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Abstract
Current implementations of quantum logic gates can be highly faulty and introduce
errors. In order to correct these errors, it is necessary to first identify the faulty gates.
We demonstrate a procedure to diagnose where gate faults occur in a circuit by using
a hybridized quantum-and-classical K-Nearest-Neighbors (KNN) machine-learning
technique. We accomplish this task using a diagnostic circuit and selected input qubits
to obtain thefidelity between a set of output states and reference states. Theoutcomes of
the circuit can then be stored to be used for a classical KNN algorithm.We numerically
demonstrate an ability to locate a faulty gate in circuits with over 30 gates and up to
nine qubits with over 90% accuracy.

Keywords Quantum machine learning · Quantum computing · Quantum gates ·
Quantum algorithms

1 Introduction

Quantum computers are becoming more realizable as we approach the noisy
intermediate-scale quantum (NISQ) era [12]. Tools like the IBM Q-Experience allow
researchers to program and simulate quantum algorithms on a real quantum com-
puter with a small number of qubits. These quantum computers are programmed
using quantum logic gates, which act on the qubits to perform different operations;
however, current implementations of these gates are prone to physical faults such as
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extraneous phase shifts or rotations, which introduce systematic errors into the system
[7,10]. Before error correction protocols can be implemented, it is necessary to iden-
tify the gate producing the error. Here, we propose a preprocessing step to diagnose
gate faults—without altering the circuit itself—by utilizing machine learning.

Machine-learning techniques are powerful tools for classification and pattern recog-
nition, andmuchwork has been done to determine the potential advantages of quantum
machine-learning algorithms [6,14,16]. We consider a hybrid quantum-classical
machine learning technique that utilizes both quantum and classical algorithms. Simi-
lar hybrid schemes have been used to achieve machine-learning capabilities for NISQ
devices [8,15]. Using a hybrid technique, we harness the computational advantage
of quantum systems while utilizing more freely available classical resources such
as memory. Here, we consider a machine-learning algorithm known as K-Nearest-
Neighbors.

K-Nearest-Neighbors (KNN) is a comparatively simple classification algorithm.
KNN takes a training set of d-dimensional vectors that are all labeled with their
respective classifications. Given a new unclassified vector, KNN determines the class
of the vector from the most common class of the k-nearest training vectors. Typically,
the Euclidean distance determines the distance measure between vectors. In quantum
states, the overlap or fidelity between two states acts as a similarity measure that is
analogous to the Euclidean distance [2], and this fidelity is found through a simple
circuit known as a swap test, as shown in Fig. 1 [5]. This swap-test circuit can use
carefully prepared state vectors to evaluate distances between classical vectors in
KNN-style algorithms [9,17].

We utilize a modified version of the swap-test circuit that acts on multi-qubit states.
With this circuit, we define a hybrid quantum-classical machine-learning technique
that compares the output state of a quantum circuit to a series of reference states. We
then determine, from the output of KNN classification, where in the test circuit a gate
fault occurs. We show that with relatively simple reference states and carefully chosen
inputs, we are able to achieve simulated accuracies over 90%, even for relatively large
quantum circuits.

2 Gate-fault classification

We assume that the circuit under test (the test circuit) is of known composition and
has only one physical gate fault. Furthermore, we assume that this gate fault can be
modeled by a physical fault, such as an unintentional rotation or additional phase
factor. In the case of controlled-NOT (CNOT) gates, we also consider the possibility
of amisplaced target or control qubits, such that the intended operation is implemented
incorrectly on a certain qubit rather than another.

We simulate circuits by generating combinations of random unitary gates,
Hadamard gates, and CNOT gates. We model random unitaries using the property
that any unitary gate can be decomposed into elementary quantum gates, as shown in
Ref. [3]. Any unitary operation on n qubits can be decomposed into combinations of
one-qubit unitaries of the form:
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Fig. 1 Swap-test circuit as used in Ref. [5]. The probability of measuring the ancillary bit to be in the |0〉
state directly relates to the fidelity between states |q1〉 and |q2〉. This fidelity provides the Euclidean distance
between two quantum states

A = Φ(δ)Rz(α)Ry(θ)Rz(β), (1)

where Rz and Ry are rotations on the Bloch sphere around their respective axes, and
Φ is a phase-shifting gate. The angles δ, α, θ , and β are the specific parameters that
determine the gate A. We include Hadamard gates, CNOT gates, and phase-shifting
gates along with this combination, which allows us to simulate a general quantum
circuit, since they form a set of universal two-qubit gates [11]. Hadamard gates can
be decomposed either in a manner similar to the unitary gates, or through the Reck
decomposition [13]. We simulate physical defects by altering the arguments of the
decomposition from 0 to 2π or by considering permutations of the CNOT gate (that
is, a CNOT gate operating on various combinations of target and control qubits other
than the intended target and control combination).

Once a test circuit is generated, the KNN training data is populated. We receive
this training data from the output of a diagnostics circuit, which is a modified form
of the swap-test circuit. The diagnostics circuit assumes control of the input to the
test circuit, which can be controlled by sending a string of qubits |q1〉|q2〉 . . . |qn〉, all
of which are in either the |0〉 or |1〉 state. The output of U is the input to the circuit,
hereafter referred to as the input state. Then the output of the circuit on this state is
related to a reference state through many successive controlled-SWAP, or Fredkin,
gates. A single ancillary qubit controls these Fredkins gates. The reference state is
manipulated by sending the same string of initial qubits into a unitary V . (See Fig. 2).

When comparing two single qubits, if the output state of the test circuit |Ψ 〉 is
exactly the same as the reference state |Φ〉, then the probability of measuring the
ancillary bit to be in the |0〉 state is one; however, if the states are slightly different,
the probability of measuring the ancilla in the zero state is determined by:

P(|0〉anc) = 1

2
+ 1

2
|〈Ψ |Φ〉|2, (2)

We can generalize this for comparisons of multi-qubit states:

P(|0〉anc) = 1

2n
+ 1

2n

n∑

i=1

|〈Ψi |Φi 〉|2, (3)
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Fig. 2 Diagnostic circuit for the hybrid KNN technique. A string of n qubits in either the |0〉 or |1〉 states
are fed into unitaries U and V . U is controlled to specify the input state, and V is controlled to specify
the reference state. The input state is then fed into the test circuit. Afterwards, a series of Fredkin gates
perform a controlled SWAP operation between the corresponding qubits of the circuit and the qubits of
the reference state. Each SWAP gate is controlled by an ancillary qubit |0〉anc, which gives a measure of
distance between the output of the circuit and the reference state. For input tests, V is set to be the Quantum
Fourier Transform (QFT)

where this sum of the respective i th qubits of the two states and n is the number of
qubits inputted to the test circuit. This probability is the fidelity between the two states,
given by a special case of the Hadamard test [1].

These probabilities are stored classically. Using d different input and reference
state pairs, we construct a d-dimensional classical vector S that contains the measured
probability for each set of states such that:

S = [P1, P2, . . . , Pd ]. (4)

Here, Pi is the probability, as described in Eq. 2, associated with the i th pair of
comparison states. This vector is then stored and retrieved classically, allowing for its
use in a classical KNN algorithm. This algorithm comes equippedwith a set of training
vectors that are already classified. We then provide new vectors for the algorithm to
classify. The algorithm obtains the Euclidean distance between the new vector and
each vector in the set of training data. We specify a parameter, k, and the k-nearest-
neighbors are queried for their assigned class. The test vector obtains the class of the
majority of its neighbors. In this case, the classes of the algorithm are the identities of
the various gates in the circuit. This procedure can be weighted so that more emphasis
is placed on the classes of vectors closer to the test vector, and k can be adjusted to
increase accuracy. For the purposes of this paper, majority vote is used to determine
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Fig. 3 This quantum repeater circuit [4] is used as a test for theKNNalgorithm. Since it is entirely composed
of Hadamard and CNOT gates, it should be more difficult to classify than a less repetitive circuit. With
unitary-controlled input states, the four-dimensional KNN algorithm achieves accuracies of approximately
95%. By restricting ourselves to only inputting |0〉 states, as pictured above, the accuracy drops down to
78% for the same classification algorithm, or to 80% with more reference states

the class of the test vector. The diagnostic circuit provides the new test vector, which,
in turn, is classified using KNN. Thus the output of the machine-learning algorithm is
the identity of the faulty gate.

3 Results

We simulated results of the diagnostics algorithm for both randomly generated circuits
as well as a known test circuit. For each circuit generated, 200 different random errors
were created for each gate. Eighty percent of this data was used to train the classical
KNN algorithm. The remaining twenty percent was employed as a test. Each circuit
was queried using four comparison states, which means the vectors used for the KNN
protocol were four-dimensional.

3.1 Quantum repeater circuit

As a preliminary test run, we simulate the results on a known circuit as a proof-of-
concept. We use the circuit given in Ref. [4], also shown in Fig. 3. This protocol
was chosen since it uses only four qubits and has approximately thirty gates which
are all either CNOT or Hadamard gates. Since this circuit is highly repetitive, the
algorithm struggles more to accurately classify which gate is faulty, since it can be
easily confused by identical gates at different portions of the circuit. One example
of this confusion can be seen when two Hadamard gates act sequentially on the first
qubit, creating an ambiguity in the classification as the simulation alters both gates
independently. Therefore, this circuit is a rather extreme example.

This circuit also requires a specific input state (namely all |0〉) to function as
designed. As such, we consider both the case where we control the input with a
unitary, as before, and the case where we do not. For this circuit, the average simu-
lated accuracy with input control was around 95% for both the cases when V was a
multi-qubit Hadamard or the QFT. Enforcing the restriction to the all-zero input case,
the average accuracy dropped to 78% when using the same comparison states. By
altering the number of reference states or the k parameter, it is possible to raise this
value slightly to 80%.
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Fig. 4 A comparison of different input states to the test circuit when scaling the number of qubits. The All
Zeros Input data refer to an input of only |0〉 states, the Basis States data refers to an input of a series of |0〉
and |1〉 states, and that same series of |0〉 and |1〉 is fed either into a multi-qubit Hadamard or a QFT for
the final two sets of data. Both the Hadamard and the QFT consistently give accuracies above 90% for all
simulated data

3.2 Randomized circuits

We use the results from randomly generated circuits to determine appropriate choices
for the unitariesU and V (Fig. 2). Theoretically, the ideal reference state would be the
output of the test circuit when no fault has occurred [5,17]; however, in practice these
outputs could be complicated to produce and may require a working duplicate of the
test circuit. We therefore look for comparatively simple unitaries that can be reliably
implemented and are stable — this choice provides a high degree of accuracy for a
variety of circuits. Choices for the input and reference states included the following:
only using all |0〉 states in the input (denoted All Zeros Input in the figures), a mix of
|0〉 and |1〉 states (denoted Basis States), the same mix of |0〉 and |1〉 states operated on
by a multi-qubit Hadamard gate (Hadamard), and the same mix of zero and one states
acted on by a quantum Fourier transform (QFT). The all zeros, basis, and Hadamard
options were chosen due to their simplicity and repeatability. The QFT was chosen
due to its property of being a maximally mixing unitary.

Upon simulating the various choices for reference states, the QFT was shown to be
themost stable and accurate reference, and thus it is used as the reference unitary V for
all input tests. In Fig 4, we compare the various choices forU as the number of qubits
in the test circuit increases. Although matching the reference state to the input with a
QFT performs optimally, at a steady rate of 99% accurate, the relative complications
in implementing the QFT make that combination less practical. In comparison, using
a QFT reference state and letting U be a multi-qubit Hadamard achieves simulated
accuracies of greater than 90% for up to nine qubits–while being simpler to implement.

The combination of the Hadamard and QFT unitaries performs similarly well when
considering six qubit circuits of various lengths (see Fig. 5). Compared to the input
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Fig. 5 A comparison of different input states to the test circuit when scaling the total number of gates. The
All Zeros Input data refer to an input of only |0〉 states, the Basis States data refers to an input of a mix
of |0〉 and |1〉 states and that same mix of |0〉 and |1〉 is fed either into a multi-qubit Hadamard or a QFT
for the final two sets of data. Both the multi-qubit Hadamard and the QFT produce high accuracy even for
large circuits

states which are not modified by a unitary transformation, the Hadamard and QFT
show little dependence on the length of the circuit itself or in the number of qubits.
The latter is likely due to the scaling of the diagnostics circuit with respect to the
number of qubits, and the former arises from the companion fact that the classical
KNN algorithm used to classify faulty gates is kept to a relatively small dimension.
These two properties circumvent the loss of accuracy seen in typical KNN schemes
when the dimensionality of the training space is allowed to grow.

4 Discussions and conclusions

We propose a hybrid quantum and classical machine learning algorithm capable of
identifying the faulty gate in a given circuit. Using a set of unitary gates to control
the input and reference states, we show simulated accuracies of greater than 90% for
up to nine qubits and 30 gates in a circuit. In all general cases, we have considered
only a four-dimensional KNN algorithm. The number of dimensions can be altered for
specific implementationswhen necessary to improve accuracy. In the example repeater
circuit, where the input cannot be meaningfully manipulated, using more reference
states–and thus increasing the dimensionality of the classical algorithm–has shown
increased accuracy to around 80%.
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