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Abstract— Incentive mechanisms have been commonly pro-
posed to encourage people to participate in mobile crowdsensing
(MCS). However, most of them set unchangeable rewards for
sensing tasks, while the inherent inequality and on-demand
feature of sensing tasks have been long ignored, especially
for location-dependent sensing tasks (LDSTs). In this paper,
we focus on location-dependent MCS systems and propose a
demand-driven dynamic incentive mechanism that dynamically
changes the rewards of sensing tasks at each sensing round
in an on-demand way to balance their popularity. A demand
indicator is introduced to characterize the demand of each
sensing task by considering its deadline, completing progress,
and number of potential participants. At each sensing round, we
use the Analytic Hierarchy Process (AHP) to calculate the relative
demands of all sensing tasks and then determine their rewards
accordingly. Moreover, we consider two task selection problem
with participatory users and opportunistic users, respectively,
and prove that both of them are NP-hard. We propose an optimal
dynamic programming based solution for participatory scenario
and an optimal backtracking based solution for opportunistic
scenario to help each user select tasks while maximizing its profit.
Extensive experiments show that the demand-driven dynamic
incentive mechanism outperforms existing incentive mechanisms.

Index Terms— Mobile crowdsensing, dynamic incentive, task
allocation, pay on-demand.

I. INTRODUCTION

W ITH the rapid development of technology, mobile
devices (e.g., smartphones) become more and more
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powerful in sensing as they are equipped with a rich set
of embedded sensors (e.g., camera, microphone, and GPS).
Nowadays a mobile user carrying a mobile device is not only
a human but has become a powerful mobile sensing platform
that can sense environments as well as people’s behaviors.
This fact has benefited the emergence of MCS systems, such
as Waze, which leverage the power of large number of mobile
users to collect data for sensing applications instead of using
traditional sensors. A typical crowdsensing system [1] consists
of a cloud server and a large number of mobile users where
the cloud server publishes sensing tasks and mobile users use
their mobile devices to collect sensing data to complete the
published tasks. Thanks to the mobility of mobile users and
the popularity of mobile devices, crowdsensing has become an
effective technique to collect massive data for lots of sensing
applications, and it is especially suitable for user-centric and
location-dependent sensing applications.

Nowadays, the crowdsensing technology has been adopted
by several sensing applications to recruit mobile users for
massive location-dependent data collection, such as traffic
condition monitoring [2], air quality monitoring [3], and noise
pollution assessment [4]. To perform the LDSTs, mobile
users should arrive at a specific location and contribute
the location related sensing data to the cloud server. When
mobile users contribute sensing data in crowdsensing, both
time and physical resources are spent to complete sensing
tasks. Thus, mobile users have no motivation to participate
in crowdsensing without an appropriate incentive. Moreover,
privacy-sensitive mobile users may be further prevented from
contributing sensing data due to the privacy leakage concerns.
Recently many incentive mechanisms have been proposed to
improve users’ participation. Some of them are based on game-
theoretic technologies that allocate tasks to mobile users with
the objective of maximizing the social surplus [5]–[9]. Some
of them designed quality-orientated incentive mechanisms to
improve the quality of sensing data [10]–[13]. Moreover,
with the increase of location-dependent applications, incentive
mechanisms for location-dependent crowdsensing systems are
proposed in [11], [13]–[17].

It is worth noting that most of existing incentive mech-
anisms set unchangeable/fixed rewards for sensing tasks,
although different rewards may be given to different tasks,
where the reward of a sensing task does not change once it is
initially determined. This however is not suitable for location-
dependent crowdsensing systems since the location becomes
another important factor besides the reward influencing the
decision of users to perform a sensing task or not. In this

1536-1276 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8771-7474
https://orcid.org/0000-0002-5804-3279
https://orcid.org/0000-0002-8967-8525
https://orcid.org/0000-0002-1811-4423


4908 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 7, JULY 2020

paper, we argue that inherent inequality exists among LDSTs
and the demands of tasks for participants change dynamically
over time. Generally speaking, compared to the remote tasks
with low rewards, mobile users prefer to perform close tasks
with high rewards, leading to the unbalanced completion
of tasks. That is, the popularity of tasks will differ from
each other because of the location difference. Hence in fixed
incentive mechanisms, the location of each task and its initial
reward inherently determine its popularity from the beginning,
leading to a low coverage issue that only popular tasks can
be completed while unpopular LDSTs cannot be completed
on time. This problem motivates us to design a dynamic
incentive mechanism that dynamically changes the reward of
each sensing task based on the real-time demands of tasks to
balance the popularity of sensing tasks so that even far away
tasks can also be completed before their deadlines.

Note that there also exist some dynamic incentive mecha-
nisms [9], [11], [13]. In [9], to maintain adequate participation
level, the authors introduced a reverse auction-based dynamic
pricing incentive mechanism for participatory sensing. How-
ever, they did not consider the location difference and demand
difference. Guo et al. focused on data quality and proposed a
dynamic incentive mechanism, where the authors set differ-
ent/dynamic budget value for each sensing task based on the
spatio-temporal popularity level [13]. However, the proposed
mechanism only considered one-shot sensing tasks that can
be completed by one-time measurement and tasks needing
multiple measurements have been ignored. Although there are
different reward budgets between different tasks, it still would
not be changed once determined initially. Therefore, it can
be considered as a fixed incentive mechanism with different
budgets for each task. In [11], the authors proposed a steered
incentive mechanism where the points can be changed in every
session so that the quality of service rather than data size
can be improved. However, the points decrease over time,
which will discourage users and results in less engagement
of participants. Moreover, they did not consider the difference
of deadlines between different LDSTs.

In this paper, we focus on location-dependent MCS systems
with the Worker Selected Tasks (WST) mode. In contrast to
the Server Assigned Tasks (SAT) mode, the WST mode are
commonly used by many popular crowdsensing applications,
such as Gigwalk and FieldAgent. Instead of allocating tasks
to mobile users by the server in a centralized manner, it is
more practical that mobile users select tasks in a distributed
way. In our system, the server only needs to publish tasks with
rewards at each sensing round, and then mobile users select a
set of tasks to be performed according to their cost and time
budget. Note that the complicated negotiation process can be
avoided between the server and mobile users.

We propose a demand-driven dynamic incentive mechanism
to encourage mobile users to participate in crowdsensing∗.

Instead of using a fixed reward for a task all the time,
we argue that the reward should be paid on-demand and
changes dynamically at each sensing round. Intuitively, the

∗A preliminary version of this work was published in IEEE International
Conference on Distributed Computing Systems (ICDCS’18) [18].

closer to the deadline or the smaller completing progress
or the less mobile users around a task, the larger reward
is expected to improve the task’s popularity and attraction.
Thus, we introduce the demand indicator to characterize the
demand of each sensing task which takes several factors into
consideration, such as the deadline, the completing progress
and the number of potential participants of a sensing task. At
each sensing round, AHP is adopted to model and calculate
the relative demands of all sensing tasks and then their
rewards can be determined accordingly.

We summarize our contributions as follows.

• We propose a demand-driven dynamic incentive mech-
anism for location-dependent MCS systems, which pro-
vides a concrete guideline on how to dynamically change
the reward of each sensing task according to its real-time
demand.

• We propose a demand indicator to characterize the
demand of each sensing task by taking important factors
into consideration, and adopt the Analytic Hierarchy
Process to model and calculate the relative demands of
all sensing tasks.

• We prove that the task selection problem under two
different movement patterns of users (e.g., participatory
and opportunistic) are NP-hard. An optimal dynamic
programming solution and an optimal backtracking
based solution are further proposed to help mobile users
select optimal set of tasks while maximizing their profits
at each sensing round.

• We conduct extensive experiments to compare the
proposed demand-driven dynamic incentive mechanism
with existing incentive mechanisms by simultaneously
considering participatory and opportunistic users. The
experimental results show that the proposed mechanism
achieves better participation balance among tasks.

The remainder of this paper is organized as follows.
The existing incentive mechanisms are briefly discussed for
crowdsensing systems in Section II. We introduce the sys-
tem overview and describe the task selection and incentive
design problems in Section III. We present the demand-
driven dynamic incentive mechanism in Section IV, and two
distributed task selection algorithms in Section V. We evaluate
the performance of the proposed algorithms in Section VI and
finally conclude the paper in Section VII.

II. RELATED WORK

In recent years, benefit from a rich set of embedded sensors,
location-dependent incentive mechanisms have drawn great
attention. In [19], the location-dependent crowdsensing prob-
lems are classified into two modes: WST and SAT.

In the SAT mode, the server has the global information
of the tasks as well as mobile users, and usually assign
tasks to mobile users using the auction-based mechanisms.
In [20], the authors applied reverse auctions in the economic
field to the crowdsensing incentive mechanisms. This appli-
cation not only minimized the payment cost but also ensured
the high participation of users relatively. In [21], a double
auction mechanism is presented for motivating participants
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to join the K anonymity of location-sensitive. Based on the
reverse combinatorial auction model, Feng et al. [14] proposed
a truthful mechanism to motivate the participants. In [22],
the authors applied the multi-attribute auction mechanism to
reverse auction, which took both the participation rate of
users and the quality of sensing data into consideration. [23]
designed a full-pay auction method to motivate participants
to participate in, of which only the bidder who contributes
mostly can get the payoff. In [15], the authors proposed the
VCG auction mechanism and designed an updating rule for
online crowdsensing incentive mechanism in order to achieve
the social welfare benefits maximization.

For the WST mode, mobile users can select any tasks
autonomously without contacting with the server. Although
it can hardly achieve the maximization objective as the WST
mode, it is the typical mode used in many popular crowdsens-
ing systems such as Gigwalk, Amazon Mechanical Turk, and
Field Agent, actually. Besides, in [11], the authors proposed
steered crowdsensing. It used the game elements on location-
based services to control the incentives of participants. In
[24], the authors designed an asynchronous and distributed
task selection algorithm. With the help of this algorithm,
mobile users can find the best schedule. Compared to the SAT
mode, workers in the WST mode can submit less personal
information and it can improve the participation of workers.
Moreover, the WST mode’s procedure is relatively concise.
However, some sensing tasks may not be completed in this
mode, while others are completed redundantly since the server
does not have any control over the allocation of sensing tasks.

Recently some works considered the user privacy leakage
and data security in data collection and analysis [25]–[29].
Considering that the leakage of true locations to the server may
be harmful to users, some work begin to address the problem
of task allocation in mobile crowdsensing with location privacy
protection [30].

In this paper, we address the WST mode in location-
dependent crowdsensing systems and design a demand-driven
dynamic incentive mechanism that can change the rewards of
sensing tasks in an on-demand way dynamically.

III. SYSTEM OVERVIEW AND PROBLEM STATEMENT

In this section, we first present the high-level overview of
location-dependent crowdsensing systems with the dynamic
incentive mechanism, and then describe the location-dependent
dynamic incentive design problem and the distributed task
selection problem.

A. System Overview

We consider the location-dependent crowdsensing applica-
tions which leverage the power of the crowd to collect massive
sensing data. In particular, we take the noise pollution assess-
ment as an example for crowdsensing applications, which
aims to provide the accurate noise pollution levels of different
regions in a city to the public. It is expensive and time-
consuming to deploy specific equipments to measure noise
pollution levels considering the large-scale of a city. Even
the equipments are deployed, they can only provide a coarse-
grained noise measurement of the city. In contrast, we can use

Fig. 1. The architecture of crowdsensing systems with the dynamic incentive
mechanism.

the idea of crowdsensing that leverages the power of the crowd
to realize cheap and fine-grained noise measurements. Each
participant can use its mobile device to measure the noise, so
there is no need to deploy expensive and specific equipments.
The participants can move to the specified places to make
quick and convenient measurements, which can realize fine-
grained noise measurements.

Figure 1 shows the architecture of crowdsensing systems
with the proposed dynamic incentive mechanism. The platform
publishes a set of sensing tasks to mobile users and provides
rewards for tasks to incentivize mobile users to accomplish
tasks. Different from crowdsensing systems with the SAT
mode, each mobile user in our crowdsensing systems with the
WST mode does not need to send its bid to the platform to
compete tasks. Instead, a mobile user can select a set of tasks
to perform in a distributed way according to its time budget
and cost consumption. We assume all mobile users are rational
so they would not perform a task if the cost spent is larger
than the gained reward or the time budget is not satisfied.

In this paper, we propose a novel demand-driven dynamic
incentive mechanism for location-dependent MCS systems. As
shown in Figure 1, the data collection process is divided into
multiple sensing rounds. At each sensing round, mobile users
select tasks, perform the selected tasks and upload the sensing
data to the platform. The platform collects the sensing data and
calculates the demands of all sensing tasks. In the next sensing
round, the platform updates the reward for each sensing task
and publishes the tasks with updated rewards to the mobile
users. The task selection process for each mobile user and the
rewards update process on the platform continues repeatedly
until all the tasks are completed. After receiving the sensing
data of a task from mobile users, the platform aggregates the
sensing data to make an estimate. If all the sensing data are
from the same mobile user, the estimate may be biased or
cannot be trusted. In order to guarantee the sensing quality
of each task, we assume that each task requires independent
sensing measurements from multiple mobile users.

Besides, we consider the task selection problem under two
different user movement scenarios: the participatory pattern
and the opportunistic pattern. The participatory movement
pattern is widely used in MCS systems that users do not care
the destination and just want to earn rewards by performing
tasks. The opportunistic movement pattern is also popular for
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users with daily route (e.g., leave from the home and arrive
at the office) so they can perform tasks on the way to the
destination as the time allows.

B. Location-Dependent Dynamic Incentive Problem

The platform expects each sensing task to be completed
before its deadline, and provides rewards to encourage mobile
users to participate in MCS. We assume the platform has a total
budget B for all the sensing tasks, and the total rewards paid
to mobile users cannot exceed B. However, existing incentive
mechanisms mainly apply unchangeable rewards for sensing
tasks, which have several drawbacks. First, it is difficult or
impossible to decide the optimal reward for each sensing task.
If the rewards are set too high, the platform is harmed as its
welfare is small or be negative, while if the rewards are set too
small, there may not be enough participants to complete sens-
ing tasks. Second, it may lead to the problem that some sensing
tasks cannot be completed before their deadlines. It is possible
that some sensing tasks are not popular to mobile users
because they are in remote places or their rewards are small.
The popularity cannot be changed if the rewards are fixed, and
therefore these sensing tasks cannot be completed on time.

To solve these issues, we propose to dynamically change
the reward of each sensing task to balance the popularity
of sensing tasks in an on-demand way. The dynamic incen-
tive mechanism needs to satisfy two objectives. First, each
location-dependent sensing task should be completed before
its deadline. Second, the welfare of the platform should
be as large as possible. Therefore, the problem is how to
characterize the demand of location-dependent sensing tasks
and dynamically change the rewards of sensing tasks to realize
these two objectives. We call the problem as the location-
dependent dynamic incentive problem.

C. Location-Dependent Task Selection Problem

At each sensing round, the platform publishes a set of
sensing tasks with rewards to mobile users, and each mobile
user can choose to perform a set of tasks according to its
time budget and cost consumption. Let T = {t1, t2, . . . , tm}
denote the set of sensing tasks where ti denote the ith task. Let
U = {u1, u2 . . . , un} denote the set of mobile users where ui

is the ith mobile user. Each sensing task is location-dependent
which means that each sensing task ti is associated with a
specific location Lti . We also assume that each sensing task
ti is associated with a deadline Dti that the task is expected
to be completed before the deadline. Each task ti requires ϕi

mobile users to contribute sensing data and each mobile user
contributes sensing data to each sensing task ti at most once.
The reward of a sensing task changes at each round. We use
rk
ti

to denote the reward of task ti at the kth round. Then we
will discuss the task selection problem under the participatory
and opportunistic movement patterns, respectively.

1) Participatory Task Selection Problem: In this scenario,
each user does not have a destination to arrive at. At the
beginning, a user needs to upload its location and time budget
to the platform. Let T k

ui
denote the set of tasks chosen

by user ui and Bk
ui

denote the time budget of user ui at

the kth round.The time spent for completing multiple tasks
is comprised of two parts: the time for traveling multiple
locations associated with the selected tasks, and the time for
data sensing at each location. Usually the latter is negligible
compared to the former. Thus, we let the time spent for
completing multiple tasks to be the time spent for traveling
multiple locations associated with the selected tasks, denoted
by ΓT k

ui
. Since each mobile user has a time budget, ΓT k

ui

should be no larger than Bk
ui

.
At the kth sensing round, the participatory task selection

problem for the mobile user ui can be formulated as follows:

max P (T k
ui
) =

∑
tj∈T k

ui

rk
tj
− C(T k

ui
)

s.t. ΓT k
ui
≤ Bk

ui
(1)

where rk
tj

denotes the reward of task tj at the kth round,
and C(T k

ui
) denotes the minimum cost spent to perform

the set of tasks T k
ui

, which is proportional to the minimum
traveling distance from the original location of mobile user
ui to all the locations of tasks in T k

ui
. P (T k

ui
) denotes the

total profit received by ui for performing tasks in T k
ui

, which
is the difference between the total rewards received by ui

(
∑

tj∈T k
ui

rk
tj

) and the minimum cost (C(T k
ui
)).

As presented in Eq. 1, the objective of the participatory
task selection problem for ui at the kth round is to maximize
its total profit, while the constraint indicates that the total
traveling time should be no larger than user’s time budget.

2) Opportunistic Task Selection Problem: In this scenario,
users perform tasks on the way to their destinations (e.g., on
the way to the office). Each user needs to upload its current
location, the destination and the time budget to the platform.
Let Γ̃T k

ui
denote the detour time from the start point to the

destination for performing tasks in the selected task set T k
ui

.
At the kth sensing round, the opportunistic task selection

problem for the mobile user ui can be formulated as follows:

max P (T k
ui
) =

∑
tj∈T k

ui

rk
tj
−ΔC(T k

ui
)

s.t. Γ̃T k
ui
≤ Bk

ui
(2)

where ΔC(T k
ui
) denotes the additional cost of detour path,

which is the difference between the detour cost and the
original cost.

IV. DEMAND-DRIVEN DYNAMIC INCENTIVE

At each sensing round, each mobile user chooses a set of
tasks and reports its sensing results to the platform. Therefore,
the platform is aware of the completing progress of all tasks at
the end of each sensing round. The basic idea of our algorithm
is to dynamically change the reward of each task based on the
demand of each task.

We introduce a demand indicator to characterize the
demand of each location-dependent sensing task. Let Dk =
(dk

1 , dk
2 , . . . , dk

n) denote the demands of all sensing tasks at
the kth sensing round, where dk

i denotes the demand of
the ith task at the kth round. The demand of a task can
be determined by many factors, such as the deadline, the
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Fig. 2. The hierarchical structure of deciding the demands of tasks.

completing progress and the number of neighboring mobile
users of a task. The user whose distances is less than R meters
to a task is called a neighboring user of the task. Intuitively, the
closer to the deadline, the larger the demand; the smaller the
completing progress, the larger the demand; the less number
of neighboring mobile users of a task, the larger the demand.
Thus, we use the three factors to determine the demand of a
task ti.

dk
i = w1X

k
i1 + w2X

k
i2 + w3X

k
i3 (3)

where Xk
i1

, Xk
i2

and Xk
i3

represent the demands affected by
the deadline, the completing progress, and the number of
neighboring mobile users for task ti, respectively. w1, w2 and
w3 are the weights to measure the relative importance of these
three factors and we let w1 + w2 + w3 = 1.

In our system, the rewards are given according to the
demands. The higher the demand, the higher the reward. How-
ever, the absolute value of a demand actually does not have
too much meaning, but instead the comparison of the demands
of all sensing tasks are more important. This will help us use
appropriate rewards to balance the popularity of sensing tasks.
The Analytic Hierarchy Process (AHP) [31] is an effective
model that combines qualitative and quantitative information
to determine the relative ranking of alternatives (e.g., sensing
tasks), and the ranking of criteria (e.g., three factors), which
is a perfect model for our dynamic incentive problem.

Figure 2 shows the framework for our problem consisting of
three levels, the alternative level, the criteria level and the goal
level. The alternatives are the sensing tasks. The criteria are
the demands of the deadline, the completing progress and the
number of neighboring mobile users. The goal is to calculate
the demands of all sensing tasks. In the following, we first
quantify the demands of the three factors and use the AHP
framework to calculate the demands of sensing tasks.

A. Demands of Three Factors

Demand affected by the deadline: Each sensing task
is associated with a deadline and the required number of
measurements are expected to be received before the deadline.
The closer to the deadline, the higher demand will be required.
Moreover, the closer to the deadline, the faster the growth rate
of demand will be required. Therefore, the demand affected
by the deadline is represented as follows:

Xk
i1 = λ1 ln(1 +

1
τi − (k − 1)

) (4)

where τi is the deadline of task ti, λ1 is a coefficient that scales
the value of the demand affected by the deadline. We can
see that the demand Xk

i1
increases as the round k approaches

TABLE I

AN EXAMPLE OF PAIRWISE COMPARISON MATRIX A = (aij)3×3

to the deadline of task ti and is upper bounded by λ1 ln 2.
Furthermore, the growth rate of demand Xk

i1 increases as the
round k approaches to the deadline.

Demand affected by the completing progress: The com-
pleting progress is another factor that can affect the demand
of a task, which is defined as πi/ϕi where πi the number
of received measurements and ϕi is the required number of
measurements of task ti. The larger the completing progress,
the smaller demand will be required. Moreover, the larger the
completing progress, the faster the reduction rate of demand
will be required. Therefore, we have

Xk
i2 = λ2 ln(1 + (1 − πi

ϕi
)) (5)

where λ2 is a coefficient that scales the value of the demand
affected by the completing progress. We can see that the
demand decreases as the completing progress increases and
is lower bounded by 0. Furthermore, the reduction rate of
demand Xk

i2
increases as the completing progress approaches

to 1.
Demand affected by the number of neighboring mobile

users: Some tasks are surrounded by many mobile users, while
some tasks are at far away locations with few neighboring
mobile users. Mobile users would not select far away tasks
only if high rewards are provided. Therefore, tasks with less
neighboring mobile users should be given higher demands to
increase their attractions to mobile users. Then we have

Xk
i3 = λ3 ln(1 + (1− Ni

Nmax
)) (6)

where λ3 is a coefficient that scales the value of the demand
affected by the neighboring mobile users. Ni is the number of
neighboring mobile users of task ti, and Nmax = max(Ni) is
the maximum number of neighboring mobile users among all
tasks. We can see that the less neighboring mobile users, the
larger demand is required. The demand is lower bounded by
0 and upper bounded by λ3 ln 2.

B. Weights Calculation With AHP

Figure 2 shows the AHP framework for demand calculation.
The demand of each sensing task can be calculated according
to Eq. 3 where Xk

i1 , Xk
i2 and Xk

i3 are the three criteria C1,
C2 and C3 for tasks respectively, and W = (w1, w2, w3)T is
the vector of weights for criteria. In the following, we use the
AHP to derive the appropriate values for the vector of weights.

Pairwise Comparison Matrix A: We use the pairwise
comparison matrix A = (aij)3×3 to express the relative
importance of one criteria over another. Generally, in practical
the values in the matrix are always determined by experts
and different for different application scenarios. For ease of
understanding, we give an example like A = (aij)3×3. Each
entry aij represents the relative importance of the criteria
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TABLE II

NORMALIZEDPAIRWISE COMPARISON MATRIXĀ=(̄aij)3×3
FOR THE EXAMPLE INTABLEI

Ciover the criteriaCj.Ifaij>1, the criteriaCiis more
important than the criteriaCj, while ifaij<1, the criteriaCi
is less important than the criteriaCj.aij=1if the criteria
CiandCjhave the same importance. The entriesaijandaji
satisfy thataij×aji=1. In the AHP, the relative importance
between two criteria is measured according to a numerical
scale from 1 to 9 [31]. We can choose suitable values from 1
to9foraijaccording to the relative importance between two
criteria in real scenarios.
Here we use an example in Table I to explain the pairwise
comparison matrix. For example,a12=3means the criteria
C1(the deadline) is slightly more important than the criteria
C2(the completing progress).a13=5means the criteriaC1
(the deadline) is strongly more important than the criteriaC3
(the number of neighboring mobile users).
We then derive the normalized pairwise comparison matrix

Ā =(̄aij)3×3by normalizing A in each column. That is,
each entry is calculated asāij=

aij
3
k=1 akj

. The normalized

pairwise comparison matrix derived from Table I in shown in
Table II.
Vector of weights:With the normalized pairwise compari-
son matrix, the vector of weightsW =(w1,w2,w3)

T can be
calculated by averaging the entries on each row ofĀ.Thatis,

wi=
1

3

3

j=1

āij (7)

Therefore, we can observe that the vector of weights
W =(0.648,0.230,0.122)T for the example in Table II,
which reflects the relative importance of the criteria on total
demand. Since0≤ Xki1 ≤ λ1ln 2,0≤ X

k
i2
≤ λ2ln 2

and0≤Xki3 ≤ λ3ln 2,andw1+w2+w3=1, we can
havedki = w1X

k
i1 +w2X

k
i2 +w3X

k
i3 ≤ λmaxln 2where

λmax =max(λ1,λ2,λ3).

C. Demand Calculation and Reward Update

With the vector of weights and the demands affected by
three factors, we can calculate the demands of all sensing tasks
according to Eq. 3. That is,dki=w1X

k
i1+w2X

k
i2+w3X

k
i3.

We then normalize the demanddkito a scale[0,1].Since0≤
Xki1 ≤λ1ln 2,0≤X

k
i2 ≤λ2ln 2and0≤X

k
i3 ≤λ3ln 2,

andw1+w2+w3=1, we can haved
k
i≤λmaxln 2where

λmax =max(λ1,λ2,λ3). Therefore, the normalized demand

d̄kican be calculated byd̄
k
i=

dki
λmax ln 2

.
We map the normalized demands intoNlevels and assign
the reward to a sensing task according to its demand level.
Table III shows an example ofN =5demand levels. The
demand level of a task is 2 if its normalized demand falls in
(0.2,0.4].

TABLE III

AN EXAMPLE OF DEMAND LEVELS WHENN=5

We then determine the reward of the task according to its
demand level by using the following rule.

rkti=r0+λ(DL
k
ti−1) (8)

whererkti is the updated reward for sensing tasktiat the
kth sensing round,r0 is the reward associated with the
demand level1andDLkti is the demand level of sensing
tasktiat thekth sensing round. We can see that the reward
increases linearly as the demand level increases andλis the
increasing scale. The maximum reward one can obtain for one
measurement isr0+λ(N−1). Considering that each taskti
requiresϕimeasurements, the maximum total rewards for all
sensing tasks is

m

i=1

ϕi(r0+λ(N−1))≤B (9)

That is, the maximum total rewards should not exceed the
reward budgetB. Given the reward budgetB, the increasing
scaleλand the demand levelN,r0can be determined as
follows.

r0=
B
m
i=1ϕi

−λ(N−1) (10)

V. DISTRIBUTEDTASKSELECTIONMECHANISMS

In this section, we first prove that both the participatory
and opportunistic task selection problems are NP-hard, and
then propose two different optimal distributed task selection
algorithms respectively to help users select tasks while maxi-
mizing their total profits at each sensing round.
Theorem 1: The participatory and opportunistic task selec-
tion problems are NP-hard.
Proof: We use a graph to model the task selection

problem. LetG=(V, E, W, R)denote the traveling graph for
mobile userui.V={Lui,Lt1,Lt2,···,Ltm}denotes the set
of vertices consisting of the initial location of useruiand the
locations of all sensing tasks.R={rui,rt1,rt2,···,rtm}is
the set of weights on vertices whererui =0andrtj is the
reward of tasktjat this round.Eis the set of edges between
any pair of vertices andW is the set of weights on edges
where the weight of an edge is the traveling distance between
two vertices.
For the participatory task selection problem, given a set of
tasksTkui, tj∈Tkui

rktj can be calculated, andC(T
k
ui)is the

cost on the shortest path that starts fromLui and travels all
the vertices inTkui. Note that the shortest path should be a
simple path. WhenC(Tkui)=0, problem in Eq. 1 is converted
to the following problem.

max P(Tkui)=

tj∈Tkui

rktj

s.t.ΓTkui
≤Bkui (11)

Given the graphG, the problem in Eq. 11 is to find a
path originated atLui with total travelling time no more
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Fig. 3. An example of sequence indp[][j]with a total of 6 tasks.

thanBkui such that the total rewards gained from vertices
is maximized. Hence we can see the problem in Eq. 11 is
actually an orienteering problem[32] which is already proved
to be NP-hard. Since problem in Eq. 11 is a special case of
problem in Eq. 1 whereC(Tkui)=0, the participatory task
selection problem shown in Eq. 1 is also NP-hard.
For the opportunistic task selection problem, the proof is

similar to that of the participatory scenario. The difference is
only that the opportunistic task selection asks the user to arrive
at the destination. We can also prove that the opportunistic task
selection problem is NP-hard similarly.

In the following, we propose an optimal dynamic program-
ming based algorithm for participatory task selection, and an
optimal backtracking based algorithm for opportunistic task
selection.

A. Dynamic Programming Based Algorithm for Participatory
Task Selection

Given a set of tasks, the total reward is fixed, but the
traveling distance is quite different depending on traveling
order on the location-dependent tasks. Letdp[][j]denotes the
shortest path for traveling the set of tasks in starting from
the initial location of the mobile user and ending at a location
Ltjassociated with tasktj.Letdp[]denotes the shortest path
for, so we can havedp[]=minmj=1(dp[][j]).
Here is a sequence composed of0and1with the length
ofmwhich is the total number of tasks. Thus, in thedp[][j]
ranges from{00···0}to{11···1}.Iftasktqis selected by
the mobile user, theqth position in sequenceis 1; otherwise,
it is 0. Figure 3 gives an example of sequence ofdp[][j]
with a total of 6 tasks. We can see that 1 appears at the second,
fourth, and fifth position of the sequence, which means that
the taskst2,t4,andt5are selected by the mobile user.
Letdist[j][q]denote the distance between tasktjandtq.
Given a sequence of , we can know the set of tasks selected
by the mobile user. Leto()denote the performing order of the
selected tasks in.Letdp[][j]o()denote the total traveling
distance starting from the initial location of the mobile user
and ending at location of tasktjby following the performing
order ofo(). For example, given the sequence in Figure 3,
ando[]is{t4,t5,t2},wehavedp[][j]o()=dist[s][t4]+
dist[t4][t5]+dist[t5][t2]wheresdenote the initial location of
the mobile user. Obviously,dp[][j]should be the shortest path
among all the possible traveling paths ending atLtj for the
selected tasks in the sequence. Note that if tasktjdoes not
belong to the selected tasks in the sequence,dp[][j]should
be∞. Therefore, we have

dp[][j]=
mino(){dp[][j]o()}tj∈ ,

∞ tj/∈ .
(12)

wheretj∈ means that thejth position of is 1.

Fig. 4. The shortest path matrix ofdp[][j]with a total of 6 tasks.

For the sequence of, if we further select another tasktq,
then the sequence of becomes |1 (q−1).1 (q−1)
means that 1 shifts to the left byq−1bits, and |1 (q−1)
means that we take theoroperation between the sequences of
and1 (k−1). Thus, we can get a new sequence wheretq
is selected besides the previous selected tasks in. According
to Eq. 12, we can have

dp[|1 (q−1)][q]= min
1≤j≤m

{dp[][j]+dist[j][q]}(13)

From Eq. 13, we can see that finding the shortest path for
a set of tasks exhibits optimal substructure, which implies
that we can solve the task selection problem with dynamic
programming. Therefore, we propose a dynamic programming
based task selection algorithm to choose the optimal set of
tasks with the maximum profit while satisfying the travel
time/distance budget.
The key idea of the algorithm is using a sequence to indicate
which task has been selected. The procedures are descried as
follows:

1) Construct the shortest path matrix DP =
(dp[][j])2m×(m+1) where m is the number of
tasks. ranges from[00···0]to[11···1]andjranges
from 0 tom.dp[00···0][0]is initialized with 0 and all
the other entries are initialized with∞.

2) Calculate alldp[][j]according to Eq. 13.
3) Calculate the total profits for each, denoted byP()=
R()−C(),whereR()is the total rewards of selected
tasks in sequence,andC()is the traveling cost
corresponding to the shortest pathdp[].

4) Find the maximumP()whose shortest pathdp[]is no
larger than the traveling time/distance budget.

Figure 4 shows the shortest path matrix ofdp[][j]with a
total of 6 tasks. ranges from{000000}to{111111}andj
ranges from 0 to 6.dp[000000][0]is set to 0 while other entries
are set to∞. We calculatedp[][j]one by one according to
Eq. 13, so the shortest path for,dp[], can be easily obtained.
For each row of sequence , the total rewardsR()can be
easily calculated by summing up the rewards of selected tasks
in. Finally, we filter out the sequences whose shortest path
does not meet the traveling time/distance budget and find out
the maximumP()from the remaining sequences. Thus, the
selected tasks in the corresponding sequence is the optimal
set of tasks for the mobile user to perform.
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Theorem 2: The dynamic programming based task selection
algorithm has a computational complexity ofO(m22m),where
mis the total number of tasks.
Proof: The shortest path matrixDP has2m ∗(m+1)

entries, where m is the number of tasks. For calculating each
entrydp[][j], it needs to runm steps according to Eq. 13.
Therefore, the computational complexity of the dynamic pro-
gramming based task selection algorithm isO(m22m).

B. Backtracking Based Algorithm for Opportunistic Task
Selection

The opportunistic task selection problem is similar with
the orienteering problem but has a fixed destination. In this
paper, we leverage backtracking to search the optimal solution.
The solution space of this problem is a permutation tree, and
we need to find an optimal permutation of tasks that could
maximize the profit while satisfying budget.
Given a start and end point of a userui, we can construct

an ellipse over the whole task set, denoted byEPui forui,
by using the start point and end point as the two foci of the
ellipse, and the travel distance within the time budget ofBkui
as the length of the major axis. Then the traveling time to
perform any task outside the ellipse will exceed the budget, so
we could just consider tasks within the ellipse when searching
the optimal path. This will significantly reduce the searching
space for the optimal path.
LetTui denote the set of tasks inside the ellipse forui.
For each tasktiinTui, the traveling time from the start point
throughtito the end point is definitely less than the time
budgetBkuiof the user, because the distance between any point
inside the ellipse and its two foci is smaller than its major
axis. Letoptuidenote the optimal path forui, which can be
generated by using depth first search (DFS) on the permutation
tree ofTui,andPui denote the maximum profits in all the
feasible paths.
We extend the branch of each tasktijinTuiby using DFS
to get a feasible pathftij. After searching all the branches
started with eachtij, we can get a set of feasible paths,
denoted byF={ft1,ft2···ft|Tui|

}. Finally, we can find the
optimal pathoptuithat can maximize profit for useruifrom
the feasible setF.
Specifically, for each tasktij inTui, we first add it to a
feasible pathftij as the first task in current branch, and the

cost for traversingftij is denoted byC(ftij). Then we keep
searching with DFS in that branch and adding tasks inftij
untilC(fti)exceeds the budgetB

k
ui. Then we update the path

if the profit of this branch is larger than the records, back to
the pervious layer and keep searching others branch.
The pseudocode of the backtracking is formally presented

in Algorithm 1.
Theorem 3: The backtracking based path selection algo-

rithm has a computational complexity ofO( m̄!
(̄m−n̄)!),where

m̄is the total number of tasks inside of the ellipse, and̄nis
the average number of tasks that users select.
Proof: If the budget of users is large enough, all the

permutations ofm̄tasks will bēm!. However, users typically
only have limited budgets. Let us assume the average number

Algorithm 1Backtracking Based Path Selection for a User

Require:Task setTui; budgetB
k
ui

Ensure:The optimal pathoptui
1:Initialize path setF
2:foreachtij∈Tuido
3: addtij as the first task inftij
4: ftij,Ptij ← DF S(Tui\tij,ftij,C(ftij))
5: F ←F∪ftij
6:end for
7:optui← the path has max profit inF
8:returnoptui

Algorithm 2DFS(Tui,ftij,C(ftij))

1:foreachtij∈Tuido
2: ftij ← ftij∪tij
3: ifC(ftij)<B

k
uithen

4: α, β←DF S(Tui\tij,ftij,C(ftij))
5: else
6: ifβ>Ptij then
7: ftij ← α,Ptij ← β
8: end if
9: back to the pervious layer
10: end if
11:end for
12:returnftij,Ptij

of tasks one user can perform isn̄within his budget, which
is usually a very small number. Then the average depth of
the permutation tree is̄n, and any branches that exceed the
budget will be pruned. Each mobile user selects the first task
fromm̄ tasks, and then the second from̄n−1tasks, until
the time cost exceeds the budget. On average, each user will
select aboutn̄tasks at most. Therefore, the computational
complexity of the backtracking based path selection algorithm
isO( m̄!

(̄m−n̄)!). Given that bothm̄ andn̄are small, the
computational cost is affordable.

VI. PERFORMANCEEVA L UAT I O N

In this section, we evaluate the performance of the proposed
demand-driven dynamic incentive mechanism under three
different task selection scenarios, participatory, opportunistic
and hybrid scenarios. Then we compare our algorithm in
hybrid scenario with the steered crowdsensing mechanism [11]
which dynamically changes the rewards of tasks according to
expected quality improvements. As for the dynamic incentive
mechanisms proposed in [9] and [13], the former is proposed
to maintain adequate level of participants and does not take
location into consideration, while the latter is designed for
one-shot sensing and the budget of each task would not change
once initially determined, so they are not suitable to compare
with our mechanism. Moreover, we also compare our incentive
mechanism with a fixed incentivemechanism where the reward
would not change once determined.
Steered crowdsensing mechanism:In [11], the reward of
a task changes dynamically according to the expected quality
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TABLE IV

PARAMETER SETTING DESCRIPTION

improvements of the task. The reward function (Eq. 12 in [11])
of the steered crowdsensing mechanism is rewritten as follows.

Rk
ti
= Rc + μΔQ(x) (14)

where Rk
ti

is the reward of task ti at the kth round, Rc is
an additional reward given to the participant, and ΔQ(x) =
Q(x+1)−Q(x) is the expected quality improvement due to
received (x+1)th measurement of the task. In our experiments,
we set μ = 100, δ = 0.2, rc = 5, so the reward of each task
varies in [5, 25].

It is worth noting that the reward function of the steered
crowdsensing incentive mechanism in Eq. 14 looks similarly
to our demand-driven dynamic reward function in Eq. 8.
However, the reward function of steered incentive is a decreas-
ing function which becomes smaller and smaller as more
measurements are received. In this way, the attraction of each
task to participants becomes smaller and smaller as time goes
on. In contrast, our demand-driven function is determined
by the demand of each task but not the expected quality
improvement, so it can increase when demand is high and
also can decrease when the demand is small.

Fixed incentive mechanism: The fixed incentive mecha-
nisms set a fixed reward for each task and the reward would
not change once it is initially determined. In our experiments,
we also compare the proposed demand-driven dynamic incen-
tive mechanism with the fixed incentive mechanism. In each
experiment, the fixed incentive mechanism randomly generates
a demand level for each task as presented in Table III and uses
the corresponding reward for each task. The reward of each
task would not change in latter rounds.

In our experiments, the locations of mobile users and
sensing tasks are randomly generated in a 3000m × 3000m
area. We assume each mobile user’s walking speed is 2m/s
and the cost for movement is 0.002$/m. We assume there are
20 sensing tasks and each sensing task requires 20 independent
measurements to reach the required quality. The deadline of
each sensing task is randomly generated between [5, 15]. Given
the reward budget B = 1000$, we map the demand into five
demand levels as shown in Table III and set λ = 0.5$ and
r0 = 0.5$. The number of mobile users ranges from 40 to
140. We perform each experiment for 100 times and use the
average value to demonstrate the performance. The parameter
setting description is shown in Table IV.

A. Comparison of Scenarios

We first compare the coverage and the overall completeness
of sensing tasks under the three different scenarios. The
coverage refers to how many tasks have been selected, and

Fig. 5. The comparison of coverage and overall completeness under three
different scenarios.

Fig. 6. The comparison of the incentive mechanisms on the coverage.

the overall completeness refers to how many tasks have gotten
enough measurements.

Figure 5(a) show the coverage of the three scenarios against
the number of users until the last sensing round. The partic-
ipatory and hybrid scenarios always achieve 100% coverage,
while the coverage of the opportunistic scenario cannot reach
100% even for 140 mobile users. This is because many users
in the participatory and hybrid scenarios have more chance
to select far away tasks as they do not have requirements of
reaching some destination at final. However, the users in the
opportunistic scenario cannot select far away tasks from their
daily routes.

Figure 5(b) shows the overall completeness of three scenar-
ios. We can see that the overall completeness of the partici-
patory scenario is always higher than the other two scenarios.
The opportunistic scenario shows the worst performance and
the overall completeness is only 20% even there are 140
mobile users. It is worth noting that the hybrid scenario
behaves better when more users perform sensing tasks and
achieves similar performance when there are 140 mobile users.
This implies that we can recruit some opportunistic users to
improve system performance when not enough participatory
users can be recruited.

In the following experiments, we consider the hybrid sce-
nario with both participatory and opportunistic users, and
compare the proposed demand-driven incentive mechanism
with the steered and fixed mechanisms.

B. Coverage

Coverage measures how good the algorithm balances the
popularity among sensing tasks, which is a kind of spatial
metric. The larger the coverage, the better the balance.

Impact of user number: Figure 6(a) shows the coverage of
the three mechanisms against the number of users until the last
sensing round. We can see that the demand-driven incentive
mechanism and the steered crowdsensing incentive mechanism
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always achieve better coverage than the fixed incentive mecha-
nism. The demand-driven incentive mechanism and the steered
crowdsensing incentive mechanism always achieve 100% cov-
erage which means that each sensing task is at least selected
once by users. This is because our algorithm can characterize
the demand of each task from multiple factors and change the
relative popularity among tasks, so that even far away sensing
tasks will be selected by mobile users. As for the steered
crowdsensing incentive mechanism, the rewards of sensing
tasks without receiving any measurement become relatively
higher compared to others, which encourages mobile users to
select these uncovered sensing tasks. While the coverage for
the fixed incentive mechanism increases as the increasing of
the number of mobile users, since more users means higher
probability of a task to be selected/covered. However, the fixed
incentive mechanism cannot reach 100% coverage even for
140 mobile users.

Impact of sensing rounds: Figure 6(b) shows the coverage
of the three mechanisms against the number of sensing rounds
when there are 100 mobile users. First, we can observe that the
coverage of the demand-driven incentive mechanism and the
steered crowdsensing incentive mechanism are always higher
than that of the fixed incentive mechanism at all sensing
rounds. We can also see that the coverage increases at first as
the round goes on since more uncovered tasks will be selected.
The coverage of the demand-driven incentive mechanism and
the steered incentive mechanism reaches 100% coverage while
that of the fixed incentive mechanism cannot reach 100%
coverage. This means that just increasing the sensing rounds
does not increase the popularity of unpopular sensing tasks in
the fixed incentive mechanism.

C. Overall Completeness

Each sensing task is expected to be completed before its
deadline and the overall completeness measures how good of
task completeness before their deadlines.

Impact of user number: Figure 7(a) shows the overall
completeness of the three mechanisms against the number of
users until the last sensing round. The overall completeness
grows as the number of mobile users increases. We can see
that the demand-driven incentive mechanism has a higher
overall completeness than the fixed and the steered incentive
mechanism, and the superiority becomes more obvious when
there are more mobile users. Compared to Figure 5(b), the
overall completeness of all the three mechanisms is lower than
the completeness of participatory scenario as half of mobile
users in hybrid scenario have less opportunity to select tasks
far away from their destinations.

Impact of sensing rounds: Figure 7(b) shows the overall
completeness of the three mechanisms against the number of
sensing rounds when there are 100 mobile users. The deadline
of each sensing task is randomly generated between [5, 15]. We
can see that the demand-driven incentive mechanism always
has a higher overall completeness than the fixed incentive
mechanism and the steered incentive mechanism for all sens-
ing rounds. The demand-driven incentive mechanism achieves
about 80% completeness while the fixed incentive mechanism
only has about 60% completeness. The steered crowdsensing

Fig. 7. The comparison of the incentive mechanisms on the overall
completeness.

Fig. 8. The comparison of the incentive mechanisms on the # of measure-
ments.

incentive mechanism has the worst performance that only
achieves 30% completeness since it changes reward only based
on the quality of sensing tasks and steers users to select sensing
tasks with lower quality but does not take the deadline of tasks
into consideration. As higher measurement tasks have less
popularity, which result in the lower completeness of steered
incentive mechanism.

D. # of Measurements

Each sensing task expects to receive the required number of
measurements before its deadline to ensure the sensing quality.
In particular, the more number of measurements, the better
encouragement given by the incentive mechanisms.

Impact of user number: Figure 8(a) shows the comparison
of the incentive mechanisms on the average # of measurements
of all sensing tasks against the number of users until the
last sensing round. In our experiments, 20 measurements are
required for each sensing task. The average # of measurement
increases as the number of mobile users increases, as there
are more users to work on the tasks. We can observe
that the on-demand incentive mechanism achieves the best
performance compared to the other incentive mechanisms
and its average # of measurements can reach almost 20 when
there 120 mobile users.

Impact of sensing rounds: Figure 8(b) shows the total #
of measurements of all tasks at a round when there are 100
mobile users. As shown in Figure 8(b), the steered incentive
mechanism has the largest total number of measurements at
the first round, which is because its rewards are higher than the
others at this round given the reward update rule in Eq. 14. The
fixed incentive mechanism performs better at the following
2nd and 3rd round than the on-demand and steered incentive
mechanisms. This is because the rewards of the on-demand
and the steered incentive mechanisms decrease as tasks receive
more and more measurements, while the the rewards of fixed
incentive mechanism do not change and are relatively higher
than that of the other two incentive mechanisms. Starting from
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Fig. 9. The comparison of the incentive mechanisms on variance of
measurements and average reward per measurement.

the 6th round, there is no more new measurement for the fixed
and the steered incentive mechanisms, which is because the
rewards cannot encourage mobile users to perform far-away
tasks. In contrast, the proposed on-demand incentive mecha-
nism continually has new measurements for the tasks at the
following rounds, which is because that it dynamically change
the rewards of tasks according to their real-time demands,
which can encourage users to perform far-away tasks.

E. Variance of Measurements

The variance of measurements characterizes the balance
of users’ participation among sensing tasks. If an incentive
mechanism achieves larger average # of measurements with
smaller variance of measurements than others, it achieves
better balance of users’ participation among sensing tasks.

Figure 9(a) shows the variance of measurement of the
three mechanisms against the number of the users until the
last sensing round. We can first observe that the variance
of measurements of the on-demand incentive mechanism is
smaller than the other two incentive mechanisms when the
total number of users is more than 60. Given that it also has
the largest average # of measurements as shown in Figure 8(a),
we can conclude that the proposed on-demand incentive mech-
anism realizes better balance of users’ participation among
sensing tasks.

Note that the variance of measurements of the three incen-
tive mechanisms tends to decrease with more users. This is
because users tend to select nearby sensing tasks and more
users means better distribution of measurements among tasks.
The variance of measurements steered incentive mechanism is
lower than on-demand incentive mechanism when the number
of users is less than 60, this is because the overall completeness
of tasks is relatively low as shown in Figure 7(a), it is the
lacking of enough users that affect the balance efficiency of
of multi-factor demand based incentive mechanism.

F. Average Reward per Measurement

The platform always expects to maximize its welfare and we
use the reward per measurement to reflect this objective. The
platform will have a larger welfare if it pays smaller reward
per measurement.

Figure 9(b) shows the average reward per measurement of
the three mechanisms against the number of users until the last
sensing round. We can see the average reward per measure-
ment of the on-demand incentive mechanism is smaller than
that of the fixed incentive mechanism and the steered incentive
mechanism. This is because our algorithm can find more

suitable values for the rewards according to the demands of
tasks while the rewards of sensing tasks in the fixed incentive
mechanism cannot change. The average reward per measure-
ment of the on-demand incentive mechanism decreases as the
increasing of the mobile users, since the demand is stronger
for less number of mobile users.

VII. CONCLUSION

In this paper, we focused on location-dependent crowd-
sensing systems, and proposed a demand-driven dynamic
incentive mechanism that dynamically changes the reward of
each task in an on-demand way to balance the popularity
among tasks. We introduced the demand indicator which uses
the deadline, the completing progress, and the number of
neighboring mobile users to characterize the real-time demand
of each sensing task. At each sensing round, we used the
framework of AHP to calculate the relative demands of all
sensing tasks and then determine their rewards. Moreover, we
considered the task selection problem under the participatory
scenario and the opportunistic scenario, and proposed the
dynamic programming based solution and the backtracking
based solution, respectively. Extensive experiments show that
the proposed dynamic incentive mechanism outperforms the
state-of-the-art in terms of coverage, overall completeness, and
the average reward per measurement. That is, the proposed
demand-driven dynamic incentive mechanism achieves better
participation and participation balance among tasks.
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