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Abstract—The rapid growth of mobile devices has spurred
the development of crowd-learning applications, which rely on
users to collect, report and share real-time information. A
critical factor of crowd-learning is information freshness, which
can be measured by a metric called age-of-information (Aol).
Moreover, recent advances in machine learning and abundance
of historical data have enabled crowd-learning service providers
to make precise predictions on user arrivals, data trends and
other predictable information. These developments lead to a
fundamental question: Can we improve information freshness
with predictions in mobile crowd-learning? In this paper, we
show that the answer is affirmative. Specifically, motivated by
the age-optimal Round-Robin policy, we propose the so-called
“periodic equal spreading” (PES) policy. Under the PES policy,
we first reveal a counter-intuitive insight that the frequency of
prediction should not be too often in terms of Aol improvement.
Further, we analyze the Aol performances of the proposed PES
policy and derive upper bounds for the average age under i.i.d.
and Markovian arrivals, respectively. In order to evaluate the Aol
performance gain of the PES policy, we also derive two closed-
form expressions for the average age under uncontrolled i.i.d.
and Markovian arrivals, which could be of independent interest.
Our results in this paper serve as a first building block towards
understanding the role of predictions in mobile crowd-learning.

I. INTRODUCTION

In recent years, the rapid growth of mobile devices (e.g.,
smartphones, tablets, wireless sensors, etc.) has spurred the
development of crowd-learning applications, which rely on
users to collect, report and share real-time information for
a set of points of interest (Pols). Such applications include,
but are not limited to, real-time gasoline price information
sharing (GasBuddy [1]), real-time traffic states (Google Waze
[2]), WiFi hotspots searching (WiFi Finder [3]), etc. Al-
though crowd-learning has become increasingly popular, its
future prospect heavily hinges upon a performance metric
termed information freshness, which is also known as “age-
of-information” (Aol) in the research community. Ensuring
crowd-learned information freshness is critical because fresh
information retains existing users and attracts new users to
participate, which in turn improves the information freshness
and creates a positive feedback loop. Meanwhile, recent ad-
vances in machine learning and abundance of historical data
collected by pervasive mobile devices have enabled crowd-
learning service providers to make precise predictions on user
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arrivals, data trends and other predictable information. These
developments lead to several fundamental open questions: 1)
Can we improve information freshness with predictions in
mobile crowd-learning? 2) If the answer to 1) is “yes”, how
to exploit predictions to achieve better Aol performance? 3)
What are the bounds and limits of prediction-assisted Aol
performance in mobile crowd-learning?

However, analyzing crowd-learning Aol performance with
predictions faces the following challenges: First, there is a lack
of analytical model that takes predictions into consideration
in mobile crowd-learning in the literature. Second, the inter-
actions between arrival patterns, real-time information states
and their predictions are highly complex, where changes in one
factor would significantly affect the others. Third, as will be
shown later, there exists a long-range coupling among different
prediction windows, which significantly increases the difficulty
in analyzing the Aol performance.

As a starting point, in this paper, we focus on a single-Pol
system with predictable arrivals (up to a window size into the
future). In this setting, we address the above challenges and
obtain several fundamental results on understanding the role
of predictions in mobile crowd-learning. The main results and
contributions of this paper are summarized as follows:

« First, we introduce an analytical model for a single-Pol
crowd-learning system with finite-range predictable arrivals,
which takes into account the strong coupling between the
stochastic user arrivals and the Aol of the data. In this
setting, motivated by the age-optimal Round-Robin policy,
we propose the so-called “periodic equal spreading” (PES)
policy, which reshapes the arrivals in such a way that the
inter-arrival times are nearly equalized.

« Then, under the PES policy, we first consider the problem of
choosing an appropriate prediction period, which is referred
to as “step size” in this paper. Towards this end, we reveal
a surprising insight that the prediction frequency should not
be made too often in terms of Aol improvement.

« Finally, we analyze the Aol performance of the PES policy
and establish upper bounds for the average age under i.i.d.
and Markovian arrivals, respectively. In order to evaluate
the Aol performance gain of the PES policy, we also derive
two closed-form expressions for the average age under
uncontrolled i.i.d. and Markovian arrivals, which could be
of independent theoretical interest.

Collectively, our results in this paper serve as a first building
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Fig. 1: A single-Pol predictive crowd-learning system.

block towards understanding the role of predictions in mobile
crowd-learning. The remainder of this paper is organized as
follows: Section II reviews related work. Section III presents
system model and problem statement. Section IV introduces
the PES policy. Section V studies the Aol performance for
i.i.d. and Markovian arrivals, respectively. Section VI illus-
trates numerical results and Section VII concludes this paper.

II. RELATED WORK

As a new performance metric, Aol has recently attracted
increasing attention from the information theory, signal pro-
cessing, and communications communities due to its close
connections and yet clear distinctions from queueing delay.
These key differences between Aol and queueing delay have
sparked intense research in, e.g., real-time sampling and re-
mote estimation trade-off [4], [5], joint source-channel coding
exploitation [6], [7], caching [8], [9], optimization algorithms
for Aol minimization [10], [11], age-based scheduling [12],
[13], just to name a few. However, research on Aol in mobile
crowd-learning remains in its infancy. The most related work
to this paper is [14], where the authors proposed a new
dynamic model that captures the most essential features of
many mobile crowd-learning systems with selfish users. Based
on this analytical model, they considered a linear reward
mechanism and investigated the Aol performance under selfish
user behaviors measured by price-of-anarchy (PoA). We note
that our work differs from [14] in the following key aspects:
i) The model in [14] does not consider any predictions. In
comparison, our focus in this paper is to explore the impacts
of predictions in mobile crowd-learning; ii) While the goal
in [14] was to evaluate the Aol performance of the linear
reward mechanism, the emphasis of this paper is to design an
arrival reshaping policy based on predictions to improve Aol
performance; iii) Unlike the model in [14] that only considered
i.i.d. Bernoulli arrivals, we further consider a more challenging
Markovian arrivals process. Because of these key differences,
the results in this paper are all new.

III. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a mobile crowd-learning system with one Pol as
shown in Fig. 1. The Pol could represent, e.g., a road inter-
section, a parking garage, a WiFi hot spot, a gas station, etc.
We consider a time-slotted system. In each time slot ¢, the Pol
holds some real-time state information (e.g., congestion level,
parking rate and space, gas price, etc.) that is time-varying and
to be sampled by the arriving users. A service provider (i.e.,
a crowd-learning-based information/data analytics platform)

relies on randomly arriving users to sample and report the
state of the Pol.

We assume that in every time-slot ¢, the service provider
can accurately predict a window of future user arrivals, which
is of w time-slots'. Although the natural arrivals of the users
follow some underlying stochastic process, we assume that
the arrival pattern of the users can be reshaped by the service
provider through some reward/incentive mechanism. In other
words, the reward/incentive provided by the service provider
is sufficiently high so that all users are fully cooperative and
willing to change their arrival times. We assume that the time-
slot duration is sufficiently short so that there is at most one
user arriving in any given time-slot. We use A[t] and A[t]
to denote the reshaped and unshaped arrival in time-slot ¢,
respectively. Here, A[t] = 1 (fl[t} = 1) represents that there
is a reshaped (unshaped) user arrival at the Pol in time-slot ¢;
otherwise, A[t] = 0 (A[t] = 0) means if there is no reshaped
(unshaped) arrival in time-slot ¢.

The service provider maintains a record for the Pol. We use
Alt] to denote the age (freshness) of the recorded information
in time-slot ¢, which is defined as A[t] = t—U]t], where U[t] is
the most recent update time for the Pol. We assume that every
user will report the real-time state information when he/she
arrives at the Pol. Clearly, under a reshaped arrival process
{A[t]}+>0, the Aol process {Alt]};>0 evolves as follows:

Alt]+1, if Aft] =0;

0, if Alt] = 1. W

Alt+1] = {
In this paper, we consider both i.i.d. (independent and iden-
tically distributed) and Markovian unshaped arrivals. We also
assume that the Pol serves exactly one user if there is any. As
a result, there is no queueing effect at the Pol. With the above
system setting, a fundamental question is: Given a prediction
window of size w, how could we design an arrival reshaping
policy to change the inter-arrival times of the users, so that the
information freshness of the Pol can be improved? Answering
this question constitutes the rest of the paper.

IV. ARRIVAL RESHAPING POLICY DESIGN

In this section, we take a first step to answering the
fundamental question in Section III by proposing an arrival
reshaping policy called “Periodic Equal-Spreading” (PES).
Towards this end, we first discuss the motivation and rationale
behind the PES policy in Section IV-A, which is followed
by the formal presentation of the general PES policy in
Section IV-B. Then, we will discuss the impact of a key
parameter called “step size” on the performance of the PES
policy in Section IV-C.

A. Motivation and Rationale behind the Policy Design

Before formally stating our PES policy, it is insightful to
take a look at the rationale behind this policy. Our PES policy
is motivated by the fact that the periodic reshaped arrivals of
the users enable us to approximately sample the Pol evenly in

The impacts of prediction errors will be left for our future studies.
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temporal domain in a spirit similar to the Round-Robin scheme
in the spatial domain, which is known to be age-optimal in the
case with multiple Pols (see [14]). Consider the single-Pol
system shown in Fig. 1 with bursty arrivals. For example, the
arrivals follow the pattern that every three consecutive arrivals
are followed by three time slots that have no arrivals, i.e., the
arrival sequence is “111000111000...”, where ‘1’ denotes that
a user arrives at the Pol and ‘0’ denotes no user arrival. In
comparison, consider an alternative “even” arrival sequence
“101010101010. . .,” which has the same arrival rate. Suppose
that the initial age of the Pol is 0. The age evolution processes
of both sequences are shown in Fig. 2.

We can see that the average and peak ages of the bursty-
arrival sequence are twice and three times as high as those of
the even-arrival sequence, respectively. Indeed, it can be shown
that the average and peak ages are both minimized when user
arrivals are equally-spaced between each other in the temporal
domain. This insight inspires us to propose the PES policy in
Section IV-B, which spreads the foreseen arrivals within the
limited prediction window to generate nearly equally-spaced
arrivals to decrease average and peak ages.

B. The Periodic Equal Spreading Policy

The basic idea of the PES policy is that, periodically, given
an arrival sequence that is predicted within a window of size
w into the future, the PES policy reshapes the arrivals in such
a way that the inter-arrival times are (nearly) equalized. The
PES policy is stated in Algorithms 1.

Algorithm 1: Periodic Equal-Spreading (PES) Policy .

Initialization:

1. Choose a step size value s € {1,...,w}. Let i = 1.

Main Loop:

2. In the i-th time-slot, observe the current time-slot and
predict the future w — 1 time-slots to obtain the vector
a; that contains the sequence of arrivals foreseen in the -
th time-slot, i.e., &; 2 [A[i], .. .,A[H—w—l]]T € {0,1}v.
Let n; = ||&;]]1, where || - ||; denotes the ¢; norm.

3. Perform “equal spreading” on &; using Algorithm 2 to
obtain a reshaped arrival sequence a;. Let ¢ = ¢ + s and
go to Step 2.

The “equal spreading” subroutine used in Algorithm 1 is
stated as follows:

Algorithm 2: Equally spreading the predicted arrivals in a;.

1. Given the prediction window size w and the length of the
predicted arrival sequence n; = ||a;||1, compute b; = (w—
n;) mod (n; + 1) and k; = [(w — n;)/(n; + 1)], where
|2] denotes the maximum integer that is not greater than
the real number z.

2. Generate (n; +1 —b;) zero-valued sequences of length k;
and b; zero-valued sequences of length k; + 1.

3. Shuffle these sequences uniformly at random and insert
a “1” element (i.e., an arrival) between every pair of
consecutive intervals. Return the reshaped sequence as a;.

The intuition of Algorithm 2 is that, in order to reshape the
predicted arrivals to be equally spread, we need to equalize
the inter-arrival times. If the number of arrivals n; and arrival
prediction window size w are given, the number of time slots
with no arrivals is w — n;. Thus, one only needs to distribute
these w — n; slots of no arrivals into n; + 1 groups. Let k;
and b; be the quotient and remainder of (w — n;)/(n; + 1),
ie, w—mn; = ki(n+1—10)+ (k; + 1)b. In other words,
(w — n;) zeros could be partitioned into (n + 1 — b;) zero-
valued sequences of length k; and b; zero-valued sequences
of length (k; + 1).

An Example of Equal Spreading: Consider a predicted ar-
rival sequence “000011.” In this case, we have w = 6 and
n; = 2, which entails b, = (6 —2) mod (2 +1) =1
and k; = [(6 —2)/(2+ 1)] = 1. According to Line 2
of Algorithm 2, we generate two zero-valued sequences of
length 1 (i.e., “0”) and one zero-valued sequences of length 2
(i.e., “00”). Shuffling the zero-valued sequences uniformly at
random and inserting a “1” between every pair of adjacent
zero-valued sequences could yield “010100”, “010010” or
“001010.” We can see that any of these reshaped sequences is
more even than the original unshaped arrival sequence. [

In fact, it can be shown that the reshaped arrival sequence
resulted from Algorithm 2 is the “most even” one in the sense
that the lengths of the zero-valued sequences in a; produced
by Algorithm 2 have the minimum variance. We state this
insight as follows (proof details are relegated to Appendix A):

Proposition 1 (Most Even Reshaping). With two natural
numbers M and N such that M > N, define an (N + 1)-
partition of M as a set Xy1 = {X1,..., X411}, where all
X;’s are natural numbers and satisfy Zfitl X; = M. Let
k=|M/N] and b=M mod N. Then, any (N + 1)-partition
of M with (N 4+1—0b) k-valued elements and b (k+1)-valued
elements, denoted as Xy, | |, has the minimum variance in all
(N + 1)-partitions.

C. The Impact of Step Size

Given the PES policy, one important question immediately
arises: How to pick a good step size (cf. Step 1 in Algo-
rithm 1)? A closer look at the PES policy reveals that it
bears close resemblance to the classic MPC method (model
predictive control, a.k.a. receding horizon control [15]) when
the step size s = 1. Specifically, the controller in the MPC
method computes control/optimization decisions over a finite
future time horizon, but only implements the current time-slot
and then computes control/optimization decisions in the next
time-slot again. It has been widely observed that, although
being a heuristic, the MPC method has excellent empirical
performance [16]. Therefore, one may tend to choose s = 1
in our PES policy. Surprisingly, in what follows, we will show
that the “MPC step size” (s = 1) is a poor choice for our PES
policy in terms of the Aol performance.

An Example of the MPC Fallacy: Suppose that the original
arrival sequence is “001000”, and w = 3. When s = 1, the
reshaping under MPC method is shown in Fig. 3, where bold
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Fig. 5: The effects of step size.

line segments and dotted bars denote prediction windows and
arrivals, respectively. We can see that the PES policy places
the future arrival at the center of the current prediction window
when s = 1. This effectively creates a “pushing” effect, which
delays the sampling time of the Pol and leads to worse Aol
performance. The comparison of the age performance between
the unshaped and the reshaped arrival sequences is shown in
Fig. 4. It is obvious that the average age and peak age of the
reshaped arrival sequence are larger than that of the unshaped
arrival sequence when s = 1. O

Now that knowing s = 1 is not preferable, it remains to
choose an optimal step size s € {2,...,w}. Unfortunately,
determining an optimal step size is hard. Particularly, when
s < w, due to the tight coupling and long-range dependence
between prediction windows, it is intractable to characterize
the effect of the step size on Aol in a closed-form expression.
Fortunately, extensive experiments show that there exists a
“phase transition” with respect to the step size. The effects
of step size on an i.i.d. arrival sequence with p = 0.3 and a
two-state Markovian arrival sequence with transition rate being
0.3 are shown in Fig. 5. The window size in the previous two
examples are 50. We can see that when s/w < 0.1, the average
performance is poor. However, once the step size is sufficiently
large (s/w > 0.1), the age performance is insensitive with
respect to s. This phenomenon occurs consistently in all of

Fig. 3: An example of the PES policy Fig. 4: Age performance with MPC
with step size s = 1.

when s =1 and w = 3.

our experiments. Hence, in what follows, we set s = w for
analytical tractability.

V. PERFORMANCE EVALUATION

In this section, we analyze the age performances of PES
policy under both i.i.d. Bernoulli arrivals and Markovian
arrivals. For this purpose, we introduce two key notations,
D; and X f , where D, denotes the number of time-slots from
the time of the last seen arrival to the beginning of the i-th
prediction window, and X is the length of the j-th zero-
valued subsequence within the i-th prediction window. Fig. 6
is an illustration of D; and X7.

Wi

|
- future

’

D, Uxl I x2

Fig. 6: An illustration of D; and X f .

A. Independent and Identically Distributed Bernoulli Arrivals

In this subsection, we consider the simpler case with i.i.d.
Bernoulli arrivals. The results of the i.i.d. Bernoulli arrivals
are not only interesting in their own rights, they also serve as
a foundation for the more complex Markovian arrival case. We
first analyze the age performance without using any reshaping
policy as a baseline.

Theorem 1 (Age of Unshaped i.i.d. Bernoulli Arrivals).
Without any reshaping policy, the expected average age over
an i.i.d. Bernoulli arrival sequence with arrival probability p
can be computed as:

~ 1
E[A]=--1.
p
Proof. First, we introduce a lemma (see Lemma 1 of [17]),

which is useful to prove the stated result:

2

Lemma 1. For any arrival process for which the steady-state
distribution exists, it holds that
1),

E(E[Xﬂ

(g —
where X is the length of the inter-arrival time.

E[A] = 3)

E[X]
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When the arrivals follow the i.i.d. Bernoulli-p distribution,
X isa geometn’cally distributed random variable. Thus, we
have IE[X] L and E[XQ] Var[ J+E[X]? = 5+ % =
[A] = % —1. O

Due to the complex coupling between the arrivals in differ-
ent prediction windows, it is hard to analyze the exact mean
age performance even under the i.i.d. arrival case. Instead,
we provide the following tight upper bound (which is also
validated through simulations).

Theorem 2 (Age Upper Bound of the PES Policy: i.i.d.
Arrivals). With PES policy and s = w, the upper bound of the
expected average age over an i.i.d. Bernoulli arrival sequence
with arrival probability p can be computed as:

_ (1 _\w+1 I E .
E[A] < (1(129)_1) (w;l“imsupZz—lz

[D])

N pw w I—o0 1
wp+1
o )
where
i—1
1
Di]=Y (1—p)*S (kw—=1+=)[1-(1-p)"]

—w(l—p)w}—i-(l—p)wi(iw),w > 1.

Proof. 1f the interval length between two arrivals is X, then
the age sequence during this interval is 0,1,2,--- , X. It
follows that the age sum of this interval is X (X + 1)/2. We
then obtain the age sum of a window by adding the age sum
of each interval within that window. Note that there may be an
initial age at the beginning of each window, which only affects
the age in the very first interval within that window. Recall
that D, is the distance from the last arrival to the beginning
of the i-th window, the initial age of the ¢-th window is D;.
Then the age sum of the ¢-th window can be computed as:

n+1

ZXJ (X] +1)+D; X}, vi>1, (6

where n; is the number of arrivals in the i-th window, X f is the
length of the j-th interval of the i-th window. For convenience,
we will omit “Vz > 1” for the following equations.

As described in Algorithm 2, w — n; = k;(n; + 1) + b; =
ki(n; + 1 — b;) + (k; + 1)b;, which implies that there are
n; + 1 — b; intervals of length k; and b; intervals of length
k; + 1 in the i-th window. Thus, we have:

i+l
1 (L= b k(i) b (i 1) (ki 2)]
Q;Xi(Xi+1)_ 2
_ A Dk 2wy 9 o)
2 ni-i-l

We denote the right hand side of (7) as f(k;), which is a

. . . . . —n; 1
quadratic function with the axis of symmetry being % -3

Since k; = {mHJ we have “’ff 1<k <%= m . Hence,
fki) < f(2=" — §). Then we have:
n1+1
+lw—mn; 1
_ XJ X] 1 L 1 - 1),
Z t)s St ®

Note that we shuffle the inter-arrivals uniformly at random
in our algorithm, the expectation of X7/ resulted from the
shuffling is =", When s = w, D; is mdependent of X1
Hence, it follows that:

E[D;X}] = E[D/JE[X]] = EID,JE|

w — Ny
i

—— (©))

Combining (8) and (9), we further have:

w o W+l _rw—n; w—n; 1
<—= ; —(E[n, .
Elaf]== E[nﬂrl]—i_E[Dl]E{nﬂrl} g Eld
(10)
Note that,
i—1
E[D;] = zp(ni—lani—% Mg = 0,n¢_1_k>0){k‘w
k=0
+E[:;’_nf n1>0} }+P(ni,1,ni,2, s ,TL():O)(“U)

(1)

If the arrivals are i.i.d., then n; and n; are independent if
i # j. It follows that P(n;—y = 0) = (1 —p)", P(ni—1 >
0) =1~ (1-p)*, and E[X]|n; > 0] = E[5 = [n > 0],
Vi, 7. Then, plugging the above back to (11), we have:

" ln;>0) )

n;+1
(12)

EID) =Y (1-p)" {1~ (1-p)"] (b E[ 2"

k=0 ‘
*(iw).

+(1-=p"

From (10) and (12), we can see that, to obtain an upper
bound of E[A}’], we only need to calculate E[n;], B[],
and E[*="[n; > 0]. Towards this end, note that, s = w and

the arrlvals are i.i.d., the following equalities hold:

Eln] = wp, (13)
1 21
E[nz+1}:]§k+1p(n’_k)
- 1 (’LU) k w—k
=>» —|, |p(1—-p)
kzzjok—kl k
_ 1 o _ w+1
B - n; = k)
E[nﬁ—l n1>0}_§k+11— P(n; =0)
_ 1 1—(1-p)** w
It then follows that,
w—="n;] w+1_ _1 (1 W+l
E[m—!—l}_E[ni%—l 1}_1)[1 (1=p)*"]-1, (16)
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p1
2]

Fig. 7: The Gilbert-Elliot model.

—n; 1
|:w i ni>0}=E[w+ -1 ni>0]
1 r1—(1—p)vt
__wt [ (1-p) —(1—p)7"}—1. (17)
1-(1-p» L (w+l)p

Plugging (17) into (12) yields (5). Then, plug (13) and (16)
into equation (10), we obtain

1—(1—p)wtt w+1
Elay]<( 1-p) 1) (=+E[Di] )+
p 2
The upper bound of overall average age can be calculated

wp+1

. (18)

as:
I
_ - E[AW
E[A] < lim sup @ (19)
I—o0 wl
Therefore, with (18) and (19), we arrive at (4). This com-
pletes the proof. O

B. Markovian Arrivals

For the Markovian arrivals, we consider the Gilbert-Elliot
model, which is a two state Markov chain. As shown in Fig.
7, States 0 and 1 represent “no arrival” and “an arrival has
occurred,” respectively. Also, p; and po are the state transition
probabilities, i.e., the transition matrix P is:

P:[l_pl P } (20)

p2 1—p2
Similar to Section V-A, we first establish the following
result for unshaped Markovian arrivals as a baseline.

Theorem 3 (Age of Unshaped Markovian Arrivals). Without
any reshaping policy, the expected average age over a Marko-
vian arrival sequence following the Gilbert-Elliot model can
be computed as:

EA]= — P2
p1(p1 + p2)
Proof. Similar to the proof of Theorem 1, we will use the
Lemma 1 of [17]. Thus we need to know the first and second
moments of the inter-arrival times. For Markovian arrivals, the
inter-arrival time is equivalent to the recurrence time for State
1. Let us denote the stationary distribution vector 7 as [, 71],
where m; (i = 0,1) is the stationary probability of being at
State 7. We also use m;; to denote the expected first passage
time from State ¢ to State j, and mg) denotes its second
moment. Then the first moment of the recurrence time for
State 1 (mq1) can be represented as 1/7;. To calculate mﬁ),
we need the following lemma (see [18, Corollary 2.4.2]).

2n

Lemma 2. The matrix of the second moments of the first
passage time can be computed as:

M = 20y (TIM) g — My, (22)

where 11 is a 2 X 2 matrix with each row being the stationary
distribution m, M = [my;;| is the matrix of the first moments
of the first passage times, My = [0;;m;;] (6,5 = 1, if i = j,
0, otherwise) is a diagonal matrix with elements being the
diagonal elements of M and Mf) = [5ijm§j2-)].

(21) with Lemma 2. For

Next we are going to calculate m;
stationary distribution 7, we have

T =P, (23)
o + T = 1. (24)
With (20), (23) and (24), we can derive:
N D2 b1 }
T = |mg, | = , . 25)
o, m) {pl +Dp2 p1+ P2 (
It then follows that:
P P
Hé {71’0 771} _ [p1£p2 P1£p2:| ) (26)
To T p1+p2 P1-+Dp2
1 1
moo = — = DLEP2 o S BLEPR (o)
o P2 US| D1
mo1 = po1 + (14 mo1)poo, Mo = pio + (1 +mio)p11. (28)
With (27) and (28), we have:
p1+p2 1 P1+p2 0
M= pj Pl‘z-)i}pz ’Md = %2 pitp2 | * (29)
P2 p1 p1
Plugging (26) and (29) into (22), we then derive:
p1+p2 2p;
pitra 4 2 0
2
Mc(l ) = [ b2 0 P p1+p2 + 2pa | 0 (30)
p1 P2

which implies that m(121) = plp# + 21)%2. Then with Lemma 1,
1

_ m?
E[A]=} (50

2 mi1

_1)_ b2

= This completes the proof. [

Next, we state the average age upper bound of the PES
policy under Markovian arrivals.

Theorem 4 (Age Upper Bound of the PES Policy: Markovian
Arrivals). With PES policy and s = w, the upper bound of
the expected average age over a Markovian arrival sequence
(at steady state) following the Gilbert-Elliot model can be
computed as:

E[A] < w+1E[w—m}+E[ni]+1
- 2w n;+1 8w
w—mn;\2 1 & D
yE{(Grr) Jimeuw 75 30 VEIDE
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where
i—1

E[D?] :Z P(ni,h Ni_o, - ,Ni—k=0,1m;_1_p >O){(kw)2

k=0

—m. —na\ 2
+ 2kwE [ 2 0] + B[ (S22 > 0]}
+P(ni_1,ni_2,--- , o :0)(’“1})2 (32)

Proof. Similar to the proof of Theorem 2, Egs. (6) to (8) also
hold for Markovian arrivals. However, for Markovian arrivals,
D; is dependent of Xil, which means that Eq. (9) does not
hold. To address this issue, by Cauchy-Schwarz inequality,
we have:

=(pox)) < EIDTECKF - eiore (52 ]

(33)
Thus, combining (8) and (33) yields:
1 -n; 1
E[AF] < R[S 4 Bl +1)

9 w—n;\2
+EDE(5)].
By the definition of D;, we have the stated result in (32).

Lastly, plugging (34) into (19) leads to the final result stated
in (31). This completes the proof. O

VI. NUMERICAL RESULTS

In this section, we conduct simulations to verify the age
performance under the PES policy for i.i.d. Bernoulli arrivals
and Markovian arrivals in a single-server system. In the
following simulations, we generate 1,000 arrival sequences
of length 100, 000 for each trial uniformly at random.

A. Independent and Identically Distributed Bernoulli Arrivals

First, to confirm the results in Theorem 1, we evaluate the
average age performance without reshaping and the results
are shown in Fig. 8. We can see that the experimental results
perfectly match our theoretical predictions in Theorem 1.

Then, we evaluate Aol performance under the PES policy
with respect to window size for i.i.d. Bernoulli arrivals to
verify Theorem 2 and the results are shown in Fig. 9 (we
only show the case with p = 0.4 due to space limitation).
Out experimental results show that the upper bound stated in
Theorem 2 is tight for window sizes ranging from one to 100.

Finally, we evaluate the Aol performance under the PES
policy with respect to the prediction window size (w = 1
corresponds to the no-reshaping case). As shown in Fig. 10,
under the PES policy, the Aol performance is significantly
better compared to that of the no-reshaping case. Also, the Aol
performance improves as w gets large, which makes intuitive
sense because larger w implies better prediction. However, we
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also note a diminishing return effect: the Aol improvement
becomes increasingly marginal as w gets large.

B. Markovian Arrivals

First, to confirm the results in Theorem 3, we evaluate the
average age performance without reshaping and the results are
shown in Fig. 11. Again, the experimental results perfectly
match our theoretical predictions in Theorem 3.

Then, we evaluate Aol performance under the PES policy
with respect to window size for Markovian arrivals to verify
Theorem 4 and the results are shown in Fig. 12 (we only show
the case with p; = 0.2, po = 0.3 due to space limitation).
Out experimental results show that the upper bound stated
in Theorem 4 is valid. Moreover, the upper bound becomes
sharper as w increases. We note that the looseness of the upper
bound for small w values is mainly due to the approximation
error of the Cauchy-Schwarz inequality.

Finally, we evaluate the Aol performance under the PES
policy with respect to the prediction window size (w = 1 cor-
responds to the no-reshaping case). As shown in Fig. 13, with
reshaping, the Aol performance gain is even more pronounced
compared to that of the i.i.d. Bernoulli arrival cases. Again, the
Aol performance improves as w gets large in the Markovian
arrival cases. Interestingly, the same diminishing return effect
also occurs for Markovian arrivals.

VII. CONCLUSION

In this paper, we strived to understand the impacts of
predictions on information freshness over a single-Pol system.
To answer this question, we first introduced a single-Pol
system model that takes into account the essential features
of predictive mobile crowd-learning. Based on this model
and motivated by the fact that periodic arrivals have better
Aol performance than bursty arrivals, we proposed an arrival
reshaping policy called “periodic equal spreading” (PES) to
generate nearly equally-spaced arrivals to decrease average
and peak ages. To analyze the Aol performance of the PES
policy, we considered two types of arrivals: i.i.d. Bernoulli and
Markovian arrivals. For each type of arrivals, we first derived a
closed-form expression for the average age without reshaping.
Then we established upper bounds for the average age under
the PES policy. Numerical results match our analysis well. We
know that the research on Aol in predictive mobile crowd-
learning remains an under-explored area and many problems
are still wide open. Future directions include extensions to
multi-Pol systems, consideration of prediction errors, and fur-
ther predictions on real-time Pol state information processes.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof. Note that, M = (N +1)k+b = (N+1—b)k-+b(k+1).
Thus X%, is a (N 4 1)-partition of M. Let Yy,1 and
Zny1 be the partitions of k(N + 1) and b, respectively.
It is evident that partitioning M into (N + 1) parts is
equivalent to partitioning k(N + 1) and b into (N + 1)
parts. Then we have X; = Y; + Z;,i = 1,2,...,N +
1. It follows that Var(Xni1) = Var(Yni1 + Zn41) =
Var(Yn+1) + Var(Zy+1) + 2Cov(Yn+1, Znv+1). Note that
Cov(Yn+1,Z2n+1) = 0 since Yy41 and Zn41 are indepen-
dent. Thus, Var(Xn1) = Var(Yn41) + Var(Zn41). Let Cx
be the collection of all possible X 1’s, and Cy, Cz be the
collections of all possible Vn41’s and Zn41’s, respectively.
Then we have:

min  Var(&X = min (Var(Y 1 Var(Z
Xn11€Cx (Xv+1) yN+1€Cy,( (Yn41) (Zn+1))
ZN41€Cz
= min Var + min Var(Z .
Vni1€Cy (Vn1) e, (Zn+1)

Then the minimum variance of )1 can be achieved when
Y; = k, Vi, in which case Var(Yy1) = 0. In addition, since
b < N + 1, the minimum variance of Zx 1 can be achieved
when there are b 1’s and (N — b) 0’s. Thus, XY, achieves
the minimum variance. O]
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