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Abstract

Buffer-and-flush is a technique for transforming standard external-
memory search trees into write-optimized search trees. In exchange
for faster amortized insertions, buffer-and-flush can sometimes
significantly increase the latency of operations by causing cascades
of flushes. In this paper, we show that flushing cascades are not a
fundamental consequence of the buffer-flushing technique, and can
be removed entirely using randomization techniques.

The underlying implementation of buffer flushing relies on a
buffer-eviction strategy at each node in the tree. The ability for the
user to select the buffer eviction strategy based on the workload has
been shown to be important for performance, both in theory and in
practice.

In order to support arbitrary buffer-eviction strategies, we
introduce the notion of a universal flush, which uses a universal
eviction policy that can simulate any other eviction policy. This
abstracts away the underlying eviction strategy, even allowing for
workload-specific strategies that change dynamically.

Our deamortization preserves the amortized throughput of the
underlying flushing strategy on all workloads. In particular, with
our deamortization and a node cache of size poly-logarithmic in the
number of insertions performed on the tree, the amortized insertion
cost matches the lower bound of Brodal and Fagerberg. For typical
parameters, the lower bound is less than 1 I/O per insertion. For

such parameters, our worst-case insertion cost is O(1) I/Os.

1 Introduction

Storage systems—including file systems [20, 29, 30, 39, 44,
47] as well as SQL and NoSQL databases [4, 15, 25, 28,
34,40, 45, 46]—have been transformed over the last decade
by new high-performance external-memory data structures.
These write-optimized dictionaries (WODs) include log-
structured merge trees (LSMs) [8, 38, 43], B®-trees [9, 14],
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write-optimized skip lists [10], COLAs [8], and xDicts [13].

The primary performance advantage of WODs over
older data structures, such as B-trees [6,16], is their insertion
throughput. Some WODs also support asymptotically opti-
mal point queries, thus matching a B-tree’s optimal point-
query performance while far exceeding a B-tree’s insert per-
formance. WODs also support deletions via delete messages,
which are special values indicating that the associated key
has been deleted.

Despite the profusion of WODs [8-10, 13, 14,23,26,27,
38, 43], most share the same overall organization. These
structures are partitioned into sorted levels that grow ex-
ponentially in size. New key-value pairs are inserted into
the top level. As new elements arrive, elements are flushed
(moved down) from one level to the next. Upserts (inserts,
deletes, and updates) are fast because each I/O simultane-
ously flushes many elements down one level, leading to a
small amortized I/O cost per upsert. Indeed, in the common
case when one 1/O flushes at least a superlogarithmic num-
ber of elements, the amortized I/O cost per upsert is o(1). A
key search now needs to look in multiple locations but this
need not affect its asymptotic I/O cost.

WODs vary primarily in two ways: their indexing
structures and, more significantly, their flushing policies.
The choice of indexing structure can have an effect on
the query performance, but maintaining them is typically
a lower-order term compared with the cost of upserts; see
Section 6 for details. Flushing policies, on the other hand,
can have a major impact on upsert performance.

Practitioners have explored a large number of flushing
policies in order to optimize for different performance cri-
teria. For example, the LSM community has developed a
dizzying array of so-called “compaction strategies,” which
govern how the data structure chooses which runs of el-
ements get merged together. Example compaction strate-
gies include leveled [21,23,27], leveled-N [21], tiered [21],
tiered+leveled [21], size-tiered [23, 26], FIFO [21], time-
windowed [42], eager [12], adaptive [12], lazy [17], and
fluid [17]. These policies make various trade-offs between
the I/O and CPU complexity of upserts and queries, the



amount of space used on disk, the level of concurrency sup-
ported by the key-value store, the amount of cache, and
many other concerns. Furthermore, all of these compaction
strategies can be combined with partitioned compaction [36],
which attempts to partially deamortize compaction (albeit
without guarantees) and to make the compactions adaptive to
the upsert workload. B®-trees can also use a variety of differ-
ent flushing policies, including flush-all, greedy [7], round-
robin, random-ball [7], and random.

Most WODs have no guarantees on insertion latency. A
major drawback of WODs is that they generally lack latency
guarantees. Considerable effort has been devoted to reducing
the latency of WODs in practice through partitioning [36]
and by performing flushing on background threads [21], but
less so in theory [8]. Indeed most of the authors of this paper
have substantial engineering experience in reducing WODs
latencies in the field. For example, Tokutek pushed to reduce
the latency of TokuDB [45] and to get rid of periods of lower
throughput [31]. But TokuDB does not have provable latency
guarantees.

Latency is a paramount concern but, as the examples
above illustrate, latency reduction must contend with other
design goals.! Consequently, it is not enough to deamortize
a particular flushing rule that is being used in a particular
version of a particular system.

This paper: flushing with strong latency guarantees. We
present a randomized construction that enables a wide class
of flushing rules to be deamortized. Our deamortization
preserves the instance-specific I/O cost of the underlying
buffer flushing strategy, i.e. if the original strategy incurs C'
1/Os on some workload W at a node x, then our deamortized
version will incur O(C') I/Os on the same workload. For
concreteness, we describe our results in terms of Be-trees,
and in Section 6 we explain how our results apply to other
WODs.

1.1 Flushing in B®-trees We review flushing in B®-trees
and why they provide almost no guarantee on insertion
latency.

Be-trees. The B°-tree [9, 14] is like a B-tree in that it has
nodes of size B, where B is the I/O (i.e., block-transfer) size.
Leaves all have the same depth and key-value pairs are stored
in the leaves. Balance is maintained via splits and merges,
similar to a B-tree. Like a B-tree, B®-trees support inserts,
deletes, point queries, and successor/predecessor queries.
Be-trees have a fanout of ©(B¢), where constant €
(0 < € < 1) is a tunable parameter. Thus, a tree with [NV

TFor example, the deamortized COLA [8] offers good (although subop-
timal) worst-case latency, but the flushing policy sacrifices throughput for
the sake of latency. Specifically, the performance of a sequential-insertion
workload gets throttled back to that of a random-insertion workload. This
is inconsistent with a system that optimizes for common-case workloads.

key-value pairs will consist of n = ©(N/B) nodes and have
height O(1 logz N), which is O(logz N), since £ = O(1).
Only O(B¢) space in an internal node is needed for pivots,
so the rest of the space is used for a buffer. Buffers batch up
insertion and deletion messages as they work their way down
the tree. Searches are as in a B-tree, except that we need
to check buffers along the way for any pending insertion or
deletion messages. Since each node, including its buffer,
is stored in a single block, searches cost O(logz N) I/Os.
Successor and predecessor queries must search in all buffers
along the current root-to-leaf path to find the next/previous
key. Performing a sequence of k successor or predecessor
queries costs O(k/B + logz N) I/Os.

New messages are queued in the buffer at the root of the
tree. In a standard (amortized) B*-tree, whenever a buffer
overflows (contains B or more messages), we perform a
buffer flush, i.e., we move some number of messages from
the node’s buffer to the buffers of the node’s children. When
a delete message reaches a leaf, all older key-value pairs for
that key are deleted from the leaf, and the delete message
is discarded. When an insertion message reaches a leaf, it
replaces any existing key-value pair for that key.

The main design question is: how many messages
should be moved in a flush, and to which children? The
simplest policy is to flush everything. With this policy, 2(B)
messages get moved one level down the tree in a single flush.
At most B¢ children need to be accessed, and each access
costs O(1) I/Os. Thus, the amortized cost to move one
message down one level is O(1/B'7¢). Since the height of
the tree is O(log N), the amortized message insertion cost
is O(222X) 1/0s, which is the best possible on a random

B 1—¢
insertion workload [14].

Many flushing strategies. There are several flushing strate-
gies that can improve upon the performance of the simple
strategy given above without sacrificing its good amortized
performance guarantees. For non-random (e.g., skewed)
insertion workloads, partial flushes can give substantial
speedups.

The speedup of a B®-tree is directly proportional to the
average number of messages moved per I/O in a flush. So the
goal is to push as many messages down per I/O as possible.

For example, the greedy policy flushes messages only
to the single child to which the most buffered messages are
directed, and obtains the same bounds as above. Greedy is
never worse than the flush-everything policy and, for a purely
random workload, will improve throughput by a factor of 2
on average [7]. However, there are some workloads where
greedy will do no better than the flush-everything policy, but
a “random ball” [7] policy achieves an amortized insertion
cost of O(%) I/Os, which is asymptotically faster.

High latency and flushing cascades. In the context of B*-
trees, we can see why WODs generally have large latencies
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for upsert workloads—upserts can trigger flushing cascades.
A flushing cascade occurs when a flush at one node triggers
flushes in multiple children nodes; these flushes may, in turn,
trigger flushes in the grandchildren, etc.

Structural changes to the B°-tree are another major
source of flushing cascades. Regardless of the eviction
strategy, when two nodes are merged into a new node, the
resulting buffer can overflow, triggering new flushes, which
again cause cascades (and more node merges). The result is
that a single insert or delete could trigger modifications to
Q(n'~°(M) nodes of the tree.

One could attempt to mitigate cascades by always flush-
ing exactly B'~¢ elements from parent to child, but this dis-
cards the potential performance gains of sophisticated flush-
ing policies, such as greedy or random ball. Furthermore,
as explained above, it doesn’t even work when the workload
contains deletions and the structure of the tree changes.

Informally, there appears to be a tension between
throughput and latency. Whenever a flushing policy succeeds
in moving a large number of elements to a child, that child
becomes more likely to need to flush to multiple grandchil-
dren, causing a cascade.

Results. We show that there is no inherent trade-off between
flushing policy throughput and latency. We give a random-
ized algorithm that eliminates flushing cascades with high
probability, for any buffer-eviction policy.

To understand why this is inherently an algorithmic
issue, note that there is a small amount of slack in when
we are forced to perform a buffer flush. In particular, we
are free to defer some flushes, letting some nodes grow
up to a constant factor larger than B and flushing others
a little early, without asymptotically harming insertion or
query performance. We could even allow for very small
(only constant-sized) cascades.

We model the problem of deamortizing an arbitrary
flushing policy as a game between a deamortizer and a
buffer-eviction policy. In each round, the deamortizer picks
which node to flush. Then the buffer-eviction policy chooses
which and how many messages to flush from that node.
By fully deamortizing an adversarial flushing strategy, we
deamortize them all. This is important because a flushing
strategy may be benevolent in terms of write performance
but adversarial in terms of latency.

We obtain the following performance bounds. Let IVy
be the size of the data structure, in terms of messages, af-
ter the ¢-th operation, and Ny,,x = max; N;. Then the ¢-
th insert/delete costs O([(logg N;)/B*~¢]) I/Os with high
probability in Ny, which is O(1) for typical values of B
and N. This improvement to worst-case insertion perfor-
mance does not come at a cost in amortized insertion perfor-
mance: The data structure deterministically (i.e. with prob-
ability 1) achieves the same query and amortized insertion

performance as a B*-tree.

Our results support the use of an arbitrary message-
eviction strategy in each node. In order to establish this, we
introduce the notion of a universal flush, a buffer-eviction
strategy that we prove can simulate any other eviction strat-
egy. Universal flushes provide a layer of abstraction between
the data structure and the underlying eviction strategy.

However, with essentially any flushing strategy (greedy,
flush all, universal), the constant amount of slack in each
node is nowhere close to enough for deterministic bounds.
For that matter, neither is randomization alone. In the rest
of this paper, we show that by randomizing when flushes
happen, caching a small number of nodes, randomizing
the rebalances slightly, and performing an asymptotically
negligible number of “cleanup” 1/Os, we can obtain our
optimality bounds.

Paper outline. In Section 2, we present an overview of
the main technical ideas in the paper. In Section 3.1, we
define universal flushes, and use them to simulate arbitrary
buffer-eviction policies. In Sections 3 and 4, we present
technical preliminaries and present a simplified version of
the data structure that supports only static trees, in which the
only write operations are updates. Finally, in Section 5, we
present the full version of the data structure, which supports
arbitrary insert/delete/update operations.

2 Technical Overview

We now give an overview of some of the main technical ideas
in the paper. Let NV denote the size of the tree. (When being
formal in later sections, we instead use Ny, the maximum
size of the tree over all time.) Assume throughout that
the block-size B is at least clog N for a constant ¢ of our
choice, that the internal memory M is of size at least log® N
blocks, and that the internal memory satisfies the tall-cache
assumption, meaning that M is at least cB2.

As a convention, we say a node « is in the first level of a
Bé-tree T'if « is a leaf, and otherwise we say that z is at level
¢ + 1, where ¢ is the level of 2’s children. This convention
of indexing levels from the bottom of the tree (rather than
the top) is particularly natural for B®-trees, since structurally
new levels form when the node at the fop of the tree splits.

Simulating eviction strategies with universal flushing. In
Section 3.1, we present the definition of a universal flush,
and show how to use universal flushes in order to simulate
arbitrary buffer-eviction strategies.

A universal flush on a node = can be performed when-
ever the node’s buffer contains 35 or more messages. The
universal flush is required to select exactly B messages to
evict from that node. We show that, for any buffer eviction
strategy .4, one can construct an implementation 3 of uni-
versal flushing that simulates A efficiently. In particular, the
number of I/Os expended by B to manage a stream of mes-
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sages S to a buffer of size 3B, is, in the worst case, at most
twice the number of I/Os that would expended by A to man-
age the same stream S’ of messages to a buffer of size B.

Since each universal flush at the root of the tree evicts
B elements, we can always spread the I/Os for each univer-
sal flush across the next B insert/update/delete operations.
The I/Os associated with a single universal flush at the root
(and the subsequent flushes it induces lower in the tree) are
referred to as a flushing round. In general, our goal is to
implement flushing rounds using at most O(logz N) uni-
versal flushes. Since each universal flush requires at most
O(B?) I/Os, and since each universal flush is spread across
B insert/update/delete operations, this results in a worst-
case-operation-running-time of O([B°® - logg N/B|) =
O([logg N/B'~¢]), as desired.

Eliminating flushing cascades in a static tree. We begin
by focusing on the simpler problem of eliminating flushing
cascades from a tree whose node-structure is static. One
can think of such a tree as supporting updates only, and no
insertions or deletions.

The first algorithm we consider is called the aggressive
randomized flushing algorithm, which works as follows.
Whenever a new node x is created, a random threshold .,
is selected uniformly at random from {0, 1,..., B — 1}, and
r, dummy messages are placed in z’s buffer. The algorithm
then follows the simple rule of performing a randomized
flush on each node =z whenever the size of z’s buffer is 38
or larger.

The purpose of the r, dummy messages is to randomize
the number of messages modulo B in each node z’s buffer,
also known as the B-signature of node x. Because universal
flushes always remove exactly B messages from x’s buffer,
they do not affect the B-signature. In particular, at any given
point in time, the B-signature is given by r, + u, mod B,
where u, is number of messages to have ever been flushed
into node x. Since r, and u, are independent, and since 7
is uniformly random in {0, 1, ..., B — 1}, it follows that, at
any given point in time, the B-signature at each node x is
uniformly random in {0,1,..., B — 1}.

The randomness of the B-signatures of the nodes x at
each level ¢ ensures that, whenever j < B messages are
flushed into node x, there is probability exactly % that the
size of x’s buffer crosses a multiple of B. More generally,
suppose that during a sequence of % flushing rounds, a total
of j, messages are flushed into level ¢ from level ¢ + 1.
We show that the total number of flushes performed at
level £ will then be a sum of independent indicator random
variables with total mean j,/B. If j, is sufficiently large in
polylog(N) - B, then with high probability in IV, the number
of messages jy—1 flushed from level £ to level £ —1 during the
k flushing rounds will be at most (1+ @)jg. By applying
this fact to every level ¢, we see that during any sequence of
k flushing rounds with k& sufficiently large in polylog(N), the

total number of flushes performed at £ levels below the root
is at most (1 + @)Zkz < O(k) forall £ € [O(log N)].
The aggressive randomized flushing algorithm achieves
low latency for batches of Bpolylog(N') consecutive oper-
ations, but fails to give a worst-case bound for any individ-
ual operation. To achieve a worst-case bound, we take mo-
tivation from a recent algorithm for what is known as the
single-processor cup game [5,11,18,19,35]. At the begin-
ning of the single-processor cup game, n cups are initially
empty. At each step of the cup game, a filler distributes 1
new unit of water among the /N cups, and then an empftier
selects one cup out of which to remove 1 + ¢ units of wa-
ter for some resource-augmentation parameter €. The emp-
tier’s goal is to minimize the backlog of the system, which
is defined to be the amount of water in the fullest cup. It
has been known for decades that the greedy-emptying algo-
rithm (of emptying from the fullest cup) achieves backlog
O(log N). In recent work [11], we showed that if the filler
is an oblivious adversary (rather than an adaptive one), then
a randomized emptying strategy can do significantly better.

Ife > m, then the randomized algorithm achieves

backlog O(loglog N) with high probability in N. The algo-
rithm works by first inserting a random amount of water r,,
between 0 and 1 + ¢ into each cup at the beginning of the
game, and then, after each step, removing 1 + ¢ units of wa-
ter from the fullest cup; if, however, the fullest cup contains
less than 1 + ¢ units of water, then no water is removed from
the cup. (This is so that the amount of water modulo 1+ ¢ in
each cup x remains uniformly random as a function of r,.)

To a first approximation, one can treat each level ¢ of a
B¢ tree as its own cup game in which each buffer represents
a cup. This suggests the following algorithm, which we
call the lazy randomized flushing algorithm: As before,
whenever a node is created, we insert a random number
ry € {0,1,..., B — 1} of dummy messages into that node’s
buffer. Then, during each flushing round, we perform at most
one flush at each level ¢, prioritizing the fullest buffer at the
level (and flushing from the buffer only if it contains 3B or
more messages).

Although the lazy randomized flushing algorithm at-
tempts to treat each level £ in the tree as its own cup game,
the cup game is missing a key ingredient: resource aug-
mentation. In order to create the (1 + ¢) resource aug-
mentation needed, we modify the B®-tree so that each level
{ uses a slightly larger block size By than does its par-
ent level ¢ + 1. In particular, we set By = O(B), and
Byy1 = By — [B/£?]. This simultaneously guarantees that
By, = ©(B) for all { < B, while also guaranteeing that
By > Byy1-(141/1og? N) for all £. The increase in block-
size by a factor of 1+ 1/polylog(N) simulates resource aug-
mentation between the corresponding cup games.

Concurrent work to ours presents a randomized algo-
rithm for the single-processor cup game that achieves bounds
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on backlog without the use of resource augmentation [33].
As we shall see, however, the resource augmentation used
by the lazy flushing algorithm also grants the algorithm ad-
ditional behavioral properties that will be useful (and, in fact,
necessary) in designing our final flushing algorithm.

Whereas the aggressive randomized flushing algorithm
deterministically bounds the size of each buffer to O(B) (but
may sometimes perform many universal flushes), the lazy
algorithm deterministically bounds the number of universal
flushes (but may sometimes allow buffers to grow large).
Even allowing for buffers to have size as large as B log log V
can have disastrous performance consequences in the corre-
sponding B®-tree level, however. In particular, lookups may
in the worst-case require loglog NV - logz N 1/Os, which if
B = polylogn would result in worst-case read performance
of Q(log N). Thus even a buffer size of ©(Bloglog N) is
unacceptable.

To handle the large buffers caused by the lazy algorithm,
we exploit a second property of the lazy randomized flushing
algorithm. Although the algorithm allows for buffers to be-
come overfilled (containing a maximum of O(B loglog N)
messages), the total number of overfilled buffers at any given
moment is at most polylog(/N) with high probability in N.
In fact, a stronger property is also true with high probabil-
ity: the sum of the sizes of the overfilled buffers is at most
polylog(N) - B. This means that we can maintain an in-
memory cache of size polylog(N) - B storing all the con-
tents of any overfilled buffers. By referencing the in-memory
cache, operations that access an overfilled buffer need not
pay more than O(1) I/Os in order to perform the access.

Building upon the ideas outlined above, Section 4 de-
signs a flushing strategy for the static B®-tree that completely
eliminates flushing cascades. The key challenge becomes to
adapt this strategy to dynamic B¢ trees. This requires us to
not only handle flushing cascades due to structural changes,
but also to modify the lazy randomized flushing strategy in
order to handle difficulties from nodes being merged and
split.

We remark that the use of cup-emptying-game tech-
niques in this paper differs significantly from past applica-
tions of cup-emptying games to deamortization [2, 3,18, 19,
22,24,32,37]. Whereas past applications have relied only on
backlog guarantees, our application instead relies primarily
on what one might normally view as a secondary property
of the random-thresholds-based emptying algorithm (specif-
ically, the fact that the algorithm bounds the sum of the sizes
of cups that contain more than 1 unit of water). Apply-
ing this property to other problems in external-memory data
structures and write optimization is therefore an interesting
possible direction for future work.

Eliminating cyclic dependencies in dynamic trees. In
order for each level of the B®-tree to be treated as a separate
randomized “cup game”, it is necessary that the input flushes

for a level / (i.e., the flushes performed at level £ + 1) are
completely independent of the random bits used to determine
the flushes at level ¢. That is, the flushes performed at level
¢ 4+ 1 must be oblivious to the flushes performed at lower
levels.

Node merges and splits violate this obliviousness prop-
erty by introducing cyclic dependencies between levels. The
random bits used at level ¢ partially determine which mes-
sages make it into lower levels by a given point in time, and
thus which messages make it to the leaves by a given point in
time. The arrival of messages to the leaves of the B-tree de-
termines when (and which) nodes at level 2 of the tree merge
and split. The merging and splitting of nodes at level 2 in the
tree then, in turn, influences when nodes at level 3 of the tree
merge and split, etc. Thus the random bits at level ¢ indi-
rectly influence the set of nodes at level £ + 1, which in turn
affects the flushing decisions made in level ¢ + 1.

Eliminating the cyclic dependencies requires a node-
rebalancing mechanism in which the nodes at a given level
¢ of the tree are a function only of randomness and flushing
decisions made at levels ¢ or higher in the tree. Even when
splitting a node z into two new nodes x; and x2, the mecha-
nism must not examine node z’s children in determining the
pivot at which the split should occur, since doing so would
introduce a cyclic dependency between levels ¢ and ¢ — 1.

We introduce a node-rebalancing mechanism in which
each node z at level ¢ maintains a summary-sketch Sy of
the contents of the tree 7, rooted at z. The summary
sketch simultaneously maintains a size estimate for 7;, and
a median estimate, taking the form of a key v € T, that
is guaranteed (with high probability) to have rank between
|T|/4 and 3|T,|/4 in tree T,,. Node merges and splits
are performed based on the size estimate, ensuring that
each node x at level ¢ always has tree-size |1 | within a
constant factor of B1—¢. B¢ ; when a node splits, the median
estimate u is used as the pivot at which the split occurs.
Although node-rebalancing decisions for node = are made
independently of x’s child set, the weight-based approach
to node-rebalancing guarantees that every node has exactly
©(B¢) children.

In addition to performing accurate size and median
estimation, the summary sketches Sy() at each level £ must
each fit within a single disk block, and be easily composable
(meaning, for example, that S;(x U y) can be constructed
from Sy(z) and Se(y)).

A natural approach to constructing each summary
sketch S;(x) would be to randomly sample the elements of
T, using a hash function, and then to perform size estimation
based on the number of sampled elements (and median esti-
mation using the median of the sampled elements). Such an
approach can be easily made successful assuming access to
a family of hash functions A with a high degree of indepen-
dence (i.e., N-wise independence). The description bits for
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such a family of hash functions would be far too large to fit in
memory, however. To solve this, we instead use a collection
of B low-independence hash functions, hq, ..., hpg, each of
which performs size and median estimation based on a large
constant number of sample-elements from the tree 7;.. Each
hash function h; can be shown to perform size and median
estimation correctly with probability at least 2/3; by a Cher-
noff bound, it follows that the median of the size estimates
acts as a correct size estimate with high probability, and that
the median of the median estimates also works as a correct
median estimate with high probability.

When eliminating flushing cascades due to node-
merges, one additional property of the node-rebalancing
mechanism will be required:

* The Breathing-Space Property: Say a node z is
touched whenever an universal flush occurs either in
x or in one of z’s sibling nodes in level /. Whenever
a new node z is created at level ¢, either via a node
merge or a node split, the new node x is touched at
least Q(B=(“~1)) times before being again involved in a
merge or split.

The Breathing-Space Property can be enforced by the
following modification to the summary-sketch-based node-
rebalancing mechanism described above: Whenever a node
x is created (due to a node-split or node-merge), the node
x is frozen until the node x has been touched at least
Be-1) /c times, for some large constant ¢. The node z is
only permitted to take part in merges and splits after the node
stops being frozen (even if the summary sketch S;(x) wishes
to performs splits or merges earlier). A key observation is
that, whenever the summary sketch Sy(z) for a node x first
requires a split or merge, the time that node x must wait for
x to become unfrozen (as well as for one of z’s siblings to
become unfrozen in the event of a merge) is small enough
that the size of node z’s tree |T,| will change by at most a
constant fraction during the wait. Thus the Breathing-Space
Property can be enforced without compromising the weight-
balanced guarantees of the B®-tree.

Eliminating flushing cascades from node merges. The
final problem is to eliminate flushing cascades caused by
buffer overflows due to node merges.

One approach would be to eliminate node merges
through the use of tombstone records. When a record r is
deleted, it is replaced with a tombstone indicating the dele-
tion. Non-tombstone records are gradually copied to a sec-
ond copy of the tree, which replaces the original tree every
O(n) operations.

The global-rebalancing approach is dissatisfying in that
it requires the maintenance of two tree structures at a time.
In Section 5.2 we show that, by exploiting the techniques
already presented above, one can directly support deletions
in the tree 7" without using tombstones.

We begin by describing the approach taken for nodes at
levels £ > % + 1.

Whenever two nodes x; and zo are merged into a new
node z at some level ¢ > é + 1, we consider the new node
x to initially have an empty buffer, and for the old nodes x
and x4 to be retired (but to still have potentially non-empty
buffers). The new node x is deemed the caretaker for the
two retired nodes.

Whenever node x or one of its siblings y are flushed out
of, an additional trickle flush is performed in each of x; and
Zo. A trickle flush removes a single message from a node’s
buffer and passes it to the next level of the B*-tree.

The Breathing-Space Property ensures that trickle
flushes will entirely eliminate both x;’s and z2’s buffers be-
fore node z is next involved in either a split or merge. (Note
that, in addition to trickle flushes, “regular” flushes may also
be performed in x1’s and x2’s buffers whenever the “cup
game” at level £ sees fit; this is necessary so that the buffers
from retired nodes do not end up clogging the in-memory
cache.)

The fact that trickle flushes do not cause additional
flushing cascades is a consequence of each level of the tree
being already modeled as a “cup game”. In particular, the
cup game ensures that even if the content that is flushed into
a level originates from several nodes at the preceding level
(instead of just a single node), this doesn’t increase the risk
of flushing cascades.

The strategy outlined above handles flushing cascades
at levels ¢ > é + 1. At lower levels, a similar strategy is
used, except with larger trickle flushes consisting of multiple
messages (rather than just 1). The large trickle flushes are
needed to compensate for the fact that, when ¢ is small, fewer
trickle flushes occur between consecutive node-rebalances.
These larger trickle flushes can cause a level ¢ to flush
significantly more than B, messages to level { — 1; we
show that this issue can be handled by slightly increasing
the resource augmentation between the lower levels of the
tree.

3 Preliminaries

The Disk Access Model. Due to the long latencies of
accessing data stored on disk drives, algorithms that interact
with data stored in external memory are often evaluated in
the Disk-Access Model (DAM) [1]. The DAM model allows
for an algorithm to interact with external memory by reading
and writing in chunks of B machine words (the quantity B
is known as the block size), and defines the running time
of an algorithm to be the number of such reads and writes
performed, also known as I/Os. Algorithms are typically also
allowed to access a small internal memory of some size M
for free.

External-memory search trees. In order to exploit the fact
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that the block size B is typically quite large, the data on
disk is often laid out as a B-tree. A B-tree is balanced tree
(i.e., all leaves have the same depth) in which every node
(except possibly for the root) stores a list of between B and
3B keys. For internal nodes of the tree, these keys represent
the children of the node, and for leaf nodes, these keys are
simply O(B) consecutive-valued keys in the data structure.
Since the ©(B) keys in each node fit in O(1) blocks, lookups
in B-trees can be performed in time proportional to the tree’s
depth, ©(logz N). When B is large, this offers significant
speedup over traditional binary trees.

B-trees can be made to also support insertions in time
O(logg N) by following the rule that whenever the number
of keys stored in a node x increases past 353, the node splits
into two nodes, each with 1.58 keys.? Note that this split
increases the number of children for 2’s parent by one, and
thus may also recursively trigger a split in x’s parent. The
only way that a B-tree can increase its depth is when the
root node performs a split. This split creates a new root node
one level higher.

Similarly, deletions can be supported in time
O(logg N) by allowing nodes x to merge with one of
their neighbors whenever the number of keys stored in x
decreases below B. The exception to this rule is the root
node r, which never performs a merge and is instead simply
removed once its number of children drops to one.

Rather than storing only keys, B-trees are typically used
to store key/value pairs, allowing for one to store a value
associated with each key.

As a convention, we say a node x is in the first level of
atree T if x is a leaf, and otherwise we say that x is at level
{ + 1, where /¢ is the level of z’s children. This convention
of indexing levels from the bottom of the tree (rather than
the top) is particularly natural for B®-trees, since structurally
new levels form when the node at the fop of the tree splits.

Making writes faster with buffer-flushing techniques.
Buffer flushing is a technique that can be used to transform a
standard B-tree into a write-optimized data structure. Writes
are made faster by buffering together large collections of
insert/update/delete operations high in the tree, and then
passing down collections of writes together. The first step in
doing this is to reduce the number of children at each internal
node in the tree to O(B*) for some constant 0 < & < 1.
Note that this only affects the depth of the tree by a factor of
é = ©(1), and thus does not change the asymptotic running
time of queries.

Each internal node x stores not only the O(B*) chil-
dren for x, but also a buffer of size O(B) consisting of
messages that are meant to be sent to x’s children. Inser-

ZHere we describe the simplest node-merging and node-splitting strate-
gies. Often more complex splitting strategies are actually used in order to
achieve better constants.

tion/deletion/update operations are performed lazily by plac-
ing a message in the buffer of the root node indicating the
operation that must occur. Messages percolate down the tree
until they reach the leaf node containing the record to which
they apply (or the leaf that would contain the record if it were
present in the tree), at which point the corresponding inser-
tion/deletion/update is performed. As described in the intro-
duction, buffer flushing can be performed with an arbitrary
buffer-eviction scheme; this is formalized in Section 3.1.

Note that, in order for insert/update/delete operations
to be performed lazily, update/insertion/deletion operations
cannot be permitted to perform a lookup for the key % that
they apply to (e.g., the operation cannot return the previous
status of key k). Thus update and insertion operations
become essentially the same operation: an upsert on key &
is performed with value v operates by inserting the key &
with value v if k is not currently present, or updating key k’s
value to be v if k is currently present.

Since messages higher in the tree may modify a record at
a leaf, lookups must examine not only a leaf node but also the
root-to-leaf path that may contain any messages relevant to
the lookup. In general, we use the term lookup to refer either
to membership queries or to predecessor/successor queries.
Both can be performed in O(logz N) I/Os.

Tree conventions. Throughout the paper, when we refer
to the size of a tree, we actually mean the logical number
of records in a tree. If, for example, a record in the leaf of
the tree has a deletion message sitting in a buffer higher in
the tree, then that record is not counted in the size. As long
as the height of the tree is at least some large constant, the
contents of the leaves of the tree will always dominate the
mass of the tree (i.e., there are many more records in leaves
than messages in buffers), and thus the tree will always have
height at most O(logz N), where N is the size of the tree.

More generally, when discussing a node x, we say the
size |x| of x, or equivalently the size of the subtree rooted at
x, is the logical number of records in the subtree rooted at x,
including the messages in x’s buffer.

When two write messages for the same key are present
in the same buffer, they can potentially be combined into
a single message. For convenience, we assume that these
combinations are not performed until the messages arrive at
aleaf node. When we refer to the size |b| of a node x’s buffer
b, we count the total space required by that buffer, including
messages with duplicate keys.

We define the siblings of a node x at level £ in a tree T’
to be the (up to two) nodes at level ¢ that are adjacent to x
in the value ranges that they store. Note that the siblings of
a node z need not have the same parent as = (and in Section
5 the notion of parent will stop being well defined, anyway,
since the value range considered by a node will potentially
cross between two parents).

As a convention, we use the term message to refer to a
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buffered insert/update/delete operation and record to refer to
a key-value pair that is either stored in a leaf, or is implicitly
in the tree due to a message that has not yet made it do the
leaves. (That is, the set of records in a tree is the same as the
tree’s logical size.)

Finally, for convenience, we overload the logg N op-
erator to return max(logz N, 1) (so that we do not need to
worry about log; N being sub-constant).

Allowing buffer-sizes to differ by constant factors.
Throughout the paper, we fill find it useful to allow for
the values of B used to size buffers at each level of the
Bé-tree to vary slightly. Given a buffer-size sequence,
Bi,B3,Bs,... € N such that B; € ©(B) for all 7, a
(B1, By, Bs, .. .)-sized Bé-tree in one in which the buffer-
sizes in nodes at level ¢ are determined by B, (rather than
B). In particular, this means that an oblivious flush on nodes
at level ¢ is performed on a buffer of size at least 3By, and
flushes exactly By, elements.

We will always assume that B is at least a sufficiently
large constant multiple of logz N. It follows that, when
we define a buffers-size sequence By, Bs, . . ., we need only
define the first B terms, By, B, ..., Bp. Given a sequence
P1,D2,---,pB € [0,1] satisfying >, p; < O(1), we define
the (p1, ..., pB)-induced buffer-size sequence by Bg =
B,and By = By+1 + [peB] for £ € {B—1,...,1}. Note
that this guarantees By € O(B) and By = (1+0(p¢))-B41
forall ¢ € [B —1].

Placing a small number of small buffers in memory. A
key ingredient in our algorithms is the use of a small in-
memory cache to store over-sized buffers. The in-memory
cache is permitted to consist of polylogarithmically many
blocks (i.e., we assume that M > polylog(N) - B). We call
the buffer of a node x a cached buffer (and x a cached node)
if the buffer is stored in our in-memory cache. Whereas
buffers not stored in memory must be flushed before their
size exceeds O(B), cached buffers are permitted to grow
past O(B) without being flushed. The combined size of all
cached buffers, however, must not exceed polylog(N) - B.

3.1 Universal Flushes In this section, we present the def-
inition of a universal flush, and show how to use universal
flushes in order to simulate arbitrary buffer-eviction strate-
gies. This allows for us to use universal flushes as the prim-
itive through which our data structure interacts with nodes,
while abstracting away the underlying buffer-eviction strat-
egy.

A universal flush on a node = can be performed when-
ever the node’s buffer contains 35 or more records. The
universal flush is then required to select exactly B records to
evict from that node.

In this section we prove that, given an arbitrary buffer-
eviction strategy .4, one can implement universal flushing to

simulate the behavior of A on a buffer of size B.

Formally, a buffer-eviction strategy A is any algorithm
for mapping a B-element multiset M consisting of at most
O(B¢) distinct elements to a subset S C M. The set M
represents the set of records contained in a node’s buffer
(with each record represented by the child to which it is
destined), and the set S represents a selection of which
records to evict from the node.

Given a buffer-eviction strategy A, and sequence
of numbers K = (k1,ko,..., k) with each k; €
{1,2,..., B}, the I/O-complexity of strategy A on se-
quence K can be computed as follows. Fill a B-element
buffer to contain k1, ..., kg, and then use A to select a sub-
set S; of the elements in the buffer to evict; record the num-
ber d; of distinct elements in S;. Then fill the buffer back
to size B using elements kg1, kB2, ..., and again use A
to select a subset Sy of the elements in the buffer to evict;
record the number ds of distinct elements in So. Repeat this
until every element k; € K has at some point been placed
into the buffer, and the buffer size is less than B. The sum
>, d;i is the I/O complexity of A on sequence K, and rep-
resents the number of distinct times that eviction strategy A
touches a child while handling the input stream K.

The I/0-complexity of universal flushing on sequence
K is computed in the same way, except that the buffer is
refilled to size 3B between successive flushes, instead of
only to size B.

The next proposition shows how to use universal buffer
flushing in order to simulate any buffer-eviction strategy .A.

PROPOSITION 3.1. Given any buffer-eviction strategy A,
there is an implementation of universal flushing U such that
on any sequence of numbers K = (ki,ko,..., ky) with
each k; € {1,2,..., B¢}, the I/O-complexity of U on K is
at most twice the I/O complexity of A on K.

Proof. Given a buffer-eviction strategy .4, we can implement
universal flushing ¢/ as follows: Partition our buffer v into a
future buffer v, a current buffer wuo, and a past buffer us.
Whenever new elements are placed into the buffer u, they
are inserted directly into the future buffer u;. In order to
perform a universal flush on the buffer, we first move records
from wu; to us until us is of size B; next we use the buffer-
eviction strategy A to select a subset of records in ug to evict
and we move those records to us; then, we repeat these two
steps until w3 has size at least B. Finally, we evict exactly B
records from ug; any remaining records in us will be evicted
during the next universal flush.?

3Several of our algorithms will allow for up to B dummy records to

be present in buffer u1. We may feel free to treat these dummy records as
always being present in the future buffer v and never being moved to buffer
u2. Since universal flushes are only performed when v = w1 U ug U u3
is size at least 3B, and since u3 never exceeds size B at the beginning of
a universal flush, one can always fill ug to size B using entries from w1
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Now consider the I/O complexity of A on sequence K.
Let \S; denote the set of elements evicted in the i-th eviction
by A on the sequence K, and let d; denote the number of
distinct elements in S;. In particular, the I/O complexity of
Aon K is given by >, d;.

When the universal flushing strategy U is performed
on sequence K, the i-th eviction from the current-buffer us
evicts exactly the set .S; from the us to us. Whenever a set
S; is evicted from wus it is guaranteed to be evicted from ug
by the end of the next universal flush. It follows that each set
S; incurs at most 2d; flushes for /. Thus the I/O complexity
of U on K is at most 2 Zi d;, as desired. O

The preceding proof shows how to implement univer-
sal flushes directly in terms of a buffer-eviction strategy A.
More generally, any implementation of universal flushing
that selects a set of exactly B records to evict will be com-
patible with our final data structure. It would be allowable,
for example, for the eviction strategy to make eviction de-
cisions with full knowledge of u; and us. Moreover, even
if an eviction were to try to adversarially minimize write-
optimization, the fact that universal flushes send B records to
O(B¢?) children ensures the bare-minimum amount of write-
optimization required to achieve B®-tree-like guarantees.

Note that, from the perspective of flushing cascades,
universal flushes essentially represent the worst possible
flushing strategy. If the B elements flushed by the universal
flush go to ©(B¢) different children, then each of those
children’s buffers could easily overflow; those buffers could
then also evict to ©(B¢) different children each, and so
on. Nonetheless, we will present a suite of randomization
techniques that allow for flushing cascades to be avoided in
this setting.

4 The Static Cup-Based B*-Tree

We begin by designing flushing strategies for static B*-trees,
in which the only operations to the tree are update-operations
(for records that are already present). In particular, we
are interested in designing what we call a global flushing
algorithm:

DEFINITION 1. A global flushing algorithm with buffer-
size sequence (B, By, Bs, . ..) is any algorithm for decid-
ing which nodes to perform oblivious flushes on during each
operation of a B®-tree. The oblivious flushes are then per-
formed using buffer-size sequence (By, B2, Bs,...). Addi-
tionally, a global flushing algorithm may mark certain nodes
as cached.

A global flushing algorithm must provide two guaran-
tees: (1) If the tree size is N, then the sum of the sizes of
the buffers of all cached nodes is at most polylog(N) - B,

without using any dummy records.

the size of internal memory; and (2) Every uncached node
deterministically has buffer-size at most O(B).

The purpose of the section is to prove the following
theorem:

THEOREM 4.1. Let 0 < € < 1 be a constant. Suppose that
M > (log N)°B for a sufficiently large constant ¢, and that
B is at least a sufficiently large constant multiple of logz N.

Let T be a B*-tree on N records, and suppose that T'’s
buffers are initially empty. Consider a workload consisting
only of read operations and update operations (to records
already in the tree).

Then there exists a global flushing algorithm for T that
achieves worst-case update-operation time

O ([logg N/B'~<7).

Analyzing Flushing Rounds Instead of Operations.

DEFINITION 2. A flushing round occurs whenever a flush
is performed in the root node of a tree. The flushing round
consists of any further flushes that are performed as a
consequence.

To prove Theorem 4.1, we design a global flushing
algorithm with two properties. First, successive flushing
rounds are always separated by Q(B) operations. And
second, each flushing round requires at most O(logg N)
universal flushes with high probability in V.

Since each universal flush requires at most O(B¢) I/Os
(in order to touch each of the node’s children), the I/O-
complexity of a flushing round is O(B®logg N). By
spreading the work for each flushing round across (B)
operations, we can then obtain worst-case update-time
O ([logg N/B'~¢]), as desired by Theorem 4.1.

Randomizing node overflows with dummy messages. A
key step in our algorithm is to initially place a random
number 7, € {0,1,2,..., By — 1} of dummy messages into
the buffer of each node x in each level £. The quantity r,, is
known as the random initial offset at node . The dummy
messages are for bookkeeping purposes only, and are never
flushed from the buffer in which they reside. (If universal
flushes are implemented in terms of a ball-recycling strategy,
as described in Section 3, then one can follow the rule that
the dummy messages never leave the future buffer u;.)

We say that a node x in level ¢ overflows whenever
the fill of the node (i.e., the number of messages, including
dummy messages, that reside in node x’s buffer) increases
from a value less than 3B, to a value at least 38,. More
generally, we say that a node crosses a threshold whenever
the fill of a node increases from a value less than kB, to a
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value at least kBy for an integer k& > 3. (Note that a fill of
3By including dummy messages may correspond with a fill
of as little as 2B, + 1 excluding dummy messages.)

The presence of r, dummy messages in each node x
randomizes the threshold crossings so that the number of
crossings in nodes at a given level ¢ during a sequence of
flushing rounds ¢y, ..., t; is a sum of well-behaved random
variables. Specifically, if j messages are flushed from level
£ + 1 to level ¢ during a time interval, then the number of
crossings in nodes at level £ is a sum of independent indicator
random variables with total mean j/B;.

LEMMA 4.1. Suppose that a global flushing algorithm is
used in which flushes at levels {+1,0+2, . . . are independent
of the random thresholds r, used for nodes x at level (. At
each level ¢, define an input round to be the time interval
between two consecutive universal flushes at level { + 1
(containing the first of the two).

Let j be the number of messages flushed from level
{4+ 1 to level £ during input rounds tg,...,t1 for some
to,t1 € Z. Then the number of threshold crossings in level {
during input rounds tg, . . . ,t1 is bounded above by a sum of
independent 0-1 random variables with mean j | By.

Proof. For each node z at level /, let g, be the number of
messages placed into node z’s buffer during input rounds
1,..., o, including the initial r,, dummy messages used for
bookkeeping. Since the random value of r, is independent
of the number of messages g, — r, to have arrived from
level £ — 1 during those input rounds, the quantity g, is the
sum of two independent random variables, one of which is
uniformly random in {0,...,B, — 1}. It follows that g,
(mod By) is uniformly random in {0, ..., By — 1}.

Whenever an universal flush is performed in cup z,
exactly By, messages are removed from the buffer. This
ensures that, at the beginning of input round ¢j, the number
of messages a, presently in node z’s buffer satisfies a, =
9. mod By. Thus a, (mod By) is uniformly random in
{0, ey Bg_l}.

Let j,, denote the number of messages that arrive into
cup z’s buffer during input rounds %g,...,%;. Note that
every time a threshold crossing occurs in node z, the total
number of messages to have been placed in node z’s buffer,
over all time, must cross a multiple of B,. (Here, again,
we are exploiting the fact that universal flushes remove
exactly By messages, thereby not changing the number of
messages modulo By in the buffer.) It follows that the first
Jz—(Jz (mod By)) messages to arrive into x’s buffer during
input round ¢, . .., 1 can induce at most | j, /By | threshold
crossings in cup z. The final j, (mod By) can induce
an additional threshold crossing only if (a, (mod By)) >
By — (j (mod By)). Since a, (mod By) is uniformly
random, it follows that the extra threshold crossing occurs
with probability at most (j,, (mod By))/By.

The total number of threshold crossings in cup = during
input rounds %, . . . , t1 is therefore bounded above by

Z 1| +Y,,

i=1

where Y, is 0-1 random variable that takes value 1 with
probability (j, (mod By))/B,. Summing over nodes x at
level ¢, the total number of threshold crossings at level ¢
during input rounds tg, . .., t; is at most

>

z€ level £

\_jz/BZJ

Y, + Z 1.
=1

The above sum is a sum of independent 0-1 random vari-
ables, since the outcome of each Y, is randomized by r,,
and since the random variable 1 is trivially independent of
all other random variables. Moreover, the sum has mean

> je/Be=13j/B,

z€ level £

as desired. O

Two randomized flushing algorithms. The first algorithm
we consider is the aggressive randomized flushing algo-
rithm, which performs an universal flush on each node z
whenever that node overflows. One advantage of the aggres-
sive randomized flushing algorithm is that it forgoes the use
of caching; the guarantee that we give for the algorithm is
weaker than Theorem 4.1, however, bounding the number of
flushes across collections of polylog(N) consecutive flush-
ing rounds, instead of in a single flushing round. We begin
by analyzing the aggressive randomized flushing algorithm,
and then extend the analysis to our final algorithm, which we
call the lazy randomized flushing algorithm.

PROPOSITION 4.1. Suppose that B is at least a sufficiently
large constant multiple of logg N. Let T be a B®-tree on
N records, and suppose that T'’s buffers are initially empty.
Consider a workload consisting only of read operations and
update operations (to records already in the tree). Suppose
that the operations are performed using the aggressive ran-
domized flushing algorithm, and using the (1%, 2%, 3%, c)-
induced buffer-size sequence.

Define k = (log N)¢. Then for any sequence of k
flushing rounds, the total number of universal flushes in the
k rounds is at most O(k - logg N), with high probability in
N.

Proof. Consider a sequence of k flushing rounds %o, ..., ;.
For each level ¢, let j, be the number of universal flushes
performed by the aggressive randomized flushing algorithm
at level ¢ during rounds tg, . . ., t;.
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Let h be the height of the tree 7. Then jj is exactly
the number of flushing rounds k. For ¢ < h, the number of
messages flushed from level £ + 1 to level £ during rounds
to, ..., t1 is exactly

Je+1 - Beya.

By Lemma 4.1, the number of threshold crossings at level
£, which is in turn exactly j,, is a sum of independent 0-1
random variables with mean

The use of the (75, 35

>, 32, - - -)-induced buffer-size se-
quence ensures that Bgl <1—Q(1/¢£?). It follows that for
each ¢ < h, j, is a sum of independent 0-1 random variables

with mean at most
Jert(1= Q) < jear (1 - (1/1og? N)).

By a Chernoff bound, assuming that & > (log N)¢ for
a large enough constant ¢, the probability that j, > k given

that jo41 < kis m. Thus, with high probability in IV,

no j, < k for all levels £. O

We remark that the use of the (1%, 2%, 3%, ...)-induced
buffer-size sequence is not necessary for Proposition 4.1. In
particular, as noted in Section 2, even if every level uses
the same block-size, one can argue that over the course of
a large number j of flushes from level £+ 1 to level ¢, only at
most (1 + m) j flushes are caused at level £. The use
of the buffer-size sequence allows for the stronger property
that at most j flushes are performed at level ¢, which slightly
simplifies the proof. The induced buffer-size sequence will
also play a similar (and more critical) role in the analysis of
the aggressive randomized flushing algorithm.

Although Proposition 4.1 shows that the aggressive
randomized flushing algorithm behaves well across batches
of polylogarithmically many flushing rounds, any individual
flushing round could potentially involve an unacceptably
large number of universal flushes. The lazy randomized
flushing algorithm resolves this problem by caching the
buffers for a small number of nodes in internal memory.
During each flushing round, and for each level ¢ (beginning
with the root level / = h), the algorithm selects the node
x with the fullest buffer, and if x’s buffer is of size at least
3By, then the algorithm performs an universal flush on z.
Any other buffer of size 3B, or more is cached.

Finally, at the end of each flushing round, there is a
cleanup step that occurs with low probability. If, at the
end of any round, the total combined size of the cached
buffers at a level £ reaches M /(1 + logg N) — By, then the
algorithm selects the smallest such level ¢, and performs an
additional universal flush in each of level £, {—1,/—2, ..., 2.

If there remains a level ¢ with a cache of size at least
M/(1 + logg N) — By, then the algorithm again selects
the lowest such ¢, and repeats the process until no such /¢
exists. Note that by selecting the lowest such ¢ each time,
the algorithm ensures that a level ¢’ can only be flushed into
if level £’ has a cache of size smaller than M /(1 + logg N).
The combined sizes of the caches across all levels therefore
does not exceed M.

Note that, even with the cleanup step, the lazy random-
ized flushing algorithm continues to satisfy the requirement
by Lemma 4.1 that flushes at levels £ + 1,¢ + 2, ... are in-
dependent of the random thresholds r,, used for nodes x at
level £. For this property to remain true, it is important that
cleanup is performed based on the cache-size at each level,
rather than based on the total cache size of the tree.

With the exception of when the cached buffers
cause cleanup steps, the lazy algorithm performs at most
O(logg N) universal flushes during each flushing round. In
order to complete Theorem 4.1 it suffices to bound the sum
of the sizes of the cached buffers, demonstrating that cleanup
steps are rare. This is accomplished by Lemma 4.2.

LEMMA 4.2. Suppose that B is at least a sufficiently large
constant multiple of logz N. Let T be a B°-tree on n
records, and suppose that T'’s buffers are initially empty.
Consider a workload consisting only of read operations and
update operations (to records already in the tree). Suppose
that the operations are performed using the lazy randomized
flushing algorithm, and using the ({5, 55, 3z, . . .)-induced
buffer-size sequence.

Then after any flushing round, the combined sizes of
the cached buffers is at most B - polylog(N), with high
probability in N.

Proof. As in Lemma 4.1, define an input round at each level
{ to be the time period beginning just before an universal
flush at level £ + 1 and ending just before the next universal
flush at level £+ 1. Note that level £ may experience multiple
input rounds during a single flushing round due to clean-up
steps within the flushing round.

Let h be the level of the root node. For a level £ < h and
a input round ¢, define the potential function Q,(t) to be,

Z [(|lz| —2B¢)/ B,

TEAL

where A; is the set of cached buffers in level ¢ after input
round £.

We prove that for each ¢ and ¢, Q,(t) < polylog(N)
with high probability in /N. This completes the lemma, since
3Q¢(t) is at least as large as the combined sizes of the cached
buffers at level /.

Note that for each ¢ and ¢ > 1, the value Q,(t) is either
zero, or satisfies

Qe(t) < Qu(t—1) +u— 1,
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where u; is the number of threshold crossings at level /¢
during input round ¢. In particular, each threshold crossing
increases ()¢ by one, and then the universal flush performed
by the lazy flushing algorithm reduces @), by 1 (unless Qy is
already 0).

Thus, in order for Q,(t) to be large, say (log V)¢ for a
large constant ¢, there must be some m > 0 such that

t

> (wi—1) > (log N)“.

1=t—m-+1
Rearranging gives

t
Z u; > (log N)¢ + m.

i=t—m+1

4.1

Lemma 4.1 establishes that Zfztfm 41 Ui is bounded

above by a sum of independent random variables with mean
at most

m. 8oL (1-Q(1/1og? N)),
By
since at most By, messages are flushed from level £ + 1 to
¢ during each input round.
By a Chernoff bound, when m < (log N)¢, the prob-
ability that Eq. 4.1 occurs is polynomially small in N (i.e.,

1 . . g .
at most W)' Thus with high probability in N, Eq. 4.1
does not hold for any m < (log N)°.
On the other hand, when m > (log N)¢, we get by a

Chernoff bound that

¢
1
Pr Z u; > m] < exp (—Q <4m>> .
|J'_t—m+1 IOg N

By a union bound over all m > (log V)¢, it follows that
with high probability in N, Eq. 4.1 does not hold for any
m > (log N)e.

Since Eq. 4.1 fails for all m with high probability in N,
we have that Q,(t) < (log N)¢ with high probability in IV,
as desired. a

An additional property of the Lazy Algorithm. We
conclude the section by noting one additional useful property
of the lazy randomized flushing algorithm. Specifically, we
show that although the sum of the sizes of the cached buffers
may in the worst case be M, the size of the largest cached
buffer never exceeds O(B log M).

LEMMA 4.3. LetT be a B*-tree on N records, and suppose
that T'’s buffers are initially empty. Consider a workload
consisting only of read operations and update operations
(to records already in the tree). Suppose that the flushing

operations are performed using the lazy randomized flushing
algorithm.

Then after any flushing round, the maximum size of any
cached buffer in a level £ is O(B - logm), where m is the
number of cached nodes in level {. Note that if the cached
buffers fit into memory, then this implies that the maximum
size of any cached buffer is also at most O(B -log M) .

Proof. We prove the lemma by modeling the cached buffers
as cups in a cup-emptying game. Each cached buffer x at
level ¢ can be thought of as a cup containing w, units of
water, where (w,, +3) By is the number of messages in buffer
x. Using this analogy, in each input round, at most 1 unit of
water is placed into cups, and then 1 unit of water is removed
from the fullest cup (unless that cup contains less than 1 unit
of water, in which case the cup is emptied). This is precisely
the dynamic cup game analyzed by [11]. It follows that the
amount of water in the fullest cup is at most O(log m), where
m is the number of non-empty cups. Thus the fullest cached
buffer at level £ has size at most O(B log m), where m is the
number of cached buffers. |

5 The Dynamic Cup-Based B*-Tree

In this section, we introduce the Dynamic Cup-Based B*-
tree, which extends the techniques in Section 4 to support
arbitrary workloads of queries and upserts. Throughout the
section, we use sy as shorthand for B¢ - B, which one
should think of as approximately representing the size of a
node at level /.

THEOREM 5.1. Let 0 < € < 1 be a constant. Suppose that
M > ¢B? + (log Nyax )¢ B for a sufficiently large constant
¢, and suppose that B is at least a sufficiently large constant
multiple of 10g Niax.

Consider an arbitrarily long sequence of in-
sert/update/delete operations on an initially empty tree
T, and let Ny« denote the maximum size of T' during those
operations. If T is implemented as a dynamic cup-based B®-
tree, then T' will deterministically never use memory more
than M. The tree T will satisfy the following performance
guarantees:

* Worst-Case Write Costs: For each insert/update/delete
operation operation 1, with high probability in Nyax,
the operation i has I/0 cost at most

O([(logp N;)/B'~#1),
where N is the size of the tree after operation i.

* Domination by Universal Flushes: For a given flush-
ing round i, the number of I/Os incurred by the flush-
ing round is, with high probability in Ny, at most
O(B® + q), where q is the number of I/Os incurred by
universal flushes during the flushing round.
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» Amortized Operation Costs: For any n > 0, with high
probability in Npax, the total I/O cost of the the first n
insert/update/delete operations is

— logp N;
o332
i=1

* Worst-Case Read Costs: For any insert/update/delete
operation i, with high probability in Npn., any read
performed after operation i incurs O(log g N;) I/Os.

We assume throughout the section that M < poly(B),
which is w.lo.g. since the requirement M > cB? +
(log Nimax )¢ B is satisfied by M € poly(B). Importantly,
the assumption affects the cleanup phase in lazy randomized
flushing algorithm, and implies by Lemma 4.3 that the max-
imum size of a stashed buffer never exceeds O(B log B).

Supporting structural changes to the static cup-based
B*-tree introduced in Section 4 leads to two technical issues.
The first is the handling of flushing cascades caused by node
merges. The second, more subtle issue, is the introduction of
cyclic dependencies between levels.

Cyclic dependencies between levels. In order for the
randomized flushing strategy at each level ¢ of the tree to
be effective (and, specifically, for Lemma 4.1 to hold), it is
necessary that the input flushes from level £ + 1 to level ¢
be independent of the random initial offsets used in level £.
That is, for all ¢ > 1, the set of messages flushed by the i-th
universal flush in level £ 4+ 1 must be the same regardless of
the random initial offsets used in levels £, ¢ — 1,..., 1.

Node merges and splits violate this property by intro-
ducing cyclic dependencies between levels. The random bits
used at level ¢ partially determine which messages make it
into lower levels by a given point in time, and thus which
messages make it to the leaves by a given point in time. The
arrival of messages to the leaves of the B®-tree determines
when (and which) nodes at level 2 of the tree merge and split.
The merging and splitting of nodes at level 2 in the tree then,
in turn, influences when nodes at level 3 of the tree merge
and split, etc. Thus the random bits at level ¢ indirectly in-
fluence the set of nodes at level ¢ + 1, which in turn affects
the flushing decisions made in level £ + 1.

In designing the Dynamic Cup-Based B®-tree, we be-
gin in Section 5.1 by adapting the lazy randomized flushing
algorithm to the dynamic-structure setting in order to elimi-
nate flushing cascades due to node merges. The new flush-
ing algorithm assumes that the underlying node-rebalancing
mechanism has a number of useful properties and avoids
cyclic level dependencies. In order to design such a node-
rebalancing mechanism, Section 5.2 then introduces a ran-
domized weight-balancing approach in which each node
maintains a summary sketch of the subtree that it roots, and

uses the summary sketch in order to determine when to split
or merge with neighbors.

5.1 Eliminating Flushing Cascades In this section, we
adapt the lazy randomized flushing algorithm to handle
structural changes to the tree T resulting from node merges
and splits. The new flushing algorithm assumes certain
important properties from the mechanism that is used for
rebalancing nodes (i.e., the algorithm for determining when
to perform node merges and node splits). Designing a
rebalancing mechanism that guarantees these properties will
then be the primary purpose of Section 5.2.

The first property required of the rebalancing mecha-
nism is the Independent Levels Property.

* The Independent Levels Property: The key ranges of
the nodes in level ¢ of the tree are determined only by
(1) the set of messages that have ever been flushed from
level ¢ + 1 to level ¢; and (2) random bits associated
with level ¢ of the tree.

The Independent Levels Property eliminates cyclic de-
pendencies between levels. The property ensures that, as
long as the flushing algorithm at each level ¢ makes deci-
sions based only on the contents of the buffers at level £,
then the contents of the i-th flush from level £ 4 1 to level £
will be independent of the random bits used by the flushing
algorithm (and the rebalancing mechanism) in level £. This,
in turn, allows for Lemma 4.1 to be used at each level /.

Note that, in order for the Independent Levels Property
to be satisfied, it is necessary for the key ranges at each level
£ to not necessarily be strict subsets of the key ranges at the
higher level £+ 1. This means that our B*-tree has a structure
similar to that of a skip list, in that adjacent nodes at level £
may have a child in common at level ¢ — 1.

The second property required from the rebalancing
mechanism is The Breathing-Space Property, which will
prove useful in adapting the flushing algorithm to handle
flushing cascades due to buffer merges.

* The Breathing-Space Property: Say a node z is
touched whenever an universal flush occurs either in
x or in one of x’s sibling nodes in level /. (Note that
the sibling nodes of x in level ¢ need not share a parent
with z.) Whenever a new node x is created at level ¢,
either via a node merge or a node split, the new node
x is touched at least Q(s,/B) times before being again
involved in a merge or split.

Finally (and perhaps most obviously), the rebalancing
mechanism should guarantee a B®-tree-like structure with
high probability in Ny,.x. Specifically, at any point in time,
we require that the Balanced-Tree Property hold with high
probability in Ny:
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* The Balanced-Tree Property: For each level ¢ such
satisfying s, < 20|T|, and for each node z at level
¢, the size of the subtree T, rooted at x must be
O(s¢) . Moreover, for any level ¢ < B satisfying
s¢ > 20|T'|, the number of nodes at level ¢ must be at
most one and must be stored in memory. Additionally,
the metadata used by the rebalancing mechanism must
consist of, with high probability in Ny, no more
than O(B) machine words per node in the tree, and
no more than O(B?) additional blocks for non-node-
specific metadata.

Note, in particular, that the Balanced-Tree Property
bounds the number of children that each node x can have
to O(B¢), which is important both for keeping the size
of the node small (so that it fits in a constant number of
blocks) and for achieving write-optimized performance for
insert/update/delete operations.

We call the flushing algorithm introduced in this section
the dynamic lazy flushing algorithm.

PROPOSITION 5.1. Let 0 < € < 1 be a constant. Suppose
that ¢cB? + (logn)°B < M < poly(B) for a sufficiently
large constant ¢, and that B is at least a sufficiently large
constant multiple of loggn. Assume that the rebalancing
mechanism satisfies The Independent Levels Property, the
Breathing-Space Property, and the Balanced-Tree Property
(with high probability in Npy.x at any point in time). Then
the dynamic lazy flushing algorithm satisfies the properties
desired by Theorem 5.1.

The dynamic lazy flushing algorithm performs universal
flushes using the same approach as the (static) lazy flushing
algorithm. During each flushing round, and for each level
¢ (beginning with the root level), the algorithm selects the
node z with the fullest buffer, and if z’s buffer is of size at
least 35, then the algorithm performs an universal flush on
x. Any other buffer of size 35, or more is stashed.

At the end of a flushing round, a cleanup step (that oc-
curs with low probability) is also performed in the same man-
ner as for the (static) lazy flushing algorithm. Specifically, if
h is the largest level to contain multiple nodes, then cleanup
is performed as necessary to ensure that no level ¢ contains
a stash of size greater than (M — O(B?))/h — B, where the
O(B?) term is the sum of the maximum space in memory
that may be required from levels at which there is only a sin-
gle node, along with the space required by the rebalancing
mechanism for non-node-specific metadata.

In addition to performing universal flushes, the dynamic
lazy flushing algorithm performs a second type of flush
called a trickle flush, described below.

Retiring buffers on merges and splits. When two nodes
x1 and x9 at a level ¢ are combined to form a new node
y, we create a new buffer b for node y (along with a new

random initial offset), and we refire the buffers aq, as for
nodes =1 and x5. The new buffer b for node y is assigned as
the caretaker for retired buffers a; and a,. Similarly, when
a buffer y is split into two nodes x; and xz2, y’s buffer b is
retired, and two new buffers a; and a- are created for 1 and
x9; in this case, both a; and a9 are said to be b’s caretakers.

Once a buffer v is retired, it is guaranteed that no further
messages will be placed into that buffer (since such messages
are now sent to u’s caretakers). The lazy randomized
flushing algorithm may still perform universal flushes on a
retired buffer, however, if that buffer is the fullest of any
buffer at level ¢. (And, importantly, if a stashed buffer is
retired, that buffer remains stashed.)

Trickle flushes from retired buffers. Whenever an
universal flush is performed on a node x at a level ¢ > % +1,
one message is flushed from each of the (up to six) retired
buffers for which z’s siblings or = are caretakers. This
is called a trickle flush (since it flushes only a very small
amount). By the Breathing-Space Property, whenever a node
x at level £ > % + 1 is rebalanced, any nodes y for which x
is a caretaker will have had at least 2(s;/B) > Q(B'*¢)
trickle flushes. Since B is at least a sufficiently large
constant, B® is at least a sufficiently large constant multiple
of log M < O(log B), and it follows that as long as no
retired buffer ever has buffer-size greater than O(Blog B),
then any nodes for which z is a caretaker will have an empty
buffer by the time z is rebalanced.

When an universal flush is performed on a node x in
alevel ¢ < 1+ 1, [¢B] messages are flushed from each
retired node for which z’s siblings or x are caretakers. This
is again called a trickle flush (although it is much larger than
the trickle flushes at levels ¢ > é + 1). Note that the eB
messages are not flushed using an universal flush, but are
instead selected arbitrarily from the retired buffers. Since
at least B*-trickle flushes are performed between rebalances
of a node z, by the time the node x is next rebalanced its
caretakers will each have had at least Q(¢ B1*¢) > Blog B
messages removed from them via trickle flushes; thus all of
the nodes for which z is a caretaker have empty buffers when
x is next rebalanced (assuming they initially had buffer-size
no greater than O(B log B)).

We remark that extra care must be taken to ensure that
when a node z is a caretaker for a node y, the messages that
share a given key k are flushed out of x’s and y’s buffers in
the same order that they arrived (since the order of arrival
corresponds with the order in which they should be applied
to the key k). That is, if a message r is flushed from z, but
y contains a message 7’ with the same key as r, then we
actually replace the message v’ with r in 3’s buffer and flush

the message r instead of the message r”.*

INote that this maintains the invariant that for each key k, the messages

with key k in y’s buffer are all older than the messages with key k in z’s
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Analyzing dynamic lazy flushing. Trickle flushes make
it so that up to B,4; + 1 messages may be flushed from
level £ + 1 to level ¢ on a given step, when ¢ > % + 1,
and up to Byy1 + [¢B] messages may be flushed from level
£+ 1 to level £ for £ < é + 1. To absorb this into the
resource augmentation between levels, we modify the buffer-
size sequence used to be the (pq,...,pp)-induced buffer-
size sequence, where

{Sﬁs
pPi=197
iz

Since Zle p; = O(1), the buffer-size sequence satisfies
B, € ©(B) for { = 1,...,B. Moreover, the buffer-size
sequence enforces the property that the maximum number of
messages r, that may be flushed from level £ + 1 to level ¢

during a flushing round satisfies

Ty 1 1

5= (- am) < (2 (o))
which is precisely the property needed from the buffer-size
sequence in the proof of Lemma 4.2.

Trickle flushes also violate the property used in Lemma
4.1 that flushes from a node z at level ¢ always flush exactly
By elements. This property was used to ensure that the
size of each buffer modulo By is independent of the random
threshold at that buffer, and thus that threshold crossings
in each buffer occur at random points in time. However,
the property is unnecessary in retired buffers, since new
messages are never added to retired buffers, and thus retired
buffers never incur threshold crossings.

Besides the issues discussed above, trickle flushes do
not interfere with the proofs of Lemma 4.1, Lemma 4.2,
or Lemma 4.3. Moreover, the Independent Levels Property,
ensures that the prerequisite requirements for Lemma 4.1 are
met by the dynamic lazy flushing algorithm.

Lemma 4.3 also bounds the size of buffers (both retired
and non-retired) in levels containing only one node by O(B);
this ensures that the buffers containing only one node can be
stored in memory using space O(B?). This means that, when
analyzing the I/O complexity of the Dynamic Cup-Based B®-
tree, we need only consider levels containing multiple nodes;
by the Balanced-Tree Property, there are only O(logy |T'|)
such levels with high probability in Np,x.

Since Lemma 4.3 bounds the size of each buffer by
O(Blog B), it follows that trickle flushes successfully elim-
inate retired buffers prior to their caretaker(s) being rebal-
anced. Thus every node is the caretaker for at most two re-
tired nodes. This is especially important when the retired
buffers are not stashed, since read operations accessing a
node z must also examine all of the retired nodes for which

ifi <141
ifi>14+1

buffer.

x is a caretaker. Since each node x is a caretaker for at most
two retired nodes, the Balanced-Tree Property ensures that
the number of I/Os required by a read operation is at most
log s |T'|, with high probability in Nax.

Lemma 4.2, bounds the probability of any cleanup
occurring during a flushing round to m Thus,

with high probability in Ny, there is only one universal
flush in each level ¢ of the tree 7. Since the trickle
flushes corresponding with an universal flush incur only
O(1) additional I/Os at each level £ > 1 41, and only O(B¢)
additional I/Os at each level ¢ < % + 1, it follows that with
high probability in Ny, the total number of I/Os required
by a given flushing round is at most O(%E +q) = O(B*+q),
where ¢ is the number of 1/Os incurred by universal flushes
during the flushing round. Successive flushing rounds are
separated by B insert/update/delete operations, meaning that
if the work for a flushing round is spread out over the
following B insert/update/delete operations, then the worst-
case insert/update/delete costs becomes

O([(B® +4q)/B'~°1).

Since ¢ is, with high probability in Ny,y, at most O(B¢ -
logg |T|), the i-th operation has, with high probability in
Nmax, I/0 cost at most

O([(log N;)/B' =),

where NV, is the size of the tree after operation .

To prove Proposition 5.1, it remains to analyze the
amortized performance of insert/update/delete operations.
So far we have shown that, with high probability in Ny,
each flushing round incurs at most O(B¢logg N;) 1/Os,
where ¢ is the index of any insert/update/delete performed
during the flushing round. The total I/O cost of the the first
n insert/update/delete operations is therefore at most

" logp N;
0 (Z <X’i+ Bl-e >> )

i=1
where X; is O for each operation ¢ contained in a flush-
ing round that incurs at most O(B¢loggz N;) I/Os, and
X, is Npax otherwise. Since each X; is zero with high
probability in Npax, the sum >, X; has expected value
n/poly(Nmax). By Markov’s inequality, the sum >, X, is
at most n with high probability in Ny,y. The total I/O cost of
the first n insert/update/delete operations is therefore at most

o3

i=1

with high probability in Npx.
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5.2 Eliminating Inter-Level Dependencies In this sec-
tion we introduce a node-rebalancing scheme satisfying the
Independent Levels Property, the Breathing-Space Property,
and (with high probability in Ny,y) the Balanced-Tree Prop-
erty. Combining this with Proposition 5.1 completes the
proof of Theorem 5.1. We begin by designing a rebalanc-
ing scheme satisfying the Independent Levels Property and
the Balanced-Tree Property, and then describe how to fur-
ther satisfy the Breathing-Space Property at the end of the
section.

Each node z; maintains a simple summary sketch of
the tree T; rooted at x;. If T is a tree of size in the range
[s¢/c%2, 50 - %2] (recall c is a large constant), the level-£
summary sketch Sy(T') satisfies the following properties:

* Unit-Size. With high probability in Npy.x, Se(T) con-
sists of at most O(B) machine words. (Moreover, this
continues to be true for any 7 satisfying |T'| < sy-c2.)

* Size Estimation. S;(T) provides an estimate s for |T'|
(i.e., the logical size of the key set represented by T')
satisfying 0.9|T'| < s < 1.1|T| with high probability
in Npax. (Moreover, if |T'| > s;/c®2 or T < sy - 2,
then the size estimate s satisfies s > 0.9sy/ %2 and
s<1.lsp-c22, respectively.)

* Median Estimation. S;(T") provides a message r € T'
such that, with high probability in Ny, the rank of r
in T is between 1|T'| and 2|T|.

¢ Composability. For two trees 77,75, the sketch
S¢(Ty UTy) can be computed directly from Sp(7}) and
S¢(T5); moreover, given Sy(T} U T3), and given the
key boundaries of 7} and 75, one can directly compute
Sg (Tl) and Sg (TQ)

For convenience, we will sometimes denote S;(T) by S¢(x),
where z is the root node of the tree 7.

Before describing how to construct summary sketches,
we explain and analyze their usage in the data structure.
Node joins and splits at each level ¢ are performed based
on the estimated size of nodes given by the sketches Sy (7).
Specifically, a node is merged with one of its siblings when-
ever its estimated size is smaller than sy, and is split when-
ever its estimated size is larger than 10sy.

When a node z; is split, the median estimate r given
by S¢(T;) is used as the boundary on which the split occurs.
Note that r might not be used as a boundary at level ¢ — 1.
This means that our B®-tree has a structure similar to that of
a skip list, in that adjacent nodes at level £ may have a child
in common at level £ — 1.

Creating and eliminating new root nodes introduces a
subtle issue. A natural approach would be to create a new
root node whenever the old root splits, and eliminate a
root node whenever its number of children becomes one.

However, the creation or destruction of a root node at a level
h would then be a function of random bits used in sketches
Sh—1, which would violate the Independent Levels Property.
To resolve this, we simply make each level ¢ € 1,...,B
always contain at least one node. All levels that contain only
a single node fit in memory (with high probability Nyax).
Nodes are merged and split according to summary-sketch-
based weight balancing, except that if a level contains only
one node then that node can never be merged (since it has no
siblings).

Establishing the independent levels and balanced-tree

properties. The Independent Levels Property follows from
the fact that the sketches S, use different random bits at each
level /.

To establish the Balanced-Tree Property (with high
probability in Ny.y), we must be careful about the fact that
the random bits determining the sketches Sy also implicitly
determine what interval each subtree 7; consists of in level
{. That is, the random bits used to determine S, help de-
termine the partition P = (73,Ts,...,T) of the records
in levels 1,2, ..., ¢ (where each T; corresponds with an in-
terval of keys for which a single node at level ¢ is respon-
sible). This means that the partition P could potentially be
adversarial against the sketch S;. However, since the set of
records S = T1 UT, U - - - U Ty, after a given universal flush
at level £ 4 1 is determined entirely by randomness in levels
{41,042, ... of the tree (and by the operations on the tree),
and since for a given set S there are only O(|S|?) < N2,
options for each Tj, it follows that with high probability in
Nmax, the sketches S;(T;) perform correct size and median
estimation even for a worst-case choice of the partition P,
and satisfy the Unit-Size Requirement.

The Unit-Size Requirement ensures that the sketch of
each subtree T; can be stored in the root node x; of the
subtree using a constant number of blocks (with high prob-
ability in Np,y). The composability of sketches makes it
so that when a node split or join occurs, the corresponding
sketches can also be split or joined. By the accuracy of size-
and median- estimation, we get that with high probability in
Nmax, the Balanced-Tree Property holds after each operation.

Constructing summary sketches. A natural approach to
constructing S¢(7") is to randomly sample B > Q(log Npax)
keys from 7. Suppose we have access to a fully independent
hash function h that maps each key r to 0 with probability
p and to a non-zero value with probability 1 — p, where p is
selected so that p - sy = B > clog Ny.x. (Note, however,
that our final construction cannot use such a hash function,
since the description bits for & would not fit in memory.)
Then S¢(T) could store the set of keys » € T' for which
h(r) = 0. Whenever an insert for a key r is placed into the
tree 7', the sketch Sg(T') is updated to include r if h(r) = 0;
whenever a delete for a key r is placed into the tree T,
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the sketch S;¢(T') is updated to exclude r. Assuming c is a
sufficiently large constant, and that |T| € ©(s), then with
high probability in Ny,

1
0.9 7] < ~|Se(T)] < 1.1- |7},
p

allowing S¢(T') to be accurately used for size estimation.
Additionally, the median of S;(T") is, with high probability
in Npax, of rank between |T'|/4 and 3|T'|/4 in T. This
is because, with high probability in Np,, no more than
1.1-B|T'| of the keys in S are among the bottom quartile in T’
(in terms of ranking), and similarly, no more than 1.1 - §|T’|
of the keys in S are among the top quartile in 7.

In order to remove the requirement that h be fully inde-
pendent, we replace h with a collection of low-independence
hash functions as follows. Let hq,...,hp be B-wise inde-
pendent hash functions, with each hj; mapping keys 7 to 0
with probability ¢ and to non-zero with probability 1 — g,
where q - sy = c.

To compute S¢(7") for a tree T, define Si,...,Sp
sothat S; = {r € T | hi(r) = 0}, and define the
sketch Sy(T) = (S, ..., Sp). Composability is immediate
from the definition of the sketch. The following lemma
demonstrates how to use Sy(7") for size estimation.

LEMMA 5.1. Fix a tree T, and define ur to be the median
of values |51|/q, - . ., |Sk|/q. Then with high probability in
Niax, if |T| > ¢ %25, then 0.9|T| < ur < 1.1|T); and if
IT| < %25, then then ur < 1.1 - ¢ %25,

Proof. Suppose that [T| > ¢=%2s,, and thus |T| - ¢ > .
Since |S;| is the sum of |T'| B-wise (and thus pairwise)
independent 0-1 random variables, each with mean ¢ < 1/2,
the variance of |\S;| is given by |T'| - ¢- (1 —¢q) < |T| - ¢.
The variance of |S;|/q is therefore at most |T'|/q. By
Chebyshev’s inequality,

IT|/q 1 1

Silfa = \T1| > 7] < G = Gy < e

|

for § > 0. Plugging in § = 0.1, and using that c is a large
constant, yields
(5.2)

1
Pr { 1Sl /q — \T|‘ > 0.1|T\] <%

By a Chernoff bound, with high probability in Ny,y, at
least 2/3 of the B > Ny, values |S;|/q satisfy 0.9]T| <
[Sil/¢ < 1.1|T|, and thus the median up also satisfies
097 <ur <1.1T).

Finally, we consider the case of |T| < ¢=%2s,. If T" is
any tree of size ¢~"-2s, satisfying ' C T” (i.e., T"’s record
set includes 7’s record set), then the ur < wr/. By the
analysis above, uzr < 1.1 - ¢~%-2s, with high probability in
Nmax» completing the proof. a

The next lemma demonstrates how to use Sp(7") in order
to achieve median estimation.

LEMMA 5.2. Fix a tree T satisfying |T| > ¢ %2s,, and
define vy to be the median of m(Sy),...,m(Sk), where
m(S;) is the median of the elements of S;. If S; is empty,
then m/(S;) is omitted from the set over which the median vy
is taken.

Then with high probability in Ny, the key vr has rank
between |T'|/4 and 3|T|/4in T.

Proof. By the proof of Lemma 5.1, each S; satisfies
0.9|T| < |S;|/q < 1.1|T'| with probability at least 15/16.

Let X, denote the set of keys x in S; that have rank
|T|/4 or smaller in T', and let Y; denote the set of keys y € S;
that have rank greater than 4|7"| /4 in T'. Then the variance of
each of | X;|/q and |Y;|/q is at most O(|T'|/q), by the same
analysis as in Lemma 5.1. Using that c is a large constant, it
follows by Chebyshev’s inequality that,

1 1

P ‘ Ng—=- ’ 17| < =,
r{|X/q 11T >0 |T|} <o
Pr ‘|Y-\/ 1 |T|’>01|T| <1
W4Ty BT

Recalling that S; satisfies ¢ - 0.9|T| < |S;| < ¢ -
1.1|T| with probability at least 15/16, it follows that with
probability at least 13/16 the median element m(.S;) of S; is
in neither X; nor Y;.

By a Chernoff bound, with high probability in Ny,y, at
least 2/3 of the m(S;)’s have rank between |T'| /4 and 3|T'| /4
inT'. Tt follows that the median vy of the medians m/(.S;) also
has rank between |T'|/4 and 3|T'|/4 in T, as desired. 0

Finally, we complete the analysis of the summary sketch
S¢(T), by proving the unit-size property.

LEMMA 5.3. Fix a tree T satisfying |T| < c*2sy. Then
with high probability in Ny, the size of the sketch Sy(T) is
at most O(B) machine words.

Proof. Here we finally use the B-independence of
hi,...,hp.  (Indeed, for Chebyshev’s inequality we
only needed 2-independence.) By Theorem 2 of [41], for ¢/
a sufficiently large constant, each .S; satisfies

Pr[|S;| > ¢'m] <27™,

for m > 1. Since the sizes of the |S;|’s are independent, it
follows that ), |S;| is a sum of independent geometrically-
bounded random variables. In particular, the probability that
> . |Si| exceeds its mean by ¢’ - m for some m > 1 is at most
the probability that m — 1 fair coin flips together yield less
than B total heads. Since B = Q(log N ), it follows that
with high probability in Npax, Y, [Si| < O(log Nmax) <
O(B), as desired. 0
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Bounding the metadata size. For each level ¢ € [B], we
must store the random bits for B hash functions. Each of the
hash functions hy, at level £ must be B-wise independent and
map keys to 0 with probability ¢/ s,.

We may assume w.l.o.g. that c and s, are powers of two,
meaning that there exists a finite field of size sy/c. Thus if
d is the maximum number of bits of a record, then one can
select hy as a random degree-(B — 1) polynomial over the
finite field F,,ax (24,5, /c)- The number of random bits needed
to store hy, is therefore at most max(d, s¢)B.

When s; < O(d), the random bits for each hy fit in
O(1) blocks on disk, since each block can store ©(B) d-
bit records. On the other hand, if logs, > 10d, then the
maximum size of the tree Ny,,x must satisfy N, < s¢, and
thus we need not actually construct the sketch Sy. (Instead
we can simply force level £ to consist of a single node.)

Thus each of the B hash functions h; at each of the
B levels requires only O(1) blocks of random bits. The
total non-node-specific metadata required by the rebalancing
mechanism is O(B?) blocks, as required by the Balanced-
Tree Property.

Adding the Breathing Space Property. Finally, we modify
our rebalancing mechanism in order to fulfill the Breathing-
Space Property, which we restate below.

* The Breathing-Space Property: Say a node z is
touched whenever an universal flush occurs either in
x or in one of z’s sibling nodes in level /. (Note that
the sibling nodes of x in level ¢ need not share a parent
with x.) Whenever a new node x is created at level /,
either via a node merge or a node split, the new node z
is touched at least )(s,/B) times.

We can enforce the breathing-space property with a
small modification to our weight-balancing scheme. Call
a node z rested if, since the creation of x the node x has
received at least % -s¢ new elements in its buffer. By Lemma
4.3, the buffer-size of a node z is at most O(Blog M) <
O(Blog B). 1t follows that each rested node z has been

flushed out of at least
/ (10 )
10 Se BZ 0, g B

times, which by the assumption that B¢ is at least a large con-
stant multiple of log B (i.e., that B is at least a sufficiently
large constant), is at least 2—10 - 8¢/ By.

Call a node x tangentially rested if, since the creation
of node z, at least one of node z’s current siblings (i.e., we
do not count siblings that have since been rebalanced) has
received at least % - s¢ new elements in its buffer. Note that a
tangentially rested node x can potentially become no-longer
tangentially rested when one of its siblings is rebalanced.
Again applying Lemma 4.3, the number of flushes applied to

x’s neighbors since x’s creation must be at least % - 8¢/ By
for any tangentially rested node x.

We modify our weight-balancing scheme as follows.
Until a node = becomes either rested or tangentially rested,
the node x is deemed frozen, meaning that regardless of
value of z’s summary sketch, the node x is not permitted
to be merged or split. Whenever a non-frozen node y wishes
to perform a node-merge, the node waits for at least one of its
neighbors to become non-frozen, and then performs a merge
with that neighbor (although node y could potentially stop
waiting on its neighbors if y’s sketch Sy(y) stops indicating
the need for a node-merge). If a node x becomes non-frozen,
and at least one of node z’s neighbors are waiting on « for
a merge, then node x is merged with any neighbors waiting
on z, and then if necessary node x is then immediately split.
Whenever a node is non-frozen, wishes to perform a split,
and has no neighbors waiting on it for a merge, the node can
x performs the split without further delay.

The fact that frozen nodes are never rebalanced en-
sures the Breathing-Space Property. Moreover, the modifica-
tions to the algorithm easily preserve the Independent Levels
Property. To complete the analysis of the rebalancing mech-
anism, we must show that the Balanced-Tree Property con-
tinues the hold. Specifically, we must prove that, at any time,
each node z in each level £ is of size ©(s,) with high proba-
bility in Ny, unless there is only one node at that level.

LEMMA 5.4. Using the rebalancing mechanism described
above, the following property holds: at any point in time,
each node x in each level { is of size ©(sg) with high
probability in Ny, unless there is only one node at that
level.

Proof. We consider three cases. The first case is that a node
x has seeked rebalancing (i.e., S¢(x) estimates x’s size to be
either less than s, /2 or estimates x’s size to be at least 10sy)
after the arrivals of each of the most recent % -s¢/ By elements
to have arrived in 2’s buffer; and furthermore, Sy(x) has
provided correct size estimates after each of those arrivals.
Then node x must have been unfrozen during all of the most
recent % - 8¢/ By arrivals in a’s buffer. Moreover, during
those most recent %0 - ¢/ By arrivals, at least one of node x’s
siblings must have become unfrozen, meaning that node x
will have successfully been rebalanced, a contradiction.

As a second case, suppose Sy(x) has provided correct
size estimates after all of the most recent % - 8¢/ By arrivals
into node z’s buffer, and that node = has not required
rebalancing after at least one of those arrivals. Then node x
must currently be of size between sy/(4B;) and 11s,/4B;,
ensuring that node x is size O(sy).

Finally, the third case is that S;(x) has not provided
correct size estimates after all of the most recent % - 8¢/ By
arrivals into node x’s buffer. We show that with high
probability in V. this case does not occur for any node x
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in the tree T'. For a given level /, the arrivals of messages into
level ¢ are determined independently of the random bits used
to compute sketches Sy. In the current state of tree 7, there
are O(n?) options for the interval [a, b] that a node = can
consist of (i.e., the node = has minimum key a and maximum
key b). Consider the arrivals into level ¢ of messages in the
interval [a,b], and let W;(a,b) denote the state of tree T'
after the i-th most recent such arrival. Let P;(a,b) denote
the set of records at level ¢ (or below) in the interval [a, b]
in state W;(a,b). Since P;(a,b) is independent of the
random bits used to compute Sy, the sketch S;(P;(a,b))
has high probability in Ny, of correctly estimating the size
of P;(a,b). Unioning over i € [0,...,% - s;/By], and
over all N2_ options for a and b, it follows that, with high
probability in Ny, S¢ performs correct size estimation on
all such P;(a, b). This, in turn, establishes that the third case
occurs with low probability in Npx. 0

6 Related Work

COLAs [8], write-optimized skip-lists [10], and B*-trees [9,
14] are all on the optimal search-insert trade-off curve [14]
and are easily seen to have roughly equivalent structures.

Write-optimized skip lists are just B*-trees with succes-
sor pointers between nodes on the same level and a random-
ized rebalancing scheme. The successor pointers have no
impact on flushing. In fact, it’s entirely plausible and useful
to add sibling pointers to B*-trees, so the only difference is
the rebalancing scheme.

COLAs can be transformed into B*-trees by simply stor-
ing each level as a sequence of chunks, where block bound-
aries are placed every ©(B¢) ghost elements. Breaking each
level into chunks is useful for deamortizing flushing, since it
makes it easy to perform flushing locally, i.e. the flushing
policy can choose to flush from one chunk to another, rather
than flushing an entire level. Thus the ghost pointers become
Be#-tree pivots and the chunks are B®-tree nodes.

Although LSMs are typically described quite differently
from Be®-trees, they are often much closer in practice. For
example, LSMs were originally described with each level
consisting of a single sorted array but, for obvious practical
reasons, many implementations break each level into multi-
ple sub-arrays, which correspond roughly to nodes in a B*-
tree. This already opens the door to localized flushing, rather
than level-by-level flushing. The other main difference is that
many LSMs do not perform fractional cascading or maintain
any indexing information from one level to the next, so that
queries must start from scratch at each level. LSM imple-
menters typically assume all this indexing information can
fit in RAM, so that fractional cascading is not necessary. Re-
gardless, this design choice doesn’t interact with flushing.

One important difference is that many LSMs do not
preserve chunk boundaries as they move down the tree. In
a Be-tree, if a key k is the boundary between two nodes

at depth i, then no node below level ¢ will span k. Many
LSMs don’t maintain this invariant. As a result, a single
chunk at a higher level may span the ranges covered by an
unbounded number of chunks on the next level down. This
can stymie any attempt to deamortize flushing, since flushing
a single chunk at one level may require touching the entire
level below it. However, it is easy to add this invariant to
an LSM implementation. Once this is done, each chunk can
include the indexing information of its subordinate chunks
on the next level down, and now we have essentially the
structure of a B®-tree.
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