2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW)

Usable Disk Space Control
Based on Hadoop Job Features

Makoto Nakagami
Electrical Engineering and Electronics
Kogakuin University Graduate School

Tokyo, Japan
cm19036@ns.kogakuin.ac.jp

Abstract—Hadoop is an open-source platform for big data
processing. In the case of analyzing extremely big data, hard disk
drives are usually used. Hard disk drives have different
performance depending on where data is placed on the disk. In
other published work, an approach for improving Hadoop I/O
performance by using features of Hadoop jobs to decide on the
location of data placement was proposed. This approach separates
the entire hard disk drive space into two areas, which are outer
and inner areas. However, this approach did not actively utilize
the fastest available zones in each area. In this paper, we propose
a new method for improving this method by active usage of the
fastest available zones in each area. Our evaluation of the
proposed method with a popular Hadoop benchmark shows that
the new method can improve job performance by 9% when
compared with existing approach.

Keywords—Big data, Hadoop, SWIM, Filesystem

[. INTRODUCTION

Hadoop is an open-source platform for big data processing
based on the MapReduce model [1]. In many cases, Hadoop is
used to analyze large-scale datasets stored and accessed
sequentially in massive storage devices, such as hard disk
drives. In the work [2], We proposed a method for improving
sequential I/O performance of a single job by allocating its files
to the outmost disk locations. In the work [3], We proposed a
method for optimizing file placement location according to
features of the jobs when multiple different jobs are executed
in the Hadoop system.

This paper introduces a method for improving I/O
performance by optimizing file placement location based on job
features [3] and shows its issue. The approach reported in [3]
divides the entire space of the target hard disk drive into two
areas, which are the outer and inner ones, and chooses the area
in which to place each file according to job features. However,
the approach does not effectively utilize the fastest available
zones within each area. The new method proposed in this paper
addresses this issue by forcing files to be stored in the outmost
zones within in each area by specifying what zones are to be
used.

The rest of this paper is organized as follows. Section II
reviews related work. Section III explains the features of SWIM
jobs. Section 0 reviews the existing approach described in [3].
Section V proposes a new method that improves the existing
approach. Section VI comparatively evaluates the proposed and
the existing approach. Section VII discusses the proposed
method. Section VIII concludes this paper.

978-1-7281-5268-4/19/$31.00 ©2019 IEEE
DOI 10.1109/CANDARW.2019.00093

Jose A. B. Fortes
Advanced Computer and Information
Systems (ACIS) Lab, Department of ECE
University of Florida
Gainesville, USA
fortes@ufl.edu

484

Saneyasu Yamaguchi
Department of Information and
Communications Engineering
Kogakuin University
Tokyo, Japan
sane@cc.kogakuin.ac.jp

II. RELATED WORK

A. MapReduce

Here, we introduce the basic MapReduce concepts that are
relevant to the goal of this paper. Additional information can be
found in [1]. Each MapReduce job is composed of three phases,
namely the Map phase, Shuffle phase, and Reduce phase. In the
Map phase, JobTracker splits Input Data in the HDFS into
multiple Input splits. Map tasks are allocated to TaskTrackers.
A TaskTracker receives an Input split, executes the user-
defined Map process, and creates key-value pairs. These key-
value pairs are stored in intermediate files. In the Shuffle phase,
the JobTracker sorts the intermediate key-value pairs, groups
the key-value pairs by the key and transmits them to the
reducers. In the Reduce phase, Reduce tasks are allocated to the
TaskTracker, each TaskTracker executes the user-defined
Reduce process using the received key-value pairs as inputs and
creates outputs.

B. SWIM

SWIM is a workload emulator that can generate practical
MapReduce jobs based on real workloads from a Hadoop cluster
used in production environments such as Facebook. Each SWIM
job has configurable parameters such as input size (bytes) per
map operation, shuffle size, and output size per reduce operation.
Moreover, each job submission interval can be controlled [4]. In
this paper, we evaluate Hadoop performance with various usage
scenarios by varying these parameters in Facebook traces.

III. BASIC PERFORMANCE EVALUATION

In this section, we categorize SWIM jobs as Map-heavy,
Shuffle-heavy, or Reduce-heavy jobs. We then investigate the
1/0, CPU, and disk usages by each job. In our evaluation, the
existing and proposed methods place the files according to these
features.

We executed SWIM jobs on an experimental Hadoop system.
The parameters are set as follows. Submit time and inter job
submit gap is set to one for all the jobs. The Input file size is
20GB. In the case of Map-heavy jobs, only the map input bytes
is set to 1.0 X 102 and the others, shuffle bytes and reduce
output bytes, are set to one. In the case of Shuffle-heavy jobs,
shuffle bytes is set to 1.0 x 102 and the others are set to one.
In the case of Reduce-heavy jobs, reduce output bytes is set to
1.0 X 102 and the others is set to one.

Authorized licensed use limited to: University of Florida. Downloaded on September 18,2020 at 20:25:24 UTC from IEEE Xplore. Restrictions apply.

@1/0 mCPU

ILL

Map-heavy Shuffle-heavy
Fig.1. Average CPU and I/O usage of SWIM jobs

@ The maximum disk usage during exectuion @ The disk usage after execution

6

100.0
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

0.0

Average 1/0 and CPU usage
during execution [%]

Reduce-heavy

5.661

5

~

2.950

2.866

Disk usage [GB]
N w

0.072 0.003 0.011
0
Map-heavy Shuffle-heavy Reduce-heavy
Fig.2. Maximum disk usage during the execution and disk usage after the
execution of SWIM jobs
Existing method Proposed method
Outer zones Inner zones Outer zones Inner zones
Usable area Forbidden area Intermediate file
S — -,
phose? | I o™ o -,
s [Do 1 o 1 F g g

Phase4

(Delete | ..|I""..|I LDelete‘n "'_.nl""_.nl""_.

Deletel

L |

Outer area

Fig.3. File placement of temporal files in the existing and proposed
methods

Phase5

Phase6

T
Inner area

Existing method
Outer zones

Proposed method

Inner zones Outer zones Inner zones

Permanent file

N
W N
e

T
Inner area

Forbidden area Usable area

Phase2 m
Phase3 w

Outelr area
Fig.4. File placement of permanent files in the existing and proposed

methods

Phasel

The Hadoop system is set to the pseudo-distributed mode.
The specification of the computer is as follows: the CPU is
AMD Phenom2 X4 965 Processor, the HDD sizes are 150 GB
and 500 GB, the memory size is 4GB, the OS is CentOS 6.5
x86_64, the kernel is Linux 2.6.32, and the filesystem for the
system file HDD is Ext4, and the filesystem for Hadoop file
HDD is Ext3. Hadoop version is 2.0.0-cdh4.2.1. All the Hadoop
data, including intermediate data, are stored in the 500 GB HDD

485

with the Ext3 format. System files are stored in the 150 GB HDD.
The specification of the HDD for Hadoop data is as follows: its
model is DTO1ACAO050, the interface is SATA3.0 6.0 Gbps, the
capacity is 500 GB, the buffer Size is 32MB, and the rotation
rate is 7200 rpm.

The average 1/0 usage and CPU usage during the execution
of Map-heavy, Shuffle-heavy, and Reduce-heavy jobs are
shown in Fig. 1. The maximum disk usage during executions
and the disk usages after executions of these jobs are depicted in
Fig. 2. These results lead to several conclusions. First, a Map-
heavy job is CPU-intensive. It temporarily stores the
intermediate data in the storage and deletes almost all of these
intermediate data during the execution. Therefore, most of their
files are temporary ones. Second, a Shuffle-heavy job is I/O-
intensive and their files are temporary ones. Third, a Reduce-
heavy job is I/O-intensive and permanently stores the output
data (instead of deleting them). In other words, their files are
permanent ones.

IV. JOB-AWARE FILE PLACEMENT OPTIMIZATION

In this section, we introduce the existing method for
improving the I/O performance of Hadoop jobs by optimizing
file placement based on job features[3]. This method assumes
that jobs are submitted and executed sequentially. This method
avoids placement of permanent files in the outer area and utilizes
the outer area many times.

It divides the target hard disk drive into two areas, the outer
and inner areas. It places files in the outer area according to the
following priority: 1) The file is temporary and is used by an I/O
intensive process. 2) The file is temporary and is used by a non-
I/0 intensive process. 3) The file is not temporary and is used by
an I/O intensive process. 4) The file is not temporary and is used
by a non-I/O intensive process.

In the case of executing Map-heavy, Shuffle-heavy, and
Reduce-heavy jobs, the files of Shuffle-heavy and Map-heavy
jobs are stored in the outer area and the files of Reduce-heavy
jobs are stored in the inner area.

In our implementation, this method is constructed with
ext2/3/4 filesystems [5]. These filesystems create block groups
and every block group has its block bitmap for managing the
usages of its blocks. The method forces Map-heavy and Shuffle-
heavy jobs to use the outer area by setting the bits of the inner
area blocks to 1, which indicates used. This method prevents
Reduce-heavy jobs from using the outer area by changing their
bits into 1. As a result, the permanent files of the Reduce-heavy
jobs are not placed in the outer area.

This method has room to improve performance as shown in
the left area in Fig. 3 and 4. A file for the outer area is not always
stored in the outer zones inside the outer area. Similarly, a file
for the inner area is not always stored in the outer zones inside
the inner area. For example, a file is stored in inner zones in the
outer area in phase 5 in Fig. 3.

V. PROPOSED METHOD

In this section, we propose to improve the existing method
[3] by actively utilizing the fastest zones in each area. The right
sides of Fig. 3 and 4 illustrate the proposed method. This method

Authorized licensed use limited to: University of Florida. Downloaded on September 18,2020 at 20:25:24 UTC from IEEE Xplore. Restrictions apply.

Reduce-h M:

P

h

Map-heavy Group Shuffle-heavy Group

20jobs 20jobs 20jobs 20jobs

map map shuffle | shuffle reduce | reduce map map [

heavy | heavy . heavy | heavy] heavy | heavy o heavy | heavy ~l
[}
[}

'y Group 'y Group

|
1 Shuffle-heavy Group Reduce-heavy Group Map-heavy Group

1 20jobs 20jobs 20jobs
I—" shuffle | shuffle || reduce | reduce m:
heavy | heavy heavy | heavy || hea
Fig.5. Job set.
@ Normal method ~ ®Existing method 8 Proposed method

100,000 91.956
2 90,000 84,562
£
% 80,000 76,983
L=
P 70,000
%é“ 60,000
S 50,000
=}
o 40,000
% 30,000
& 20,000
o
Z 10,000

0

Fig.6. Total execution time of the job set

limits the zones in the area that are usable. As a result, every file
is forced to be placed at the outmost zoned in each area by
dynamically controlling the usable zones.

This method is implemented by three functions, the
monitoring, expanding, and shrinking functions. The monitoring
function periodically checks the number of free blocks in the
filesystem. When the monitoring function detects that the usable
space size is less than a threshold, the expanding function is
invoked to expand the usable space until the size exceeds the
threshold. The shrinking function is called when the monitoring
function detects that the usable space size is more than the
threshold and shrinks the usable space until the threshold.

VI. EVALUATION

In this section, we evaluate the performance of the proposed
method. We executed a job set that is illustrated in Fig. 5. It is
composed of multiple job groups, sequenced as Map-heavy
group, Shuffle-heavy group, Reduce-heavy group, Map-heavy
group, and so on. A job set contains three Map-heavy groups,
three Shuffle-heavy groups, and three Reduce-heavy groups.
Each job group consists of 20 jobs.

In the case of the Map-heavy job group, the map input bytes
is selected from 10'%°, 10'!, 10'>, 10'2, and 10'?° and the other
parameters are set to one byte. Each size job is selected 4 times
in a group. In the case of Shuffle-heavy and Reduce-heavy, only
the shuffle bytes and reduce output bytes are selected from these
five values, respectively. The others are one. Each execution of
a set of jobs starts with the hard disk drive empty and then the
drive is almost fully occupied by the output files of the jobs after
execution of a set. Other setups are the same as Section III.

Fig. 6 shows the average time to complete a job set with 10
executions. Fig. 6 shows that the performance of the proposed
method is the best. The execution time of the proposed method
is smaller than the normal and existing methods by 16.3% and

486

9.0%, respectively. On the contrary, the existing method
outperformed the normal method by only 8%.

VII. DISCUSSION

First, we discuss the monitoring overhead. The proposed
method has to execute a function to keep monitoring the size of
usable space. This function periodically checks the number of
free blocks which is stored in the superblock of the filesystem.
This information is always stored in the page cache except for
the first access. Thus, the effect of this monitoring on I/O
performance is very small. The effect of CPU processing is also
very small. The CPU usage by this monitoring 0.4%.

Second, we discuss an alternative for the control of file
placement location that uses partitions instead of bitmaps. The
existing method could be implemented by creating two
partitions, which correspond to the outer and inner areas.
However, this approach does not allow the control of the file
location inside an area, (i.e. inside a partition). Thus, the detailed
location control of the proposed method cannot be achieved by
simply creating partitions.

VIII. CONCLUSION

In this paper, we reviews a method for improving I/O
performance considering the features of the target jobs and
discussed its shortcomings. We then proposed a new method
that more actively utilize outer zones than the existing method.
Our evaluation demonstrated that the proposed method
improves the performance of the Hadoop jobs by 16.3% while
the existing method did so by 8.0%. The proposed method
outperformed the existing method by 9.0%.

In future work, we plan to extend and evaluate similar
methods for concurrent jobs when Hadoop runs in fully
distributed mode.

ACKNOWLEDGMENT

This work was supported in part by JST CREST Grant
Number JPMJCR1503, Japan. This work was also supported by
JSPS KAKENHI Grant Numbers 26730040, 15H02696,
17K00109. This work is also funded in part by a grant (NSF ACI
1550126 and supplement DCL NSF 17-077) from the National
Science Foundation, USA.

REFERENCES

[1] G. Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified
data processing on large clusters. Commun. ACM 51, 1 (January 2008),

107-113. DOI: https://doi.org/10.1145/1327452.1327492

Eita FUJISHIMA Kenji NAKASHIMA Saneyasu YAMAGUCHI,
"Hadoop 1/O Performance Improvement by File Layout Optimization",
TEICE TRANSACTIONS on Information and Systems, Vol.E101-D No.2
pp.415-427, doi: 10.1587/transinf.2017EDP711

Makoto Nakagami, Jose A.B. Fortes, Saneyasu Yamaguchi, “Job-
aware Optimization of File Placement in Hadoop, ” BDCAA 2019 The
1st IEEE International Workshop on Big Data Computation, analysis,
and Applications, COMPSAC 2019, July 2019.

GitHub - SWIMProjectUCB/SWIM: Statistical Workload Injector for
MapReduce-Project at ucC Berkeley AMP Lab,
https://github.com/SWIMProjectUCB/SWIM

R.Card and T.Ts’o and S.Tweedle, “Design and Implementation of the

Second Extended Filesystem,” First Dutch International Symposium on
Linux, 1994

[2]

[3]

[4]

[5]

Authorized licensed use limited to: University of Florida. Downloaded on September 18,2020 at 20:25:24 UTC from IEEE Xplore. Restrictions apply.

