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Abstract—Crowdsensing enables a wide range of data
collection, where the data are usually tagged with private loca-
tions. Protecting users’ location privacy has been a central
issue. The study of various location perturbation techniques,
e.g., k-anonymity, for location privacy has received widespread
attention. Despite the huge promise and considerable atten-
tion, provable good algorithms considering the tradeoff between
location privacy and location information quality from the
optimization perspective in crowdsensing are lacking in the litera-
ture. In this article, we study two related optimization problems
from two different perspectives. The first problem is to mini-
mize the location quality degradation caused by the protection
of users’ location privacy. We present an efficient optimal algo-
rithm OLoQ for this problem. The second problem is to maximize
the number of protected users, subject to a location quality
degradation constraint. To satisfy the different requirements of
the platform, we consider two cases for this problem: 1) over-
lapping and 2) nonoverlapping perturbations. For the former
case, we give an efficient optimal algorithm OPUMO. For the
latter case, we first prove its NP-hardness. We then design a
(1−ε)-approximation algorithm NPUMN and a fast and effective
heuristic algorithm HPUMN. Extensive simulations demonstrate
that OLoQ, OPUMO, and HPUMN significantly outperform an
existing algorithm.

Index Terms—Crowdsensing, location data quality, location
privacy, k-anonymity.

I. INTRODUCTION

OVER the last decade, there has been an explosion of
smart devices, e.g., smartphones and tablets. In 2015,

there were available 3.2 billion smartphone subscriptions, with
6.2 billion predicted to be available in 2021 [13]. Current
smart devices are embedded with increasingly powerful pro-
cessors and a multitude of sensors (e.g., GPS, thermometer,
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microphone, and camera). The ubiquity of mobile devices into
everyday life can provide sufficient geographic coverage, espe-
cially, in densely populated areas. The mobile crowdsensing
paradigm serves as a critical building block for the emerg-
ing Internet-of-Things (IoT) applications [19], [23], [24], [29],
[30], [39], which takes advantage of the widely distributed
mobile devices for sensing and collecting ubiquitous data, such
as P-Sense to monitor air pollution [11], Nericell to sense road
and traffic conditions [20], and Ear-Phone to construct urban
noise maps [25]. The sensing data are usually tagged with
locations to form a database or a map for information release
or decision making.

It is essential to achieve location privacy protection, since
mobile users’ locations are tightly correlated with their iden-
tities and vulnerable to malicious attacks. Upon preserving
location privacy in crowdsensing, various methods, including
information caching [27], spatial cloaking [33], data perturba-
tion with noise [40], and microaggregation [36], are proposed
. The goal is to prevent the servers or platforms from infer-
ring users’ actual locations. However, these privacy-preserving
methods need to hide the users’ actual locations, which usually
degrade the location (information) quality [6].

Location privacy and location quality are two conflicting
concerns in crowdsensing. On the one hand, disclosing users’
actual locations to the platform may severely discourage their
participation, because users are increasingly wary of location
privacy. On the other hand, the platform desires the actual loca-
tions of users to ensure the location quality. It is necessary to
strike a good balance between location privacy and location
quality in crowdsensing. To quantify the impact of location
privacy protection on location quality, we define the location
quality degradation as the maximum distance between users’
actual locations and their corresponding perturbed locations.
Note that the summation of squared location errors (SSE) [28]
has also been used to measure location quality in the literature.
Although minimizing the SSE is not our objective, our simula-
tion results demonstrate that a low location quality degradation
also implies a low SSE.

In this article, we study the tradeoff between location qual-
ity and location privacy. Location quality and location privacy
are two conflicting concerns in crowdsensing, which naturally
leads to a duality relation. On the one hand, for the iso-
lated users, the distances between their actual locations and
perturbed locations might be very large, because they have
to share the same perturbed locations with the other users
to protect their location privacy. Thus, if all users’ location

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on September 18,2020 at 16:27:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1811-4423
https://orcid.org/0000-0003-4418-0114
https://orcid.org/0000-0002-5833-8894
https://orcid.org/0000-0002-0523-9673


3536 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 4, APRIL 2020

privacy must be protected, this may cause a large location
quality degradation. On the other hand, if the location quality
degradation is a constraint, it might not be possible to find per-
turbed locations for the isolated users to protect their location
privacy, because they are too far from the others. Depending
on the preference of the crowdsensing platform, we consider
the optimization from two perspectives. If it desires to pro-
tect all users’ location privacy, the problem can be formulated
as the location quality degradation minimization (LQDM)
problem: minimizing the location quality degradation, while
guaranteeing the location privacy for all users; if it desires to
bound the location quality degradation, the problem can be
formulated as the protected user maximization with location
quality degradation constraint (PUM) problem: maximizing
the number of users whose location privacy is protected, sub-
ject to a location quality degradation constraint. For the second
problem, we consider overlapping and nonoverlapping cases
to satisfy various requirements of the platform. The difference
is whether one user is allowed to be tagged with more than
one perturbed location. The rationale behind the overlapping
case is that the sensed data at one location can well represent
the results at nearby locations in many crowdsensing applica-
tions, e.g., noise, temperature, and signal coverage. Note that
we focus on only the overlapping case for the LQDM problem
because the nonoverlapping case often results in large location
quality degradation due to the constraint of including all users.

A. Contributions

We summarize the main contributions as follows.
1) To the best of our knowledge, we are the first to consider

the tradeoff between location privacy and location qual-
ity in crowdsensing from an optimization perspective.

2) We first study the problem of optimizing the location
quality in terms of the location quality degradation,
while guaranteeing the location privacy for all users.
We design an efficient optimal algorithm to minimize
the location quality degradation among all users.

3) We then investigate the problem of maximizing the num-
ber of users whose location privacy is protected, while
guaranteeing the location quality with a location qual-
ity degradation bound. Specifically, there are two cases
depending on the platform’s requirement: 1) overlapping
and 2) nonoverlapping. For the former case, we design
an efficient optimal algorithm. For the latter case, we
prove its NP-hardness and design a near-optimal approx-
imation algorithm and a fast and effective heuristic
algorithm that achieves near-optimal performance in
simulations.

The remainder of this article is organized as follows. In
Section II, we give a brief review of existing location privacy-
preserving mechanisms in the literature. In Section III, we
formally introduce the system model and give a precise
problem description. In Section IV, we present a polynomial-
time optimal algorithm for LQDM and analyze its properties.
In Section V, we study the PUM problem under the overlap-
ping perturbation and nonoverlapping perturbation cases and
design corresponding algorithms. Section VI demonstrates the
experimental evaluations. Section VII concludes this article.

II. RELATED WORK

A. Location Privacy Approaches

There is a rich collection of literature on location privacy
in general frameworks. Surveys for location privacy-preserving
methods can be found in [4] and [9]. Following the discus-
sions in [9], we classify location privacy-preserving techniques
into three types: 1) location generation [15], [38]; 2) crypto-
graphic techniques [19]; and 3) differential privacy [14]. Along
the line of location generation, various methods, including
position dummies [15], mix zone [2], pseudonym [10], and
k-anonymity [38], are proposed.

Much effort has also been made to protect location privacy
in crowdsensing systems [1], [8], [14], [18], [34], [35]. This
line of work aims at preventing location privacy leakage from
sensing reports submitted by crowdsensing users. Gao et al. [8]
designed a partner selection algorithm and construct several
trajectories that are closer to the users. Agir et al. [1] proposed
a scheme which estimated the expected location-privacy level
at the user side locally in real time, which satisfies each
user’s privacy requirement adaptively. Vu et al. [34] utilized
a Voronoi diagram to partition a space into cells that con-
tain at least k users in each, without considering to minimize
the cloaking area. Differential location privacy in the crowd-
sourced spectrum sensing was preserved in [14], [18], and
[35]. However, a significant problem neglected in these works
is to optimize the crowdsensing platform’s location quality,
while protecting the users’ location privacy.

B. Location Information Quality

As pointed out by Krause et al. [17], it is challenging
to balance between location privacy and location quality.
Rodhe et al. [26] considered two strategies based on different
types of system servers to reconstruct the data distribution and
investigated the impact of location privacy-preserving mecha-
nisms on the quality of information. Xiao et al. [37] developed
a directed-graph-based cloaking algorithm for protecting loca-
tion privacy in location-based service while meeting user-
specified quality-of-service requirements. Murshed et al. [21]
proposed a subset-coding scheme to achieve almost lossless
data integrity.

Another related topic is the microaggregation problem:
divide a set of data into several disjoint subsets, such that
the size of each subset in more than k and the sum of
squared error is minimized. This problem has been studied to
strike a balance between privacy protection and information
loss reduction [5], [16], [28]. However, the LQDM is not
considered in this problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model and give a
precise problem description.

A. System Model

We consider a location-based crowdsensing system con-
sisting of a set U = {1, 2, . . . , n} of n users, a trusted
third party [32], [36] (e.g., a cellular service provider), and a
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Fig. 1. Location privacy-preserving crowdsensing system.

crowdsensing platform. Each user carries an advanced mobile
device with sensing capabilities and wishes to earn rewards
by completing crowdsensing tasks. The user registers with
the platform and communicates with the platform via an app
installed on his mobile device. Developed by the platform,
the app is assumed to pass the strict vetting process of the
trusted app store and has no unauthorized access to the user’s
locations.

We assume that the platform is honest but curious, which
is commonly used to characterize a reasonable crowdsens-
ing platform. Particularly, the platform is trusted to faithfully
follow the protocol but also interested in learning users’ loca-
tions. We assume that the platform can have arbitrary prior
knowledge for attempting to breach the users’ location privacy.

The precision-aware location privacy-preserving crowdsens-
ing system is shown in Fig. 1. The platform publishes
crowdsensing tasks and collects location-aware sensing data
from the users. The trusted third party, which is a cellular ser-
vice supposed to protect location privacy. The workflow of the
system is as follows.

1) All the users report their actual locations L =
{l1, l2, . . . , ln} to the trusted third party for location
privacy protection.

2) The trusted third party processes the actual locations and
reports a set of perturbed locations {h1, h2, . . . , hm} to
the platform, where a perturbed location hj is tagged to
at least k users.

3) The users tagged with perturbed locations are reported
to the platform, and the rest users are discarded.

B. Problem Formulation

To formally formulate our studied problems, we introduce
the following necessary concepts. In order to preserve location
privacy, one solution is to make a user’s location indistinguish-
able from at least k − 1 others’ locations. This property is
proposed in [31] and is called k-anonymity.

k-Anonymity: To protect user’s privacy, it requires that at
least k reports are combined together before releasing.

Location Perturbation: Location perturbation is defined as
deliberately degrading the quality of location information
about a user’s location in order to protect that user’s location
privacy. A similar definition has been proposed as obfusca-
tion [6]. However, the mechanism in [6] cannot be directly
applied to crowdsensing. We have discussed the difference
between LBS and crowdsensing in Section II-A.

Location Quality Degradation: The location quality degra-
dation is the maximum of a set of distances between users’
actual locations and their corresponding perturbed locations.

Perturbed Group: A perturbed group is a set of users S ⊆ U
tagged with the same perturbed location, denoted by (h,S),
satisfying k-anonymity.

Apparently, the perturbation operation for protecting users’
location privacy causes inevitable location errors, which can
diminish the quality of the crowdsensing results. Thus, it is
necessary to strike a good balance between location privacy
and location quality in crowdsensing. Therefore, it is essen-
tial to control location quality degradation while preserving
users’ location privacy. Toward this goal, we consider the fol-
lowing two related optimization problems from two different
perspectives in this article.

1) LQDM: Given a set of n users’ actual locations and an
integer k ≤ n, form a set of perturbed groups, denoted by
H, including all users to minimize the location quality
degradation.

2) PUM: Given a set of n users’ actual locations, an integer
k ≤ n, and a location quality degradation bound δ, form
a set of perturbed groups, denoted by H, to include a
maximum number of users, such that the location quality
degradation is no more than δ.

Depending on the platform’s requirement, we consider two
cases: 1) overlapping perturbation, where one user is allowed
to be tagged with more than one perturbed location and 2)
nonoverlapping perturbation, where one user is tagged with
at most one perturbed location. The rationale behind the over-
lapping case is that the sensed data at one location can well
represent the results at nearby locations in many crowdsens-
ing applications, e.g., temperature and signal coverage. We
denote the PUM problem under these two cases by PUMO and
PUMN, respectively. Note that we focus on only the overlap-
ping case for the LQDM problem because the nonoverlapping
case often results in large location quality degradation due to
the constraint of including all users.

Note that in the literature, the SSE [28] has been used to
measure data quality. In this article, we use the location qual-
ity degradation. Some large errors are still detrimental to the
crowdsensing application with a small SSE, whereas a small
location quality degradation guarantees that none of the errors
exceeds this value. Although we do not focus on minimiz-
ing the SSE, extensive simulations show that our algorithm
achieves a lower SSE, compared to an existing k-anonymity
location privacy-preserving algorithm.

C. Geometric Problem Transformation

Both LQDM and PUM problems can be transformed into
equivalent geometric problems. Before the transformation, we
introduce the following definition.

Let P denote a plane. For any two points p ∈ P and q ∈ P ,
we use ||p, q|| to denote the Euclidean distance between p
and q. A disk centered at c of radius r is denoted by D(c, r).
We say D(c, r) covers p, if p ∈ D(c, r), i.e., ||p, c|| ≤ r. Let
B(c, r) denote the closed boundary of D(c, r). Given a set L of
n points, let D(L, r) denote a set of disks of radius r centered
at points in L.

Definition 1 (k-Enclosing Disk): Let L be a set of n points
on the plane P . Given an integer k ≤ n, a k-enclosing disk is
a disk that covers at least k points in L.
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The transformed LQDM and PUM problems are as follows.
1) LQDM: Given a set L of n points on the plane P and an

integer k ≤ n, find a minimum r and a set of k-enclosing
disks D = {D(h1, r), D(h2, r), . . .}, such that any li ∈ L
is covered by at least one disk in D.

2) PUM: Given a set L of n points on the plane P , an inte-
ger k ≤ n and a constant δ, find a set of k-enclosing disks
D = {D(h1, δ), D(h2, δ), . . .}, such that a maximum
number of points in L are covered by disks in D.

To solve these problems, we need the following definitions
and claims from [7].

Definition 2 (Depth of a Point): Given a point p ∈ P and
a disk set D(L, r), the depth of p with respect to D(L, r),
denoted by dD(L,r)(p), is the number of disks in D(L, r)
covering p.

Definition 3 (Depth of a Disk): Given a point li ∈ L and a
disk set D(L, r), the depth of D(li, r), denoted by dD(li,r), is
the maximum depth of all points p ∈ D(li, r)

dD(li,r) = max
p∈D(li,r)

{
dD(L,r)(p)

}
.

Claim 1: Given two points p, q ∈ P , p ∈ D(q, r) if and only
if q ∈ D(p, r).

Claim 2: The depth of a point p ∈ P in D(L, r) is the
number of points in L covered by D(p, r).

Definition 4 (Critical Radius): Given any li ∈ L, a radius
r is a critical radius, if dD(li,r) decreases, when r is decreased
by an arbitrarily small amount.

Finally, we have three geometrical facts as follows.
1) The point on D(li, r) with maximum depth must be an

intersection point on B(li, r), if B(li, r) intersects with
the boundary of any other disk in D(L, r). Then, we only
focus on the intersection points on B(li, r) for computing
dD(li,r).

2) Given any li ∈ L, let r∗i denote the minimum radius r,
such that dD(li,r) ≥ k. We can locate r∗i within a feasible
range of r using the following criteria:

a) dD(li,r) < k→ r < r∗i ;
b) dD(li,r) > k→ r > r∗i ;
c) dD(li,r) = k→ r ≥ r∗i .

3) A radius r can be a critical radius only if B(li, r) is
tangent to B(lj, r), or B(li, r) is concurrent with B(lj, r)
and B(lk, r), where li, lj, lk ∈ L. In other words, a critical
radius is either 1/2||li, lj||, denoted by rij, or a circum-
radius of a triangle with li, lj, and lk as the vertices,
denoted by rijk.

The main notations are summarized in Table I.

IV. OPTIMAL ALGORITHM FOR LQDM

In this section, we present an efficient optimal algorithm
OLoQ for the LQDM problem.

A. Overview

Since r∗i is the minimum radius, such that li is covered by a
k-enclosing disk, the minimum radius in the optimal solution
to the LQDM problem equals maxli∈L r∗i , denoted by r∗. Thus,
the LQDM problem boils down to finding r∗i for each li ∈ L.
Based on Fact 2) in Section III-C, it is necessary to determine

TABLE I
MAIN NOTATIONS

a range in order to locate r∗i . To locate the exact value of r∗i , we
need to discretize its range. By the definition of critical radius,
r∗i must be a critical radius of li. Thus, we focus on critical
radii and conduct a binary search among them for locating r∗i .
According to Fact 3), a critical radius of li can only be rij or
rijk, where lj, lk ∈ L, i 	= j 	= k. Once r∗i is located, we find the
point of maximum depth on D(li, r∗i ), denoted by p∗i . Then,
a set of k-enclosing disks D = {D(p∗i , r∗) | li ∈ L} can cover
all li ∈ L. However, not all disks in D are necessary. Thus,
we select a minimal D∗ ⊆ D covering all points in L. The
centers of the selected disks are the perturbed locations.

B. Algorithm Design

OLoQ includes one key algorithm to find the smallest k-
enclosing disk covering li ∈ L, illustrated in Algorithm 1.

In Algorithm 1, we narrow the range where r∗i can lie and
locate r∗i . To narrow the range where r∗i can lie, we collect
the n − 1 values of rij and sort them in nondecreasing order.
Note that each rij is corresponding to a tangent point pij of
B(li, rij) and B(lj, rij), which is the midpoint of line lilj. Then,
the range can be narrowed to (rij, r̄ij].

Then we collect [(n− 1)(n− 2)]/2 values of rijk and only
keep the values of rijk within the range (rij, r̄ij]. If there is no
rijk within this range, then r∗i is r̄ij and its corresponding p∗i
is p̄ij. Otherwise, we sort the values of rijk within the range
(rij, r̄ij] in a nondecreasing order. Note that each rijk is cor-
responding to a point pijk, which is the circumcenter of the
triangle with li, lj, and lk as the vertices. Using binary search,
we further restrict the range to (rijk, r̄ijk], which is the smallest
range such that dD(li,rijk)

< k and dD(li,r̄ijk) ≥ k. Therefore, r∗i
is r̄ijk, and p∗i is the p̄ijk corresponding to r̄ijk.

At the end, Algorithm 1 outputs (r∗i , p∗i ), which forms the
smallest k-enclosing disk D(r∗i , p∗i ) that covers li. We shall run
Algorithm 1 for each li ∈ L. Then, the minimum radius in the
optimal solution to the LQDM problem is maxli∈L r∗i .

Next, we generate a set of k-enclosing disks D∗ =
{D(h1, r∗), D(h2, r∗), . . .}, such that any li ∈ L is cov-
ered by at least one disk in D∗. By the previous
steps, we can obtain a set of k-enclosing disks D =
{D(p∗1, r∗), D(p∗1, r∗), . . . , D(p∗n, r∗)} covering all points in
L. However, not all of them are necessary. So we design
Algorithm 2 to select a minimal D∗ ⊆ D covering all points
in L. The idea is to select disks iteratively. In each iteration,
we select a disk covering as many points as possible. Thus,
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Algorithm 1: Find-k-Enclosing-Disk(li, k,L)

1 Sort all values in {rij | lj ∈ L\{li}} in a nondecreasing
order and obtain a sorted list Rij;

2 Run a binary search in Rij to find two consecutive values
of rij, denoted by rij and r̄ij, such that dD(li,rijk)

< k and
dD(li,r̄ij) ≥ k;

3 Sort all values in {rijk | rijk ∈ (rij, r̄ij], lj, lk ∈ L\{li}} in a
nondecreasing order and obtain a sorted list Rijk;

4 if Rijk = ∅ then
5 r∗i ← r̄ij; p∗i ← p̄ij;
6 else
7 Run a binary search in Rijk to find two consecutive

values of rijk, denoted by rijk and r̄ijk, such that
dD(li,rijk)

< k and dD(li,r̄ijk) ≥ k;
8 r∗i ← r̄ijk; p∗i ← p̄ijk;

9 return (r∗i , p∗i )

Algorithm 2: OLoQ (L, k)

1 H← ∅; D∗ ← ∅;
2 for li ∈ L do
3 r∗i ← Find-k-enclosing-Disk( li, k,L ) r∗ ← maxli∈L r∗i ;
4 Sort points in L based on r∗i in a nonincreasing order

and obtain a sorted list L;
5 for li ∈ L do
6 if li is uncovered by D∗ then
7 D∗ ← D∗ ∪ {D(p∗i , r∗)};
8 H← H ∪ {

(p∗i ,
{
i | li ∈ D(p∗i , r∗)

}
)
}

;

9 return (H, r∗)

we sort n values of r∗i for all li ∈ L in a nonincreasing order
and select disks sequentially according to the sorted list. If li
has not been covered, we add D(p∗i , r∗) to D∗. For all users
whose actual locations are covered by D(p∗i , r∗), we form a
perturbed group with p∗i as their perturbed location.

The time complexity of Algorithm 1 is O(n2 log n). The time
complexity of Algorithm 2 is O(n). Therefore, the time com-
plexity of OLoQ is O(n3 log n). It can be proved that OLoQ
returns an optimal solution to LQDM [41].

V. ALGORITHMS FOR PUM

In this section, we study the PUM problem under the over-
lapping perturbation and nonoverlapping perturbation cases,
denoted by PUMO and PUMN, respectively. Then, we design
corresponding algorithms for them.

A. Optimal Algorithm for PUMO

In this section, we develop an efficient optimal algorithm
OPUMO for the PUMO problem.

We first introduce the intuition behind OPUMO. We know
that r∗i is the minimum radius r, such that li is covered by
a k-enclosing disk. It implies that for any point li ∈ L, if
r∗i > δ, then li can never be covered in a k-enclosing disk
of radius δ. Thus, we can discard such points from L. For

the remaining points in L, we select a subset Dδ ⊆ D =
{D(p∗1, δ), D(p∗1, δ), . . . , D(p∗n, δ)} to cover all of them. The
centers of the selected disks are the perturbed locations.

The details of OPUMO are described as follows. Using
Algorithm 1 in Section IV-B, we can obtain a set of
k-enclosing disks D = {D(p∗1, δ), D(p∗1, δ), . . . , D(p∗n, δ)}.
Similar to Algorithm 2, we sort the values of r∗i for all li ∈ L
in a nonincreasing order and select a subset of disks Dδ ⊆ D
sequentially according to the sorted list. The fundamental dif-
ference from OLoQ is that for any point li ∈ L, if r∗i > δ,
we discard li from L. Then, if li has not been covered and its
corresponding r∗i ≤ δ, we add D(p∗i , δ) to Dδ . For all users
whose actual locations are covered by D(p∗i , δ), we form a
perturbed group (p∗i , {i | li ∈ D(p∗i , δ)}). Then, p∗i is set to be
their perturbed location.

Since OPUMO is similar to OLoQ, the overall time com-
plexity of OPUMO is O(n3 log n) as well. The optimality of
OPUMO is guaranteed by the following theorem.

Theorem 1: OPUMO returns an optimal solution to PUMO.
Proof: We first prove that each user i included in the

perturbed groups is tagged with the same perturbed location
as at least k− 1 other users and then prove that the maximum
number of users is included in the formed perturbed groups.

For each li ∈ L, it guarantees that dD(li,r∗i ) ≥ k, based on
lines 2 and 7 in Algorithm 1. Since p∗i is the point with maxi-
mum depth on D(li, r∗i ), we have dD(L,r∗i )(p

∗
i ) ≥ k. By Claim

2, D(p∗i , r∗i ) covers at least k points in L. By Claim 1, we have
li ∈ D(p∗i , r∗i ). With r∗i ≤ δ, we know that D(p∗i , δ) covers at
least k points in L and li ∈ D(p∗i , δ) as well. Thus, there are at
least k users in each perturbed group (p∗i , {i | li ∈ D(p∗i , δ)}).
Therefore, each user i included in the perturbed groups is
tagged with the same perturbed location with at least k − 1
other users.

We learned from the above proof that r∗i is the minimum
radius, such that user i is tagged with the same perturbed loca-
tion as at least k − 1 other users. So we know that if r∗i > δ,
then user i can never be included in a perturbed group. Because
the users with r∗i > δ are discarded, and the users with r∗i ≤ δ

are included in the perturbed groups, we know that the max-
imum number of users are included in the formed perturbed
groups.

B. Algorithms for PUMN

In this section, we design a near-optimal approxima-
tion algorithm NPUMN and an effective heuristic algorithm
HPUMN. The PUMN problem can be proved to be NP-
hard [41] by a reduction from the disjoint unit-disk cover
problem, which has been proved to be NP-hard in [12].
Therefore, the PUMN problem is unlikely to have an effi-
cient optimal algorithm unless P = NP. Thus, we design an
approximation algorithm NPUMN by applying the shifted grid
technique. The shifting technique has two stages. In the first
stage, the plane is partitioned into squares with each having
a size of s × s . By shifting the partition grid lines over unit
distance, a new way of partitioning can be derived. We call
each way of partitioning a “shift.” Thus, there are s× s shifts
in total.
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Algorithm 3: NPUMN (L, k, δ, ε)

1 Normalize the plane with respect to δ;
2 s← 2/ε;
3 in parallel for i← 1 to s and j← 1 to s do
4 Partition the plane into squares with each having a

size of s× s, by drawing grid lines x = i+ as and
y = j+ bs, where a, b ∈ Z;

5 in parallel for each square do
6 Construct s(s− 1) unit disks s.t. at least 2 points

in L are on the boundary;
7 Use a brute-force algorithm to select an optimal

disk set for this square, which contains at most
2s2 disks;

8 Combine the selected disk sets as the global solution;

9 Pick the solution Dδ that includes the maximum number
of points among;

10 Construct H based on disks in Dδ;
11 return H

The second stage is to use a local algorithm to find an
optimal solution within each square. Then, the union of all
squares’ solutions is the global solution for a shift. The final
solution is the one with the best performance among all shifts.
A brute-force algorithm can find the optimal solution within
s × s square in exponential time. Since s × s square can be
covered with 2s2 unit disks compactly, there are O(8/ε2) disks
in the optimal solution to cover np points inside the square.
Since we can always move a disk in the optimal solution, such
that at least two points are on its boundary, there are O(n2

p)

disk positions. To select O(8/ε2) from O(n2
p) disks, we check

O(n16/ε2

p ) disk arrangements. In each arrangement, we check
np points’ positions in O((8/ε2)np) time. Therefore, the overall

time complexity of the local algorithm is O(8np/ε2npn16/ε2

p ).
For the shifted grid technique, we only discuss the local algo-
rithm’s complexity, because the local algorithm (lines 6 and 7
in Algorithm 3) can be run in parallel in multiple squares.

Theorem 2: The approximation ratio of NPUMN is 1 − ε,
where ε > 0 is an arbitrarily small constant.

Proof: Let OPT be the set of points in an optimal solu-
tion, OPT(i,j) be the set of points in the global solution of shift
(i, j), and OPT ′(i,j) be the set of points in OPT intersecting the
lines x = as + i and y = bs + j, where a, b ∈ {0, 1, 2, . . .}.
Then, we have |OPT(i,j)| + |OPT ′(i,j)| ≥ |OPT|, and thus

s∑

i=1

s∑

j=1

(∣∣OPT(i,j)
∣∣+ ∣∣OPT′(i,j)

∣∣) ≥ s2|OPT|

because
∑s

i=1
∑s

j=1 |OPT ′(i,j)| ≤ 2s|OPT|, we have
∑s

i=1
∑s

j=1 |OPT(i,j)| ≥ (s2 − 2s)|OPT|, and thus

max
i,j∈{1,...,s−1}

∣∣OPT(i,j)
∣∣ ≥

(
1− 2

s

)
|OPT| = (1− ε)|OPT|.

Even though the time complexity is exponential to the max-
imum number of points in any square, the number of users in

Algorithm 4: HPUMN (L, k, δ)

1 H← ∅; Dδ ← ∅;
2 while |L| ≥ k do
3 for li ∈ L do
4 Update dD(li,δ);
5 if dD(li,δ) < k then L← L\{li};
6 if maxli∈L dD(li,δ) < k then break;
7 lmin ← arg minli∈L dD(li,δ);
8 Find the point p∗min ∈ D(lmin, δ) of maximum depth;
9 Dδ ← Dδ ∪ {D(p∗min, δ)};

10 H← H ∪ {
(p∗min,

{
i | li ∈ D(p∗min, δ) ∩ L

}
)
}
;

11 L← L\{li | li ∈ D(p∗min, δ)};
12 return H

TABLE II
MAXIMUM NUMBER OF USERS IN A SQUARE

each square is small in practice. We conduct studies on the
roma taxi data set [3] and the San Francisco taxi dataset [22].
Table II shows the maximum number of users in a square.

To further reduce the time complexity, we design a fast and
effective heuristic algorithm HPUMN that can achieve near-
optimal performance in practice, although not theoretically.

The details of HPUMN are as follows. When L contains
more than k points, we compute the disk depth dD(li,δ) for
each li ∈ L. If dD(li,δ) < k, then we discard li from L. For the
remaining points in L, we extract the point lmin, whose corre-
sponding disk depth dD(li,δ) is the minimum among all disks.
Then, we find the point with maximum depth on dD(lmin,δ),
denoted by p∗min. It is obvious that dD(L,δ)(p∗min) ≥ k, and we
obtain a k-enclosing disk D(p∗min, δ). Then, we add D(p∗min, δ)

to Dδ . For the remaining points covered by D(p∗min, δ), we
form a perturbed group (p∗min, {i | li ∈ D(p∗min, δ) ∩ L}) and
tag p∗min to the corresponding users as their perturbed location.
Then, we discard these locations from L. We keep forming
perturbed groups and discarding points until there are less than
k points in L.

Theorem 3: HPUMN preserves k-anonymity location
privacy.

Proof: We prove that each user i included in the perturbed
groups is tagged with the same perturbed location as at least
k − 1 other users.

For each lmin ∈ L, it guarantees that dD(lmin,δ) ≥ k, based on
line 5 in Algorithm 4. Since p∗min is the point with maximum
depth on D(lmin, δ), we have dD(L,δ)(p∗min) ≥ k. By Claim 2,
D(p∗min, δ) covers at least k points in L. Thus, there are at least
k users in each perturbed group (p∗min, {i | lmin ∈ D(p∗min, δ)}).
Therefore, each user i included in the perturbed groups is
tagged with the same perturbed location with at least k − 1
other users.

The time complexity of HPUMN is dominated by the nested
while-loop and for-loop. The while-loop takes O(n/k) time.
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(a) (b)

Fig. 2. Impact of n on OLoQ and VCLA. (a) SSE. (b) Location quality
degradation (km).

(a) (b)

Fig. 3. Impact of k on OLoQ and VCLA. (a) SSE. (b) Location quality
degradation (km).

The for-loop takes O(n) time to update disk depth. Hence, the
overall time complexity of HPUMN is O(n3/k).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of OLoQ,
OPUMO, and HPUMN by comparing them with the existing
k-anonymity location privacy-preserving algorithms [36].

A. Evaluation Setup

As we surveyed in Section II, there is no existing algorithm
that aims to minimize the location quality degradation or to
maximize the number of protected users. The most related
work for k-anonymity location privacy is VCLA [36], which is
a heuristic algorithm that uses the microaggregation approach
to obtain anonymized locations and aims to minimize the SSE.

We use the CRAWDAD data set roma/taxi [3] for our
simulations. The data set contains the mobility traces of
approximately 320 taxis collected over 30 days in Rome,
Italy. Each mobility trace consists of a sequence of GPS
coordinates collected roughly every 7 s along with corre-
sponding timestamps. Because our model does not require the
time information, we removed the timestamps from the whole
30-day data set and treated all the data points as independent.
We then randomly select data points as input to our algorithms.
Investigating the tradeoff between location quality and privacy
with both spatial and temporal information will be one of our
future research directions as we will discuss in Section VII.

B. Performance Metrics

We are interested in the following performance metrics.
1) SSE: Suppose a point set L is divided into m groups. The

sum of squared errors of perturbed group j is defined as

ssej =
nj∑

p=1

[(
xjp − x̄j

)2 + (
yjp − ȳj

)2
]

where nj is the number of users in the jth group satisfy-
ing nj ≥ k, and (xjp, yjp) is the location of the pth user

with (x̄j, ȳj) the perturbed location of the jth group. The
SSE is the sum of ssej

SSE =
m∑

j=1

ssej =
m∑

j=1

nj∑

p=1

[(
xjp − x̄j

)2 + (
yjp − ȳj

)2
]

where SSE describes the overall group homogeneity
after group formation. When nearby points are grouped
together, SSE will be small and the groups are more
homogeneous.

2) Location quality degradation.
3) Number of protected users.
In our evaluation, we show the impact of the number of

users (n) and k on OLoQ and VCLA in terms of SSE and
location quality degradation. For the impact of n, we vary
it from 200 to 1000 with an increment of 200, while fixing
k = 5. For the impact of k, we set it to be 2, 3, 5, 7, and 10,
while fixing n = 400.

Then, we show the impact of the number of users (n), the
value of k, and the location quality degradation bound (δ) on
OPUMO, HPUMN, and VCLA in terms of the number of pro-
tected users. For the impact of n, we vary it from 200 to 1000
with an increment of 200, fixing k = 5 and δ = 500 m. For the
impact of k, we set it to be 2, 3, 5, 7, and 10, fixing n = 400
and δ = 500 m. For the impact of δ, we vary it from 500
to 2500 m with an increment of 500 m, fixing n = 400 and
k = 5. We choose this range of δ, because this error is tol-
erable for location quality in most crowdsensing applications.
All the results are averaged over 100 independent runs.

In addition, we show the impact of ε and k on NPUMN
in terms of the number of protected users. For the impact of
ε, we set it to be 1/750, 1/1000, and 1/1250, while fixing
n = 50 and δ = 500. For the impact of k, we vary it from 3
to 5 with an increment of 1, while fixing n = 50 and k = 4.
Due to the high time complexity of NPUMN, all the results
are averaged for 30 independent runs.

C. Evaluation Results and Analysis

Fig. 2 shows the impact of n on OLoQ and VCLA. Fig. 2(a)
shows the impact of n on SSE. We observe that OLoQ can
always introduce lower SSE, which is very essential to obtain
accurate sensing data. Besides, the SSE increases with n,
because sparser location distribution will lead to larger errors.
In Fig. 2(b), the location quality degradations of OLoQ and
VCLA decrease with n. We also observe that OLoQ performs
better than VCLA, especially, with fewer users, because OLoQ
minimizes the location quality degradation optimally, while
VCLA heuristically aggregate locations by first choosing the
farthest point and then aggregating the nearest points to it.

Fig. 3 shows the impact of k on OLoQ and VCLA. Fig. 3(a)
illustrates that the SSE gradually increases with more strin-
gent privacy protection in both OLoQ and VCLA. To protect
more users’ locations in one perturbed group, it is inevitable
to diminish the location quality to some degree. OLoQ
has a lower SSE, because it minimizes the location quality
degradation. From Fig. 3(b), we observe that OLoQ outputs
perturbed groups with minimum location quality degradation
and performs significantly better than VCLA. The common
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(a) (b) (c)

Fig. 4. Impact of n, k, and δ on OPUMO, HPUMN, and VCLA. (a) Impact of n (k = 5, δ = 1000). (b) Impact of k (n = 400, δ = 1000). (c) Impact of δ

(k = 5, n = 400).

(a) (b)

Fig. 5. Impact of k and l on HPUMN and NPUMN. (a) Impact of k
(ε = 10−3). (b) Impact of ε (n = 50).

trend is that with more stringent privacy protection the location
quality degradation increases in both OLoQ and VCLA.

Fig. 4 shows the impact of n, k, and δ on OPUMO,
HPUMN, and VCLA. Fig. 4(a) illustrates that the number of
protected users increases with more users involved. OPUMO
includes most protected users, because it is an optimal algo-
rithm that allows overlapping. We can also see that the
performance of HPUMN is very close to OPUMO. Since
OPUMO allows overlapping and already includes all the pos-
sible users with the location quality degradation constraint,
the optimal solution in the nonoverlapping case can never
include more users than OPUMO. Thus, HPUMN achieves
near-optimal performance. In addition, VCLA includes fewer
protected users, because VCLA always chooses the farthest
point to form a new group. Fig. 4(b) illustrates that the num-
ber of protected users decreases, when k increases. The reason
is that a larger k requires more stringent privacy protection,
while the location quality degradation bound remains the same,
which makes some users unprotected. We also notice that
HPUMN’s performance is very close to OPUMO. Since the
optimal solution in the nonoverlapping case is no greater than
that of the overlapping case, we can say that HPUMN achieves
near-optimal performance, whereas VCLA includes fewer pro-
tected users, because it forms perturbed groups by choosing
the farthest point and then aggregating the nearest points to
it. Fig. 4(c) demonstrates that the number of protected users
increases when δ is larger, because more users’ locations can
be included in a perturbed group with a larger δ.

Fig. 5 shows the impact of k and ε on NPUMN. In Fig. 5(a),
we observe that the number of protected users decreases. A
larger k requires more stringent privacy protection, while the
location quality degradation bound remains the same, which
makes some users unprotected. In addition, NPUMN achieves
better performance than HPUMN, because NPUMN has an
approximation close to 1 when ε is very small. In Fig. 5(b),

we notice that the number of protected users increases,
because of the approximation ratio increases when the value
of ε decreases.

VII. CONCLUSION

In this article, we considered the tradeoff between location
privacy and location quality in location-based crowdsensing
from an optimization perspective. Two optimization problems
have been studied. The first problem is to minimize the loca-
tion quality degradation, while guaranteeing the location pri-
vacy for all users. We presented an efficient optimal algorithm
OLoQ for this problem. The second problem is to maximize
the number of protected users with location quality degra-
dation constraint. To satisfy the different requirements of the
platforms, we further considered two cases: 1) overlapping and
2) nonoverlapping perturbations. For the former case, we gave
an efficient optimal algorithm OPUMO. For the latter case, we
proved its NP-hardness, and designed a near-optimal (1− ε)-
approximation algorithm NPUMN and a fast and effective
heuristic algorithm HPUMN. Extensive simulations show that
OLoQ and OPUMO achieve optimal performance. In addition,
NPUMN and HPUMN achieve near-optimal performance.

There are two directions that we can work on in the future.
In the current work, we assume that all users require the same
anonymity level. Our algorithms can be extended to a per-
sonalized k-anonymity model, where each user can specify a
different anonymity level requirement. Another direction is to
consider temporal information privacy protection, because the
crowdsensing data are sometimes time sensitive. An attacker
can infer a user’s personal preference or behaviors based on
the user’s location information combined with its temporal
information. Thus, it will be better to perturb both the spatial
and temporal information.

In addition, we plan to conduct the mobile crowdsensing
on constructing urban noise maps [42] as a case study. People
in major cities suffer from noise pollution, which compro-
mises working efficiency and mental health. Urban noises
usually vary by locations, change over time, and consist of
multiple sound sources., e.g., loud music, vehicle traffic, and
constructions. New York City (NYC) has opened a platform
CityNoise [42] to allow people to submit the urban noise sens-
ing data tagged with locations by using a mobile app, which
is location aware and open source. Our proposed algorithms
will process the sensing data by tagging them with perturbed
locations. With the processed location data, we will be able to
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generate a noise map and study the tradeoff between location
quality and privacy.
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