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Summary

(1) Leaf venation networks evolved along several functional axes, including resource
transport, damage resistance, mechanical strength, and construction cost. Because
functions may depend on architectural features at different scales, network architecture
may vary across spatial scales to satisfy functional tradeoffs.

(2) We develop a framework for quantifying network architecture with multiscale statistics
describing elongation ratios, circularity ratios, vein density, and minimum spanning tree
ratios. We quantify vein networks for leaves of 260 southeast Asian tree species in
samples of up to 2 cm?, pairing multiscale statistics with traits representing axes of
resource transport, damage resistance, mechanical strength, and cost.

(3) We show that these multiscale statistics clearly differentiate species’ architecture and
delineate a phenotype space that shifts at larger scales; functional linkages vary with
scale and are weak, with vein density, minimum spanning tree ratio, and circularity ratio
linked to mechanical strength (measured by force to punch) and elongation ratio and
circularity ratio linked to damage resistance (measured by tannins); and phylogenetic
conservatism of network architecture is low but scale-dependent.

(4) This work provides tools to quantify the function and evolution of venation networks.

Future studies including primary and secondary veins may uncover additional insights.

Key words
Venation network, network architecture, functional trait, resource transport, damage resistance,

mechanical strength, construction cost, leaf



70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99
100

Introduction
Leaves have venation networks with architecture that varies widely, from a single vascular strand
(e.g. pines) to purely branching structures (e.g. Ginkgo) to open net patterns (e.g. many ferns) to
mostly parallel structures in monocots, to highly reticulate patterns in many angiosperms.
Networks vary over multiple spatial scales, with several levels of branching at length scales from
1073 m (the radius of a single vein) — 10° m (the length of some large leaves) (Roth-Nebelsick et
al.,2001; Sack & Scoffoni, 2013). We define spatial scale as a characteristic feature of the
network with a certain extent, e.g. the area of a vein loop, or the radius of a vein.

Network architecture may be closely linked to multiple functions (Ronellenfitsch &
Katifori, 2019). Selection could act to maximize efficiency of resource transport, resistance to
damage, mechanical strength, or to minimize total construction cost (Blonder ef al., 2018). For

resource transport, veins are implicated in photosynthesis and transpiration, as vein-mediated

resource transport comprises a large portion of total leaf conductance in most species (Brodribb
et al., 2007), though variation in other tissues (e.g. bundle sheath extensions) may also be

important (Ohtsuka et al., 2018). For resistance to damage, the presence of loops in the network

(Katifori et al., 2010) could prevent the propagation of embolisms that reduce conductance under
low water potential (Brodribb ef al., 2016), as well as the propagation of tears or cracks (Vincent,
1982; Niklas, 1999) caused by wind or herbivores. Additionally, defensive secondary
compounds (e.g. latex) transported by the network could promote further resistance against
herbivory (Agrawal & Konno, 2009), as damaged leaves with redundant flow pathways could
still deliver latex or other signaling molecules to other portions of the leaf. For mechanical
strength, the network could provide a skeleton that allows leaves to remain upright in wind,
ultimately supporting photosynthesis (Givnish, 1979; Givnish et al., 2005). For construction cost,
lignified tissue comprising veins is costly to construct relative to other tissues (John et al., 2017),
and may also displace leaf volume that could be allocated to photosynthetic functioning. Thus,
the realized network architecture may reflect trade-offs among these different functions.

These functional tradeoffs and network architecture may both contribute to function at a
range of spatial scales within a leaf. Thus, network features of different spatial scales may make
varying contributions to functioning. For example, minor veins contribute more to conductance
and photosynthesis due to their close spacing and disproportionate impact on hydraulic resistance

(Brodribb et al., 2007; McKown et al., 2010). Conversely, major veins contribute more to cost
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(John et al., 2017) and mechanical strength (Hua et al., 2019) due to their disproportionate mass
allocation.

From an evolutionary perspective, some aspects of network architecture may be more
labile than others. Larger-scale veins could be phylogenetically conserved over deeper time
(Ellis et al., 2009). Smaller-scale vein patterns are thought to evolve more quickly and show
developmental plasticity (Sack & Scoffoni, 2013).

At a single scale (e.g. of minor veins, typically ~10 um radius), network architecture can
be described using a range of geometrical or topological statistics (Table 1). Single-scale studies
of network architecture and leaf function have sometimes produced clear functional linkages,
e.g. between vein density and resource transport, or between vein branching and defense
chemistry (Blonder et al., 2011; Blonder ef al., 2016; Blonder et al., 2017; Hua et al., 2019), but
in other contexts have not, e.g. between vein density and traits associated with cost, like leaf
mass per area (Li et al., 2015). Recent models linking network architecture to leaf function
(Blonder et al., 2011) have neglected this multiscale variation.

If network function varies across spatial scales, then network architecture should also be
described across spatial scales, to better understand the diversity of evolved forms and the rules
underlying this multiscale architecture. While such a perspective is sometimes implicit (Sack et
al.,2012; Sack & Scoffoni, 2013; Hua et al., 2019; Kawai & Okada, 2019), prior studies have
used categorical descriptors to characterize features at other spatial scales (Sack & Frole, 2006;
Sack et al., 2008; Ellis et al., 2009).

There is a need for multiscale description of venation network architecture, as well as for
comprehensive assessment of its implications for multiple leaf functions. Recent efforts have
focused on the idea of hierarchical loop decomposition (HLD) (Katifori & Magnasco, 2012;
Mileyko et al., 2012; Ronellenfitsch et al., 2015). In this approach, a leaf venation network is
considered as comprising a set of loops that are nested within each other. The leaf can be
partially summarized via a hierarchical tree describing how smaller loops are nested within
larger loops, and the statistical properties of the tree (e.g. nesting ratio, topological length) can be
used to characterize variation between species. This approach provides an advance in terms of
explicitly considering architecture across spatial scales. However, empirical applications of this

framework have been constrained by limited venation data and by the unclear linkage between
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the hierarchical tree properties and hypotheses about leaf functioning (Ronellenfitsch et al.,

2015).

Framework for multiscale venation statistics

Here we present a framework, built on HLD concepts, to define multiscale venation statistics.
The goal of the framework is to describe scale transitions in network architecture statistics (Table
1), so that a set of single-scale statistics {w;}, can be transformed into a set of continuous
functions {w; (r)} , where r is a metric of spatial scale.

HLD analyses are based on ‘spatial graph’ extractions of leaf venation networks, i.e. with
all vein segments described in terms of their position, length, radius, and connectivity with other
vein segments, and all areoles described in terms of their area and shape. The network extraction
step can be carried out using software available in Xu et al. (2020). This information is necessary
to determine which areoles are nested within which other areoles. Loops are defined either in
terms of regions wholly enclosed by veins, or regions enclosed by veins and leaf boundary;
regions not wholly enclosed by veins (e.g. due to cropping of an input image) are excluded from
the analysis. Vein segments that constitute boundaries between loops are identified and described
in terms of their radius (7). Then, a pair of loops with the minimum radius boundary segment
(rmin) are fused together, and the boundary segment is deleted from the network. This process
begins with fusing the areoles linked by the vein with the smallest rmin, and is iterated until all
loops are fused together into one large loop representing the entire leaf, with rmin equal to the
width of the largest vein segment (Figure 1). Only loops that are complete are considered (i.e.
excluding those cut off by the image boundary). Large veins are split into multiple segments
spanning branching points with other segments.

Single-scale statistics {w;} are then calculated at each of the network fusion steps, where i
indexes the various statistics. If a network has » boundary vein segments, then the hierarchical
loop decomposition will yield n values of {w;}, each at a different value of . The outcome of
this process is a scale-dependent description of the network that remains when considering only
veins above a certain size class.

These {w;} values can then be converted into multiscale statistics, {w;(r)}, which
encapsulate the scale transitions that may occur in network architecture. Importantly, not all

leaves will have veins present at all scales. Thus, to obtain scale-dependent functions, the first
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step is to construct a hurdle function describing the presence or absence of a vein at a given
scale, {n;(r)}. Next, if veins are present, i.e. {n;(r)} # 0, a ‘multiscale statistic’ {o;(r)} is
constructed describing the statistic of interest, e.g. VD(r), which is the vein density across scales.

The final function is:

i) =1 0;()
ni(r) =0, NA

wi(r) = {
Estimation proceeds by binning the data into uniform ranges of 7, then calculating bin-median
values of 77; and o;. Using raw data leads to undesirable sample size — network scale correlations,
while fitting functional forms to the curve via regression is not necessarily appropriate because
the w; values are piecewise continuous rather than fully continuous, i.e. include gaps where no
features of a given size class exist. Vein absences can arise either because a vein is truly absent
at a scale, or because the sampled area was too small to be representative (i.e. undersampling). If
the input network is complete (i.e. comprising a whole leaf) then the absences are real, because
the input data are a statistical population rather than a statistical sample. In leaf subsections,
however, undersampling biases may be important. In these cases, one can assume that network
architecture falls on a scale continuum over the scale range of the data, i.e. n;(r) = 1 for all r,
and then o;(r) can be gap-filled using interpolation.

Sampling limitations can also increase the frequency of gaps and/or bias estimates. The
sampling uncertainty in w; necessarily increases with increases in . This is because the number
of network components must decrease as portions of the network are deleted. Therefore, analyses
should be restricted to ranges of » where more than a certain fraction of samples have n; (r) = 1.

Once the multiscale statistics are estimated, they can be used to describe variation among
leaves and species, and to serve as potential predictors of leaf function. To proceed, one can use
the values directly, or can reduce them to scalars like the linear slope estimate of w;(r) vs. r.
When using the predicted values of {w; ()} in regression analyses, it is necessary to account for
the non-independence of values at similar spatial scales, e.g. via partial least squares (PLS)

methods.

Hypotheses about trade-offs between network architecture and function
We focused on traits related to four multiscale statistics: vein density (VD), the mean elongation

ratio of loops (ER), loop circularity (CR), and the minimum spanning tree ratio (MST) (Table 1).
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We also focus on linking them to four leaf functions (resource transport, damage resistance,
mechanical strength, and construction cost) (Table 2).

VD, ER, and MST have been shown to capture leading axes of variation in network
architecture across many species at single scales (Blonder ef al., 2018), while CR(r) may reflect
relative allocation of vein perimeter relative to loop area (Blonder et al., 2011). Based on the
availability of trait data in this study, we represented resource transport by maximum
photosynthetic capacity (Amax in common usage), though recognizing that this metric of carbon
flux does not fully represent water fluxes, i.e. maximum hydraulic conductance (Brodribb ef al.,
2007), for which we did not have data. Damage resistance was represented by tannin fraction, as
this type of secondary chemistry is commonly used as an herbivory defense (Coley & Barone,
1996). To represent mechanical strength we used force to punch, as this is a direct metric of
strength (Pérez-Harguindeguy et al., 2013). Finally, we represented cost by leaf mass per area, as
dry mass investment is strongly related to tissue construction cost (Poorter et al., 2009).

Specifically, we asked 1) whether multiscale statistics enable useful measurement of
species network architecture, 2) whether network architectures vary systematically across spatial
scales, 3) whether expected architecture-function trade-offs are supported across different spatial
scales, and 4) whether the phylogenetic conservatism of architecture varies across spatial scales.
Then, we hypothesized that:

1. the four statistics of network architecture will represent statistically independent axes

of variation, such that a wide range of network architectures are possible.

2. different portions of the architectural space will be occupied at different scales. That

is, network architecture will shift systematically as scale increases.

3. distinct trade-offs exist between network architecture and functioning across spatial

scales (Table 2). We predict that resource transport will be positively linked to VD(r)
at small values of 7, due to the importance of small veins in determining hydraulic
conductance (McKown et al., 2010), as well as, positively linked to MST(r) across
scales, as more tree-like networks distribute resources better (Katifori et al., 2010).
Damage resistance will be negatively linked to MST(r) and CR(r) across scales, as
high secondary chemistry investment may offset investment in redundant flow
pathways. Mechanical strength will be positively linked to VD(r) at large scales, as

large veins may contribute disproportionately to stiffness and because lignified vessel
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sclerenchyma are associated with fracture resistance (Choong et al., 1992), and
negatively linked to ER(r) at small scales, as more parallel-veined laminas may be
easier to tear. Cost will be positively linked to VD(r) at large scales, due to the
importance of large veins (which are lignified and dense) in determining total leaf
cost (John et al., 2017).
4. phylogenetic niche conservatism in all network multiscale statistics will be lowest at
small values of  due to their presumed development and evolutionary lability (Trivett
& Pigg, 1996; Roth-Nebelsick et al., 2001; Ellis et al., 2009).
We tested these hypotheses using a phylogenetically diverse set of 260 tree species in a forest in
Malaysian Borneo. Our analysis was based on leaf samples of ~ 2 cm?, which contained veins of

several orders but typically did not include primary or secondary veins.

Materials and Methods
This study integrates venation network imagery (Blonder ef al., 2019) with functional trait data

that were collected from the study sites (Table 3) (Both ez al., 2018).

Sites and sampling design

Samples were collected in Malaysian Borneo during July-December 2015, within eight 1-ha
permanent forest plots comprising mixed dipterocarp lowland forest (Table 3). We pooled data
from all sites, as this study focused on functional and evolutionary rather than environmental
questions. Vouchers are stored at the Danum Valley Field Centre, Sabah, Malaysia.

Within each plot, all trees > 10 cm in diameter at breast height (DBH) were identified and
measured for DBH and height. Branches of 2-4 cm diameter were then collected using rope
climbing or pole pruning techniques. Branches were collected from species with highest
contribution to biomass, i.e. species comprising the top 70% of plot basal area. Additional leaves
of rarer taxa were also collected from all trees in three 20 x 20 m subplots within each plot.
When possible, both sunlit and shaded branches were collected from each tree, resulting in

sampling heights across the range of 2 — 53 m.

Venation networks
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A single mature undamaged leaf was collected from each branch, cleaned with a wet rag, then
pressed flat and dried at 60°C for several days. A 1-4 cm? section was then cut from each leaf
midway from the base to the apex and midway from a primary vein to either another primary
vein (for palmate leaves) or to the margin (for pinnate leaves). These dried sections were
rehydrated to reverse the effects of sample shrinkage (Blonder et al., 2012) and chemically
cleared and stained (Pérez-Harguindeguy et al., 2013; Blonder et al., 2018).

Samples were mounted on glass slides and imaged using a compound microscope
(Olympus, BX43) with 2x apochromat objective and a color camera (3840 x 2748 pixel
resolution; Olympus, SC100). Approximately 16 image fields were then stitched together to
obtain a full image of each sample (resolution 595 px mm!). Image contrast was enhanced using
a contrast-limited adaptive histogram equalization on the green channel of each image. Images
were then imported into GIMP (GNU Project) image-editing software and the boundaries of the
sample (vs. background) were manually delineated with a polygon. Next, an approximately
700%x700 px? region in each sample was manually segmented using a tracing tablet. The hand-
traced vein images were then segmented into binary representations, in which vein pixels were
given one value, non-vein pixels another value, and image background a NA value.

These validated data (comprising 686,881,432 manually segmented pixels) were used to
train a machine learning algorithm, as described in Xu et al. (2020). An ensemble of 6
convolutional neural networks (CNNs) was developed, with each network implemented via a U-
Net architecture (Ronneberger et al., 2015). To avoid overfitting, input image data were
repeatedly rotated and scaled during training. Each CNN was trained on 5/6 of the input dataset
and predicted using a sliding window approach on the remaining 1/6. Probability outputs were
then averaged across all CNNs in the ensemble and converted to binary predictions using a
threshold determined by Receiver Operating Characteristic (ROC) plots based on the prediction
relative to the manually delineated validation region in each image. The algorithms sometimes
under-segmented large veins that were not included in the validation dataset. Any veins with
widths greater than approximately 500 pm were also manually segmented throughout the entire
sample. These segmentations were then added to the CNN-based segmentations. Segmentations
were then masked to the manually delineated boundaries. A total of 32,815,701,653 pixels were

algorithmically segmented using this methodology.
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The segmented images were then filtered, so that images with sample areas less than 90
mm? and Fbeta2 scores lower than 0.8 were discarded. Among the retained images, the
segmentation quality was high (Fbeta2 mean=0.95 + 0.03 s.d.). A small number of images were
assigned new branch codes different than those in the original image dataset, based on recent
revision of handwritten sample labels (Table S1).

Spatial graph representations of the networks were extracted from each segmented image.
Next, all unique loops and their boundary vein segments were identified. Unclosed loops (on the
boundary of the sample) were removed from the analysis. The four architectural network
statistics (Table 1) then were obtained following Xu et al. (2020).

After calculating these statistics, the network was iteratively pruned, and loops fused, by
sequential removal of the smallest remaining boundary vein segments. After calculating these
statistics, the network was iteratively pruned, and loops fused, by sequential removal of the
smallest intervening vein segment. After each fusion event, vein and areole metrics were re-
calculated, along with the minimum vein radius (rmin, um). Multiscale statistics were truncated to
the 0 — 0.2 mm range of rmin to minimize undersampling biases (Supporting Information

Figure S1), though veins of up to 0.58 mm were present in the data.

Trait measurements
Traits were measured from each branch using mature undamaged and cleaned leaves. Different
leaves were used for each trait, then data were pooled at branch level. Measurements are

described in Table 2 and in Both et al. (2018).

Statistical analysis

We first constructed multiscale statistics for each leaf by binning data into 50 rmin bins spanning
0 - 0.2 mm. As we worked with leaf subsections, the absence of veins at a certain scale could be
caused either by true absences or by undersampling. In cases where n;(r) = 0 occurred, we used
two approaches. In the first approach, we assumed undersampling, then set n; (r) = 1 and filled
the missing values of g;(7) using linear interpolation. Extrapolation was handled by using the
value at the closest data extreme. In the second approach, we assumed the data were accurate as
observed, then separately modeled the 7 and ¢ components of w. For all the analyses described

below, except the test of Hypothesis 3, we only used the first approach, as the large number of
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incomplete cases prevented application of the necessary statistics. Analyses were conducted
treating branches as independent and identically distributed random replicates.

To determine the independence of architectural axes across scales (Hypothesis 1), we
carried out a principal component analysis across the four axes of VD, ER, CR, and MST, using
values for each leaf at each scale as replicates. We then assessed variance allocated to each
principal component to determine the relative independence of axes.

To evaluate whether different portions of the architectural space are occupied at different
scales (Hypothesis 2), we also visualized the principal component scores using convex hulls and
95% confidence ellipses at each scale.

To assess evidence for architecture-function trade-offs across scales (Hypothesis 3), we
used two complementary approaches. In the first approach, we carried out partial least squares
(PLS) regressions for each of the functional traits. Functional traits were treated as response
variables and the multiscale statistics in each bin as predictors. PLS allows for incorporation of
non-independence of the statistics across scales. All four multiscale statistics were included as
predictors. Each multiscale statistic was z-transformed before analysis to improve comparability
of parameter estimates across multiscale statistics. For all models, most of the variation was
explained by the first component, so we restricted analysis to this component. We reported the
variance explained by the first component, and also assessed the scale-dependent effect of each
venation trait at each scale as the value of the respective loading coefficient. Each hypothesis
was then tested by examining plots of loading coefficients vs. rmin.

In the second approach, we used ordinary least squares regression models, one for each
functional trait, multiscale statistic, and rmin binned value combination. At each combination, we
pooled data for all species with ;(r) = 1 (i.e. only those species with observed veins at that
scale). We then conducted the regression using the functional trait values as the response
variable and the o;(r) values as the predictor variable. We reported the overall variance
explained by the regression and the slope estimates. This approach does not account for non-
independence of data across spatial scales, or non-independence of predictors, nor does it allow
us to assess statistical significance (due to the high false-discovery rate). However, it does allow
for use of more data in each analysis, as missing cases do not need to be dropped or interpolated.

To determine levels of phylogenetic niche conservatism across scales (Hypothesis 4), we

used the binned values of each multiscale statistic. For each spatial scale and each multiscale

12
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statistic, we computed the K statistic (Blomberg et al., 2003). Values of K<1 indicate faster trait
evolution than expected under a Brownian model (trait lability), while values of K>1 indicate
slower trait evolution (phylogenetic niche conservatism). The tree was estimated based on two
recently published mega-trees (Jin & Qian, 2019).

All statistical analyses were conducted in R software (version 3.5.1), using the

V.PhyloMaker, ape, and pls packages.

Results

The final merged vein and trait dataset included 639 branches from 260 species in 47 angiosperm
families. Overall, rmin ranged from 13 — 68 um (1% — 99% quantiles), and network extents
ranged from 94 — 180 mm? (1% — 99% quantiles). For visual clarity, we discuss the results in the
context of four species selected to illustrate contrasting network architectures (Figure 2) —
Dryobalanops lanceolata (Dipterocarpaceae), Pometia pinnata (Sapindaceae), Mallotus wrayi

(Euphorbiaceae), and Horsfieldia crassifolia (Myristicaceae).

Quantification of species network architecture across scales

All four multiscale statistics demonstrated high variation among species, as well as complex
patterns across spatial scales (Figure 3), giving support to our Hypothesis 2. In general,
relationships for each multiscale statistic were consistent among leaves within species, i.e.
intraspecific plasticity for network architecture traits was low, but variation between species was
high. Data for focal species are shown in Figure 3, with data for all species in Supporting
Information Figure S2-S5.

Some species maintained low values of ER(r) (ER = 1) across scales (Figure 3a,
Supporting Information Figure S2), reflecting circular loops nested within larger circular
loops. Other species showed sharp increases (ER = 5 — 10) at rmin = 0.1 mm, reflecting nesting
of circular loops in longer loops (e.g. Dryobalanops lanceolata). Most species then reduced ER
at rmin = 0.2 mm, while a small number maintained high or increasing values (e.g. Mallotus
wrayi).

Many species had a high value of CR (CR = 0.75) at small rmin , then reached a lower
value (CR = 0.25) by rmin=0.2 mm, reflecting a transition from loops with more complex

boundaries to loops with simpler boundaries (Figure 3b, Supporting Information Figure S3).
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However, the rate of decrease varied strongly among species, with some showing leveling off at
intermediate scales (Pometia pinnata) and others increases at larger scales (Dryobalanops
lanceolata).

VD(r) decreased monotonically with rmin in all species, reflecting the greater prevalence
of small veins relative to large veins in these species at the studied scales (Figure 3c,
Supporting Information Figure S4). However, the rates of decrease varied across species.
Some species showed rapid linear decreases (Horsfieldia crassifolia), consistent with vein
tapering and a scale continuum, while other species showed abrupt decreases, consistent with
discrete transitions between veins of different orders (Mallotus wrayi and Dryobalanops
lanceolata).

Contrarily, MST(r) increased monotonically with rmin in all species (Figure 3d,
Supporting Information Figure S5), reflecting a tendency for more branching and less looping
at larger spatial scales. At small rmin, MST values ranged from 0.5 — 0.8, indicating that a large
fraction of all vein segments contributed to loops rather than branches, while at larger rmin, MST
values approached 1 (i.e. no loops). Some species (Horsfieldia crassifolia) had much more tree-
liked networks at all scales. Although MST values must reach 1 ultimately (i.e. when only a
single vein remains in the network), it is mathematically possible for MST to both increase and
decrease with rmin at intermediate scales. However, no decreases occurred in this dataset. Abrupt
increases at some scales were present in some species (Pometia pinnata), indicating discrete
transitions in branching architecture.

The principal components analysis showed that the four multiscale statistics can be
distinguished in at least three axes of variation (Figure 4), partially supporting Hypothesis 1. The
first axis represented high VD and low MST, and explained 67% of the variation in the data. The
second axis represented high ER, and explained 23% of the variation in the data. A third axis
represented high CR and explained 8% of the variation in the data. As rmin increased, species
tended to increase in PC1, decrease in PC2, and increase then decrease in PC3 (Supporting
Information Figure S6), indicating shifts at larger spatial scales from high to low VD, high to
low MST, high to low ER, and low to high to low CR. Additionally, there was a pronounced
shift from variation occurring primarily along PC1 and PC2 at small scales (rmin < 0.05 mm), to
variation occurring primarily along PC1 at intermediate scales (fmin > 0.05 mm), and then

primarily along PC2 at larger scales (tmin > 0.1 mm).
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Trade-offs in network architecture — function across spatial scales
PLS analysis showed that network architecture was more associated with mechanical (in the first
PLS component force to punch explained 10% of model variation) and damage resistance traits
(tannins fraction: 8.9%) than to resource transport (photosynthetic capacity: -2%) and cost (leaf
mass per area: 3.5%) (Figure 5). Inclusion of additional PLS components did not qualitatively
improve explained variation or reveal other network architecture linkages (data not shown).

The importance of each multiscale statistic varied across spatial scales. For force to
punch (mechanical strength proxy), VD and MST made large contributions at rmin < 0.05 mm,
while ER and CR made large contributions at rmin > 0.05 mm (Figure 5a). These results are
largely not consistent with the hypothesized positive linkage to VD at large scales and negative
link to ER at small scales. For tannins (damage resistance proxy), only VD contributed at rmin <
0.04 mm, while CR, ER, and MST contributed at rmin = 0.05 mm, and only ER contributed at
rmin > 0.15 mm (Figure 5d). These results are not consistent with the hypothesized negative
linkage to MST and CR at all scales. Results for photosynthetic capacity (resource transport
proxy) (Figure 5c¢) had slightly negative explained variation (i.e. the model was worse than one
not including the predictors), also not consistent with the hypothesized positive linkage to VD at
small scales and positive link to MST at all scales. Results for leaf mass per area (cost proxy)
(Figure Sb) also had low explained variation, not consistent with the hypothesized positive
linkage to VD at large scales. Therefore, we did not find strong evidence for the predictions of
Hypothesis 3.

We also repeated these analyses using single-variable regressions at each scale. Results
were qualitatively similar (Supporting Information Figure S7), indicating that the choice of

methodology did not strongly influence our findings.

Phylogenetic conservatism of network architecture

All four multiscale statistics varied extensively across the phylogeny with some visual evidence
of clustering at certain spatial scales (Figure 6). Notably, clustering was apparent at small rmin
for VD and MST for the family Euphorbiaceae and Dipterocarpaceae, which comprise many
species that are ecologically dominant in southeast Asia. In contrast, CR and ER varied

extensively across the phylogeny at small rmin. At larger rmin, more variation was apparent, with
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low values of CR present in some clades (e.g. the Clusiaceae), and more rapid increases in MST
in the Fagaceae and Dipterocarpaceae. ER showed extensive variation but no clear association
with phylogeny at any scale. That is, patterns of phylogenetic clustering were highly scale
dependent.

The K analysis was consistent with this perspective. All four multiscale statistics varied
at least as rapidly (K<1) as under a Brownian trait evolution model (Figure 7). In the case of VD
and CR, Brownian evolution (K=1) could be rejected at almost all scales; for MST, K<1 was
supported most rmin < 0.12 mm, and for ER, at some scales of rmin < 0.08 mm. Contrary to

Hypothesis 4, there was a trend for more trait lability (smaller K) at larger rmin.

Discussion

Broadly, we found that 1) that network architecture varied extensively among species and across
scales, 2) that the phenotype space shifted and decreased at larger scales, 3) that relationships
between venation multiscale statistics and leaf function in this dataset were weak, and 4)

phylogenetic niche conservatism in multiscale statistics was low and variable across scales.

Independent axes of variation

Our framework provided a vocabulary for making quantitative and specific statements about
network architecture variation. The four axes of VD, CR, ER, and MST provide complementary
information about network architecture, with likely three independent axes present (Figure 4).
Other metrics of network architecture not considered here (e.g. vein branching angles; (Hickey,
1973)), may also be useful, so these four statistics should not be considered a complete set of

descriptors.

Variation in architecture across scales

The architectural phenotype space varied across scales (Figure 3). In particular, we found a
reduction in the size of phenotypic space at larger scales, and a shift to more tree-like and less
elongated network geometry. The overall shape of this phenotypic space is potentially consistent
with the existence of a number of phenotypic extremes, in which intermediate phenotypes occur
as tradeoffs among functions represented by the extreme functional archetypes (a ‘Pareto front’;

Shoval et al. (2012)). Consistent with this perspective, theoretical work has identified extreme
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network phenotypes (e.g. all branching, all looping) corresponding to optimization of resource
transport and resistance functions, respectively (Ronellenfitsch & Katifori, 2019). Our work now
extends these models to a wider range of phenotypic axes and empirical datasets. However, the
weak empirical results for Hypothesis 3 (see below) leave unclear whether the extreme
phenotypes do indeed represent functional archetypes.

The phenotype space appeared to vary along certain axes differentially across scales,
suggestive of multiple drivers affecting patterning at each scale. That is, variation (as seen via
confidence ellipses and convex hulls) appeared primarily along PC2 at small and large scales,
but along PC1 at intermediate scales. A simple null explanation is that reduced sampling at large
scales reduces the available variation (e.g. MST must reach a value of 1 for all leaves once rmin
reaches the maximum vein size). However, this idea seems insufficient to explain the differential
variation along other axes, as well as the contraction of confidence ellipses at intermediate
scales.

These results highlight the complexity of the phenotype space, and provide new targets
for models meant to capture their evolution (Ronellenfitsch & Katifori, 2017; Ronellenfitsch &
Katifori, 2019). Broadly, we found that network statistics at one scale are not predictive of
statistics at another scale, and that the limits to phenotype space are scale-dependent. This high
heterogeneity also invites questions about the reasons why species may occupy different subsets
of the architectural phenotype space, what factors drive shifts, and whether such variation leads

to divergent or convergent functioning.

Functional linkages between network architecture and function

Each model explained less than 10% of variation in each functional trait (Figure 5). Stronger
linkages were obtained for tannin fraction (damage resistance) and force to punch (mechanical
strength), rather than LMA (cost) and photosynthetic capacity (resource transport). This finding
is consistent with prior studies finding vein linkages to structural and defensive traits (Li ef al.,
2015; Blonder et al., 2018; Hua et al., 2019; Kawai & Okada, 2019) and inconsistent with those
finding linkages to hydraulic or resource flux traits (Sack et al., 2008; Brodribb et al., 2016).
Although we found a linkage between force to punch and venation traits, the relationships
observed were in the opposite directions of our predictions (Hypothesis 3). For example, we

expected mechanical strength to exhibit a positive link to VD at larger scales and to ER at small

17



500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

scales, but we found the opposite pattern (Figure Sa). The most likely explanation is that spatial
scale variation in rmin in these data was not enough to capture some of the ‘large’-scale functional
linkages. The largest veins studied here were 0.2 mm, when midveins can be at least 100x larger;
similarly, the largest sample was approximately 4 cm? in area, while leaves can be nearly 1 m? in
area for some species (Kattge et al., 2011). These larger features could be important for
explaining mechanical strength, and other axes of functioning. Therefore, describing network
architecture across all orders of magnitude is a priority for future investigations. However, one
cannot easily quantify large image extents at high resolution, at least with brightfield
microscopy. One solution is to take a hybrid approach, using higher resolution microscopy for
measurements at smaller scales and lower resolution cameras or scanners at larger scales.
Because both analyses yield multiscale statistics with the same scale variable (tmin), it should be
possible to fuse multiscale statistics from multiple ranges of scales, as shown in Supporting
Information Figure S8.

For damage resistance (tannin), we predicted a negative link to MST and CR at all scales,
but found a significant contribution only at rmin = 0.05 mm (Figure Sd). This result suggests that
a high investment in secondary chemistry may not be enough to offset investment in redundant
flow pathways. However, we recognize that we examined damage resistance primarily through
the lens of herbivory defense, but there are other aspects that may also be linked to venation. For
example, the ability to resist damage from drought may also be linked to the venation network,
as the probability of cavitation varies with vein size (Sack et al., 2008; Brodribb et al., 2016).
Another important functional axis not explored in this study was resilience to damage. While
resistance is related to the ability to prevent damages, resilience is the capacity to maintain
function after damage has occurred. The presence of vein loops may provide redundant pathways
that enable continued flow after damage, caused either by abiotic (e.g. drought, frost) or biotic
factors (e.g. herbivory) (Sack et al. 2008; Katifori et al. 2010). However, too much redundancy
may be detrimental and might actually decrease resilience, by facilitating the spread of
embolisms or diseases.

This study assessed functional linkages of network architecture with a limited set of
functional traits and functional axes. The underlying trait dataset we used here actually includes
a larger number of traits, including secondary chemistry and isotope and elemental stoichiometry

data. These other traits may map onto the functional axes we have already discussed. However,
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analyses using these additional traits as proxies for each functional axis did not qualitatively shift
results, with maximum PLS1 R? for any trait of 11% (Supporting Information Figure S9).
However, other proxies might have relevant connections. In particular, the resource transport
axis could be refined in future studies, separating out functions related to carbon uptake and
water transport. For example, hydraulic conductance (unmeasured) might be more closely linked
to water transport functions, whereas photosynthetic capacity would be more linked to carbon
uptake functions (measured). The role of venation in predicting hydraulic conductance appears to
be complex, even at single scales. Studies examining the linkage between minor veins and
hydraulic conductance have obtained divergent results, suggesting that selection for this
relationship may be clade- or biogeographically- dependent (Brodribb et al., 2007; Walls, 2011;
Sack et al., 2013; Gleason et al., 2016). More broadly, various aspects of leaf functioning may be
decoupled, if there is independent selection on multiple axes of functioning beyond the ‘fast-
slow’ continuum (Wright et al., 2004; Reich, 2014), for example, as has been found in the
decoupling between hydraulic and economic functioning in Chinese (Li ef al., 2015) and
Australian (Gleason et al., 2016) species. Such patterns might also occur if functioning is
achieved through other traits not directly related to venation. For example, leaves may modify
traits like their mesophyll density or their thickness in order to meet different structural
constraints (John et al., 2017), and similarly, outside-xylem pathways (e.g. bundle sheath
extensions) may be important factors in determining hydraulic conductivity (Buckley et al.,
2015; Ohtsuka et al., 2018).

An alternate explanation for the weak architectural-functional relationships found in this
study is that not all aspects of network architecture have immediate functional linkages. That is,
much of the diversity of form seen in networks may reflect evolution in the absence of strong
selection. For example, the weak relationships between leaf functional traits and ER (Figure 5),
may indicate that elongation of areoles may occur, but that it is a consequence rather than a cause
of other evolutionary forces. For example, leaf aspect ratio and areole elongation are sometimes
linked in non-monocots (Blonder et al., 2016), and are potentially coupled via developmental
mechanisms related to leaf elongation (Kang & Dengler, 2004). As such, selection on leaf aspect

ratio could indirectly drive variation in ER.

Phylogenetic conservatism of network architecture
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The results also showed that all venation network multiscale statistics varied more rapidly than
expected under a Brownian evolution model (Blomberg’s K < 1). Moreover, there was no
increase in K at large scales for any statistic (Figure 7). That is, the prediction of more niche
conservatism at larger scales (Hypothesis 4) was apparently rejected. These results are consistent
with prior analyses of fine-scale network architecture variation (Boyce et al., 2009; Sack &
Scoffoni, 2013; Blonder et al., 2018), and extend them to a wider range of scales. This finding
runs contrary to ideas that large scale network architecture should be highly conserved, as is
expected in plants systematics (Hickey, 1973), but is consistent with rapid rates of evolution seen
in some adaptive radiations (Dunbar-Co et al., 2009; Blonder et al., 2016). However, these
results should be interpreted with some caution as the sampling design was focused on dominant
species; thus, patterns may change if rare species were included.

As in the functional analysis (Hypothesis 3), there was likely insufficient scale variation
present in the image data to fully address this research question. Thus, our results do not yet call
into question the utility of primary and secondary venation in systematics. It seems likely that
larger-scale analyses would likely shift the conclusions of this analysis, especially given the
extensive prior use of primary and secondary venation characters as aids to species identification
and systematics. Our framework provides an approach that, with additional data, will be able to

delineate the scales and contexts in which these applications are well-founded.

Conclusion

We advanced a framework to quantify network architecture across species and spatial scales. By
building on ideas for hierarchical loop decomposition (Katifori & Magnasco, 2012), and
leveraging recent machine learning algorithms (Xu et al., 2020), we were able to move past
topological (Ronellenfitsch et al., 2015) or single scale (Blonder ef al., 2018) descriptions of
leaves toward multiscale statistics. Datasets with wider scale variation than ours will further

clarify understandings of network form-function linkages.
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Data Availability Statement
Venation data, subsetted trait data, the phylogeny are available at

https://doi.org/10.5287/bodleian:QR11d1PD2. R code to replicate all analyses using these files is

available at https://doi.org/10.5287/bodleian:E9JP2gjyP. Venation network image data are

available in Blonder et al. (2019). Segmented venation network images (like those shown in
Figure 2) are available in Xu ef al. (2020). Algorithms to analyze images and to calculate
multiscale statistics are available in Xu ef al. (2020). The full trait dataset (including numerous

other variables) is available https://doi.org/10.5281/zenodo.3247631.
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Supporting Information Legends

Table S1. Revised branch codes for samples.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
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(2018).

. Number of samples with a vein present at each spatial scale (tmin).
. Multiscale statistic for elongation ratio (ER).

S3.
S4.
SS.
Sé6.

Multiscale statistic for circularity ratio (CR).

Multiscale statistic for vein density (VD).

Multiscale statistic for minimum spanning tree ratio (MST).
Mean scores for the principal component analysis in Fig. 3.

. Alternate linear regression analysis of the effect of multiscale statistics on functional

Illustration of data fusion method for multiscale statistics.
Additional partial least squares analyses for seventeen other traits reported in Both ef al.

27



808
809
810
811

Tables

Table 1. Venation network multiscale statistics measured in this study.

Statistic

Units

Notes

Low value

High value

Vein density
(VD)

Loop elongation
Ratio (ER)

Loop circularity
(CR)

mm mm-2

dimensionless,
ranging from 0
(short loop) to
oo (long loop)

dimensionless,
ranging from

0 (more
infolding) to 1
(less infolding)

calculated as the
length of all vein
segments divided
by the area of the
leaf sample.
Higher VD values
indicate more
veins.

calculated by
fitting an ellipse
to each loop, and
dividing the
major axis length
by the minor axis
length, then
taking the median
ratio across all
loops and
subtracting 1 (for
later convenience
of fits). Higher
ER values
indicate longer,
more “stretched”
loops.

calculated by
dividing the loop
area by the
squared loop
perimeter for each
loop, then
multiplying by
4m, then taking
the median value
across all loops.
Higher CR values
indicate loops
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Minimum
spanning tree
ratio (MST)

dimensionless,
ranging from
0 (more loops)
to 1 (fewer
loops)

with less
infolding.

calculated by
computing the
length of the
minimum
spanning tree
connecting all
vein junctions
divided by the
length of all
veins. Higher
MST values
indicate more
branching (tree-
like) pathways

with fewer loops.

Sy
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813
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814  Table 2. Functional traits used as proxies for different functional axes.

Functional axis Trait proxy Units

Resource transport [Photosynthetic capacity (Amax) (%)

Damage resistance [Total tannins fraction (mg g™
Mechanical strength|Force to punch (Fp) N mm’!
Construction cost |Leaf mass per area (LMA) g cm?

815
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821

Table 3. Site information. Site code (SI) in this database refers to the filename structure used for

branch identification in File S1. Site code (FP) refers to the plot name in the ForestPlots

database.
Site code | Site code | Site name Number of Number of | Number of
(S1) (FP) branches with | species with | vein segments
vein and trait | vein and in all
data trait data branches

DASI1 DAN-04 | Danum GEM

Carbon Plot 1 81 48 1186605
DAF2 DAN-05 | Danum GEM

Carbon Plot 2 52 38 849519
BEL MLA-01 | Maliau SAFE GEM

Carbon Plot: Belian | 78 50 1077431
SER MLA-02 | Maliau SAFE GEM

Carbon Plot: Seraya | 86 52 1587871
BSO SAF-01 SAFE GEM Carbon

Plot B South 85 56 1474711
BNT SAF-02 SAFE GEM Carbon

Plot B North 103 55 2031577
ESA SAF-03 SAFE GEM Carbon

Plot E 120 81 1997597
SLF SAF-04 SAFE GEM Carbon

Plot LF 34 19 265037
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Figure Legends

Figure 1. Cartoon of the hierarchical loop decomposition process. A) Areoles are connected by
vein segments of varying radii. The lowest-radius vein segment is identified and the adjacent
areoles are fused into a larger region. B-D) This process is iterated until a single region remains.

At each iteration, multiscale statistics of the fused network are calculated.

Figure 2. Example venation networks for (a) Dryobalanops lanceolata (code BNT-T212-BSH),
(b) Pometia pinnata (DAS1-T010227-BSH), (¢) Mallotus wrayi (SER-T462-BSH), and (d)
Horsfieldia crassifolia (SLF-T53-BSH). Images are cropped sections of machine learning
algorithms applied to raw imagery. Each panel shows 8.4 x 8.4 mm of lamina. These images

correspond to the highlighted species in Figure 3.

Figure 3. Multiscale statistics for variation in (a) elongation ratio (ER), (b) circularity ratio
(CR), (¢) vein density (VD), and (d) minimum spanning tree ratio (MST), at each value of
minimum vein size (rmin). Black lines indicate data for all leaves in the full dataset. Colored lines
indicate data for four focal leaves shown in Figure 1. Gaps in lines indicate scales at which no

veins were observed.

Figure 4. Principal components analysis of the four-dimensional architectural space comprising
elongation ratio (ER), circularity ratio (CR), vein density (VD), and minimum spanning tree ratio
(MST) across scales, at each value of minimum vein size (rmin). 95% confidence ellipses enclose
the data at rmin value to show the central tendency in the data; convex hulls are also shown to
highlight species with extreme phenotypes. Parenthetical values indicate variance explained by

each axis.

Figure 5. Summaries of partial least squares (PLS) models predicting leaf functional traits from
elongation ratio (ER), circularity ratio (CR), vein density (VD), and minimum spanning tree ratio
(MST) across scales, at each value of minimum vein size (rmin). Each facet indicates a model
with a different leaf functional trait: (a) force to punch, (b) leaf mass per area, (¢) photosynthetic

capacity, and (d) tannins fraction. Colored lines indicate standardized effects of each multiscale
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statistic at each spatial scale. Thicker colored lines indicate models with higher R?. Loading

coefficients reflect the first PLS component only.

Figure 6. Phylogenetic distribution of multiscale statistics for all species in the study. Heatmaps

indicate values of (a) elongation ratio (ER), (b) circularity ratio (CR), (¢) vein density (VD), and
(d) minimum spanning tree ratio (MST) at each value of minimum vein size (rmin). Shaded clades
are the Dipterocarpaceae (blue), Clusiaceae sensu latu (inc. Hyperiaceae) (green), Euphorbiaceae

(orange), and Fagaceae (red).

Figure 7. Blomberg’s K statistic of phylogenetic conservatism for elongation ratio (ER),
circularity ratio (CR), vein density (VD), and minimum spanning tree ratio (MST) at each value
of minimum vein size (rmin) (colored dots). Values of 1 (dashed horizontal black line) indicate
Brownian trait evolution; values <1 indicate more rapid evolution than under Brownian trait

evolution. Points are solid if significantly different from 1 (p<0.05) and transparent otherwise.
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