Invited Paper: Edge-based Provisioning of
Holographic Content for Contextual and
Personalized Augmented Reality

Michael Glushakov*, Yunfan Zhang*, Yuqi Hanf, Timothy James Scargill*, Guohao Lan*, Maria Gorlatova*
*Duke University, Durham, NC, TTong\ji University, Shanghai, China
{mykhaylo.glushakov, yunfan.zhang, yuqi.han, timothyjames.scargill, guohao.lan, maria.gorlatova} @duke.edu

Abstract—Mobile augmented reality (AR) has been attracting
considerable attention from industry and academia due to its po-
tential to provide vibrant immersive experiences that seamlessly
blend physical and virtual worlds. In this paper we focus on cre-
ating contextual and personalized AR experiences via edge-based
on-demand provisioning of holographic content most appropriate
for the conditions and/or most matching user interests. We
present edge-based hologram provisioning and pre-provisioning
frameworks we developed for Google ARCore and Magic Leap
One AR experiences, and describe open challenges and research
directions associated with this approach to holographic content
storage and transfer. The code we have developed for this paper
is available online.

Index Terms—Mobile Augmented Reality, Edge Computing,
Edge Caching, Google ARCore, Magic Leap.

I. INTRODUCTION

Mobile augmented reality (AR), which integrates virtual
objects with 3-D real environments in real time [1], has
been in development since late 1960s [2], [3], [4], but has
reached the consumers only recently, with the release of
several commercial AR headsets [5], [6] and software devel-
opment kits [7], [8]. Examples of modern AR experiences
are shown in Figure 1: Figure 1(a) shows a tablet-based
example of holographic furniture placed in a real room, and
Figure 1(b) shows a head-mounted display-based holographic
gaming experience generated in a corridor outside our lab.
Deeply immersive, AR shows great potential in an array of
areas including education [9], medicine [10], and retail [11].
In January 2020, the founder and CEO of Facebook Mark
Zuckerberg said that he expects AR to “redefine our relation-
ship with technology” [12], while Apple CEO Tim Cook said
that “AR 1is the next big thing, and it will pervade our entire
lives” [13].

Modern AR, however, has multiple limitations, including
high energy consumption and difficulty in mapping dynamic
scenes. Edge or fog computing, the distribution of computing
resources closer to the end users, shows promise for over-
coming current AR limitations and enabling additional AR
capabilities [14]. Multiple opportunities associated with edge-
supported AR are not present in current, stand-alone or cloud-
supported AR: for instance, low-latency connections to compu-
tationally capable nodes, access to stationary persistent local
sensors, and ability to create advanced adaptive experiences
that leverage locally available data.

In this work we propose to use edge computing to deliver
contextual and personalized augmented reality experiences via

(a) IKEA Place app [11] for plac- (b) A virtual scene placed into a real
ing virtual furniture in a physical corridor outside our lab.
room.

Fig. 1. Mobile augmented reality (AR) examples, generated with: (a) a tablet,
and (b) a Microsoft HoloLens head-mounted display.

edge-based hologram provisioning. This work is motivated by
the needs of AR applications we are currently developing to
enhance the experience of visitors to Duke Lemur Center,
which houses nearly 240 rare and endangered prosimian pri-
mates [15]. Visitors to the Lemur Center observe the animals
in different outdoor and indoor enclosures. We will enhance
the experience of the visitors by providing additional informa-
tion about the lemurs via personalized contextual holograms.
Possible AR contents include visualizations and vocalizations
of specific lemur species according to the exhibit the user
is located at, augmentations of other Madagascan flora and
fauna to create a more realistic view of habitats, and other
educational material such as interactive maps. Examples of AR
experiences we are currently creating are shown in Figure 2.

In our envisioned applications, personalization could be
made based on both environmental context (e.g., weather, time
of day) and user profile or preferences (e.g., current location,
previously viewed content, age, native language). For example,
we can imagine that researchers will be presented by default
with more scientific content such as lemur skeletal structures
and taxonomic classification, while children will be guided and
informed via an animated helper. Depending on the weather,
that character will be behaving differently, finding shade under
trees for example. Holograms and audio of other fauna will
be dependent on time of day, to represent the species active
at that time. First-time visitors may be presented with more
introductory and navigational information. As users proceed
through the setting, their preferences regarding hologram con-
tent (i.e., what they previously engaged with) and position
should be learned to provide them with an optimal experience
going forward.

To this end, we design and develop an edge computing-

Authorized licensed use limited to: Duke University. Downloaded on September 18,2020 at 16:25:35 UTC from IEEE Xplore. Restrictions apply.

s

e \

> .
.

3
(a) (b)

Fig. 2. Augmented reality applications we are currently creating to enhance
the experience of visitors to Duke Lemur Center [15]: (a) a 3D model of a
lemur skull, and (b) a virtual map of Madagascar, highlighting habitats of
different lemur species.

—~1
g

based architecture that supports personalized and contextual
AR. In our architecture, holograms are stored on the edge
server, rather than on a mobile device, and are transmitted to
the mobile devices when necessary. In Sections III and IV
we present a mobile phone-based Google ARCore [7] and
a headset-based Magic Leap One [6] case studies for our
architecture. The Google ARCore case study focuses on
comparing edge-based and cloud-based on-demand hologram
provisioning, and on exploring the most suitable file formats
for Google ARCore architectures. The Magic Leap case study
demonstrates an approach that involves Unity [16], one of
the most popular platforms for creating 3D experiences. We
assume that it is more common for headset-based experiences,
that are more immersive and allow users to better see the
details of the holograms, to require larger holograms, which
can result in substantial latency when provisioned directly on
user’s request. Correspondingly, in addition to considering on-
demand hologram provisioning, we also develop an approach
for proactive hologram transmissions, where holograms are
transmitted to the users ahead of when they are needed. In
Section V we discuss challenges and directions associated
with the on-demand and proactive transmissions of edge-based
holographic content.

In summary, our contributions are as follows:

o We propose an architecture for personalizing AR experi-
ences by using edge servers to transmit appropriate holo-
graphic content to the users.

« We demonstrate the key components of the proposed archi-
tecture in Google ARCore and Magic Leap One case studies.
Our case studies highlight advantages of the proposed edge-
based architecture. The case studies also suggest the best
file format to use for Google ARCore on-demand hologram
transmissions, and showcase a Magic Leap geolocation-
based proactive hologram transmission approach.

o Towards fully realizing our proposed architecture, we iden-
tify and discuss several challenges and research directions
associated with edge-based on-demand and proactive holo-
gram transmissions.

The Google ARCore case study implementation code is
available at [17]. The Magic Leap case study implementation
code is available at [18].

II. BACKGROUND AND RELATED WORK

Context-aware and personalized AR: Multiple context-
aware and personalized AR applications have been proposed.
For instance, AR experiences can be adapted to user profiles,
gaze, and physiological states of the user [19]. Researchers
that develop context-aware AR applications generally focus
on advanced AR application capabilities and user experiences,
rather than on mechanisms for obtaining appropriate holo-
graphic content: in most prototypes, the content is simply
pre-stored in the AR app itself. While some contextual AR
adaptations do not require loading new content (e.g., changing
text labels; scaling, rotating, or moving around [20], [21]
holograms; changing the color or transparency [22] of a
hologram; animating holograms), many envisioned context-
aware applications benefit from displaying different holograms
under different environmental and user conditions.

Edge computing and edge caching: It is well-established
that edge computing can help AR [14]. Multiple lines of
work have examined the use of edge computing to aid AR
object recognition [23], [24], [25], video rendering and encod-
ing [26], and simultaneous localization and mapping [27]. The
idea of edge-based content caching has also been proposed;
research on it includes examinations of edge-based data reposi-
tories [28], edge computing-specific wireless data transmission
techniques [29], and caching policy optimizations [30]. To
the best of our knowledge, we are the first to develop and
examine edge-based holographic content loading frameworks
for common AR platforms.

On-demand loading of holographic content: Runtime load-
ing of content (3D models of characters and objects, texture
files, sound effects) is a known technique in computer game
development [31]. For instance, in a popular Unity game
development engine [16], runtime loading of content can
be achieved through the creation of “Asset Bundles” [32].
Dynamic content loading can be used to reduce the size of
initial game installation file and to provide rarely accessed
features only when they are required. On-demand loading
of holographic content is used in browser-based mobile AR
(“Web AR” [33]), which has recently been under active devel-
opment. In this paper we explore providing runtime-loadable
holographic content via edge servers, and discuss associated
challenges, constraints, and research directions specific to AR
and edge computing.

III. GOOGLE ARCORE CASE STUDY

In this section, we demonstrate the proposed architecture
in a Google ARCore platform case study. We focus on
comparing edge-based and cloud-based on-demand hologram
provisioning, and on exploring the most suitable file formats
for Google ARCore hologram provisioning architectures. The
code we developed for this case study is available at [17].

A. Architecture

We created a Google ARCore-based architecture where an
edge server decides which 3D models to return to a mobile
phone based on pre-set contextual information, such as the

Authorized licensed use limited to: Duke University. Downloaded on September 18,2020 at 16:25:35 UTC from IEEE Xplore. Restrictions apply.

weather, time of day, user’s native language, or history of prior
user interest in specific holograms. To enable this functionality,
we are relying on Google ARCore runtime 3D model loading
capability for different file formats, which has been a part of
ARCore starting at version 1.5 released in September 2018.!
In our prototype implementation, to display holograms on the
screen of a mobile device, AR application use the Augmented
Images functionality of ARCore: specifically, the holographic
models are displayed when a pre-selected image is recognized
in the environment [35].

Creating edge-based contextual AR applications: A content
creator, such as an artist, a museum curator, or an educational
director of a wildlife center, can create an account and upload
images, which will be used as anchors in the Augmented
Images ARCore experience, to the server. The content creator
can then choose an appropriate model determination script
that looks at contextual parameters such as the weather, time
of day, or language of the user to determine which 3D
model to return when the anchor image is recognized in
the environment. Each model determination script has a set
number of possible conditions, for which separate 3D models
need to be provided. The model determination script used in
our experiments determines the weather and the time of day at
the location of the server, and uses that information to choose
between 4 conditions: “Clear-Light”, “Clear-Dark”, “Rain-
Light”, and “Rain-Dark”. The script can be easily modified
to consider other contextual parameters instead. We note that
this architecture readily allows for the development of AR
experiences by content creators with no coding knowledge,
since changing the 3D content provided to the users only
requires replacing images that are used to display holograms,
or replacing the holographic models themselves.

AR app initialization: A mobile phone user can use the
unique clientld assigned to each content creator to first load a
JSON array with each entry containing the URL to the image
file and the ID of the 3D model that the API refers to as
“Renderableld”. The AR application then downloads all of
the image files whose URLs are contained in the JSON array
via HTTP GET method.

On-demand hologram transmissions: Once all images are
loaded, the application launches the AR activity which uses
the ARCore Augmented Images API to track the downloaded
images. When one of the images is recognized, the application
sends an HTTP GET request with the Renderableld matching
that image. The server then calls the model determination
script to determine which condition is currently met, and
returns the URL of the corresponding 3D model. The client
application loads the model and places it over the image.

B. Performance evaluation

Our performance evaluation centered on assessing hologram
transfer latencies for edge-based and cloud-based holographic
content storage options. We also compared the performance

'Our current architecture supports runtime loading of static 3D models only.
The architecture can be extended to support the loading of animated models as
well, which has been possible on Google ARCore starting at version 1.7 [34].

TABLE 1
3D MODELS USED IN GOOGLE ARCORE CASE STUDY
Model Name | File Type Size
Duck GLB 120 KB
u SFB 733 KB
GLB 321 KB
Cybertruck SFB GI6 KB
Tower GLB 19.1 MB
SFB 19.4 MB
TABLE II
GOOGLE ARCORE CASE STUDY FILE TRANSFER TIMES
3D Phone File Type | Avg. Latency (ms)
model Edge Cloud
. GLB 276 70.16
Duck Nokia 7.1 —gpp 655 | 1088
ue Pixel 3 CLB 19.7 107.1
X SFB 343 1499
. GLB 655 100.4
Cubertruck Nokia 7.1 SFB 102.7 206.5
ybertrue Pixel 3 GLB 70.7 1211
e SFB 114.6 4238
. GLB 2,239.0 | 2,7954
Tower Nokia 7.1 —gpp——170875 [23934
Pixel 3 GLB 14887 | 1,2183
1xe SFB 18148 | 1,4853

of hologram transfer techniques for two different file types,
specifically the GLB and the SFB 3D model file formats,
which both contain the 3D model and the corresponding
textures. The GLB is a binary form of the GL Transmission
Format (gITF), developed to be an interoperable format with
a minimal file size. The Sceneform Binary asset (SFB) is an
Android-native 3D model format. For the same 3D model,
an SFB file can potentially be rendered faster than the GLB
counterpart, which needs to undergo extra processing.

Our experiments were conducted for three different 3D
models of a range of sizes, with two different mobile phones,
a mid-range one (Nokia 7.1) and a higher-end one (Google
Pixel 3). As a cloud server, we used a cloud platform-as-a-
service (PaaS) Heroku platform [36]. As an edge server, we
used a server connected to our local network, with a 10 ms
RTT and 50 Mbps link to the local network. There was a light
to modest amount of background traffic in our local network
during the experiments.

The 3D models we used are listed in Table I. As can be seen
in this table, for lightweight 3D models, a GLB file is smaller
than the SFB file. Specifically, for the smallest “Duck” model,
the SFB/GLB file size difference is 1.98x, and for the slightly
larger “Cybertruck” model, the SFB/GLB file size difference is
2x. For larger models, GLB files can be only slightly smaller
than SFB files. In our experiments, for the largest “Tower”
model, the GLB file is 0.3 MB smaller, which translates to
the percentage difference of 1.5%.

Table II shows the file transfer latencies we observed when
transferring the 3D models from edge and cloud servers, for
different 3D models, mobile devices, and file types. Table III
shows the latencies we observed when loading and displaying
a hologram after it was received by the mobile device. Each
of the experiments presented in Tables II and III has been
repeated 10 or more times. As expected, we observe that
smaller models (“Duck”, “Cybertruck”) can be transferred to

Authorized licensed use limited to: Duke University. Downloaded on September 18,2020 at 16:25:35 UTC from IEEE Xplore. Restrictions apply.

TABLE III
FILE STORAGE LOAD AND PROCESSING TIMES

3D model Phone File Type | Avg. Latency (ms)
. GLB 171.0
Duck Nokia 7.1 SFB 708
ue Pixel 3 GLB 9472
SFB 39.1
Nokia 7.1 GLB 370.1
Cybertruck SKB 66.0
ybertrue Pixel 3 GLB 203.7
X SFB 356
. GLB 2,425.3
Tower Nokia 7.1 SFB 5056
owe Pixel 3 GLB 1,079.6
et s SFB 3442

the mobile device faster from the edge server than from the
cloud server. On average, cloud hologram transfer times are
slower by 67 ms, with the minimum difference of 28 ms
for the “Cybertruck” model transferred to a Pixel 3 phone
in an SFB format, and the maximum difference of 115 ms for
the “Duck” model transferred to a Pixel 3 phone in an SFB
format. For the large “Tower” model, we observed that edge
hologram transfer latencies were in some cases higher than
cloud transfer latencies, which we attribute to considerable
bandwidth variations on our internal on-campus network that
we used to access the edge server (bandwidth variations would
affect large file transfers more than small file transfers). Given
that latencies above 100 ms are perceptible to the users [37],
we believe that making smaller holograms available via edge,
rather than cloud, servers, will improve user experience with
on-demand hologram provisioning architectures.

We also observed that, while the smaller size of GLB files
reduces file transfer times, the extra time spent converting the
file to be Sceneform-compatible at runtime is greater than the
time saved on transferring the file. For example, while our
smallest “Duck” 3D model on a Nokia 7.1 mobile phone is
transferred from an edge server 38 ms faster when stored in
the GLB format (see Table II), it loads 130 ms faster when
stored in the SFB format (see Table III). Our largest “Tower”
3D model on a Pixel 3 phone is transferred 326 ms faster
when stored in the GLB format, but loads 735 ms faster
when stored in the SFB format. This indicates that the extra
processing time required for the GLB files outweighs the time
saved on loading by using a smaller file format, independent
of the model size or the capabilities of the phone running
the AR application. Thus, for runtime edge-based Google
ARCore hologram provisioning, it is more efficient to convert
holographic content to larger Android-native SFB files ahead
of time than to store the models on the edge in smaller GLB
files.

IV. MAGIC LEAP ONE CASE STUDY

In this section, we describe a Magic Leap One case
study that examined on-demand hologram transmissions and
location-aware proactive hologram transmissions. The code we
developed for this case study is available at [18]

TABLE IV
3D MODELS USED IN MAGIC LEAP ONE CASE STUDY
Model Name Triangle Size
Count W/out Compression | W. Compression
Stanford Bunny 5K 7.4 MB 1.4 MB
Lucy 33K 10.6 MB 1.7 MB
Asian Dragon 87K 79 MB 7.7 MB

A. On-Demand Hologram Transmissions

We experimented with runtime hologram loading with
Magic Leap One [6], one of the prominent commercial AR
headsets in today’s market. To match what developers would
commonly use when creating headset-based AR experiences,
we conducted our experiments on the Unity [16] APIs offered
by the Magic Leap One platform. The 3D models that we
used in the experiments were designed to match the com-
mon model qualities in modern AR gaming experiences. The
three 3D models we selected from the Stanford 3D Scanning
Repository [38] are summarized in Table IV. The models
were in .obj format and had triangle counts of 5K, 33K, and
87K to emulate low, medium, and high holographic model
quality. The textures used for the models had 2K by 2K
resolution and were encoded in PNG format. We used the
AssetBundle [32] feature built into Unity to compress 3D
models and export them into a Unity-proprietary binary format
for runtime hologram loading. The compression algorithm we
used was LZMA. During compression, we did not modify
the 3D meshes or the textures, so the quality of the models
remained unchanged. We then stored the exported 3D models
on an edge server with eight-hop distance, 10 ms RTT, and
50 Mbps bandwidth to our local network. The Magic Leap was
connected to our local network through 5GHz WiFi. There
was a light to modest amount of background traffic in our
local network during the experiments.

We considered two types of hologram placement strategies
in our experiments. The first type of hologram was placed at
a fixed location and was programmed to appear at a specific
time. In other words, the placement of the holograms was
predetermined and independent from user interactions. We
designed this type of strategy to simulate static holograms such
as traffic signs and billboards. The other type of holograms
were triggered by user activity: these holograms would appear
once the user encountered a specific object in the environment,
for example, a specific picture. This type of holograms simu-
lates personalized and context-based holograms. In both cases,
the 3D models were transmitted from the server to the device
using standard HTTP protocol. We then performed runtime
loading for both types of models, and observed its impact on
the user experience. A summary of the model loading times
we observed is presented in Table V.

For our 3D models with triangle counts of 5K, 33K, and
87K and a texture resolution of 2K by 2K, our application,
on average, took 1,702, 1,715, and 3,325 ms respectively for
the models to finish downloading. It would, on average, take
another 267, 372, and 175 ms to decompress and parse the
models before the holograms were presented to the user. We
observed that the actual hologram transfer speed achieved

Authorized licensed use limited to: Duke University. Downloaded on September 18,2020 at 16:25:35 UTC from IEEE Xplore. Restrictions apply.

TABLE V
MODEL LOADING TIMES ON MAGIC LEAP ONE
Model Name Transfer Time | Decompression Time
Stanford Bunny 1,702 ms 267 ms
Lucy 1,715 ms 372 ms
Asian Dragon 3,325 ms 175 ms

with the Magic Leap One was slower compared with the
50 Mbps that was achievable through other devices (e.g., when
using a laptop), which suggests some deficiency in Magic
Leap’s network stack design, such as its TCP congestion
control algorithm. Our subjective user experience suggests that
the latency of hologram runtime loading is more perceptible
on activity-triggered context-based holograms compared with
fixed holograms. It would usually take a few seconds for users
to familiarize themselves with a new physical environment
before starting to look for holograms, which would naturally
conceal the late appearance of fixed holograms. However, for
context-based holograms, the user would be expecting the
holograms right away, and the latency caused by runtime
loading would be more readily perceptible.

B. Proactive Hologram Transmissions

To make hologram transfer times imperceptible to the users,
we experimented with proactive hologram transmissions based
on AR device geolocations. Although Magic Leap One sup-
ports tracking the user location with a relative 3D coordinate
system, it does not provide the absolute device coordinate in
the physical world. It also lacks the API to recognize the
surrounding physical space, such as a specific building or
office space. The lack of these capabilities imposes a challenge
on location-aware proactive loading of 3D models, since it is
difficult to gain awareness of the precise location of the user.
Therefore, we designed our proactive hologram transmission
approach based on third party WiFi sniffing. We placed a
Raspberry Pi in the room where the holographic 3D models
were intended to be displayed. Once the Raspberry Pi detected
the presence of the Magic Leap by sniffing its MAC address, it
issued a notification to the edge server; the edge server would
then push the corresponding 3D models to the Magic Leap
One through HTTP long-polling. This way, we can preload 3D
models onto Magic Leap One before the models are needed,
thus hiding the hologram transfer latency from the users.
Since all hologram transfer latencies in our case study exceed
1.5 s (see Table V), which is readily noticeable by the users,
proactive hologram transfer has the potential to significantly
improve user experience, especially for dynamic context-based
holograms.

V. CHALLENGES AND DIRECTIONS

In this section, we discuss challenges associated with on-
demand and proactive transmissions for edge-based holo-
graphic content provisioning.

A. On-demand Transmissions

In context-aware AR applications, edge server transmits
holographic 3D models to mobile devices on demand. To en-

sure seamless user-hologram interactions, a low transmission
latency is usually required. In practice, the latency is affected
by a number of parameters, i.e., the background network traffic
load, the number of provisioning demands received by the
edge server, and the wireless connection between the mobile
device and the edge server. These parameters are not always
ideal and are not always under control. Inevitably, users will
be subjected to high transmission latencies when the network
is congested or when the server is in high demand.

Scalable hologram transmissions: One research direction is
to design dynamic hologram transmission policies that adapt
the hologram level of detail to user perception. For mobile
AR applications, a hologram can be rendered at a smaller
scale when it is displayed at a farther distance from the user,
where its details are less perceptible to the users. In addition,
in personalized AR applications, users may potentially pay
more attention to the holograms that are personalized to them
than to the others. Thus, based on the rendering distance
and user’s preferences, we can selectively omit unnecessary
details during 3D model transmission. One solution is to create
and store holographic models with different resolutions and
scales. For instance, we can adopt the scalable video coding
(SVC) [39] principles to encode the original hologram into
scales with different levels of detail. During the transmission,
the server can choose which hologram variant to transmit
based on AR application needs, user preferences, and other
user, system, and network parameters.

B. Proactive Transmissions

An edge server may also transmit holograms in advance, as
we have demonstrated, for example, in our Magic Leap case
study in Section IV-B. By transmitting holograms proactively
and caching them on user devices, we can achieve instanta-
neous hologram rendering with no hologram transmission de-
lay. This approach can also help optimize network bandwidth
utilization over time and avoid potential network congestion.
However, identifying the right holograms to transmit and cache
requires more study.

On-device hologram caching: Due to the limited on-device
storage, efficient content caching and eviction policies are
required in our architecture. The mobile device needs to make
a caching or eviction decision whenever it receives a new
hologram. For contextual and personalized AR applications,
there are a number of factors to be considered in the policy
design, including user preferences, the number of times that
the user has previously accessed the hologram, the size of the
hologram, and the distance between the user and the hologram.
Location-aware hologram deployments: The likelihood of
a user’s need for a particular hologram is highly dependant
on user’s location. Thus, together with the personalized infor-
mation of the user, the details of users’ location, orientation,
and direction of motion should also be leveraged by the edge
server in making proactive hologram transfer decisions. We
can readily obtain coarse-grained estimates of user locations
by using either motion sensor-based [40] or WiFi fingerprint-
based methods [41]. However, additional research is required

Authorized licensed use limited to: Duke University. Downloaded on September 18,2020 at 16:25:35 UTC from IEEE Xplore. Restrictions apply.

to develop efficient methods that accurately predict not only
the overall user position, but also AR device orientation and
user gaze direction.

VI. CONCLUSIONS

In this paper we proposed and developed edge computing-
based architectures for delivering contextual and personalized
mobile augmented reality (AR) experiences via on-demand
and proactive provisioning of holograms from edge servers.
Our case studies, conducted with Google ARCore and Magic
Leap One AR platforms, suggested the best file format to
use for Android-based on-demand hologram transmissions,
and showcased a Magic Leap geolocation-based proactive
hologram transmission method. We identify and discuss open
challenges and future research directions associated with
the proposed edge-based on-demand and proactive hologram
transmissions. The code we developed for our case studies is
available online.

ACKNOWLEDGMENTS

This work was supported in part by the Lord Foundation
of North Carolina and by NSF awards CSR-1903136 and
CNS-1908051. The models used in the Google ARCore case
study are from the Khronos Group [42] and CGTader [43].
The models used in the Magic Leap case study are from the
Stanford 3D Scanning Repository [38].

REFERENCES

[1] R. T. Azuma, “A survey of augmented reality,” Presence: Teleoperators
& Virtual Environments, vol. 6, no. 4, pp. 355-385, 1997.

[2] 1. E. Sutherland, “The ultimate display,” Multimedia: From Wagner to
virtual reality, pp. 506-508, 1965.

[3] D. Schmalstieg and T. Hollerer, Augmented Reality: Principles and
Practice. Addison-Wesley, 2015.

[4] W. Barfield and T. Caudell, “Military applications of wearable computers
and augmented reality,” in Fundamentals of wearable computers and
augmented reality. CRC Press, 2001, pp. 639-662.

[5] Microsoft Inc., “Hololens,” 2020, https://www.microsoft.com/en-us/
hololens.

[6] Magic Leap, “Magic Leap One,” 2020, https://www.magicleap.com/.

[71 Google Inc., “Google ARCore,” https://developers.google.com/ar/, 2020.

[8] Apple Inc., “Apple ARK:it,” https://developer.apple.com/documentation/
arkit, 2020.

[9] M. Billinghurst and A. Duenser, “Augmented reality in the classroom,”

Computer, vol. 45, no. 7, pp. 56-63, July 2012.

L. Chen, T. W. Day, W. Tang, and N. W. John, “Recent developments

and future challenges in medical mixed reality,” in IEEE ISMAR, 2017.

A. Pardes, “lkea’s new app flaunts what you’ll love most

about AR, Wired, Sept. 2017, https://www.wired.com/story/

ikea-place-ar-kit-augmented-reality/.

G. Sloane, “Mark Zuckerberg puts on his augmented reality goggles to

look into the 2020s,” AdAge, Jan. 2020, https://adage.com/article/digital/

mark-zuckerberg- puts- his-augmented-reality- goggles-look-2020s/

2226326.

E. Burke, “Tim Cook: ‘AR will pervade our entire lives’,” Sil-

iconRepublic, Jan. 2020, https://www.siliconrepublic.com/machines/

tim-cook-ar- war-ducks-healthtech.

J. Chakareski, “NSF visioning workshop on networked virtual and aug-

mented reality communications: The future VR/AR network — towards

virtual human/object teleportation,” Apr. 2018, http://strugaorg.ipower.
com/Jakov/NSF_Networked VRAR _Workshop/.

Duke University, “Duke Lemur Center,” https://lemur.duke.edu/, 2020.

[10]

(11]

(12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

(271

(28]

[29]

[30]

(34]
[35]

[36]
[37]

[38]

(391

[40]

[41]

[42]
[43]

Unity Technologies, “Unity,” 2020, https://unity3d.com.
M. Glushakov, “Git repository: Google ARCore on-demand hologram

transmissions,” 2020, https://github.com/michaelglu/SmartEdgePaper.
Y. Zhang, “Git repository: Magic Leap on-demand and proac-

tive hologram transmissions,” 2020, https://github.com/YunfanZhang42/
SmartEdgeMagicLeap.

J. Grubert, T. Langlotz, S. Zollmann, and H. Regenbrecht, “Towards
pervasive augmented reality: Context-awareness in augmented reality,”
IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 6, pp. 1706-1724, 2017.

S. Ahn, M. Gorlatova, P. Naghizadeh, M. Chiang, and P. Mittal,
“Adaptive fog-based output security for augmented reality,” in ACM
SIGCOMM VR/AR Network Workshop, 2018.

J. DeChicchis, S. Ahn, and M. Gorlatova, “Demo: Adaptive augmented
reality visual output security using reinforcement learning trained poli-
cies,” in ACM SenSys, 2019.

K. Lebeck, K. Ruth, T. Kohno, and F. Roesner, “Securing augmented
reality output,” in /EEE S&P, 2017.

X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile
deep learning framework for edge video analytics,” in IEEE INFOCOM,
2018.

Z. Liu, G. Lan, J. Stojkovic, Y. Zhang, C. Joe-Wong, and M. Gor-
latova, “CollabAR: Edge-assisted collaborative image recognition for
augmented reality,” in ACM/IEEE IPSN, 2020.

L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in ACM MobiCom, 2019.

L. Zhang, A. Sun, R. Shea, J. Liu, and M. Zhang, “Rendering multi-party
mobile augmented reality from edge,” in ACM NOSSDAV, 2019.

X. Ran, C. Slocum, M. Gorlatova, and J. Chen, “ShareAR:
Communication-efficient multi-user mobile augmented reality,” in ACM
HotNets, 2019.

I. Psaras, O. Ascigil, S. Rene, G. Pavlou, A. Afanasyev, and L. Zhang,
“Mobile data repositories at the edge,” in USENIX HotEdge, 2018.

L. T. Tan, R. Q. Hu, and L. Hanzo, “Heterogeneous networks relying
on full-duplex relays and mobility-aware probabilistic caching,” IEEE
Transactions on Communications, vol. 67, no. 7, pp. 5037-5052, July
2019.

X. Li, X. Wang, P. Wan, Z. Han, and V. C. M. Leung, “Hierarchical edge
caching in device-to-device aided mobile networks: Modeling, optimiza-
tion, and design,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 8, pp. 1768-1785, Aug 2018.

S. Friston, C. Fan, J. Dobos, T. Scully, and A. Steed, “3DRepo4Unity:
Dynamic loading of version controlled 3D assets into the Unity game
engine,” in ACM Web3D, 2017.

Unity, “Unity manual: Loading resources at runtime,” 2019, https://docs.
unity3d.com/Manual/LoadingResourcesatRuntime.html.

X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web AR:
A promising future for mobile augmented reality—state of the art,
challenges, and insights,” Proceedings of the IEEE, vol. 107, no. 4,
pp. 651-666, April 2019.

Google, “Sceneform animation,” 2020, https://developers.google.com/ar/
develop/java/sceneform/animation.

Google, “Recognize and augment images,” 2020, https://developers.
google.com/ar/develop/c/augmented-images.

Heroku, “Heroku platform,” 2020, https://www.heroku.com/.

R. B. Miller, “Response time in man-computer conversational transac-
tions,” in ACM Fall Joint Computer Conference, 1968.

Stanford Computer Graphics Laboratory, “Stanford 3D scanning repos-
itory,” 2014, http://graphics.stanford.edu/data/3Dscanrep/.

H. Schwarz and M. Wien, “The scalable video coding extension of the
h. 264/avc standard,” IEEE Signal Processing Magazine, vol. 25, no. 2,
p. 135, 2008.

S. Han, M. Kim, B. Lee, and S. Kang, “Directional handoff using
geomagnetic sensor in indoor WLANS,” in IEEE PerCom, 2012.

D. Lymberopoulos, J. Liu, X. Yang, R. R. Choudhury, V. Handziski,
and S. Sen, “A realistic evaluation and comparison of indoor location
technologies: Experiences and lessons learned,” in ACM/IEEE IPSN,
2015.

“Khronos group,” 2020, https://www.khronos.org/.

“CGTrader,” 2020, https://www.cgtrader.com/.

Authorized licensed use limited to: Duke University. Downloaded on September 18,2020 at 16:25:35 UTC from IEEE Xplore. Restrictions apply.

