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Summary 48 

(1) Leaf venation networks evolved along several functional axes, including resource 49 

transport, damage resistance, mechanical strength, and construction cost. Because 50 

functions may depend on architectural features at different scales, network architecture 51 

may vary across spatial scales to satisfy functional tradeoffs.  52 

(2) We develop a framework for quantifying network architecture with multiscale statistics 53 

describing elongation ratios, circularity ratios, vein density, and minimum spanning tree 54 

ratios. We quantify vein networks for leaves of 260 southeast Asian tree species in 55 

samples of up to 2 cm2, pairing multiscale statistics with traits representing axes of 56 

resource transport, damage resistance, mechanical strength, and cost.  57 

(3) We show that these multiscale statistics clearly differentiate species’ architecture and 58 

delineate a phenotype space that shifts at larger scales; functional linkages vary with 59 

scale and are weak, with vein density, minimum spanning tree ratio, and circularity ratio 60 

linked to mechanical strength (measured by force to punch) and elongation ratio and 61 

circularity ratio linked to damage resistance (measured by tannins); and phylogenetic 62 

conservatism of network architecture is low but scale-dependent. 63 

(4) This work provides tools to quantify the function and evolution of venation networks. 64 

Future studies including primary and secondary veins may uncover additional insights. 65 

 66 
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Introduction 70 

Leaves have venation networks with architecture that varies widely, from a single vascular strand 71 

(e.g. pines) to purely branching structures (e.g. Ginkgo) to open net patterns (e.g. many ferns) to 72 

mostly parallel structures in monocots, to highly reticulate patterns in many angiosperms. 73 

Networks vary over multiple spatial scales, with several levels of branching at length scales from 74 

10-5 m (the radius of a single vein) – 100 m (the length of some large leaves) (Roth-Nebelsick et 75 

al., 2001; Sack & Scoffoni, 2013). We define spatial scale as a characteristic feature of the 76 

network with a certain extent, e.g. the area of a vein loop, or the radius of a vein.  77 

Network architecture may be closely linked to multiple functions (Ronellenfitsch & 78 

Katifori, 2019). Selection could act to maximize efficiency of resource transport, resistance to 79 

damage, mechanical strength, or to minimize total construction cost (Blonder et al., 2018). For 80 

resource transport, veins are implicated in photosynthesis and transpiration, as vein-mediated 81 

resource transport comprises a large portion of total leaf conductance in most species (Brodribb 82 

et al., 2007), though variation in other tissues (e.g. bundle sheath extensions) may also be 83 

important (Ohtsuka et al., 2018). For resistance to damage, the presence of loops in the network 84 

(Katifori et al., 2010) could prevent the propagation of embolisms that reduce conductance under 85 

low water potential (Brodribb et al., 2016), as well as the propagation of tears or cracks (Vincent, 86 

1982; Niklas, 1999) caused by wind or herbivores. Additionally, defensive secondary 87 

compounds (e.g. latex) transported by the network could promote further resistance against 88 

herbivory (Agrawal & Konno, 2009), as damaged leaves with redundant flow pathways could 89 

still deliver latex or other signaling molecules to other portions of the leaf. For mechanical 90 

strength, the network could provide a skeleton that allows leaves to remain upright in wind, 91 

ultimately supporting photosynthesis (Givnish, 1979; Givnish et al., 2005). For construction cost, 92 

lignified tissue comprising veins is costly to construct relative to other tissues (John et al., 2017), 93 

and may also displace leaf volume that could be allocated to photosynthetic functioning. Thus, 94 

the realized network architecture may reflect trade-offs among these different functions. 95 

These functional tradeoffs and network architecture may both contribute to function at a 96 

range of spatial scales within a leaf. Thus, network features of different spatial scales may make 97 

varying contributions to functioning. For example, minor veins contribute more to conductance 98 

and photosynthesis due to their close spacing and disproportionate impact on hydraulic resistance 99 

(Brodribb et al., 2007; McKown et al., 2010). Conversely, major veins contribute more to cost 100 
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(John et al., 2017) and mechanical strength (Hua et al., 2019) due to their disproportionate mass 101 

allocation.  102 

From an evolutionary perspective, some aspects of network architecture may be more 103 

labile than others. Larger-scale veins could be phylogenetically conserved over deeper time 104 

(Ellis et al., 2009). Smaller-scale vein patterns are thought to evolve more quickly and show 105 

developmental plasticity (Sack & Scoffoni, 2013).  106 

At a single scale (e.g. of minor veins, typically ~10 µm radius), network architecture can 107 

be described using a range of geometrical or topological statistics (Table 1). Single-scale studies 108 

of network architecture and leaf function have sometimes produced clear functional linkages, 109 

e.g. between vein density and resource transport, or between vein branching and defense 110 

chemistry (Blonder et al., 2011; Blonder et al., 2016; Blonder et al., 2017; Hua et al., 2019), but 111 

in other contexts have not, e.g. between vein density and traits associated with cost, like leaf 112 

mass per area (Li et al., 2015). Recent models linking network architecture to leaf function 113 

(Blonder et al., 2011) have neglected this multiscale variation.  114 

If network function varies across spatial scales, then network architecture should also be 115 

described across spatial scales, to better understand the diversity of evolved forms and the rules 116 

underlying this multiscale architecture. While such a perspective is sometimes implicit (Sack et 117 

al., 2012; Sack & Scoffoni, 2013; Hua et al., 2019; Kawai & Okada, 2019), prior studies have 118 

used categorical descriptors to characterize features at other spatial scales (Sack & Frole, 2006; 119 

Sack et al., 2008; Ellis et al., 2009). 120 

There is a need for multiscale description of venation network architecture, as well as for 121 

comprehensive assessment of its implications for multiple leaf functions. Recent efforts have 122 

focused on the idea of hierarchical loop decomposition (HLD) (Katifori & Magnasco, 2012; 123 

Mileyko et al., 2012; Ronellenfitsch et al., 2015). In this approach, a leaf venation network is 124 

considered as comprising a set of loops that are nested within each other. The leaf can be 125 

partially summarized via a hierarchical tree describing how smaller loops are nested within 126 

larger loops, and the statistical properties of the tree (e.g. nesting ratio, topological length) can be 127 

used to characterize variation between species. This approach provides an advance in terms of 128 

explicitly considering architecture across spatial scales. However, empirical applications of this 129 

framework have been constrained by limited venation data and by the unclear linkage between 130 
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the hierarchical tree properties and hypotheses about leaf functioning (Ronellenfitsch et al., 131 

2015).  132 

 133 

Framework for multiscale venation statistics 134 

Here we present a framework, built on HLD concepts, to define multiscale venation statistics. 135 

The goal of the framework is to describe scale transitions in network architecture statistics (Table 136 

1), so that a set of single-scale statistics {𝜔!}, can be transformed into a set of continuous 137 

functions {𝜔!(𝑟)} , where r is a metric of spatial scale. 138 

HLD analyses are based on ‘spatial graph’ extractions of leaf venation networks, i.e. with 139 

all vein segments described in terms of their position, length, radius, and connectivity with other 140 

vein segments, and all areoles described in terms of their area and shape. The network extraction 141 

step can be carried out using software available in Xu et al. (2020). This information is necessary 142 

to determine which areoles are nested within which other areoles. Loops are defined either in 143 

terms of regions wholly enclosed by veins, or regions enclosed by veins and leaf boundary; 144 

regions not wholly enclosed by veins (e.g. due to cropping of an input image) are excluded from 145 

the analysis. Vein segments that constitute boundaries between loops are identified and described 146 

in terms of their radius (r). Then, a pair of loops with the minimum radius boundary segment 147 

(rmin) are fused together, and the boundary segment is deleted from the network. This process 148 

begins with fusing the areoles linked by the vein with the smallest rmin, and is iterated until all 149 

loops are fused together into one large loop representing the entire leaf, with rmin equal to the 150 

width of the largest vein segment (Figure 1). Only loops that are complete are considered (i.e. 151 

excluding those cut off by the image boundary). Large veins are split into multiple segments 152 

spanning branching points with other segments. 153 

Single-scale statistics {𝜔!} are then calculated at each of the network fusion steps, where i 154 

indexes the various statistics. If a network has n boundary vein segments, then the hierarchical 155 

loop decomposition will yield n values of {𝜔!}, each at a different value of r. The outcome of 156 

this process is a scale-dependent description of the network that remains when considering only 157 

veins above a certain size class. 158 

These {𝜔!} values can then be converted into multiscale statistics, {𝜔!(𝑟)}, which 159 

encapsulate the scale transitions that may occur in network architecture. Importantly, not all 160 

leaves will have veins present at all scales. Thus, to obtain scale-dependent functions, the first 161 
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step is to construct a hurdle function describing the presence or absence of a vein at a given 162 

scale, {𝜂!(𝑟)}. Next, if veins are present, i.e. {𝜂!(𝑟)} ≠ 0,	a ‘multiscale statistic’ {𝜎!(𝑟)} is 163 

constructed describing the statistic of interest, e.g. VD(r), which is the vein density across scales. 164 

The final function is: 165 

𝜔!(𝑟) = .𝜂!
(𝑟) = 1, 𝜎!(𝑟)

𝜂!(𝑟) = 0, 𝑁𝐴  166 

Estimation proceeds by binning the data into uniform ranges of r, then calculating bin-median 167 

values of 𝜂! and 𝜎!. Using raw data leads to undesirable sample size – network scale correlations, 168 

while fitting functional forms to the curve via regression is not necessarily appropriate because 169 

the 𝜔! values are piecewise continuous rather than fully continuous, i.e. include gaps where no 170 

features of a given size class exist. Vein absences can arise either because a vein is truly absent 171 

at a scale, or because the sampled area was too small to be representative (i.e. undersampling). If 172 

the input network is complete (i.e. comprising a whole leaf) then the absences are real, because 173 

the input data are a statistical population rather than a statistical sample. In leaf subsections, 174 

however, undersampling biases may be important. In these cases, one can assume that network 175 

architecture falls on a scale continuum over the scale range of the data, i.e. 𝜂!(𝑟) = 1 for all r, 176 

and then 𝜎!(𝑟) can be gap-filled using interpolation.  177 

Sampling limitations can also increase the frequency of gaps and/or bias estimates. The 178 

sampling uncertainty in 𝜔! necessarily increases with increases in r. This is because the number 179 

of network components must decrease as portions of the network are deleted. Therefore, analyses 180 

should be restricted to ranges of r where more than a certain fraction of samples have 𝜂!(𝑟) = 1. 181 

Once the multiscale statistics are estimated, they can be used to describe variation among 182 

leaves and species, and to serve as potential predictors of leaf function. To proceed, one can use 183 

the values directly, or can reduce them to scalars like the linear slope estimate of 𝜔!(𝑟) vs. r. 184 

When using the predicted values of {𝜔!(𝑟)} in regression analyses, it is necessary to account for 185 

the non-independence of values at similar spatial scales, e.g. via partial least squares (PLS) 186 

methods. 187 

 188 

Hypotheses about trade-offs between network architecture and function 189 

We focused on traits related to four multiscale statistics: vein density (VD), the mean elongation 190 

ratio of loops (ER), loop circularity (CR), and the minimum spanning tree ratio (MST) (Table 1). 191 
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We also focus on linking them to four leaf functions (resource transport, damage resistance, 192 

mechanical strength, and construction cost) (Table 2).  193 

VD, ER, and MST have been shown to capture leading axes of variation in network 194 

architecture across many species at single scales (Blonder et al., 2018), while CR(r) may reflect 195 

relative allocation of vein perimeter relative to loop area (Blonder et al., 2011). Based on the 196 

availability of trait data in this study, we represented resource transport by maximum 197 

photosynthetic capacity (Amax in common usage), though recognizing that this metric of carbon 198 

flux does not fully represent water fluxes, i.e. maximum hydraulic conductance (Brodribb et al., 199 

2007), for which we did not have data. Damage resistance was represented by tannin fraction, as 200 

this type of secondary chemistry is commonly used as an herbivory defense (Coley & Barone, 201 

1996). To represent mechanical strength we used force to punch, as this is a direct metric of 202 

strength (Pérez-Harguindeguy et al., 2013). Finally, we represented cost by leaf mass per area, as 203 

dry mass investment is strongly related to tissue construction cost (Poorter et al., 2009). 204 

Specifically, we asked 1) whether multiscale statistics enable useful measurement of 205 

species network architecture, 2) whether network architectures vary systematically across spatial 206 

scales, 3) whether expected architecture-function trade-offs are supported across different spatial 207 

scales, and 4) whether the phylogenetic conservatism of architecture varies across spatial scales. 208 

Then, we hypothesized that: 209 

1. the four statistics of network architecture will represent statistically independent axes 210 

of variation, such that a wide range of network architectures are possible. 211 

2. different portions of the architectural space will be occupied at different scales. That 212 

is, network architecture will shift systematically as scale increases. 213 

3. distinct trade-offs exist between network architecture and functioning across spatial 214 

scales (Table 2). We predict that resource transport will be positively linked to VD(r) 215 

at small values of r, due to the importance of small veins in determining hydraulic 216 

conductance (McKown et al., 2010), as well as, positively linked to MST(r) across 217 

scales, as more tree-like networks distribute resources better (Katifori et al., 2010). 218 

Damage resistance will be negatively linked to MST(r) and CR(r) across scales, as 219 

high secondary chemistry investment may offset investment in redundant flow 220 

pathways. Mechanical strength will be positively linked to VD(r) at large scales, as 221 

large veins may contribute disproportionately to stiffness and because lignified vessel 222 
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sclerenchyma are associated with fracture resistance (Choong et al., 1992), and 223 

negatively linked to ER(r) at small scales, as more parallel-veined laminas may be 224 

easier to tear. Cost will be positively linked to VD(r) at large scales, due to the 225 

importance of large veins (which are lignified and dense) in determining total leaf 226 

cost (John et al., 2017). 227 

4. phylogenetic niche conservatism in all network multiscale statistics will be lowest at 228 

small values of r due to their presumed development and evolutionary lability (Trivett 229 

& Pigg, 1996; Roth-Nebelsick et al., 2001; Ellis et al., 2009). 230 

We tested these hypotheses using a phylogenetically diverse set of 260 tree species in a forest in 231 

Malaysian Borneo. Our analysis was based on leaf samples of ~ 2 cm2, which contained veins of 232 

several orders but typically did not include primary or secondary veins. 233 

 234 

Materials and Methods 235 

This study integrates venation network imagery (Blonder et al., 2019) with functional trait data 236 

that were collected from the study sites (Table 3) (Both et al., 2018). 237 

 238 

Sites and sampling design 239 

Samples were collected in Malaysian Borneo during July-December 2015, within eight 1-ha 240 

permanent forest plots comprising mixed dipterocarp lowland forest (Table 3). We pooled data 241 

from all sites, as this study focused on functional and evolutionary rather than environmental 242 

questions. Vouchers are stored at the Danum Valley Field Centre, Sabah, Malaysia. 243 

Within each plot, all trees ≥ 10 cm in diameter at breast height (DBH) were identified and 244 

measured for DBH and height. Branches of 2-4 cm diameter were then collected using rope 245 

climbing or pole pruning techniques. Branches were collected from species with highest 246 

contribution to biomass, i.e. species comprising the top 70% of plot basal area. Additional leaves 247 

of rarer taxa were also collected from all trees in three 20 × 20 m subplots within each plot. 248 

When possible, both sunlit and shaded branches were collected from each tree, resulting in 249 

sampling heights across the range of 2 – 53 m. 250 

 251 

Venation networks 252 
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A single mature undamaged leaf was collected from each branch, cleaned with a wet rag, then 253 

pressed flat and dried at 60°C for several days. A 1-4 cm2 section was then cut from each leaf 254 

midway from the base to the apex and midway from a primary vein to either another primary 255 

vein (for palmate leaves) or to the margin (for pinnate leaves). These dried sections were 256 

rehydrated to reverse the effects of sample shrinkage (Blonder et al., 2012) and chemically 257 

cleared and stained (Pérez-Harguindeguy et al., 2013; Blonder et al., 2018). 258 

Samples were mounted on glass slides and imaged using a compound microscope 259 

(Olympus, BX43) with 2x apochromat objective and a color camera (3840 × 2748 pixel 260 

resolution; Olympus, SC100). Approximately 16 image fields were then stitched together to 261 

obtain a full image of each sample (resolution 595 px mm-1). Image contrast was enhanced using 262 

a contrast-limited adaptive histogram equalization on the green channel of each image. Images 263 

were then imported into GIMP (GNU Project) image-editing software and the boundaries of the 264 

sample (vs. background) were manually delineated with a polygon. Next, an approximately 265 

700×700 px2 region in each sample was manually segmented using a tracing tablet. The hand-266 

traced vein images were then segmented into binary representations, in which vein pixels were 267 

given one value, non-vein pixels another value, and image background a NA value. 268 

These validated data (comprising 686,881,432 manually segmented pixels) were used to 269 

train a machine learning algorithm, as described in Xu et al. (2020). An ensemble of 6 270 

convolutional neural networks (CNNs) was developed, with each network implemented via a U-271 

Net architecture (Ronneberger et al., 2015). To avoid overfitting, input image data were 272 

repeatedly rotated and scaled during training. Each CNN was trained on 5/6 of the input dataset 273 

and predicted using a sliding window approach on the remaining 1/6. Probability outputs were 274 

then averaged across all CNNs in the ensemble and converted to binary predictions using a 275 

threshold determined by Receiver Operating Characteristic (ROC) plots based on the prediction 276 

relative to the manually delineated validation region in each image. The algorithms sometimes 277 

under-segmented large veins that were not included in the validation dataset. Any veins with 278 

widths greater than approximately 500 µm were also manually segmented throughout the entire 279 

sample. These segmentations were then added to the CNN-based segmentations. Segmentations 280 

were then masked to the manually delineated boundaries. A total of 32,815,701,653 pixels were 281 

algorithmically segmented using this methodology. 282 
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The segmented images were then filtered, so that images with sample areas less than 90 283 

mm2 and Fbeta2 scores lower than 0.8 were discarded. Among the retained images, the 284 

segmentation quality was high (Fbeta2 mean=0.95 ± 0.03 s.d.). A small number of images were 285 

assigned new branch codes different than those in the original image dataset, based on recent 286 

revision of handwritten sample labels (Table S1). 287 

Spatial graph representations of the networks were extracted from each segmented image. 288 

Next, all unique loops and their boundary vein segments were identified. Unclosed loops (on the 289 

boundary of the sample) were removed from the analysis. The four architectural network 290 

statistics (Table 1) then were obtained following Xu et al. (2020). 291 

After calculating these statistics, the network was iteratively pruned, and loops fused, by 292 

sequential removal of the smallest remaining boundary vein segments. After calculating these 293 

statistics, the network was iteratively pruned, and loops fused, by sequential removal of the 294 

smallest intervening vein segment. After each fusion event, vein and areole metrics were re-295 

calculated, along with the minimum vein radius (rmin, µm). Multiscale statistics were truncated to 296 

the 0 – 0.2 mm range of rmin to minimize undersampling biases (Supporting Information 297 

Figure S1), though veins of up to 0.58 mm were present in the data. 298 

 299 

Trait measurements 300 

Traits were measured from each branch using mature undamaged and cleaned leaves. Different 301 

leaves were used for each trait, then data were pooled at branch level. Measurements are 302 

described in Table 2 and in Both et al. (2018). 303 

 304 

Statistical analysis 305 

We first constructed multiscale statistics for each leaf by binning data into 50 rmin bins spanning 306 

0 – 0.2 mm. As we worked with leaf subsections, the absence of veins at a certain scale could be 307 

caused either by true absences or by undersampling. In cases where 𝜂!(𝑟) = 0	occurred, we used 308 

two approaches. In the first approach, we assumed undersampling, then set 𝜂!(𝑟) = 1 and filled 309 

the missing values of 𝜎!(𝑟)	using linear interpolation. Extrapolation was handled by using the 310 

value at the closest data extreme. In the second approach, we assumed the data were accurate as 311 

observed, then separately modeled the 𝜂 and 𝜎 components of 𝜔. For all the analyses described 312 

below, except the test of Hypothesis 3, we only used the first approach, as the large number of 313 
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incomplete cases prevented application of the necessary statistics. Analyses were conducted 314 

treating branches as independent and identically distributed random replicates. 315 

To determine the independence of architectural axes across scales (Hypothesis 1), we 316 

carried out a principal component analysis across the four axes of VD, ER, CR, and MST, using 317 

values for each leaf at each scale as replicates. We then assessed variance allocated to each 318 

principal component to determine the relative independence of axes.  319 

To evaluate whether different portions of the architectural space are occupied at different 320 

scales (Hypothesis 2), we also visualized the principal component scores using convex hulls and 321 

95% confidence ellipses at each scale.    322 

To assess evidence for architecture-function trade-offs across scales (Hypothesis 3), we 323 

used two complementary approaches. In the first approach, we carried out partial least squares 324 

(PLS) regressions for each of the functional traits. Functional traits were treated as response 325 

variables and the multiscale statistics in each bin as predictors. PLS allows for incorporation of 326 

non-independence of the statistics across scales. All four multiscale statistics were included as 327 

predictors. Each multiscale statistic was z-transformed before analysis to improve comparability 328 

of parameter estimates across multiscale statistics. For all models, most of the variation was 329 

explained by the first component, so we restricted analysis to this component. We reported the 330 

variance explained by the first component, and also assessed the scale-dependent effect of each 331 

venation trait at each scale as the value of the respective loading coefficient. Each hypothesis 332 

was then tested by examining plots of loading coefficients vs. rmin. 333 

In the second approach, we used ordinary least squares regression models, one for each 334 

functional trait, multiscale statistic, and rmin binned value combination. At each combination, we 335 

pooled data for all species with 𝜂!(𝑟) = 1 (i.e. only those species with observed veins at that 336 

scale). We then conducted the regression using the functional trait values as the response 337 

variable and the 𝜎!(𝑟) values as the predictor variable. We reported the overall variance 338 

explained by the regression and the slope estimates. This approach does not account for non-339 

independence of data across spatial scales, or non-independence of predictors, nor does it allow 340 

us to assess statistical significance (due to the high false-discovery rate). However, it does allow 341 

for use of more data in each analysis, as missing cases do not need to be dropped or interpolated. 342 

To determine levels of phylogenetic niche conservatism across scales (Hypothesis 4), we 343 

used the binned values of each multiscale statistic. For each spatial scale and each multiscale 344 
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statistic, we computed the K statistic (Blomberg et al., 2003). Values of K<1 indicate faster trait 345 

evolution than expected under a Brownian model (trait lability), while values of K>1 indicate 346 

slower trait evolution (phylogenetic niche conservatism). The tree was estimated based on two 347 

recently published mega-trees (Jin & Qian, 2019). 348 

All statistical analyses were conducted in R software (version 3.5.1), using the 349 

V.PhyloMaker, ape, and pls packages. 350 

 351 

Results 352 

The final merged vein and trait dataset included 639 branches from 260 species in 47 angiosperm 353 

families. Overall, rmin ranged from 13 – 68 µm (1% – 99% quantiles), and network extents 354 

ranged from 94 – 180 mm2 (1% – 99% quantiles). For visual clarity, we discuss the results in the 355 

context of four species selected to illustrate contrasting network architectures (Figure 2) – 356 

Dryobalanops lanceolata (Dipterocarpaceae), Pometia pinnata (Sapindaceae), Mallotus wrayi 357 

(Euphorbiaceae), and Horsfieldia crassifolia (Myristicaceae). 358 

 359 

Quantification of species network architecture across scales 360 

All four multiscale statistics demonstrated high variation among species, as well as complex 361 

patterns across spatial scales (Figure 3), giving support to our Hypothesis 2. In general, 362 

relationships for each multiscale statistic were consistent among leaves within species, i.e. 363 

intraspecific plasticity for network architecture traits was low, but variation between species was 364 

high. Data for focal species are shown in Figure 3, with data for all species in Supporting 365 

Information Figure S2-S5. 366 

Some species maintained low values of ER(r) (𝐸𝑅 ≈ 1) across scales (Figure 3a, 367 

Supporting Information Figure S2), reflecting circular loops nested within larger circular 368 

loops. Other species showed sharp increases (𝐸𝑅 ≈ 5 − 10) at rmin  ≈ 0.1 mm, reflecting nesting 369 

of circular loops in longer loops (e.g. Dryobalanops lanceolata). Most species then reduced ER 370 

at rmin  ≈ 0.2 mm, while a small number maintained high or increasing values (e.g. Mallotus 371 

wrayi). 372 

Many species had a high value of CR (𝐶𝑅 ≈ 0.75) at small rmin , then reached a lower 373 

value (𝐶𝑅 ≈ 0.25) by rmin=0.2 mm, reflecting a transition from loops with more complex 374 

boundaries to loops with simpler boundaries (Figure 3b, Supporting Information Figure S3).  375 
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However, the rate of decrease varied strongly among species, with some showing leveling off at 376 

intermediate scales (Pometia pinnata) and others increases at larger scales (Dryobalanops 377 

lanceolata). 378 

VD(r) decreased monotonically with rmin in all species, reflecting the greater prevalence 379 

of small veins relative to large veins in these species at the studied scales (Figure 3c, 380 

Supporting Information Figure S4). However, the rates of decrease varied across species. 381 

Some species showed rapid linear decreases (Horsfieldia crassifolia), consistent with vein 382 

tapering and a scale continuum, while other species showed abrupt decreases, consistent with 383 

discrete transitions between veins of different orders (Mallotus wrayi and Dryobalanops 384 

lanceolata). 385 

Contrarily, MST(r) increased monotonically with rmin in all species (Figure 3d, 386 

Supporting Information Figure S5), reflecting a tendency for more branching and less looping 387 

at larger spatial scales. At small rmin, MST values ranged from 0.5 – 0.8, indicating that a large 388 

fraction of all vein segments contributed to loops rather than branches, while at larger rmin, MST 389 

values approached 1 (i.e. no loops). Some species (Horsfieldia crassifolia) had much more tree-390 

liked networks at all scales. Although MST values must reach 1 ultimately (i.e. when only a 391 

single vein remains in the network), it is mathematically possible for MST to both increase and 392 

decrease with rmin at intermediate scales. However, no decreases occurred in this dataset. Abrupt 393 

increases at some scales were present in some species (Pometia pinnata), indicating discrete 394 

transitions in branching architecture. 395 

The principal components analysis showed that the four multiscale statistics can be 396 

distinguished in at least three axes of variation (Figure 4), partially supporting Hypothesis 1. The 397 

first axis represented high VD and low MST, and explained 67% of the variation in the data. The 398 

second axis represented high ER, and explained 23% of the variation in the data. A third axis 399 

represented high CR and explained 8% of the variation in the data. As rmin increased, species 400 

tended to increase in PC1, decrease in PC2, and increase then decrease in PC3 (Supporting 401 

Information Figure S6), indicating shifts at larger spatial scales from high to low VD, high to 402 

low MST, high to low ER, and low to high to low CR. Additionally, there was a pronounced 403 

shift from variation occurring primarily along PC1 and PC2 at small scales (rmin < 0.05 mm), to 404 

variation occurring primarily along PC1 at intermediate scales (rmin > 0.05 mm), and then 405 

primarily along PC2 at larger scales (rmin > 0.1 mm). 406 
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 407 

Trade-offs in network architecture – function across spatial scales 408 

PLS analysis showed that network architecture was more associated with mechanical (in the first 409 

PLS component force to punch explained 10% of model variation) and damage resistance traits 410 

(tannins fraction: 8.9%) than to resource transport (photosynthetic capacity: -2%) and cost (leaf 411 

mass per area:  3.5%) (Figure 5). Inclusion of additional PLS components did not qualitatively 412 

improve explained variation or reveal other network architecture linkages (data not shown). 413 

The importance of each multiscale statistic varied across spatial scales. For force to 414 

punch (mechanical strength proxy), VD and MST made large contributions at rmin < 0.05 mm, 415 

while ER and CR made large contributions at rmin > 0.05 mm (Figure 5a). These results are 416 

largely not consistent with the hypothesized positive linkage to VD at large scales and negative 417 

link to ER at small scales. For tannins (damage resistance proxy), only VD contributed at rmin < 418 

0.04 mm, while CR, ER, and MST contributed at rmin = 0.05 mm, and only ER contributed at 419 

rmin > 0.15 mm (Figure 5d). These results are not consistent with the hypothesized negative 420 

linkage to MST and CR at all scales. Results for photosynthetic capacity (resource transport 421 

proxy) (Figure 5c) had slightly negative explained variation (i.e. the model was worse than one 422 

not including the predictors), also not consistent with the hypothesized positive linkage to VD at 423 

small scales and positive link to MST at all scales. Results for leaf mass per area (cost proxy) 424 

(Figure 5b) also had low explained variation, not consistent with the hypothesized positive 425 

linkage to VD at large scales. Therefore, we did not find strong evidence for the predictions of 426 

Hypothesis 3. 427 

We also repeated these analyses using single-variable regressions at each scale. Results 428 

were qualitatively similar (Supporting Information Figure S7), indicating that the choice of 429 

methodology did not strongly influence our findings.  430 

 431 

Phylogenetic conservatism of network architecture 432 

All four multiscale statistics varied extensively across the phylogeny with some visual evidence 433 

of clustering at certain spatial scales (Figure 6). Notably, clustering was apparent at small rmin 434 

for VD and MST for the family Euphorbiaceae and Dipterocarpaceae, which comprise many 435 

species that are ecologically dominant in southeast Asia. In contrast, CR and ER varied 436 

extensively across the phylogeny at small rmin. At larger rmin, more variation was apparent, with 437 
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low values of CR present in some clades (e.g. the Clusiaceae), and more rapid increases in MST 438 

in the Fagaceae and Dipterocarpaceae. ER showed extensive variation but no clear association 439 

with phylogeny at any scale. That is, patterns of phylogenetic clustering were highly scale 440 

dependent.  441 

The K analysis was consistent with this perspective. All four multiscale statistics varied 442 

at least as rapidly (K<1) as under a Brownian trait evolution model (Figure 7). In the case of VD 443 

and CR, Brownian evolution (K=1) could be rejected at almost all scales; for MST, K<1 was 444 

supported most rmin < 0.12 mm, and for ER, at some scales of rmin < 0.08 mm. Contrary to 445 

Hypothesis 4, there was a trend for more trait lability (smaller K) at larger rmin. 446 

 447 

Discussion 448 

Broadly, we found that 1) that network architecture varied extensively among species and across 449 

scales, 2) that the phenotype space shifted and decreased at larger scales, 3) that relationships 450 

between venation multiscale statistics and leaf function in this dataset were weak, and 4) 451 

phylogenetic niche conservatism in multiscale statistics was low and variable across scales. 452 

 453 

Independent axes of variation 454 

Our framework provided a vocabulary for making quantitative and specific statements about 455 

network architecture variation. The four axes of VD, CR, ER, and MST provide complementary 456 

information about network architecture, with likely three independent axes present (Figure 4). 457 

Other metrics of network architecture not considered here (e.g. vein branching angles; (Hickey, 458 

1973)), may also be useful, so these four statistics should not be considered a complete set of 459 

descriptors.  460 

 461 

Variation in architecture across scales 462 

The architectural phenotype space varied across scales (Figure 3). In particular, we found a 463 

reduction in the size of phenotypic space at larger scales, and a shift to more tree-like and less 464 

elongated network geometry. The overall shape of this phenotypic space is potentially consistent 465 

with the existence of a number of phenotypic extremes, in which intermediate phenotypes occur 466 

as tradeoffs among functions represented by the extreme functional archetypes (a ‘Pareto front’; 467 

Shoval et al. (2012)). Consistent with this perspective, theoretical work has identified extreme 468 
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network phenotypes (e.g. all branching, all looping) corresponding to optimization of resource 469 

transport and resistance functions, respectively (Ronellenfitsch & Katifori, 2019). Our work now 470 

extends these models to a wider range of phenotypic axes and empirical datasets. However, the 471 

weak empirical results for Hypothesis 3 (see below) leave unclear whether the extreme 472 

phenotypes do indeed represent functional archetypes. 473 

 The phenotype space appeared to vary along certain axes differentially across scales, 474 

suggestive of multiple drivers affecting patterning at each scale. That is, variation (as seen via 475 

confidence ellipses and convex hulls) appeared primarily along PC2 at small and large scales, 476 

but along PC1 at intermediate scales. A simple null explanation is that reduced sampling at large 477 

scales reduces the available variation (e.g. MST must reach a value of 1 for all leaves once rmin 478 

reaches the maximum vein size). However, this idea seems insufficient to explain the differential 479 

variation along other axes, as well as the contraction of confidence ellipses at intermediate 480 

scales. 481 

These results highlight the complexity of the phenotype space, and provide new targets 482 

for models meant to capture their evolution (Ronellenfitsch & Katifori, 2017; Ronellenfitsch & 483 

Katifori, 2019). Broadly, we found that network statistics at one scale are not predictive of 484 

statistics at another scale, and that the limits to phenotype space are scale-dependent. This high 485 

heterogeneity also invites questions about the reasons why species may occupy different subsets 486 

of the architectural phenotype space, what factors drive shifts, and whether such variation leads 487 

to divergent or convergent functioning.  488 

 489 

Functional linkages between network architecture and function 490 

Each model explained less than 10% of variation in each functional trait (Figure 5). Stronger 491 

linkages were obtained for tannin fraction (damage resistance) and force to punch (mechanical 492 

strength), rather than LMA (cost) and photosynthetic capacity (resource transport). This finding 493 

is consistent with prior studies finding vein linkages to structural and defensive traits (Li et al., 494 

2015; Blonder et al., 2018; Hua et al., 2019; Kawai & Okada, 2019) and inconsistent with those 495 

finding linkages to hydraulic or resource flux traits (Sack et al., 2008; Brodribb et al., 2016).  496 

Although we found a linkage between force to punch and venation traits, the relationships 497 

observed were in the opposite directions of our predictions (Hypothesis 3). For example, we 498 

expected mechanical strength to exhibit a positive link to VD at larger scales and to ER at small 499 
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scales, but we found the opposite pattern (Figure 5a). The most likely explanation is that spatial 500 

scale variation in rmin in these data was not enough to capture some of the ‘large’-scale functional 501 

linkages. The largest veins studied here were 0.2 mm, when midveins can be at least 100x larger; 502 

similarly, the largest sample was approximately 4 cm2 in area, while leaves can be nearly 1 m2 in 503 

area for some species (Kattge et al., 2011). These larger features could be important for 504 

explaining mechanical strength, and other axes of functioning. Therefore, describing network 505 

architecture across all orders of magnitude is a priority for future investigations. However, one 506 

cannot easily quantify large image extents at high resolution, at least with brightfield 507 

microscopy. One solution is to take a hybrid approach, using higher resolution microscopy for 508 

measurements at smaller scales and lower resolution cameras or scanners at larger scales. 509 

Because both analyses yield multiscale statistics with the same scale variable (rmin), it should be 510 

possible to fuse multiscale statistics from multiple ranges of scales, as shown in Supporting 511 

Information Figure S8.  512 

For damage resistance (tannin), we predicted a negative link to MST and CR at all scales, 513 

but found a significant contribution only at rmin = 0.05 mm (Figure 5d). This result suggests that 514 

a high investment in secondary chemistry may not be enough to offset investment in redundant 515 

flow pathways. However, we recognize that we examined damage resistance primarily through 516 

the lens of herbivory defense, but there are other aspects that may also be linked to venation. For 517 

example, the ability to resist damage from drought may also be linked to the venation network, 518 

as the probability of cavitation varies with vein size (Sack et al., 2008; Brodribb et al., 2016). 519 

Another important functional axis not explored in this study was resilience to damage. While 520 

resistance is related to the ability to prevent damages, resilience is the capacity to maintain 521 

function after damage has occurred. The presence of vein loops may provide redundant pathways 522 

that enable continued flow after damage, caused either by abiotic (e.g. drought, frost) or biotic 523 

factors (e.g. herbivory) (Sack et al. 2008; Katifori et al. 2010). However, too much redundancy 524 

may be detrimental and might actually decrease resilience, by facilitating the spread of 525 

embolisms or diseases. 526 

 This study assessed functional linkages of network architecture with a limited set of 527 

functional traits and functional axes. The underlying trait dataset we used here actually includes 528 

a larger number of traits, including secondary chemistry and isotope and elemental stoichiometry 529 

data. These other traits may map onto the functional axes we have already discussed. However, 530 
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analyses using these additional traits as proxies for each functional axis did not qualitatively shift 531 

results, with maximum PLS1 R2 for any trait of 11% (Supporting Information Figure S9). 532 

However, other proxies might have relevant connections. In particular, the resource transport 533 

axis could be refined in future studies, separating out functions related to carbon uptake and 534 

water transport. For example, hydraulic conductance (unmeasured) might be more closely linked 535 

to water transport functions, whereas photosynthetic capacity would be more linked to carbon 536 

uptake functions (measured). The role of venation in predicting hydraulic conductance appears to 537 

be complex, even at single scales. Studies examining the linkage between minor veins and 538 

hydraulic conductance have obtained divergent results, suggesting that selection for this 539 

relationship may be clade- or biogeographically- dependent (Brodribb et al., 2007; Walls, 2011; 540 

Sack et al., 2013; Gleason et al., 2016). More broadly, various aspects of leaf functioning may be 541 

decoupled, if there is independent selection on multiple axes of functioning beyond the ‘fast-542 

slow’ continuum (Wright et al., 2004; Reich, 2014), for example, as has been found in the 543 

decoupling between hydraulic and economic functioning in Chinese (Li et al., 2015) and 544 

Australian (Gleason et al., 2016) species. Such patterns might also occur if functioning is 545 

achieved through other traits not directly related to venation. For example, leaves may modify 546 

traits like their mesophyll density or their thickness in order to meet different structural 547 

constraints (John et al., 2017), and similarly, outside-xylem pathways (e.g. bundle sheath 548 

extensions) may be important factors in determining hydraulic conductivity (Buckley et al., 549 

2015; Ohtsuka et al., 2018). 550 

An alternate explanation for the weak architectural-functional relationships found in this 551 

study is that not all aspects of network architecture have immediate functional linkages. That is, 552 

much of the diversity of form seen in networks may reflect evolution in the absence of strong 553 

selection. For example, the weak relationships between leaf functional traits and ER (Figure 5), 554 

may indicate that elongation of areoles may occur, but that it is a consequence rather than a cause 555 

of other evolutionary forces. For example, leaf aspect ratio and areole elongation are sometimes 556 

linked in non-monocots (Blonder et al., 2016), and are potentially coupled via developmental 557 

mechanisms related to leaf elongation (Kang & Dengler, 2004). As such, selection on leaf aspect 558 

ratio could indirectly drive variation in ER.  559 

 560 

Phylogenetic conservatism of network architecture 561 
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The results also showed that all venation network multiscale statistics varied more rapidly than 562 

expected under a Brownian evolution model (Blomberg’s K < 1). Moreover, there was no 563 

increase in K at large scales for any statistic (Figure 7). That is, the prediction of more niche 564 

conservatism at larger scales (Hypothesis 4) was apparently rejected. These results are consistent 565 

with prior analyses of fine-scale network architecture variation (Boyce et al., 2009; Sack & 566 

Scoffoni, 2013; Blonder et al., 2018), and extend them to a wider range of scales. This finding 567 

runs contrary to ideas that large scale network architecture should be highly conserved, as is 568 

expected in plants systematics (Hickey, 1973), but is consistent with rapid rates of evolution seen 569 

in some adaptive radiations (Dunbar-Co et al., 2009; Blonder et al., 2016). However, these 570 

results should be interpreted with some caution as the sampling design was focused on dominant 571 

species; thus, patterns may change if rare species were included. 572 

As in the functional analysis (Hypothesis 3), there was likely insufficient scale variation 573 

present in the image data to fully address this research question. Thus, our results do not yet call 574 

into question the utility of primary and secondary venation in systematics. It seems likely that 575 

larger-scale analyses would likely shift the conclusions of this analysis, especially given the 576 

extensive prior use of primary and secondary venation characters as aids to species identification 577 

and systematics. Our framework provides an approach that, with additional data, will be able to 578 

delineate the scales and contexts in which these applications are well-founded. 579 

 580 

Conclusion 581 

We advanced a framework to quantify network architecture across species and spatial scales. By 582 

building on ideas for hierarchical loop decomposition (Katifori & Magnasco, 2012), and 583 

leveraging recent machine learning algorithms (Xu et al., 2020), we were able to move past 584 

topological (Ronellenfitsch et al., 2015) or single scale (Blonder et al., 2018) descriptions of 585 

leaves toward multiscale statistics. Datasets with wider scale variation than ours will further 586 

clarify understandings of network form-function linkages.  587 
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Data Availability Statement 588 

Venation data, subsetted trait data, the phylogeny are available at 589 

https://doi.org/10.5287/bodleian:QR11d1PD2. R code to replicate all analyses using these files is 590 

available at https://doi.org/10.5287/bodleian:E9JP2gjyP. Venation network image data are 591 

available in Blonder et al. (2019). Segmented venation network images (like those shown in 592 

Figure 2) are available in Xu et al. (2020). Algorithms to analyze images and to calculate 593 

multiscale statistics are available in Xu et al. (2020). The full trait dataset (including numerous 594 

other variables) is available https://doi.org/10.5281/zenodo.3247631. 595 
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Tables 808 

 809 

Table 1. Venation network multiscale statistics measured in this study. 810 

  811 
Statistic Units Notes Low value High value 

Vein density 
(VD) 

mm mm-2 calculated as the 
length of all vein 
segments divided 
by the area of the 
leaf sample. 
Higher VD values 
indicate more 
veins. 

 

 

 

 

 

Loop elongation 
Ratio (ER) 

dimensionless, 
ranging from 0 
(short loop) to 
∞ (long loop) 

calculated by 
fitting an ellipse 
to each loop, and 
dividing the 
major axis length 
by the minor axis 
length, then 
taking the median 
ratio across all 
loops and 
subtracting 1 (for 
later convenience 
of fits). Higher 
ER values 
indicate longer, 
more “stretched” 
loops. 
 

  

Loop circularity 
(CR) 

dimensionless, 
ranging from 
0 (more 
infolding) to 1 
(less infolding) 

calculated by 
dividing the loop 
area by the 
squared loop 
perimeter for each 
loop, then 
multiplying by 
4π, then taking 
the median value 
across all loops. 
Higher CR values 
indicate loops 
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with less 
infolding. 
 

Minimum 
spanning tree 
ratio (MST) 

dimensionless, 
ranging from 
0 (more loops) 
to 1 (fewer 
loops) 

calculated by 
computing the 
length of the 
minimum 
spanning tree 
connecting all 
vein junctions 
divided by the 
length of all 
veins. Higher 
MST values 
indicate more 
branching (tree-
like) pathways 
with fewer loops. 

  

 812 

  813 
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Table 2. Functional traits used as proxies for different functional axes. 814 

Functional axis Trait proxy Units 

Resource transport  Photosynthetic capacity (Amax)  (%)  

Damage resistance Total tannins fraction  (mg g-1)  

Mechanical strength Force to punch (Fp) N mm-1 

Construction cost Leaf mass per area (LMA) g cm-2 

  815 
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Table 3. Site information. Site code (SI) in this database refers to the filename structure used for 816 

branch identification in File S1. Site code (FP) refers to the plot name in the ForestPlots 817 

database.  818 

 819 

Site code 

(SI) 

Site code 

(FP) 

Site name Number of 

branches with 

vein and trait 

data 

Number of 

species with 

vein and 

trait data 

Number of 

vein segments 

in all 

branches 

DAS1 DAN-04 Danum GEM 

Carbon Plot 1 81 48 1186605 

DAF2 DAN-05 Danum GEM 

Carbon Plot 2 52 38 849519 

BEL MLA-01 Maliau SAFE GEM 

Carbon Plot: Belian 78 50 1077431 

SER MLA-02 Maliau SAFE GEM 

Carbon Plot: Seraya 86 52 1587871 

BSO SAF-01 SAFE GEM Carbon 

Plot B South 85 56 1474711 

BNT SAF-02 SAFE GEM Carbon 

Plot B North 103 55 2031577 

ESA SAF-03 SAFE GEM Carbon 

Plot E 120 81 1997597 

SLF SAF-04 SAFE GEM Carbon 

Plot LF 34 19 265037 

 820 

  821 
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Figure Legends 822 

 823 

Figure 1. Cartoon of the hierarchical loop decomposition process. A) Areoles are connected by 824 

vein segments of varying radii. The lowest-radius vein segment is identified and the adjacent 825 

areoles are fused into a larger region. B-D) This process is iterated until a single region remains. 826 

At each iteration, multiscale statistics of the fused network are calculated. 827 

 828 

Figure 2. Example venation networks for (a) Dryobalanops lanceolata (code BNT-T212-BSH), 829 

(b) Pometia pinnata (DAS1-T010227-BSH), (c) Mallotus wrayi (SER-T462-BSH), and (d) 830 

Horsfieldia crassifolia (SLF-T53-BSH). Images are cropped sections of machine learning 831 

algorithms applied to raw imagery. Each panel shows 8.4 × 8.4 mm of lamina. These images 832 

correspond to the highlighted species in Figure 3.  833 

 834 

Figure 3.  Multiscale statistics for variation in (a) elongation ratio (ER), (b) circularity ratio 835 

(CR), (c) vein density (VD), and (d) minimum spanning tree ratio (MST), at each value of 836 

minimum vein size (rmin). Black lines indicate data for all leaves in the full dataset. Colored lines 837 

indicate data for four focal leaves shown in Figure 1. Gaps in lines indicate scales at which no 838 

veins were observed. 839 

 840 

Figure 4. Principal components analysis of the four-dimensional architectural space comprising 841 

elongation ratio (ER), circularity ratio (CR), vein density (VD), and minimum spanning tree ratio 842 

(MST) across scales, at each value of minimum vein size (rmin). 95% confidence ellipses enclose 843 

the data at rmin value to show the central tendency in the data; convex hulls are also shown to 844 

highlight species with extreme phenotypes. Parenthetical values indicate variance explained by 845 

each axis. 846 

 847 

Figure 5. Summaries of partial least squares (PLS) models predicting leaf functional traits from 848 

elongation ratio (ER), circularity ratio (CR), vein density (VD), and minimum spanning tree ratio 849 

(MST) across scales, at each value of minimum vein size (rmin). Each facet indicates a model 850 

with a different leaf functional trait: (a) force to punch, (b) leaf mass per area, (c) photosynthetic 851 

capacity, and (d) tannins fraction. Colored lines indicate standardized effects of each multiscale 852 
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statistic at each spatial scale. Thicker colored lines indicate models with higher R2. Loading 853 

coefficients reflect the first PLS component only. 854 

 855 

Figure 6. Phylogenetic distribution of multiscale statistics for all species in the study. Heatmaps 856 

indicate values of (a) elongation ratio (ER), (b) circularity ratio (CR), (c) vein density (VD), and 857 

(d) minimum spanning tree ratio (MST) at each value of minimum vein size (rmin). Shaded clades 858 

are the Dipterocarpaceae (blue), Clusiaceae sensu latu (inc. Hyperiaceae) (green), Euphorbiaceae 859 

(orange), and Fagaceae (red).  860 

 861 

Figure 7. Blomberg’s K statistic of phylogenetic conservatism for elongation ratio (ER), 862 

circularity ratio (CR), vein density (VD), and minimum spanning tree ratio (MST) at each value 863 

of minimum vein size (rmin) (colored dots). Values of 1 (dashed horizontal black line) indicate 864 

Brownian trait evolution; values <1 indicate more rapid evolution than under Brownian trait 865 

evolution. Points are solid if significantly different from 1 (p<0.05) and transparent otherwise.  866 

 867 

 868 


