to distortions, and result in high lookup errors in practical AR
scenarios. CollabAR introduces the anchor-based pose estimation
and the spatial-temporal image lookup module to efficiently identify
correlated images.

Third, as the correlated images suffer from various distortions
with different severity levels, they lead to heterogeneity in the recog-
nition confidence and accuracy. Conventional multi-view image
recognition systems [26, 27] lack a reliable metric to differentiate
the heterogeneity, and are not able to optimally aggregate the multi-
view results [28]. In this work, we propose the Auxiliary-assisted
Multi-view Ensemble Learning (AMEL) to dynamically aggregate
the heterogeneous recognition results of the correlated images.

Lastly, having all the system building blocks in mind, we aim to
provide imperceptible system latency (i.e., below 33ms to ensure
30fps continuous recognition), without sacrificing accuracy. The
targeted low system latency can leave more time and space for
many other computation-intensive tasks (e.g., virtual object ren-
dering) that are running on mobile AR devices. We explore several
design options (i.e., selection of DNN models, what to offload and
what to process locally) and conduct a comprehensive system pro-
filing to guide the final optimized implementation. We propose an
edge-assisted system framework to mitigate the trade-off between
recognition accuracy and system latency.

In this paper, we presents CollabAR, a collaborative image recog-
nition system for mobile AR. Our main contributions are:

e We propose the distortion-tolerant image recognizer to resolve the
domain adaptation problem caused by image distortions. Com-
pared to conventional methods, the proposed solution improves
the recognition accuracy by 20% to 60% for different settings.
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o To further boost the recognition accuracy, CollabAR embraces col-
laboration opportunities among mobile AR devices, and exploits
the spatial-temporal correlation among images for multi-view
image recognition. CollabAR introduces the anchor-based image
lookup module to effectively identify the spatially and temporally
correlated images, and the auxiliary-assisted multi-view ensemble
learning framework to dynamically aggregate the heterogeneous
multi-view results. Compared to the single-view-based recogni-
tion, the proposed method can improve the recognition accuracy
by 16% to 20% in severe multiple distortions scenario.

e We implement CollabAR on four different commodity devices,
and evaluate its performance on two multi-view image datasets,
one public and one collected by ourselves. The evaluation demon-
strates that CollabAR achieves over 96% recognition accuracy for
images that contain severe multiple distortions, while reducing
the end-to-end system latency to as low as 17.8ms.

The research artifacts, including our own collected multi-view
multiple distortions image dataset (Section 7), and the source codes
for both the distortion-tolerant image recognizer and the auxiliary-
assisted multi-view ensemble learning framework, are available at
https://github.com/CollabAR-Source/.

2 RELATED WORK

As a holistic image recognition system for multi-user mobile AR,
CollabAR builds on a body of prior work in mobile AR, distortion-
tolerant image recognition, and distributed image recognition.
Image Recognition for Mobile AR. Before overlaying the ren-
dered virtual objects on the view of a user, mobile AR systems lever-
age image recognition to identify the object appearing in the view.
For this purpose, image retrieval [1, 18], image localization [2], and
DNN-based image recognition methods [5] are widely used in prior
work. Image retrieval-based solutions, such as OverLay [1] and
Jaguar [18], exploit salient feature descriptors to match image in
with the annotated image stored in the database. However, salient
descriptors are vulnerable to image distortions; a large proportion of
images cannot be correctly recognized but is simply filtered out [1].
Image localization-based methods require the server to maintain
the annotated image dataset of the service area [29], which is com-
putationally heavy and involves a large volume of data [2]. Lastly,
DNN-based solutions [5] perform well with pristine images, but
even a small amount of distortion can lead to a dramatic perfor-
mance drop [9, 13]. Instead of filtering out the distorted images,
CollabAR incorporates the distortion-tolerant image recognizer to
enable image recognition for mobile AR systems.
Distortion-tolerant Image Recognition: Recent efforts have
been made by the computer vision community in resolving the neg-
ative impacts of image distortion on DNNs [9, 13, 14, 16]. Dodge et
al. [9] propose a mixture-of-experts-based model, in which recogni-
tion experts are fine-tuned to handle a specific image distortion, and
their outputs are aggregated using a gating network. In [13], Ghosh
et al. propose a similar master-slave CNN architecture for distorted
image recognition. Brokar et al. [14] propose an objective metric
to identify the most distortion-susceptible convolutional filters in
the CNNs. Correction units are added in the network to correct
the outputs of the identified filters. However, prior works mainly
focus on the single-view scenario, and fail when the image contains
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multiple distortions or the distortion level is high [9, 13, 14]. In
contrast, CollabAR can dynamically aggregate the spatially and
temporally correlated images to improve recognition accuracy in
multiple distortions scenario.

Distributed Image Recognition: Using distributed informa-
tion collected from multi-camera setups for image and object recog-
nition is a widely studied topic. For instance, in DDNNs [27], dis-
tributed deep neural networks are deployed over cloud, edge, and
end devices for joint object recognition. By leveraging the geograph-
ical diversity of a multi-camera network, DDNNs improves the
object recognition accuracy. To improve the accuracy for distortion-
tolerant pill image recognition, MobileDeepPill [30] relies on a
multi-CNN model to collectively capture the shape, color, and im-
print characteristics of pills. Kestrel [31] incorporates a video ana-
lytics system that detects and tracks vehicles across heterogeneous
multi-camera networks. These existing systems only perform in
distortion-free [27] or distortion-modest environments [30]. They
are not able to recognize the image if it contains severe or multiple
distortions. Moreover, many of them suffer from high end-to-end
latency (i.e., 200ms) [31].

3 BACKGROUND AND CHALLENGES
3.1 Image Distortions

In this paper, we consider three different types of image distor-
tion that commonly appear in mobile AR scenarios: motion blur,
Gaussian blur, and Gaussian noise.

Motion blur (MBL): images taken by the smartphone or the
head-mounted AR set camera frequently contain motion blur caused
by the motion of the user [1]. Given a pristine image F(x, y) with
pixel coordinates x and y, the corresponding motion-blurred image,
FyBL(x,y), can be modeled as Farpr(x,y) = F(x,y) = H(l, a) [16],
where H(I, a) is the non-uniform motion blur kernel that charac-
terizes the length (/) and orientation (a) of the motion when the
camera shutter is open, and * is the convolution operator. The dis-
tortion level of Fapr(x,y) is determined by the length of the blur
kernel [, while the angle a defines the direction in which the motion
blur affects the image. Figure 1(a) shows the pristine image (I=0)
and four motion-blurred images with different kernel lengths (the
angle a is randomly selected). Motion blur dramatically reduces the
sharpness of the image and distorts its spatial features.

Gaussian blur (GBL): Gaussian blur appears when the camera
is de-focusing or the image is taken underwater (e.g., in underwater
AR [8]) or in a foggy environment [17]. For a pristine image F(x, y),
the corresponding Gaussian-blurred image, FGpr(x, y), can be mod-
eled as Fgpr(x,y) = F(x,y) * G5 (x,y) [17], where G4 (x,y) is the
two-dimensional circularly symmetric centralized Gaussian kernel.
The distortion level of Fgpr(x,y) is determined by the aperture
size k of the circular Gaussian kernel. Figure 1(b) shows an example
of images containing different levels of Gaussian blur. Note that k
must be odd to maintain the circularly symmetric property.

Gaussian noise (GN): noise is also inevitable in images. Pos-
sible sources of noise include poor illumination conditions [9],
digital zooming, and the use of a low quality image sensor [32]. In
most cases, noise can be modeled as zero-mean additive Gaussian
noise [32]. Given a pristine image F(x, y), the corresponding noisy
image is expressed as FGn(x,y) = F(x,y) + N(x,y), where N(x, y)

0q2=0.01  0q2=0.02  0g?=0.03  0g?2=0.04
Figure 1: Examples of images containing different types of
distortions at different severity levels: (a) motion blur with
blur kernel length [, (b) Gaussian blur with aperture size k,

and (c) Gaussian noise with variance Ué N
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Figure 2: Impacts of image distortion on the recognition per-
formance of MobileNetV2 with the Caltech-256 dataset.

is the additive noise which follows a zero-mean Gaussian distribu-
tion. The distortion level of Fgn(x,y) is decided by the standard
deviation ogn. As shown in Figure 1(c), the Gaussian noise adds
random variation in both brightness and color of the image.

3.2 Impact of Distortion on Image Recognition

Deep neural networks (DNN), such as the AlexNet [3] and the
MobileNetV2 [4], have shown state-of-the-art performance in image
recognition. However, as DNN models are usually trained and tested
on the images that are pristine, e.g., ImageNet [11], directly applying
them to mobile AR images that contain severe multiple distortions
often leads to dramatic performance degradation [14, 17, 33]. This
deficiency results from the domain adaptation problem where real
world distorted images fail to share the same feature distribution
with the pristine training images [13, 15, 16].

As a case study to quantify this impact, we investigate the image
recognition accuracy of MobileNetV2 on distorted images. We pre-
train the MobileNetV2 using the images from the Caltech-256 [12]
dataset, and synthesize distorted images using the methods intro-
duced in Section 3.1. For each type of distortion, we adjust the
distortion level by configuring the corresponding parameter. The
synthesized images are used as the test dataset. The results are
shown in Figure 2. We can observe that even a small amount of
distortion in the images could significantly affect the recognition ac-
curacy. For instance, the accuracy of MobileNetV2 drops from 73.6%
to 33.0% with a blur kernel length of 10, even though the distortion
at this level does not hinder the human eyes’ ability to recognize
the object [34] (e.g., see an example in Figure 1(a)).
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Table 1: Measurements of image distortions in real-world
mobile AR scenarios. A large proportion of images suffers
from severe distortions.

Hardware ‘

S : |

‘ istortion ‘ Setting ‘ Nokia 7.1 | Magic Leap One |
Gaussian noise ‘ Dark room (7lux) ‘ 617/1558=39.6% ‘ infeasible ‘
((r?;N > 0.003) ‘ Camera zoom-in (509]ux) ‘ 1755/2185=97.2% infeasible ‘

Corridor (178lux) | 2681/3452=77.6%

3760/3776=99.6%

‘ Motion blur ‘

(1>5) | Sunny outdoor (9873lux) | 16/2687=0.5% | 957/2766=34.6%
Gaussian blur ‘ Foggy ‘ 762/935=81.6% ‘ infeasible ‘
(k>5) ‘ Underwater | 1250/1524=82.0% | infeasible ‘

3.3 Image Distortion for Real-world Mobile AR

Below, we quantify the extent of image distortion in real-word mo-
bile AR scenarios. We use two commodity AR devices, the Nokia 7.1
smartphone and the Magic Leap One head-mounted AR set, to
record videos (at 30 frames per second) in different environments,
and measure the proportion of recorded frames that suffer from
severe image distortions.

First, to quantify Gaussian noise, we use the Nokia 7.1 to record
videos in environments with poor illumination conditions, i.e., in-
door dark room (with 7lux). In addition, to study Gaussian noise
resulting from digital zooming, we conduct an experiment in an
indoor environment at daytime (with 5091ux), and turn on the built-
in digital zoom function of the Nokia 7.1 to record videos of objects
that are three meters away. We cannot record video using Magic
Leap One as its image and video recording service is unavailable
when the light condition is low, and it does not support image
zooming. Second, to quantify motion blur, we ask one user to hold
the Nokia 7.1 in her hand and ask another user to wear the Magic
Leap One. They record videos using the device front-camera in both
indoor corridor (with 178lux) and sunny outdoor (with 9873lux)
environments when walking at a normal pace. Lastly, to quantify
Gaussian blur, we put the Nokia 7.1 in a waterproof case, and record
videos in both underwater and foggy environments.! The collected
images comprise the MobileDistortion dataset, which is available
at https://github.com/CollabAR-Source/Distortion.

To determine if an image suffers from severe distortion, we use
distortion levels créN = 0.003, ] = 5, and k = 5 as the thresholds,
for the three types of distortion, respectively. The thresholds corre-
spond to the distortion levels that lead to a 10% accuracy drop in
the experiments shown in Figure 2. The results are summarized in
Table 1. The illumination of the environment is measured using the
smartphone light sensor that is adjacent to the smartphone camera.
First, we apply the image spatial quality estimator [35] to quantify
Gaussian noise. In poor illumination conditions, over 39% of the
images recorded by the Nokia 7.1 suffer from severe Gaussian noise.
Moreover, when using digital zooming, 97% of the images suffer
from severe Gaussian noise due to the additive noise introduced
in digital image processing. Second, we apply the partial-blur im-
age detector [36] to quantify motion blur. As shown in Table 1, for
Magic Leap One, 99.6% and 34.6% of the recorded images suffer from
severe motion blur in the corridor and the outdoor environments,
respectively. For Nokia 7.1, 77.6% and 0.5% of the images contain
severe motion blur in these two environments. We can notice that
there is less motion blurring in the sunny outdoor environment

!We do not conduct this experiment with a Magic Leap One as we are unaware of the
availability of waterproof cases for it.
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Figure 3: System architecture of CollabAR.

(9873lux) than in the corridor (178lux): as the camera exposure time
is shorter with a higher illumination, and the impact of motion on
the image is proportional to the exposure time, there is less motion
blurring in high illumination environment. Lastly, we apply the
local binary pattern-based blur detector [37] to detect Gaussian
blur. The results show that 82% and 81.6% of the images suffer from
severe Gaussian blur in the underwater and foggy environments,
respectively. Our measurements highlight the pervasiveness and
severity of image distortions in real-world scenarios. Given the high
distortion proportion, simply filtering out the distorted images, as
has been suggested in prior work [1, 2, 10], can hardly solve the
distortion problem for practical AR applications.

4 SYSTEM OVERVIEW

The architecture of CollabAR is shown in Figure 3, which incor-
porates three major components: (1) the distortion-tolerant image
recognizer, (2) the correlated image lookup module, and (3) the
auxiliary-assisted multi-view ensembler. They are deployed on the
edge server to mitigate the trade-off between recognition accuracy
and end-to-end system latency (detailed system measurements are
given in Section 8.4). In addition to the server, the client is running
an anchor-based pose estimation module which leverages the Cloud
anchors provided by the Google ARCore [22] to track the location
and orientation of the mobile device.

When the user takes an image of the object, the mobile client
sends the image along with the IDs of the anchors in the camera
view to the server. Having received the data, the server marks
the image with a unique image ID and a timestamp. The image
is used as the input for the distortion-tolerant image recognizer,
while the anchor IDs and the timestamp are used as references
for spatial-temporal image lookup. In CollabAR, anchor IDs and
timestamps are stored in the anchor-time cache in the format of
< imagelD, {anchorIDs}, timestamp >, while the recognition re-
sults of the images are stored in the results cache in the format of
< imagelD, inferenceResult > for future reuse and aggregation. In
our design, we do not share information among the clients. Instead,
clients communicate directly with the edge server to ensure high
recognition accuracy and low end-to-end latency.

Distortion-tolerant image recognizer: the distortion image
recognizer incorporates an image distortion classifier (Section 5.1)
and four recognition experts (Section 5.2) to resolve the domain
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adaptation problem [15] caused by the image distortions. As DNNs
can adapt to a particular distortion, but not multiple distortions
at the same time [9, 15], we need to identify the most significant
distortion in the image, and adaptively select a DNN that is dedi-
cated to the detected distortion. As shown in Figure 3, for a new
image received from the client, the distortion classifier detects if
the image is pristine or if it contains any type of distortion (i.e.,
motion blur, Gaussian blur, or Gaussian noise). Then, based on
the detected distortion type, one of the four recognition experts is
triggered for the recognition. Each of the recognition experts is a
Convolutional Neural Network (CNN) that has been fine-tuned to
recognize a specific type of distorted images. The inference result
of the expert is sent to the auxiliary-assisted multi-view ensembler
for aggregation, and is stored in the results cache for reuse.

Correlated image lookup: to enable collaborative image recog-
nition, the correlated image lookup module (Section 6.1) searches
the Anchor-time cache to find previous images that are spatially
and temporally correlated with the new one. The anchor IDs are
used as the references to identify the spatial correlation, while the
timestamps are used to determine the temporal correlation. The
correlated images could be the images that are captured by differ-
ent users or the continuous image frames that are obtained by a
single device. The IDs of the correlated images are forwarded to
the multi-view ensembler.

Auxiliary-assisted multi-view ensembler: based on the iden-
tified image IDs, the multi-view ensembler retrieves the inference
results of the correlated images from the results cache. Together
with the recognition result of the new image, the retrieved results
are aggregated by the multi-view ensemble learning module to
improve the recognition accuracy. Specifically, as the correlated
images suffer from various distortions with different severity lev-
els, they are unequal in quality and lead to heterogeneity in the
recognition accuracy. CollabAR leverages the Auxiliary-assisted
Multi-view Ensemble Learning (AMEL) (Section 6.2) to dynamically
aggregate the heterogeneous results provided by the correlated
images. Below, we describe the design of CollabAR in detail.

5 DISTORTION-TOLERANT RECOGNIZER

5.1 Image Distortion Classifier

Different types of distortion have distinct impacts on the frequency
domain features of the original images. For instance, as discussed
in Section 3.1, Gaussian blur can be considered as having a two-
dimensional circularly symmetric centralized Gaussian convolution
on the original image in the spatial domain. This is equivalent to
applying a Gaussian-weighted, circularly shaped low pass filter
on the image, which filters out the high frequency components
in the original image. Similarly, motion blur can be considered
as a Gaussian-weighted, directional low pass filter that smooths
the original image along the direction of the motion [7]. Lastly,
the Fourier transform of additive Gaussian noise is approximately
constant over the entire frequency domain, whereas the original
image contains mostly low frequency information [38]. Hence, an
image with severe Gaussian noise will have higher signal energy
in the high frequency components.

Figure 4 gives the Fourier spectrum of images containing differ-
ent distortions. The spectrum is shifted such that the DC-value is

RGB

Spectrum

Gaussian blur Gaussian noise

Motion blur
Figure 4: The Fourier spectrum of images containing differ-
ent distortions. Different distortions have distinct impacts
on the frequency domain features of the images. The pat-
terns are independent of the semantic content in the image.

Pristine

Rec. 601 " - \ Distortion
li ) X @* type
Y 2z |

RGB Grayscale Spectrum  Distortion
classifier

Figure 5: The pipeline of the image distortion classification.

displayed in the center of the image. For any point in the spectrum,
the farther away it is from the center, the higher is its corresponding
frequency. The brightness of the point in the spectrum indicates the
energy of the corresponding frequency component in the image.
We can see that the pristine image contains components of all fre-
quencies, and most of the high energy components are in the lower
frequency domain. Differently, Gaussian blur removes the high
frequency components of the image in all directions. The remain-
ing two dominating lines in the spectrum, one passing vertically
and one passing horizontally through the center of the spectrum,
correspond to the vertical and horizontal patterns in the original
image. Similarly, motion blur removes the high frequency compo-
nents in the image along the direction of motion. Thus, in addition
to the vertical and horizontal lines, we can see a strong diagonal
line which is perpendicular to the direction of the motion blur.
Lastly, Gaussian noise introduces more high energy components in
the high frequency domain. We leverage these distinct frequency
domain patterns for distortion classification.

Figure 5 shows the pipeline of the image distortion classification.
First, we convert the original RGB image into grayscale using the
standard Rec. 601 luma coding method [39]. Then, we apply the two-
dimensional discrete Fourier transform (DFT) to obtain the Fourier
spectrum of the grayscale image, and shift the zero-frequency com-
ponent to the center of the spectrum. The centralized spectrum is
used as the input for the distortion classifier. As shown in Table 2,
the distortion classifier adopts a shallow CNN architecture which
consists of three convolutional layers (convi, conv2, and conv3), two
pooling layers (pooll and pool2), one flatten layer, and one fully
connected layer (fc). This shallow design avoids over-fitting and
ensures low computation latency.

5.2 Recognition Experts

Based on the output of the distortion classifier, one of the four
dedicated recognition experts is selected for the image recognition.
We consider either the lightweight MobileNetV2 or the AlexNet as
the base DNN model for the recognition experts. Although deeper
models (e.g., ResNet [40] and VGGNet [41]) can achieve higher
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Table 2: The architecture of the image distortion classifier.

Layer Size In Size Out Filter
convl 224X 224x3 | 111 X111 X32 | 3X3,2
conv2 | 111 X 111X 32 | 109X 109X 16 | 3 X 3,1
pooll | 109 X 109 X 16 54 X 54 X 16 2x%2,2
conv3 54 X 54 X 16 54 X 54 %1 1x1,1
pool2 54 X 54 % 1 27 x27x1 2X2,2
flatten 27 x27x1 729

fe 729 4

accuracy on pristine images, they are still susceptible to image dis-
tortions [9, 42]. Recent studies have shown more than 40% accuracy
drop on ResNet [42] and VGGNet [9] when the images contain
distortion. In contrast, CollabAR ensures better robustness against
distortions while maintaining a lower computation latency. We
initialize all the CNN layers with the values trained on the full
ImageNet dataset. Then, to fine-tune the experts on a target dataset,
we add a fully connected layer as the last layer with the number of
units corresponding to the number of classes in the target dataset.
In the fine-tuning process, we first train the pristine expert,
Expertp, using pristine images in the target dataset. Then, the
three distortion experts, i.e., motion blur expert Expert y gy , Gauss-
ian blur expert Expertsp;, and Gaussian noise expert Expert sy,
are initialized with the weights of Expertp, and fine-tuned using
the corresponding distortion images. During the fine-tuning, half
of the images in the mini-batch are pristine and the other half are
distorted with a random distortion level. This ensures better ro-
bustness against variations in the distortion level (i.e., it helps in
minimizing the effect of domain-induced changes in feature dis-
tribution [15]) and helps the CNNs to learn features from both
pristine and distorted images [43]. For Expert g} , the distortion
level is configured by varying the blur kernel length I and the mo-
tion angle a. Their values are randomly selected from the uniform
distributions where [ ~ U(0,40) and a ~ U(0, 180). Similarly, for
Expert g, the distortion level is controlled by the aperture length
k ~ U(0,41). Lastly, for Expert gy, the distortion level is decided
by the variance of the additive Gaussian noise O'é N ~ U(0,0.04).

6 COLLABORATIVE MULTI-VIEW IMAGE
RECOGNITION

Mobile users that are in close proximity usually exhibit a strong cor-
relation in both device usage and spatial-temporal contexts [19, 25].
This is especially true in mobile AR scenario where the requested
image recognition tasks are usually correlated temporally (e.g., con-
secutive image frames from the same user [5, 6, 44]) and spatially
(e.g., different users aim to recognize the same object [10, 19]). For
instance, in a museum, visitors that are in close proximity may use
the AR application to recognize and augment information of the
same artwork. Although images are taken from different positions
or at different times, they contain the same object [19]. CollabAR ex-
ploits the spatial-temporal correlation among the images to enable
collaborative multi-view image recognition. Note that CollabAR
is not limited to the multi-user scenario. It can also aggregate the
consecutive image frames captured by a single user as long as they
are spatially and temporally correlated.

6.1 Correlated Image Lookup
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Figure 6: An example of correlated image lookup. Images
of the same artwork are taken from different poses, viewl
and view2, at different times, t; and ;. The anchors in the
image views are used to check the spatial correlation, and
the timestamps are used to check the temporal correlation.

6.1.1 Anchor-based Pose Estimation. To identify the spatially and
temporally correlated images, CollabAR exploits the Google AR-
Core [22] to estimate the pose (the position and orientation) of
the device when the image was taken. When the user is moving
in space, ARCore leverages a process called concurrent odometry
and mapping (COM) which aggregates the image frames taken by
the camera and the inertial data captured by the device’s motion
sensors to simultaneously estimate the orientation and location of
the mobile device relative to the world.

Specifically, CollabAR leverages the Cloud anchors [45] provided
by ARCore as the references for pose estimation. An anchor is a
virtual identifier which describes a fixed pose in the physical space.
The numerical pose estimation of the anchor is updated by the
ARCore over time, which makes the anchor a stable pose reference
against cumulative tracking errors [2, 46]. In our design, anchors
are created and managed by the administrator in advance. When
running the application, anchors in the space can be resolved by
the users to establish a common spatial reference among them. As
a toy example shown in Figure 6, three cloud anchors have been
placed in space to identify three different poses. When the user is
taking an image of the artwork from view1 at time t;, the anchors
in the camera view will be sent to the edge and associated with the
timestamp #;. As shown previously in Figure 3, the anchors and
the timestamps are stored in the anchor-time cache in the format
of < imagelD, {anchorIDs}, timestamps >. When a new image,
image2, is taken at time t; from view2 either by the same or by a
different user, the spatial-temporal image lookup module searches
the anchor-time cache to find previous images that are spatially
and temporally correlated with the new one.

6.1.2  Spatial-temporal Image Lookup. For any image in the cache,
imagecacheds it is considered as spatially correlated with the new
image, imagen ¢y, if the images satisfy:

(1)

where {anchorlDs}new and {anchorlDs}c,ched are the sets of an-
chors that appeared in views of imagene and imagecgycped, re-
spectively. If two images contain the same anchor in their views,
they are spatially correlated. For instance, in Figure 6, imagel con-
tains the same anchor, anchor#2, that also appears in the view of

{anchorIDs}new N {anchorIDs}cached # 0,
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image2. Thus, they are spatially correlated. Similarly, the cached
image is considered as temporally correlated to the new image if
the images satisfy:

and At g Treshs (2)

where tneyw and togepeq are the timestamps of the new and cached
images, respectively. At is the freshness of imagecgcpeq With re-
spect to imageneyy. If the freshness At is within the freshness
threshold, Tfiesh, imagecgcheq is considered as temporally corre-
lated with imagen ¢+ . Note that the setting of the freshness thresh-
old Tfesh varies with the application scenarios. In cases where the
object at a given position changes frequently, e.g., animals in the
z00, we should use a lower freshness threshold. Differently, in sce-
narios where the positions of the objects do not change very often,
e.g., exhibited items in a museum or large appliances in a build-
ing, a higher freshness threshold can be tolerated. An image in the
anchor-time cache is considered as spatially and temporally corre-
lated to the new image if they satisfy Equations 1 and 2 at the same
time. The IDs of the identified correlated images are forwarded to
the multi-view ensembler for aggregation.

At = tNew — tCached

6.2 Auxiliary-assisted Multi-view Ensemble
Learning

In image recognition, ensembling the results of multiple base clas-
sifiers is a widely used approach to improve the overall recognition
accuracy [27, 47]. Following this trend, CollabAR aggregates the
recognition results of the spatially and temporally correlated images
to improve the recognition accuracy of the current image.

As shown previously in Figure 3, using the image IDs identi-
fied by the correlated image lookup module as the key, the multi-
view ensembler retrieves the results of the correlated images from
the results cache. This is done by retrieving any stored records in
the result cache, i.e., < imagelD, inferenceResult >, with imagelD
matches to the identified images. As shown in Figure 7, assuming
that m — 1 correlated images are identified, the inference result of
the current image (the probability vector ™) is aggregated with
that of the m—1 correlated images (Pl, Pm’l) by the ensembler.

However, given the heterogeneity of the m images (i.e., images
are captured from different angles, suffer from different distortions
with different distortion levels), the images lead to unequal recog-
nition performance. To quantify their performance and help the
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Table 3: Summary of the MVMDD dataset. It has 32,400 im-
ages in total, including 1,296 pristine and 31,104 distorted
images that are generated using data augmentation.
Object categories
Number of views
Background complexity
Size of object in image
Number of instances
6X6X2X3X6=1,296

Pristine image set

W[

Total pristine images

Types of distortion
Distortion levels
1,296x3%8=31,104

32,400

Augmented image set

Total augmented images

Total images

ensembler in aggregating the results dynamically, auxiliary fea-
tures [28, 48] can be used. We propose to use the normalized
entropy as the auxiliary feature. The normalized entropy S* mea-
sures the recognition quality and the confidence of the distortion-
tolerant image recognizer on the recognition of the kth image in-
stance. S¥ can be calculated from the probability vector as follows:

c
¢l pilogpi

Skpk) = — ,
=" Ll

®)
where P¥ = {p;, ..»p|c|} is the probability vector of the kth base
learner on the image instance, and |C| is the number of object cate-
gories in the dataset. The value of normalized entropy is between
0 and 1. A value close to 0 indicates that the distortion-tolerant
image recognizer is confident about its recognition on the image
instance, whereas a value close to 1 means that it is not confident.

In AMEL, the set of normalized entropy, (Sl, ..., 8™), is used
as the weight in averaging heterogeneous outputs of the spatial-
temporal correlated images. Specifically, given the current image
and the m — 1 correlated images, the final aggregated recognition
output P can be expressed as P = 37 (1 - SHP;, where P; is the
probability vector of the ith image and (1 — S?) is the associated
weight. This allows AMEL to dynamically adjust the weights in
aggregating the m images during the classification. As the images
result in unequal recognition accuracy, AMEL is more robust against
this variance than standard averaging methods which would assign
equal weights to multi-view images during the aggregation [26].
We evaluate AMEL in Section 8.3.3.

7 MULTI-VIEW MULTI-DISTORTION IMAGE
DATASET

We create a Multi-View Multi-Distortion image Dataset (MVMDD)
to study the impact of image distortion on multi-view AR. Our
dataset includes a pristine image set and an augmented distortion
image set. The details are summarized in Table 3.

Pristine image set: we collect pristine images (i.e., images with-
out distortion) using a commodity Nokia 7.1 smartphone. Six cate-
gories of everyday objects are considered, cup, phone, bottle, book,
bag, and pen. Each category has six instances. For each instance,
images are taken from six different views (six different angles with
a 60° angle difference between any two adjacent views), two differ-
ent background complexity levels (a clear white table background
and a noisy background containing other non-target objects), and
three distances. We adjust the distance between the camera and
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Figure 8: Examples of the pristine images that are collected
in our MVMDD dataset.

bottle cup pen phone

the object such that the sizes of the object in the images are dif-
ferent. For the three distances, the object occupies approximately
the whole, half, and one-tenth of the total area of the image. The
resolution of the images is 3024X4032. As summarized in Table 3,
we collect 6X6X6Xx3X2 = 1,296 pristine images in total. Figure 8
provides examples of the collected images.

Data augmentation for image distortion: to ensure robust-
ness against image distortion, a large volume of distorted images is
required to train the DNNs. However, in practice, it is difficult to
collect a large number of images with different types of distortions.
To address this challenge, we apply the three distortion models
introduced in Section 3.1 to synthesize images with different dis-
tortions. We consider eight severity levels for each distortion type.
Specifically, for motion blur, we adjust the motion blur kernel length
[ from 5 to 40, with a step size of 5, to create eight levels of blur. Sim-
ilarly, we configure the aperture size of the 2D circularly symmetric
centralized Gaussian function from 6 to 41, with a step size of 5,
for the Gaussian blur, and change the variance of the zero-mean
Gaussian distribution from 0.005 to 0.04, with a step size of 0.005,
for the Gaussian noise. As summarized in Table 3, we generate
1,296x3%8=31,104 distorted images in total. The dataset is publicly
available at https://github.com/CollabAR-Source/MVMDD.

8 EVALUATION

8.1 Experimental Setup

8.1.1 Implementation. The client of CollabAR is implemented on
Android smartphones. We leverage the Google ARCore SDK to
realize the anchor-based pose estimation module introduced in
Section 6.1.1. The edge server is a desktop with an Intel i7-8700k
CPU and a Nvidia GTX 1080 GPU. We realize the server of CollabAR
using the Python Flask framework. The distortion-tolerant image
recognizer and the multi-view ensembler are implemented using
Keras 2.3 on top of the TensorFlow 2.0 framework. The client and
the server communicate through the HTTP protocol.

8.1.2  Benchmark dataset. Four datasets are considered in the eval-
uation: Caltech-256 [12], MIRO [49], MobileDistortion (collected in
Section 3.3), and MVMDD (collected in Section 7). The Caltech-256
dataset has 257 categories of objects with more than 80 instances

per category. The MIRO dataset has 12 categories of objects with
ten instances per category. For each instance, it contains multi-view
images that are captured from ten elevation angles and 16 azimuth
angles. In the evaluation, we randomly select six distinct angles to
represent six different views. Our own MVMDD dataset has six
categories of objects with six instances per category. Each object
instance is captured from six views and three different distances,
with two different backgrounds. In addition to the original pristine
images, for both Caltech-256 and MIRO, we apply the data aug-
mentation methods (Section 3.1) to generate new sets of distorted
images. Lastly, we also prepare 300 image instances for each dis-
tortion type from the MobileDistortion image set we collected
in Section 3.3. We use it to examine the distortion classifier on
distorted images in real-world mobile AR scenarios.

8.2 Distortion Classifier Performance

First, we evaluate the performance of the image distortion classi-
fier using all four benchmark datasets. We perform 3-fold cross
validation on each of the four datasets.

The confusion matrix and the accuracy of the image distortion
classifier are shown in Figure 9. The classifier achieves 95.5%, 94.2%,
92.9%, and 93.3% accuracy on the MobileDistortion, Caltech-256,
MIRO, and MVMDD datasets, respectively. Moreover, the confu-
sion matrix indicates that most of the classification errors happen
in differentiating Motion blur (MBL) and Gaussian blur (GBL). As
shown in Figure 9, for the four different datasets, 15.3%, 3.9%, 18.1%,
and 15.3% of the GBL distorted images are misclassified as MBL.
In our experiments we observe that MBL and GBL can be misclas-
sified as each other regardless of the distortion level. This is due
to the similarity between these two distortions. Specifically, MBL
and GBL have similar impact on the image spectrum and result in
misclassification when the direction of the motion blur is parallel
or perpendicular to the central horizontal line of the image. In addi-
tion, we also notice that when the distortion level is low, i.e., [<10
for MBL and O'é N <0.01 for GN, the distorted images are sometimes
misclassified as pristine images. This is intuitive, as the impact of
the image distortion on the Fourier spectrum is limited when the
distortion level is low, and thus, results in similar spectrum feature
as pristine images. Overall, on all four image datasets, the distortion
classifier achieves 94% accuracy on average.

8.3 Image Recognition Accuracy

Below, we evaluate the image recognition accuracy of CollabAR. As
Caltech-256 does not contain multi-view images, we use MIRO and
MVMDD as the datasets. We first examine the performance of the
distortion-tolerant image recognizer, followed by the evaluation
of CollabAR in multi-view and multiple distortions scenarios. We
perform 3-fold cross validation in this experiment.

8.3.1 Performance of Distortion-tolerant Image Recognizer. We ex-
amine the recognition accuracy of both MobileNet-based and AlexNet-
based implementations. We consider the single-distortion scenario
and gradually increase the distortion level to investigate its impact
on the recognition accuracy.

The results are shown in Figure 10. First, regardless of the dis-
tortion type, the MobileNet-based implementation outperforms
the AlexNet-based one by 15% and 40% on MVMDD and MIRO,
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Figure 9: Confusion matrix and accuracy of the image distor-
tion classifier on different datasets: (a) MobileDistortion, (b)
Caltech-256, (c) MIRO, and (d) MVMDD. On average, the dis-
tortion classifier achieves 94% accuracy on both real-world
and synthesized distorted images.
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Figure 10: Accuracy of distortion-tolerant image recognizer

when image contains (a) Motion blur, (b) Gaussian blur, and
(c) Gaussian noise, respectively. MobileNet-based implemen-
tation outperforms the AlexNet-based one by 15% and 40%
on MVMDD and MIRO datasets, respectively.

respectively. The improvement can be attributed to the use of the
depthwise separable convolution as an efficient building block for
image feature extraction, and the use of a linear bottleneck for
better feature transformation [4]. Second, MobileNet-based recog-
nition experts are more robust against image distortions. With the
highest examined distortion level, i.e., I = 40 for MBL, k = 41 for
GBL, and oé N = 0.04 for GN, we achieve 94.4% and 86.9% accuracy
on average across the three distortions on MVMDD and MIRO,
respectively. However, we still experience a modest accuracy drop
when the distortion level is high. With the highest examined distor-
tion level, CollabAR suffers 5% and 9% drop in accuracy on average
on the two datasets, respectively. The accuracy drop will become
much more severe when the image contains multiple distortions,
but it can be resolved with the help of multi-view collaboration.

8.3.2  Performance of Multi-view Collaboration. Below, we evaluate
the performance of CollabAR in the multi-view scenario where spa-
tially and temporally correlated images are aggregated to improve
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Figure 11: Accuracy of CollabAR in the multi-view single-
distortion scenario on (a) MIRO and (b) MVMDD datasets.

the single-view accuracy. Moreover, we investigate how multi-view
collaboration can help in multiple distortions cases.

Setup: we apply MobileNet-based implementation for the recog-
nition experts, as it demonstrates a higher accuracy than the AlexNet-
based one. To microbenchmark the end-to-end system design, we
evaluate CollabAR with two design options: (1) with and without
the image distortion classifier, and (2) with and without the aux-
iliary feature for the multi-view ensembler. We consider up to six
views to be aggregated for collaborative recognition.

Multi-view Single-distortion: in the single-distortion case,
the image of each view contains one of the three distortions (i.e.,
MBL, GBL, or GN). We set the image distortion to a high level (i.e.,
30 < [ < 40 for MBL, 31 < k < 41 for GBL, and 0.03 < ¢2,,; < 0.04
for GN) to evaluate CollabAR with the most severe distortions.

The performance is shown in Figure 11. First, with the image
distortion classifier, CollabAR can correctly select the recognition
expert that is dedicated to the examined distortion image, and
can significantly improve the recognition accuracy. Given different
number of views aggregated, CollabAR with the distortion classifier
can improve the overall accuracy by 20% to 60% when compared to
the case without a distortion classifier. Second, with the auxiliary
feature, CollabAR can dynamically adjust the weights in multi-view
aggregation, and can improve the overall accuracy up to 5% and 14%
on MIRO and MVMDD, respectively. Lastly, the accuracy increases
with the number of aggregated views. In case where CollabAR is
incorporated with both the distortion classifier and the auxiliary
feature, the overall accuracy can be improved by 15% and 7% with
six views aggregated, on MIRO and MVMDD, respectively.

Multi-view Multi-distortion: below, we examine CollabAR,
with both the distortion classifier and the auxiliary feature, in the
multiple distortions scenario. We consider four multiple distortion
combinations: MBL+GN, GBL+GN, GBL+MBL, and GBL+MBL+GN.

Figure 12 shows the performance of CollabAR given different
distortion combinations in the testing image. The distortion is set
to a modest level (i.e.,, 5 < I < 15 for MBL, 6 < k < 16 for GBL, and
0.005 < cr(z}N < 0.015 for GN). First, we observe a significant drop in
the accuracy compared to that in the single-distortion scenario. This
is expected: since the dedicated recognition experts are fine-tuned
on images with specific types of distortions, multiple distortions will
cause a mismatch in the feature distribution between the corrupted
testing images and the dedicated recognition experts, and will thus
result in a performance drop. Fortunately, the accuracy improves
with the number of views aggregated. For different combinations
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Figure 13: Accuracy improvement of CollabAR in multi-
view multi-distortion scenario given different distortion
combinations and distortion levels (i.e., by configuring [ and
k from 5 to 40 with a step size of 10). With six views aggre-
gated, the overall accuracy is improved by 9.5% on average
across different scenarios.

of image distortions, the accuracy can improve by up to 16.5% and
20.3% on MIRO and MVMDD, respectively.

Figure 13 shows the accuracy improvements of the multi-view
aggregation given different distortion combinations and distortion
levels. Overall, with six views aggregated, the overall recognition
accuracy can be improved by 9.5% on average. Specifically, the im-
provements become modest when the distortion level is high. This
is reasonable: if all the aggregated images suffer from severe distor-
tions, simply aggregating the multi-view results would not improve
the overall performance by much. One exception in our experiment
is the ‘GBL+MBL’. This is because our distortion-tolerant image
recognizer is robust against the ‘GBL+MBL’ when the distortion
level is low (as shown in Figure 12), and thus we achieve a higher
improvement when the distortion level of ‘GBL+MBL’ is higher. In
practical mobile AR scenarios, we believe that the probability of all
the correlated images suffering severe multiple distortions is fairly
low. Thus, as it will be shown in the following section, CollabAR
achieves over 96% accuracy as long as there is one low-distortion
image in the multi-view collaboration.

8.3.3 Advantages of AMEL. Below, we investigate the performance
of CollabAR in heterogeneous multi-view multiple distortions sce-
narios, where images from different views are diverse in distortion
type and distortion level. We define a ‘good view’ if the image is
pristine and we define a ‘bad view’ if the image contains high dis-
tortion levels (i.e., 30 < I < 40 for MBL, 31 < k < 41 for GBL, and
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Figure 14: CollabAR accuracy on the MVMDD dataset with
and without the auxiliary feature. The images contain mul-
tiple distortions and are diverse in the distortion level.

0.03 < oéN < 0.04 for GN). We also demonstrate the advantages
of the proposed auxiliary-assisted multi-view ensemble over the
conventional ensemble method without the auxiliary feature.
Figure 14 compares the performance of CollabAR on the MVMDD
dataset with and without the auxiliary feature. CollabAR can al-
ways achieve a higher accuracy with the auxiliary feature. The
improvement is most pronounced when there are more ‘bad views’
than ‘good views’ in the multi-view aggregation (e.g., ‘1g2b’, ‘1g3b’,
‘2g3b’, and ‘2g4b’, where ‘1g2b’ refers to ‘one good view and two bad
views’). For instance, as shown in Figure 14(d), in a scenario where
the image contains three types of distortion, the auxiliary feature
can improve the performance by 8% on average and up to 26% in
a more diverse case (‘1g3b’). Overall, CollabAR achieves 96% and
88% accuracy on average, with and without the auxiliary feature,
respectively. We achieve similar results on the MIRO dataset.

8.4 System Profiling

Below, we present a comprehensive profiling of CollabAR in terms

of computation and communication latency. We consider two de-
ployments of CollabAR: (1) the whole system is deployed on the mo-
bile client, and (2) the edge-assisted design in which the computation-
intensive recognition pipeline is deployed on the server. We im-
plement CollabAR on four different platforms. In addition to the

edge server, we also consider three different commodity smart-
phones, Nokia 7.1, Google Pixel 2 XL, and Xiaomi 9, as the mobile

clients. The three smartphones are heterogeneous in both computa-
tion and communication performance. We leverage the TensorFlow

Lite [50] as the framework when implementing CollabAR on the

smartphones.

8.4.1 Computation Latency. To examine the computation latency
of CollabAR, we tear down its image recognition pipeline into two
processing components: (1) the image distortion classifier and
(2) the AMEL image recognition. Two possible implementations of
the AMEL, i.e., AlexNet-based and MobileNetV2-based, are consid-
ered. We run 30 trials of the end-to-end image recognition pipeline
and report the average time consumed by each of the components.
Table 4 shows the computation latency (in ms) when we deploy the
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Table 4: The computation latency (in ms) of CollabAR
when deployed on different hardware platforms. The edge-

assisted design achieves the lowest overall latency of 8.1ms.
Processing | Processing ‘ Hardware Platform ‘
Component Unit ‘ Edge server ‘ Nokia 7.1 ‘ Pixel 2 XL ‘ Xiaomi 9 ‘
AMEL CPU 48.0 255.4 189.9 124.2
(AlexNet) GPU 6.8 331.0 1275 71.2
AMEL CPU 28.1 108.4 81.9 33.7
(MobileNetV2) GPU 47 46.9 26.0 331
Distortion | CPU [ 44 | 203 [ 2233 [ 131 |
classifier | GPU | 3.4 | 203 | 87 | 84 |
Lowest | CPU [ 325 [ 1377 | 1042 [ 468 |
overall latency | GPU | 8.1 | 672 | 347 | 415 |

system on different hardware platforms. First, regarding the latency
of AMEL, MobileNet-based design can always achieve lower latency
than AlexNet-based one, for the same hardware platform and pro-
cessing unit used. This is because MobileNetV2 is more lightweight
and is well-optimized for running on resource-limited devices [51].
Second, the edge server achieves the lowest overall computation
latency of 8.1ms when using its GPU for the computation. Our edge-
assisted design achieves more than four times speedup over the best
examined mobile platform. Although the latency for individual mo-
bile platforms can be reduced when more efficient DNN model and
powerful mobile GPU are used, the edge-assisted design ensures
low computation latency when mobile devices are heterogeneous
in computation power.

8.4.2 Communication Latency. Communication latency is a factor
of delay when we deploy the recognition process on the edge. There
are three phases involved in a single end-to-end image recognition:
e Network delay: client transmits either the resized image or the
original image to the edge server, and the server sends the recog-
nition result back to the client.

Image resizing: resizing process is needed when the client decides
to transmit the resized image. The resizing converts the original
image from 3,024x4,032%3 to the size of 224x224x3.

Image encoding: the encoding compresses the raw image using
the JPEG lossless compression.

In our experiment, the client and the server are connected through
a single-hop Wi-Fi network in our lab. We measure the latency when
using both 2.4GHz and 5GHz wireless channels. Table 5 shows the
latency of the mobile clients when communicating with the edge
server. First, because of the higher data rate, the 5GHz channel
achieves a lower latency than the 2.4GHz. Second, comparing to
resizing and sending the resized image, sending the original image
directly to the server increases the latencies in both network delay
and image encoding. Overall, with more advanced wireless chips,
Pixel 2 XL and Xiaomi 9 achieve similar round-trip communication
latencies of 13.4ms and 9.7ms, respectively. Nokia 7.1 has the high-
est latency of 24.6ms. The communication latency is largely affected
by the wireless network condition. Our current measurement is
conducted under modest background traffic load. To address the
high communication latency in congested networks, we can com-
press the images with a higher ratio. For instance, one can apply
a higher degree of compression to parts of the image that are less
likely to contain important features [5].

8.4.3 End-to-end Latency. Putting all together, when executing
on the edge, the end-to-end system latency is 32.7ms, 21.5ms, and
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Table 5: Communication latency (in ms) for different clients.
The results are averaged over 30 trials. For each recognition
request, the clients take 10ms to 25ms in communication.
Hardware Platform ‘

Content | Nokia 7.1 | Pixel 2 XL | Xiaomi 9 |

‘ Image resizing ‘ 4.1 ‘ 2.5 ‘ 23 ‘
I & ‘ Resized image ‘ 10.3 ‘ 4.6 ‘ 24 ‘
1Mage encoting Griginal image | 7225 | 3481 | 1825 |
Network delay | 2.4GHz [ 143 ] 66 [ 50 |
(Resized image) ‘ 5GHz ‘ 10.2 ‘ 6.3 ‘ 5.0 ‘
Network delay | 2.4GHz [ 1207 | 603 [ 320 |
(Original image) | 5GHz | 912 | 290 [ 304 |
‘ Lowest round-trip latency [ 246 | 134 [ 97 |

17.8ms, for Nokia 7.1, Pixel 2 XL, and Xiaomi 9, respectively. The
results indicate that our edge-assisted design can provide accurate
image recognition without sacrificing the end-to-end system la-
tency. Overall, for all the three commodity smartphones that we
have examined, the edge-assisted design allows us to achieve 30fps
continuous image recognition.

9 DISCUSSION

In this section, we discuss our limitations and outline potential
solutions for future work.

Real-world image distortions. In the current presentation,
CollabAR is evaluated with distortion images that are synthesized
using simple distortion models (namely, the zero-mean additive
Gaussian noise model for Gaussian noise [32], the non-uniform
motion blur kernel for Motion blur [16], and the two-dimensional
Gaussian kernel for Gaussian blur [17]). However, there is a non-
negligible gap between the artificial and the real-world distor-
tions [42, 52]. Inevitably, the gap may result in poor recognition
performance when the system is applied to ‘in-the-wild’ AR sce-
narios. To alleviate this problem, instead of modeling the image
distortions using simple noise models, one can leverage the Gener-
ative Adversarial Network (GAN) to generate more realistic image
distortions using real-world distortion images as input [52-54]. The
distortion images generated from GAN can be further used to train
CollabAR and make it more robust to real-world distortions.

Mobile device heterogeneity. By aggregating multi-view im-
ages, CollabAR has shown great improvement in recognition accu-
racy. However, the current evaluation is performed on multi-view
images taken from a single type of device (i.e., Nokia 7.1). In practice,
owing to the heterogeneity in the underlying hardware and signal
processing pipelines, different mobile devices are showing varia-
tions in their image outputs on the same physical object/scene [55].
For image recognition system, this device heterogeneity may lead
to feature mismatch among images captured by different devices.
For the future work, a potential solution is leveraging the cycle-
consistent adversarial networks [53, 56] to learn the translation
function among different mobile devices, and use it to reduce the
domain shift caused the device heterogeneity.

Impact of image offloading on recognition. During image
offloading, the information loss due to image resizing and compres-
sion process (e.g., the JPEG compression) may also lead to accuracy
degradation [42, 54]. However, its impact on CollabAR is small. In
our design, since all images are processed with the same offloading
procedure, they suffer the same information loss during resizing
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and compression. The domain shift and feature mismatch between
the training and testing images are largely eliminated, and thus,
the accuracy loss due to image offloading is negligible.

10 CONCLUSION

In this paper, we presented CollabAR, an edge-assisted collabo-
rative image recognition system that enables distortion-tolerant
image recognition with imperceptible system latency for mobile
augmented reality. To achieve this goal, we propose the distortion-
tolerant image recognition to improve robustness against real-world
image distortions, and the collaborative multi-view image recog-
nition to improve the overall recognition accuracy. We implement
the end-to-end system on four different commodity devices, and
evaluate its performance on two multi-view image datasets. Our
evaluation demonstrates that CollabAR achieves over 96% recogni-
tion accuracy for images with severe distortions, while reducing
the end-to-end system latency to as low as 17.8ms.
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