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Abstract—We consider multiple unmanned aerial vehicles
(UAVs) at a common altitude serving as data collectors to a
network of IoT devices. First, using a probabilistic line of sight
channel model, the optimal assignment of IoT devices to the UAVs
is determined. Next, for the asymptotic regimes of a large number
of UAVs and/or large UAV altitudes, we propose closed-form
analytical expressions for the optimal data rate and characterize
the corresponding optimal UAV deployments. We also propose a
simple iterative algorithm to find the optimal deployments with
a small number of UAVs at high altitudes. Globally optimal
numerical solutions to the general rate maximization problem
are found using particle swarm optimization.

Index Terms—UAV-aided communications, rate maximization.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been recently uti-
lized in a variety of applications. For example, UAVs can serve
as base stations providing service for mobile users [1]-[3]. A
similar use case is UAVs as data collection units [4], [11], es-
pecially in the context of Internet of Things (IoT) applications
[5]-[7]. In [7], the authors study UAVs as data collectors from
time-constrained IoT devices for offloading excessive traffic
of existing wireless networks. Another example is [8], which
investigates UAV-IoT data capture and networking for remote
scene virtual reality immersion.

Energy efficiency is a fundamental issue in UAV-aided IoT
networks as both the UAVs and the IoT devices typically have
severe battery and power limitations. Several solutions have
thus been proposed to address the energy efficiency challenges
of UAV-aided IoT networks [9]-[13]. In particular, [11] studies
the tradeoffs between the energy efficiency of the ground
IoT sensors and the overall system throughput by optimizing
various system parameters including the UAV flying speeds
and altitudes. In [12], the authors consider the hovering
altitude and power allocation problem for a three tier network
consisting of satellites, UAVs, and the IoT devices. The power
efficiency provided by multiple UAV relays between a density
of IoT devices and base stations is studied in [13].

Trajectory optimization and optimal deployment of UAVs
is another important problem in designing UAV-aided systems
[2], [7], [14]-[17]. In general, this class of problems are
non-convex optimization problems in which dimensionality
increases with the number of UAVs. Hence, providing a
globally optimal solution is very challenging. Several dif-
ferent optimization methods have been proposed, including
evolutionary algorithms [1], [20]. In [2], the authors propose
a quantization theory approach to solve the deployment and
trajectory optimization problem. However, the used commu-
nication model is a line of sight (LOS) model and does not
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consider the non line of sight (NLOS) effects [21]. We refer
to [18], [19] for other applications of quantization theory to
the deployment of non-UAV networks. In [10], the authors
consider a cooperative approach to provide coverage and
long term information services for IoT nodes in UAV-aided
networks. The authors divide the original non-convex problem
into three subproblems and use a block coordinate descent-
based iterative algorithm to solve mentioned subproblems. In
[7], the authors jointly optimize the UAV trajectory and the
radio resource allocation to serve the maximum number of IoT
devices. Globally optimal solutions are found for small scale
scenarios using the branch, reduce and bound algorithm, and
suboptimal algorithms are developed for larger scale scenarios.

Most of the previous works rely on a numerical approach
to solve the UAV deployment problems in IoT networks. In
addition, in some works, the communication model is too
simple and does not capture NLOS attenuation. For example,
[2] considers a deterministic LOS model. Here, we study a
probabilistic LOS model and formulate the rate maximization
problem accordingly. We find the optimal assignment of the
IoT nodes to the data collector UAVs. In addition, for the
asymptotic regimes of either a large number of UAVs or large
UAV altitudes, we find the optimal deployment of UAVs,
and the corresponding optimal data rates. We also verify
our analysis with numerical simulations conducted using the
particle swarm optimization (PSO) algorithm.

The rest of this paper is organized as follows: In Section
I, we introduce the system model. In Section III, we study
the optimal assignment of IoT nodes to their UAVs. We also
present our asymptotic analysis on the optimal placement of
UAVs and corresponding data rates. In Section IV, we present
the numerical simulation results. Finally, in Section V, we
draw our main conclusions and discuss future work. Some of
the technical proofs are provided in the appendices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let g be the location of an IoT device in the d-dimensional
Euclidean space R? where d € {1,2}. Also, let x; be the
projection of UAV location on R%, and h denote a common
altitude for the UAVs. In this work, we adopt the probabilistic
LOS model for the UAVs [21]. There can be LOS commu-
nication between UAV ¢ at (z;,h) and the IoT device at ¢
with a certain probability Prog. Otherwise, the IoT-to-UAV
link can only support NLOS communication with probability
of Pvros = 1 — Pros. The LOS probability Progs has an
explicit dependence on the distances as defined through
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where b and ¢ depend on the distribution of the physical
obstacles (e.g. buildings) over the area of interest [21]. An
example scenario consisting of one IoT device communicating
with two UAVs is illustrated in Fig. 1.

As in [21], let us assume that the NLOS path incurs an
extra attenuation of § compared to the LOS path, where 0 <
0 < 1. Using Shannon’s well-known capacity formula for the
Gaussian channel, the achievable data rate between the IoT
device at ¢ and the UAV at x; can be epxressed as
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where p is the fixed power of IoT devices, r is the path loss
exponent, Ny is the noise power, and A is a constant which
depends on the system parameters such as operation frequency
and antenna gain [22]. Obviously, it is optimal for each IoT
device to connect to the UAV that will maximize its data rate.

In other words, an IoT device at location ¢ should be connected
to the UAV with index

Ri(g) = o (1+ 7 ) Pros(ll )
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The maximum data rate that can be provided to the IoT
device is then max; R;(q). Suppose now that the IoT devices
are distributed over the area of interest according to a certain
density function f(q), where [;, f(¢)dg = 1. Averaging out
the maximum data rate of an IoT device max; R;(q) over
the IoT device density f, the maximum achievable data rate
between the IoT devices and the UAVs are given by
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where v £ ﬁ and X = [z] z2---x,] is the UAV deploy-

ment. The goal of this paper is to find the optimal deployment
X such that R(X, f) is maximized. In other words, we wish
to find the solution to the following optimization problem:

X* =[x 2} -+ 2] = argmaxy R(X, f) 5)

In the following, we first determine an explicit expression for
the optimal UAV assignment to each IoT device (3). We will
then focus on the asymptotic regimes of a large number of
UAVs or high UAV altitudes to analytically solve the optimal
UAV deployment problem as given by (5).

III. OPTIMAL PLACEMENT OF UAVS

In this section, we present our main analytical results. We
first determine the optimal assignment of IoT devices to UAVs.
To gain initial insight on this problem, first consider the simple
scenario of a pure LOS model, where we consider Pros = 1
and Pyros = 0, independently of the locations of the UAVs

=3 L.OS communication, § = 1.
—==3» NLOS communication, 0 < § < 1.
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Fig. 1. An IoT device communicating with two UAVs over possible LOS
and NLOS channels.

and the IoT device. In this case, according to (2) and (3), the
optimal UAV assignment evaluates to

* _ v
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= argmiin lg — x|l (Pros =1, PNros =0). (7)

In other words, each IoT device should be connected to its
closest UAV. However, in our probabilistic LOS model, the
same conclusion cannot be reached immediately, due to the
non-trivial dependence of the LOS probabilities and the rate
expressions on the IoT-to-UAV distances. Nevertheless, con-
necting each IoT device to its closest UAYV, i.e., the assignment
rule in (7) still turns out to be optimal in the case of the
probabilistic LOS model, as the following proposition shows.

Proposition 1. With the probabilistic LOS model, the maxi-
mum rate is achieved when each IoT device is connected to
the closest UAV. In other words, I*(q) = arg min, ||qg — x|

Proof. Let d = ||q — x;]|. According to (2), we have

R;(q) = log, (1 + W) Pros(d)+
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and Pros(d) is as defined in (1). The equality of (8) and
(9) can be verified through straightforward algebraic manip-
ulations. The result then follows as L., Pros, Lo are all
monotonically decreasing functions of their arguments. [

(1)

Now, let v; = {q : ||z; — ¢|| < ||lz; — ¢||,Vj # i} denote
the Voronoi region corresponding to UAV <. Then, according
to Proposition 1, the IoT device ¢ € v; should be connected
to UAV ¢ to maximize the average data rate.



We can now optimize the UAV deployment and determine
the corresponding best possible average IoT data rates. Our
main result in this context is the following theorem.

Theorem 1. For asymptotically large UAV altitudes h and/or
a large number of UAVs, the optimal deployment of UAVs is
derived by solving the following optimization problem:

— 4l f(g)dq
= argminy Y, [, [lzi —qllf(q)dg
The corresponding optimal data rate is
R(X*, f) = log (1+l) 1+7—(S ¢
’ ? hr hr) 1+
bc’ Yo + h"
- _
h(1+cl)2 0g < + AT >Z/ HT all f(q)
W +h N |7 — gl
1 — 14
+°g2<7+hr>2/w0( W flg)dq, (14)

=1

(12)
(13)

X* = argminy [ min;z;

where ¢ £ ce (39,
Proof. See Appendix A. [

An interesting byproduct of Theorem 1 is that for large
number of UAVs and/or arbitrary number of UAVs at high
altitudes, the optimal placement is derived from (12) which
is independent of h and 4. Hence, the optimal placement
in the mentioned asymptotic regimes is not a function of
altitude or attenuation. In addition, the problem of finding
the optimal deployment is reduced to solving (12), for which
many methods and results are already available, especially
from the quantization theory literature. Once a solution to
(12) is obtained, it can be substituted to (14) to obtain an
asymptotically tight expression for the data rates. We now
discuss two methods to solve (12). The first theoretical method
provides an analytical solution for the asymptotic regime of a
large number of UAVs. The second numerical method will be
applicable to any number of UAVs.

A. Quantization Theory Approach

We first present an analytical approach to solve (12). We
note that (12) can be interpreted as the average ¢;-norm
distortion of a quantizer with reproduction points x1, ..., T,
for a given source density f [2]. As n — oo, the optimal
UAV deployment in (12) can be characterized in terms of a
density function of UAVs, rather than the individual locations
of each UAV. To that end, consider a point density function
A(g) such that the cube [g,q + dg] of volume dq contains
nA(q)dq reproduction points (UAVs) with fRd q)dg = 1.
According to the classical results of quantization theory [25],
[26], the optimal point (UAV) density function is as follows:

N(a, ) = FT5(q)/ [ F7H(¢)dd

Hence, as n — oo, for any ¢, the infinitesimal [g, ¢+dq] should
contain nA* (g, f)dq UAVs in an optimal deployment. Further-
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more, also using the results in [25], [26], the corresponding
optimal value of (12) can be derived in closed-form as

minxfminin;_QHf(Q)dq:kdn_%Hf”d%l"‘o(n_é)’ (16)

where || flla £ (fga(f(q))%dq) )= is the a-norm of the density
f and kq and ks, are the normahzed first moments of the origin-
centered interval and the origin-centered regular hexagon, re-
spectively. The normalized ¢/th moment of an arbitrary origin-
centered A C R? is defined as

m(A) 2 [, llallda/( [, dg) .

In particular, for the interval and the regular hexagon, which
correspond to the optimal Voronoi cell shapes in one and two
dimensions respectively, the normalized first moments can be
calculated to be k; = & and ko = Atlog2? , respectively.
Equation (16) prov1des a complete2 4213sympt0t1(: characteri-
zation of the achievable date rate for Theorem 1, because the
closed forms of (14) are immediately calculated by substituting
the optimal value of minx [ min;||z} —¢|| f(¢)dg from (16) to
(14). The final result is summarized via the following theorem.
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Theorem 2. For an asymptotically large number of UAVs, the
optimal UAV point density function that maximizes the data
rate is given by (15). The corresponding optimal data rate is
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This provides a complete asymptotic characterization of the
rate for large number of UAVs. Unfortunately, the knowledge
of the optimal density function of the UAVs does not imme-
diately lead to the knowledge of the optimal discrete UAV
locations. However, for the special case of one dimension,
the optimal discrete placement of UAVs can also be approxi-
mated using a variant of inverse transform sampling [2]: Let
X* = [ayab---a)] be the optimal deployment. Suppose
xf <zt < ... <z} without loss of generality. For z € [0, 1],
let A}, (z, f) be the unique real number that satisfies

A%, (x,
ST N (g, £)da = = (19)
Then, x} can be approximated as
ar = A%, (3 ) (20)

Hence, to find the optimal placement of UAVs, we can first
solve (19) for A% (x,f) and then use (20) to calculate
the optimal UAV locations. For two dimensions, or a non-
asymptotic number of UAVs, we consider a numerical solution

to (12). Details of the solution are described in what follows.

B. Iterative Approach

In this numerical approach to solving (12), the UAV loca-
tions 1 g, ..., T o are first initialized randomly at Iteration 0.
We then perform the following procedure iteratively, essen-
tially considering a generalized Lloyd algorithm [27] for the



f1-norm distortion measure. At Iteration k, where k > 1, we
first calculate the Voronoi regions

Vie ={q: |zin—1—ql| < lwje—1 —qll, V5 #i}, Q2D

Keeping the Voronoi regions fixed, we then solve the following
optimization problem to update the optimal solution X:

Xy = argminy » / |z — gl f(@)dg.  (22)
i=1"Vik
Solving (22) is equivalent to solving the optimization problem

T;p = argmin,, / (23)

v,

|z — qll f(g)dg

for each ¢ € {1,2,..,n}. The problem (23) is a convex
optimization problem, as the objective function is the positive
weighted summation of convex norms. Therefore, we can solve
(23) by using any globally optimal approach such as gradient
descent. Furthermore, for one dimension, we can provide a
closed form solution for (23) by solving

0
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Solving for x;, we obtain z;; = median(f.(q)), where
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Note that one can also attempt to directly solve (4) in
an iterative fashion. The calculation of the Voronoi regions
v; 1, remains the same as it is optimal for each IoT device
to be connected to its closest UAV. We can update the UAV
locations as z; ,, = arg maxg, fw . R;(q)dq. The end result is
an iterative ascent algorithm for the original objective function,
which is very much desirable. On the other hand, the problem
with this approach is that the optimization of x; j, still remains
non-convex. The strength of our iterative approach stems from
the fact that it convexifies the entire optimization, resulting
in a very fast implementation. The numerical simulations in
the next section also show that our convexification approach
results in only negligible loss of performance.

IV. NUMERICAL RESULTS

In this section, we provide numerical simulation results that
confirm our analytical findings. For a general approach that is
applicable to all scenarios, we used the PSO method [23] to
solve the optimization problem (5).

The PSO method is a population-based iterative algorithm
for solving non-convex optimization problems. In general,
population-based optimization algorithms such as PSO are
known to outperform the simpler gradient descent like ap-
proaches. Specifically, multiple candidate solutions (popula-
tion agents) helps to avoid locally optimal solutions. This
makes PSO-like algorithms particularly suitable for multiple-
UAV optimization problems [1] which are complicated non-
convex problems in general.

We provide simulation results to validate Theorems 1 and
2 by deriving the optimal solution of (12) using quantization
theoretical and iterative approaches. We also investigate the

effects of altitude and attenuation factors on the achievable
rates. For our numerical simulations, we have used b = 0.43,
c = 4.88, v = 50dB, r = 2, unless specified otherwise.
Also, in the figures, “Quantization Theory approach” refers to
the results of Theorem 2, while “Iterative approach” refers to
Theorem 1 where the optimal deployment is calculated via the
iterative algorithm in Section IIL.B.

—A— h=50m, Quantization Theory approach
—&— h=50m, Iterative approach

—3¢— h=50m, PSO

—3k— h=100m, Quantization Theory appraoch

70 ! h=100m, Iterative approach
h=100m, PSO

6L : —O— h=300m, Quantization Theory approach
—3— h=300m, Iterative approach
sl —+4— h=300m, PSO

A A

Optimal data rate(bps/Hz)

¢ i i
2 4 6 8 10 12 14 16 18 20
Number of UAVs(n)

Fig. 2. Comparison of UAV deployment algorithms for a one-dimensional
uniform density at different altitudes and 6 = 0.5.
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Fig. 3. Comparison of UAV deployment algorithms for a one-dimensional
uniform density at different altitudes and 6 = 0.9.

Fig. 2 shows the optimal rate derived with Theorem 1 in
comparison with results provided by PSO method for different
value of altitudes h and different number of UAVs. The
horizontal axis represents the number of UAVs, and the vertical
axis represents the data rate. One dimensional uniform density
f(g) = 1073, ¢ € [0,1000]m is considered for IoT density.
We can observe that for n > 3 and h = 300m which can be
considered as a relatively high altitude, the results of Theorem
1, which are applicable to high altitudes matches the exact
results derived by solving the original optimization problem
(5) using PSO. Furthermore, for a large number of UAVs and
any altitude, Theorem 2 provides almost the same results as



the exact solution of (5). The mentioned scenarios confirm the
accuracy of Theorem 2.

A key observation from Fig. 2 is that the optimal data rate
converges as the number of UAVs increases. This is more
obvious for the case with A = 300m. Accordingly, we can
conclude that adding more UAVs will not improve the system
performance noticeably after some point which depends on
the altitude. Specifically, as the altitude increases, the optimal
results are achievable with less number of UAVs.

In Fig. 3, we consider the setup of Fig. 2 with attenuation
factor (6 = 0.9). Similar observations and conclusions as the
previous figure can be made. This shows the flexibility of our
framework for different environment with variable attenuation.

7.5
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7 h=50m, PSO
h=50m, Quantization Theory approach
6.5 h=100m, Iterative approach
h=100m, PSO
6 h=100m, Quantization Theory appraoch
h=300m, Iterative approach
551 h=300m, PSO
h=300m, Q i Theory approach

5l

Optimal data rate(bps/Hz)

Number of UAVs(n)

Fig. 4. Comparison of UAV deployment algorithms for a two-dimensional
Gaussian density at different altitudes and § = 0.5.

In Fig. 4, we consider a two-dimensional Gaussian density
with zero mean and covariance matrix 100 - I, where I is the
identity matrix. Similar conclusions can be made as compared
with the one dimensional examples: At high altitudes both the
quantization theoretical and the iterative approaches provides
a close approximation to the exact performance as provided
the the PSO algorithm. At low altitudes, as the number of
UAVs grow to infinity, the approximations again converge to
the optimal performance. An interesting difference is that the
quantization theoretical approach provides a better approxi-
mation than the iterative approach when the number of UAVs
are small. A more precise theoretical analysis is needed to
understand this phenomenon.

Consider now a time-varying ToT device density f:(q) =
(1+2[t))(g—242|t))2 ¢ € [2—2[t|, 3—2|t|], with 5 UAVs,
where ¢ € [—1, 1] represents the time index. At each time, we
can optimize the UAV deployment to come up with the optimal
UAV trajectories for the time interval [—1,1]. According to
(20), the optimal trajectory of UAV ¢ can be approximated as

21 —1
x:,t = Az*nv ( m aft> .

In order to calculate the optimal UAV trajectories, we need to
first derive A}, from (19). Using (15), we first obtain

mv

Mg, /)= (L4t (g — 2+ 2/t

(25)

(26)

Hence, A* . can be calculated as

muv

A:nv(mv ft) =2 2|t| -+ xf\t\

27)

Accordingly, the optimal trajectory of UAV ¢ can be approxi-

mated by )
24 — 1\ T
xf’t ~2—2|t| + < ™ )

Fig. 5 illustrates the optimal trajectories provided by the
PSO method, quantization theory (28), and the iterative ap-
proach. The trajectories provided by the iterative approach
and the quantization theory approach of (28) are almost the
same. Both trajectories are slightly different than the trajectory
provided by the PSO algorithm. These results show that for
the asymptotic scenarios (high altitudes or large number of
UAVs) where Theorems 1 and 2 become valid, we may use
either the quantization theoretical or the iterative approach to
calculate the optimal UAV deployments without great loss in
performance. This way, we avoid running the computation-
ally expensive PSO algorithm (or a similar globally optimal
optimization algorithm) to solve the original problem in (5).
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Trajectories of 5 UAVs in a one-dimensional network

. Trajectories of 5 UAVs in a one-dimensional network.

V. CONCLUSION

We have studied the optimal deployment of UAVs serving
as data collectors from time constrained IoT devices. Our
objective has been to maximize the collected data in an
specified time by maximizing the communication data rate. We
provided the optimal solution of IoT device-UAV association
problem. Furthermore, we approximated the original non-
convex problem with multiple convex problems and provided
quantization theory based closed form solutions. We also
proposed an iterative approach to solve the approximated
problem. Finally, we compared the results of the proposed
approaches with the results derived by solving the original
non-convex problem. The simulation results shows the flexi-
bility of proposed approaches for different practical scenarios.
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APPENDIX A
PROOF OF THEOREM 1

We consider the following asymptotic expansions for dif-
ferent parts of the proof (the expansions are valid for t — 0):

t t
oz (0 +0) = logs(0) + oo o () @)
(14+t)" =1+7rt+o(t) (30)
tan~(1/t) = /2 —t + o(t) (31)
1 1 bet
1+cet c+1 (c—|—1)2+0(t) (32)

We now proceed with the proof of the theorem. Let d £
min; ||z; — ¢|| and t = %. In an optimal deployment, for large
number of UAVs we have d ~ 0. Therefore, for large number
of UAVs and/or high altitudes, ¢ ~ 0 is a valid assumption.
Having this assumption, the following is concluded from (30):

y " rd? d?
o . T oNT T 7. 1 — A7 9 + o T o
(d®>+h2)z k" 2h? h?

Using (33) and (29), we obtain

(33)

v _
log, (1 + (& + h2)r/2) -

vy rd? rd?
1 (1 7) - 34
%82 (1 5r) T Sogant(y ) O (h2(7 ) Y
Furthermore, according to (31), we have

1

P, d) =
LOS( ) 1+ceib(%7%+o(%)76)’ (35)
and, by (32), we obtain
1 bc'd d
P, d) = — — 36
ros(d) = 175 h(1+c’)2+0<h>’ (36)

where ¢ = ce (379,
Substituting (34) and (36) to (2), we have

5 1 ~o d
mzaxRi(q) = log (1 + ﬁ) 1+ Hog, (1 * hr) m

bd ~v0 + h" ~o+h" d
— 1 1 _— - 7
h(1+¢)? Og<7+hr)d+ Og(whr)()(h) Gn

Substituting the value of d and averaging out the IoT device
density, we obtain the theorem statement.
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