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1 Introduction
Multidimensional sparse representations occupy a significant part of the literature on multiscale
decompositions. The interest in such representations arises from their ability, at least in theory, to
detect singularities along curves of surfaces with some smoothness. However, it is not the first
time that such representations are developed for the analysis of 2D and 3D images. From the early
years of filter banks and wavelets, image decompositions for compression and analysis have been
on the focus of many researchers (e.g., [1, 2]). The vast majority of those designs was based on
tensor product constructs of one-dimensional multiscale decompositions.

However, even in the early 90s, it was realized that such constructs (those mostly in use at the
time were real-valued) do not seem to give optimal results, especially on curved boundaries [3, 2].
This motivated several researchers to explore non-separable (non-tensor product) designs, e.g.,
[4, 5] or other dilation operators, e.g., [3] that later led to the quite popular design of beamlets,
curvelets and shearlets ([6, 7, 8, 9, 10, 11]). The starting point is a refinable function φ; wavelets
are then derived using the classical equations involving the low and high-pass filters, generalized
as Extension Principles first by Ron and Shen [12, 13]. Stability, compact support, smoothness and
vanishing moment orders of the resulting wavelets are derived from properties of the generating
refinable function, e.g., [1].

In this paper, we attempt to propose an alternative view on this old problem. Our goal is
to combine anisotropy with an abundance of orientations to mimic those of discrete curvelets
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and shearlets (see [14] for a comprehensive treatment of the directionality for discrete parabolic
molecules). Specifically, we propose a new method to design frame wavelets which combine the
advantages of compactly supported wavelets, namely small support and vanishing moments, but
also the directionality and orientability of curvelets and shearlets. One of the key novelties of
this work is that we trade classical filter design, formulated as a problem of solving systems of
trigonometric polynomial equations in the frequency domain for a much more computationally
efficient method based on Singular Value Decomposition (SVD) (Theorems 2.6 and 3.2). This new
method is simple and is the key contribution of this work.

Our starting point is a refinable function with compact support, or in other words, a function
φ ∈ L2(Rs) satisfying the following conditions:

• The Fourier transform φ̂ is continuous in a neighborhood of the origin and

φ̂(0) = 1.

• The Zs-periodic function Φ = ∑k∈Zs |φ̂(· + k)|2 is in L∞(Ts), the space of all measurable
essentially bounded functions on Ts. The spectrum of Φ is denoted by σφ = {γ ∈ Ts :
Φ(γ) 6= 0}.

• φ is a refinable function, i.e., φ̂(2γ) = H0(γ)φ̂(γ) for almost every γ and for some Zs-periodic
function H0 ∈ L2(Ts) called a low-pass filter or a refinement mask.

Next, given a finite natural number v, we also consider a vector of refinable functions Ψ =
(ψi)

v
i=1 ∈ L1×v

2 called a multi-wavelet satisfying Ψ̂(2γ) = H1(γ)φ̂(γ) for a.e. γ ∈ Rs and for an-
other Zs-periodic vector-valued function H1 ∈ Lv×1

2 (Ts) called a high-pass filter or a wavelet mask.
We define the dilation and translation operators on L2(Rs) by D2 f = 2s/2 f (2·) and τk f = f (· − k),
k ∈ Zs, respectively. For the above selection of the vector Ψ we define its corresponding homoge-
neous wavelet family or affine family XΨ by

XΨ =
{

ψi,j,k = Dj
2τkψi : j ∈ Z, k ∈ Zs, i = 1, ..., v

}
.

Additionally, for any j0 ∈ Z, we define the non-homogeneous wavelet family X(j0)
φ,Ψ by

X(j0)
φ,Ψ =

{
Dj

2τkψi : j ≥ j0, k ∈ Zs, i = 1, . . . , v
}
∪
{

Dj0
2 τkφ : k ∈ Zs

}
.

If there exist two positive constants C1 and C2, such that the inequality

C1‖ f ‖2
2 ≤ ∑

j∈Z

∑
k∈Zs

v

∑
i=1
|〈 f , ψi,j,k〉|2 ≤ C2‖ f ‖2

2

holds for any f ∈ L2, we say XΨ is an affine frame or a homogeneous wavelet frame for L2 and the
elements of Ψ are often called framelets. Here, we sometimes refer to them as frame wavelets. If
C1 = C2, then XΨ is called a tight wavelet frame and if C1 = C2 = 1, then XΨ is called a Parseval
wavelet frame or Parseval framelet. Homogeneous wavelet frames have only theoretical interest. In
applications we are more interested in non-homogeneous frames because they model an image
decomposition into various fine scales and a coarse residual created by the integer translates of
the refinable function.

Our work is influenced by [12] followed by the work of [15, 16, 17]. The Mixed Oblique Extension
Principle which characterizes the pairs of ”dual” families of homogeneous and non-homogeneous
frames was generalized by [18, 19] and broadens the applicability of the Unitary Extension Princi-
ple. Here we focus on UEP, but we believe that our methods can be extended for MOEP.

Our goal is not to propose new filters and framelets, but to provide a design framework
through which one can create ensembles of Parseval framelets defined by sets of high pass finite-
length filters, which can be a mix of well-known filters as well as other custom-made ones. Our
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intent is to make those Parseval framelet ensembles suitable to capture edges, textures and sur-
faces of singularities with enough sensitivity in preselected orientations. Additionally, the use of
compact support promotes sparsity, which is important for many applications. In that regard, our
gold standard is the sparsity asymptotics of continuous curvelets and shearlets, e.g., [10, 20]. Both
families achieve this optimal sparsity by continuously increasing the orientation resolution with
scale, something our constructs are not meant to do, because they form discrete frames. However,
the small compact support of our framelets in space gives them an advantage that curvelets and
shearlets lack, because those are compactly supported in frequency, with the notable exception of
the compactly supported shearlets developed in [21]. Those form only approximately homoge-
neous frames and their filter length is a multiple of that of our filters.

Looking back in the design of affine wavelets in multidimensions, the vast majority of them
are orthonormal or Riesz wavelets defined as tensor products of one-dimensional multiresolution
analysis wavelets. Tensor product constructs tend to favor horizontal or vertical image charac-
teristics and even introduce directional filtering variability depending on orientation. This fact
was recognized by Kovacevic and Vetterli [3], who attempt to construct the first finite length fil-
ters for non-tensor product filter banks. Notably, different are the non-tensor product constructs
of [5, 22, 23, 24, 25, 26, 27] which start from a single, compactly supported refinable function
whose integer shifts form a Riesz or an orthonormal basis (see [23] for an interesting multidi-
mensional MRA, non-tensor product-design literature review). General dilation matrices and
properties such as compact support, decay, smoothness, symmetry and vanishing moments are
explored in depth. We remark that all these constructs produce only real-valued wavelets. A nice,
alternative way which combines directionality and avoids the preferred filtering orientations of
real-valued tensor products is the introduction of complex-valued wavelets and frames pioneered
by Kingsbury [28, 29] and more recently [30, 31], which also attempt to reproduce the anisotropy
of parabolic molecules.

The construction of refinable functions with stable integer shifts is all but an easy task, as the
work of Cabrelli et. al. [32] demonstrates. Therefore, it is quite easier to resort to plain refinable
functions whose integer shifts form a Bessel family. In this manuscript, we fully adopt this po-
sition which breaks away from the MRA-orthodoxy. As Ron and Shen demonstrated [12], this
can be done with the so-called Extension Principles with added benefits, the combination of small
filter support with symmetry or antisymmetry.

An entirely different approach was proposed in [33, 34] where a filter-bank precursor of di-
rectional atoms was proposed, the steerable pyramids, aiming to define rotationally covariant
multiscale transforms. In theory, rotational covariance can be realized by continuous directional
transforms such as the Curvelet and Shearlet transforms. For discrete transforms this is not always
obviously true or even realizable. Nonetheless, some rotational covariance can be achieved also
by directional atoms as in [6, 7, 35, 36]. In this context, the rotational covariance of the represen-
tation is important because it makes feature extraction resistant to misclassification of structures
due to rotations (e.g., [37]). With shearlets, rotational covariance is different because different ori-
entations are implemented by powers of the shearing matrices and not by rotations. Results in
[14] may help elucidate this fact. At any rate, if frame atoms are directional and orientable (e.g
[6, 7, 35, 8, 9, 10, 33, 11]), then rotational covariance is well-approximated because the induced
data transforms can be thought of as good approximations of their continuous counterparts.

More recently, a very interesting ”projection method” has been proposed by B. Han to define
framelets with small supports in various orientations [38]. We reproduce the main results of [38]
in Corollary 2.7. The difficulty to construct orientable frame atoms with small spatial support mo-
tivated us to seek an alternative way to construct multi-scale framelets or, more generally, atoms
with this kind of support in space, oriented to have targeted filtering selectivity along a single
direction selected by us from a set of several, pre-determined orientations. We can increase the
number of those orientations by enlarging the spatial support of the generating refinable func-
tion. This construction method as well as the ability to keep the filters short in length are the main
contribution of this paper. Furthermore, we can make filter orientation selectivity razor sharp by
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increasing the support of the refinable function while retaining the remaining desirable properties
of the filters.

Our main objective, the framelet construction method with respect to isotropic dyadic dila-
tions we introduce here, is based on Theorem 2.6 which bears no similarity with classical wavelet
constructions. The refinable functions we use are tensor products of one-dimensional spline func-
tions, which endows Ψ with axial symmetries, sufficient smoothness and compact support. We
are bound to to use refinable functions whose low pass filter coefficients are positive. Surprisingly
enough, we show in Section 4 that the only significance of the choice of the refinable function is
limited to the number of its low pass filter coefficients. This is the main reason why we are not
interested in expanding our refinable function universe beyond tensor products of B-splines. The
essence of our design approach is that framelets Ψ are derived by any high pass filter H, as long
as H(0) = 0 and the support of H is contained in the support of the low pass filter (Section 4).
Of course, there is an associated cost for this procedure because it is rather unlikely that we can
construct sets of Parseval Framelets exclusively containing the high pass filters H of our choice.
The multi-wavelet Ψ will likely contain other framelets introduced by the process Theorem 2.6
prescribes, but as we show in Theorem 3.2, these auxiliary elements of Ψ may end up having
negligible contributions in image reconstructions.

The framelets we construct have similar properties with parabolic molecules [14], but unlike
the latter, the number of their orientations is fixed for all scales. The orientation of parabolic
molecules is defined in the frequency domain. This is not suitable for us, since our framelets
have compact support in space and are not C∞. In fact, they are less smoother. Directional filter
banks, as well as atoms with higher order directional vanishing moments were studied in [33,
34, 39, 40, 41, 42]. All of them are constructed in the frequency domain. One of our novelties
is the adaptation of these concepts in the spatial domain. We also provide a characterization of
the Directional Vanishing Moment (DVM) orders of wavelets and an algorithmic construction
to generate wavelets with up to N − 1 DVMs. Moreover, we can customize our DVMs to be
directed toward a certain orientation which does not have to coincide with the orientation of its
wavelet. This helps to increase local sensitivity to wavefronts with the same orientation. Although
directionality is a frequently used term in this article, we do not attempt to define it rigorously. In
fact, a careful examination of the literature reveals that other authors, who use the term, avoid to
do so. We invoke directionality in a descriptive manner in the sense that such directional filters
or framelets have pronounced anisotropies in certain orientations, but may also have directional
vanishing moments not necessarily aligned with their pronounced orientation or its normal.

This manuscript is divided in three main sections. In Section 2, we begin our discussion with
the equations of the UEP, which we use to derive a linear algebra method which transforms the
design problem of framelets arising from a refinable function to a problem of designing Parse-
val frames in finite-dimensional spaces. In Section 3, we develop an algorithm which allows to
custom-select the orientation and other properties of the filters defining these Parseval framelets
in order to achieve high spatial orientation of the resulting high pass filters. Finally, in Section 4
we show how to include high pass filters of our choice in the high pass filter set defining Ψ and
present several typical examples of the filter design strategies we propose based on the methods
we develop in the preceding two sections.

2 The geometry of the proposed construction
The starting point for our method is that XΨ is a Parseval framelet for L2 if and only if there exists
a complex-valued vector function H1 ∈ Lv×1

2 (Ts), v > 0, satisfying

H0(γ + q)H0(γ) + H∗1 (γ + q)H1(γ) = δ0,q (1)
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for all q ∈ {0, 1/2}s and for almost every γ ∈ Ts. Equations (1), first presented in [12], are called
the Unitary Extension Principle, according to which if the first row of the modulation matrix

H0(γ) H1,1(γ) · · · H1,v(γ)
H0(γ + q2) H1,1(γ + q2) · · · H1,v(γ + q2)

...
...

. . .
...

H0(γ + q2s−1) H1,1(γ + q2s−1) · · · H1,v(γ + q2s−1)


satisfies

|H0(γ)|2 +
v

∑
k=1
|H1,k(γ)|2 = 1

for almost every γ ∈ Ts, and if it is orthogonal to every other row, then XΨ forms a Parseval
wavelet frame for L2(Rs) associated with φ. Since the modulation matrix has 2s rows, we observe
that we must have v ≥ 2s − 1.

This part of our work explores a sufficient condition for solving the above system of equations,
which in essence is a system of polynomial equations with a large number of degrees of freedom
and therefore quite hard to solve in closed form and in a way that yields compactly supported
wavelets ψi. In what follows, H0 is assumed to be a trigonometric polynomial of the form

H0(γ) =
N

∑
k=1

ank e2πink ·γ

for ank ∈ R \ {0}, N > 1, and nk ∈ J ⊂ Zs, i.e., the exponents of the complex exponentials in the
representation of such a low-pass filter are characterized by s-dimensional vectors with integer
components. We also have

H0(0) = 1,

or equivalently ∑N
k=1 ank = 1. We rewrite H0 using the factorization

H0 = aw

where a is the 1× N vector of coefficients

a = (ank)
N
k=1

and w ∈ CN×1 is the vector-valued function of complex exponentials given by

w(γ) =
(

e2πink ·γ
)N

k=1
.

From now on we express the high-pass filter H1 ∈ Lv×1
2 (Ts) as

H1 = Bw

for some B ∈ Rv×N . Using these expressions for H0 and H1, we state the main problem this section
addresses.

Problem [A]: Let H0 = aw be a low-pass filter as above. Given a natural number v ≥ 2s− 1, we want
to determine (if it exists) a real matrix B ∈ Rv×N such that the v× 1 vector-valued function H1 = Bw
satisfies equation (1) and so its corresponding family XΨ forms a Parseval framelet for L2(Rs).

Focusing on Problem [A], we consider {mkt}N
k,t=1 to be the elements of the N × N matrix

M := aTa + BTB (2)
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and we notice that equation (1) can now be written as

δ0,q = w∗(γ + q)(aTa + BTB)w(γ)

=
N

∑
k=1

mkke−2πink ·q +
N

∑
k,t=1,k 6=t

mkte−2πink ·qe2πi(nt−nk)·γ, (3)

for all q ∈ {0, 1/2}s and for almost every γ ∈ Ts. The second summand in the right hand side
of equation (3) is a linear combination of not necessarily distinct exponentials. Specifically, the
second term may consist of several monomials associated with the same exponential which means
that uniqueness of coefficients cannot be directly assumed, unless all terms associated with the
same exponential are grouped. This gives rise to a rather complex system of non-linear equations,
even in the case where the number of unknown parameters is not large. Equation (3) implies that
Problem [A] has a solution if we can find appropriate entries for the matrix B (hence for M) such
that for all γ ∈ Ts and for all q ∈ {0, 1/2}s the following equations are satisfied:

N

∑
k=1

mkke−2πink ·q = δ0,q, (4)

N

∑
k,t=1,k 6=t

mkte−2πink ·qe2πi(nt−nk)·γ = 0. (5)

We provide insight on the analysis concerning the system of (4) and (5) in Example 4.2, but for the
purpose of this work we study the case where M is a diagonal matrix, or in other words, the case
where mkt = 0 for k 6= t. The second summand in equation (3) vanishes for all γ and so equation
(5) is always satisfied. However, the hypothesis that M is diagonal imposes the constraint v ≥
N − 1 as the next Lemma indicates. In other words, the number of non-zero Fourier coefficients
of the low-pass filter H0 affects the dimensionality of the high-pass filter H1.

2.1 Lemma. Let H0 = aw be a low-pass filter supported on a bounded set J as above and let v ≥ 2s − 1.
If M = (mkt)

N
k,t=1 is a diagonal matrix as in equation (2), then

(a) mkk > 0 for all k = 1, . . . , N.

(b) v + 1 ≥ N.

Proof. (a) Since all the components of the vector a in the expression of H0 are non-zero, and since
the k-th element in the diagonal of M, mkk, corresponds to the square of the norm of the k-th

column vector of
(

a
B

)
∈ R(v+1)×N , we have mkk > 0.

(b) If v + 1 < N, then we would have at least one element of the diagonal of M be equal to zero,
which by (a) leads to a contradiction.

In light of Lemma 2.1, the pursuit of solutions for Problem [A] leads to the following modified
formulation:

Problem [A′]: Let H0 = aw be a low-pass filter with bounded support J such that H0(0) = 1. Given
a natural number

v ≥ max {N − 1, 2s − 1} ,

we want to determine the real matrices B ∈ Rv×N for which the matrix M is diagonal and equation (4) is
satisfied.
We now notice that if Problem [A′] admits a solution B, then B is a solution to Problem [A] as
well. However, the solutions of Problem [A] are not exhausted by the solutions of Problem [A′],
since solutions of the former arise even when M is not diagonal. With this in mind, from now
on we focus on Problem [A′] and we show that all its solutions define Parseval frames in finite
dimensional spaces, which in turn define high-pass filters H1 for homogeneous Parseval wavelet
frames XΨ. Lemma 2.2 helps us get a good picture of the underlying geometry.
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2.2 Lemma. Let α, c ∈ R1×N , c 6= 0 and suppose D ∈ Rv×N is such that

(a) the rows of
(

α
D

)
form a Parseval frame for RN .

(b) DcT = 0.

Then α and c are collinear vectors.

Proof. Let di denote the i-th row vector of D. Then for c ∈ RN our assumptions imply

c = 〈α, c〉α +
v

∑
i=1
〈c, di〉di = 〈α, c〉α.

Hence, α and c are collinear.

2.3 Lemma. Let α ∈ R1×N be such that ‖α‖2 = 1. Then for any v ≥ N − 1, there always exists a matrix

D ∈ Rv×N such that the rows of
(

α
D

)
form a Parseval frame for RN .

Proof. We prove the statement by presenting an explicit construction of such a matrix D. Suppose
V ∈ RN×N is such that its first row vector is equal to α and its columns form an orthonormal set
for RN . Therefore, we can write

α = eT
1 V

where e1 ∈ RN×1 is the first vector of the standard basis for RN . We set

D =
(
0v×1 | Uv×(N−1)

)
V

and assume that the columns of U form an orthonormal set. Such a matrix U exists because
v ≥ N − 1. Then(

α
D

)T (
α
D

)
= αTα + DTD

= VT
(

e1eT
1 +

(
0v×1 | Uv×(N−1)

)T (0v×1 | Uv×(N−1)
))

V

= VT INV = IN

Hence, the columns
(

α
D

)
are an orthonormal set of RN and so the rows of

(
α
D

)
form a Parseval

frame for RN .

2.4 Remark. The conclusion of Lemma 2.3 comes from the fact that if k ≥ N and A is a k×N matrix
whose columns form an orthonormal set of vectors in RN , then the rows of A are a Parseval frame
for RN . Indeed, let R = {r1, . . . , rk} be the rows of A = [aij]. Then for every x ∈ RN , we have

k

∑
i=1
|〈x, ri〉|2 =

k

∑
i=1

(
N

∑
j=1

xjaij

)2

=
k

∑
i=1

N

∑
j=1

N

∑
l=1

xjaijxlail

=
N

∑
j=1

N

∑
l=1

xjxl

k

∑
i=1

aijail

=
N

∑
j=1

x2
j

= ‖x‖2 .
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We are now ready to present the complete solution of Problem [A′].

2.5 Proposition. Problem [A′] admits a solution if and only if

(a) ank > 0 for all k = 1, . . . , N.

(b) H0(q) = δ0,q for q ∈ {0, 1/2}s.

Proof. Based on the statement of Problem [A′], let M = aTa + BTB be a diagonal matrix and let B
be such that equation (4) is satisfied. We define the 1× N vector c = (cnk)

N
k=1 by

cnk =
ank√
mkk

, k = 1, . . . , N

where ank are the low-pass filter coefficients and we notice that c is well defined since Lemma 2.1
implies mkk > 0. Moreover, the low-pass filter condition H0(0) = 1 gives

N

∑
k=1

ank =
N

∑
k=1

cnk

√
mkk = 1, (6)

while by equation (4) for q = 0 we obtain ∑N
k=1 mkk = 1, or equivalently, the 1× N vector m =

(
√

mkk)
N
k=1 satisfies ‖m‖2 = 1. Next, we note that M is diagonal if and only if there exists a v× N

matrix D such that
B = D diag(

√
m11, . . . ,

√
mNN)

and the rows of
(

c
D

)
∈ R(v+1)×N form a Parseval frame for RN . This implies that for any α ∈ RN

we have

‖α‖2
2 = |〈α, c〉|2 +

v

∑
i=1
|〈α, di〉|2 . (7)

Applying equation (7) for α = m and utilizing equation (6) gives DmT = 0. Hence, Lemma 2.2
implies that c and m are collinear and so cnk = λ

√
mkk, or equivalently, ank = λmkk for some λ ∈ R.

By equation (6) we deduce

1 =
N

∑
k=1

ank = λ
N

∑
k=1

mkk = λ,

so ank = mkk > 0 for all k = 1, . . . , N by Lemma 2.1. Finally, this and equation (4) also imply
H0(q) = δ0,q.

Conversely, if (ank)
N
k=1 is a sequence of positive coefficients, then c = (

√ank)
N
k=1 is a well-

defined unit vector of RN . For v ≥ N − 1, Lemma 2.3 implies we can always find a real matrix
D ∈ Rv×N so that the rows of (

c
D

)
form a Parseval frame for RN . Then for B = D diag(

√
an1 , . . . ,

√
anN ), we have that cTc + DTD =

IN is equivalent to aTa + BTB = diag(an1 , . . . , anN ). Hence M is diagonal and mkk = ank . Then

δ0,q = H0(q) =
N

∑
k=1

ank e−2πink ·q =
N

∑
k=1

mkke−2πink ·q

and the proof is complete.

A surprising consequence of Proposition 2.5 is that in order to have a solution to Problem [A′], all
the Fourier coefficients of the low-pass filter must be positive. Tensor products of spline refinable
functions yield low-pass filters satisfying both conditions of Proposition 2.5. Next, the first of the
main results of this work summarizes the preceding discussion.
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2.6 Theorem. Let H0 = aw ∈ L2(Ts) be a low-pass filter with positive coefficients supported on a finite
set of indices J and suppose H0(q) = δ0,q for all q ∈ {0, 1/2}s. Then for v ≥ max{N − 1, 2s − 1} and
c = (

√ank)
N
k=1,

(a) All solutions of Problem [A′] are of the form

B = D diag(
√

an1 , . . . ,
√

anN )

where the rows of
(

c
D

)
form a Parseval frame for RN .

(b) Such matrices D always exist.

(c) Any solution B of Problem [A′] defines a high-pass filter H1 = Bw whose associated family XΨ forms
a homogeneous compactly supported framelet for L2(Rs) and therefore is a solution of Problem [A].

Proof. As we see in the proof of the converse of Proposition 2.5, the assumptions imposed on H0
guarantee the existence of a diagonal matrix

M =

(
a
B

)T (a
B

)
whose entries satisfy

N

∑
k=1

mkke−2πink ·q = δ0,q.

Now (a) follows from the equivalence between M being a diagonal matrix and the rows of
(

c
D

)
forming a Parseval frame for RN . (b) follows directly from Lemma 2.3. Lastly, for (c), we have

H0(γ + q)H0(γ) + H∗1 (γ + q)H1(γ) = W∗(γ + q)
(

a
B

)T (a
B

)
W(γ)

=
N

∑
k=1

mkke−2πink ·q

= δ0,q

Thus XΨ is a Parseval frame for L2(Rs).

Next, we generalize the construction of directional frame atoms with small spatial support
presented in [38, Theorem 2], where the authors use a “projection method” to create orientations
in the space domain essentially projected from higher dimensional Euclidean spaces to spaces
with lower dimensionality. Like ours, their filters act like low order finite difference operators
along the orientation of the atom. Here we recreate their main result in a somewhat more general
framework, specifically for low-pass filters with positive coefficients satisfying H0(q) = δ0,q for all
q ∈ {0, 1/2}s. This result was also generalized independently in [43], where the very interesting
constructs of Quasi-tight framelets were also first introduced.

2.7 Corollary. Let H0 = aw ∈ L2(Ts) be a low-pass filter with positive coefficients supported on a finite
set J and suppose H0(q) = δ0,q for all q ∈ {0, 1/2}s. Then the N(N − 1)/2× 1 high-pass filter vector
H1 with components

√
ank ant

(
−e2πink · + e2πint·

)
for all k 6= t with k < t defines an affine Parseval framelet for L2(Rs).

9



Proof. From the definition of H1, we have(
H0
H1

)
(γ) =

(
a
B

)
w(γ)

=



an1 an2 an3 · · · anN−1 anN

−√an1 an2

√
an1 an2 0 · · · 0 0

−√an1 an3 0
√

an1 an3 · · · 0 0
. . .

−√an1 anN 0 0 · · · 0
√

an1 anN

0 −√an2 an3

√
an2 an3 · · · 0 0

. . .
0 −√an2 anN 0 · · · 0

√
an2 anN

...
0 0 0 · · · −√anN−1 anN

√anN−1 anN



 e2πin1·γ

...
e2πinN ·γ



for γ ∈ Ts. Essentially, the rows of B are generated from all the possible permutations of non-zero

column pairs. This implies that M = aTa + BTB is a diagonal matrix since the columns of
(

a
B

)
form an orthogonal set of N vectors in RN . Moreover, computing the norm of the k-th column of(

a
B

)
gives

ank an1 + ank an2 + . . . + a2
nk
+ . . . + ank anN = ank

N

∑
i=1

ani = ank ,

for all k = 1, . . . , N. Therefore, M = diag(a) and B is a solution of Problem [A′]. The result follows
by Theorem 2.6.

3 Wavelets with directional vanishing moments and cus-
tomizable filters.
The core message of Section 2 is that under the assumptions of Theorem 2.6, one can construct
affine Parseval framelets for L2(Rs) arising from a refinable function by constructing Parseval
frames for RN . This theorem, not only allows us to translate the difficult problem of solving the
system of equations of the UEP into the much more algorithmically tractable problem of design-
ing Parseval frames in finite dimensions, but furthermore enables us to custom-shape the filters
defining the sought framelets. For example, sparse filters, edge detection filters, filters inducing
wavelets with a high order of vanishing moments etc., are some of the high-pass filter families we
know produce informative results in a variety of applications.

Our goal here is to propose a theoretical framework that enables us to hand-pick the high-pass
filters that define a Parseval framelet. We can also impose certain directional vanishing moments
to increase their sensitivity to singularities in application-specific targeted orientations. These
design choices, although not the only realizable ones, drive the filter constructs in Section 4. The
key tool is Theorem 2.6, which dictates that the matrix entries of the filters h1,i are determined by
the rows of the sub-matrix D of (

c
D

)
∈ R(v+1)×N , v ≥ N − 1,

whose rows form a Parseval frame for RN , and c is a given unit norm 1× N vector with positive
components defined by the Fourier coefficients of H0.
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Customizing filters that define affine multi-dimensional Parseval frames and/or selecting the
number and direction of their vanishing moments is not a straightforward task. It requires the
development of a number of tools which guarantee that in every Parseval frame filter ensemble
we create, we maximize the number of filters with those desirable properties. Each such filter set
may have to contain some filters acting as a complement to the set of filters with pre-designed
properties in order to derive a Parseval frame. A significant amount of this section is devoted
to making their contributions and their number as small as possible (Theorem 3.2). In order to
achieve these goals, we first need to develop certain filter design tools utilizing Theorem 2.6.

(i) We begin by presenting a sufficient condition for pre-determining L rows of D, or a sub-
matrix D1 ∈ RL×N whose rows are orthogonal to c so that there exist appropriate matrices
D2 for which the rows of  c

D1
D2


form a Parseval frame for RN [Lemma 3.1]. The sub-matrix D2 determines the filters acting
as a complement to the set of customized filters defined by D1.

(ii) Next, we seek a technique to optimize the rows of D1 to control redundancy and simultane-
ously minimize the reconstruction error when we choose to omit the framelets ψi resulting
from D2 [Theorem 3.2]. The algorithm implementing (i) and (ii) can be found at the begin-
ning of Section 4.

(iii) Finally, we give a characterization of the directional vanishing moment orders (DVM) of
framelets, but also how one can explicitly construct wavelets with up to N − 1 DVM.

The next Lemma addresses (i). In this setting, the affine framelets induced by the rows of D1 are
pre-designed but it is not necessary that they form an affine frame for L2(Rs). From now on we
use the notation

Q :=
(

c
D1

)
.

3.1 Lemma. Let D1 be a fixed L× N matrix with rows orthogonal to c. If the singular values of Q satisfy
σi ≤ 1 for all i = 1, . . . , L + 1, then there exists an N × N matrix D2 such that the rows of

(
Q
D2

)
=

 c
D1
D2


form a Parseval frame for RN . In this case, the Parseval frame consists of v = L + N + 1 vectors in RN .

Proof. We prove the case where L + 1 ≤ N. Using Singular Value Decomposition (SVD), we have
Q = UΣ1VT for U ∈ R(L+1)×(L+1) and V ∈ RN×N unitary matrices and

Σ1 =
(
diag(σ1, . . . , σL+1) | 0(L+1)×(N−L−1)

)
∈ R(L+1)×N .

Now let D2 = Σ2VT ∈ RN×N with

Σ2 = diag
(√

1− σ2
1 , . . . ,

√
1− σ2

L+1, 1, . . . , 1
)
∈ RN×N .

This gives
QTQ + DT

2 D2 = V(ΣT
1 Σ1 + ΣT

2 Σ2)VT = VINVT = IN .

The case L + 1 > N is similar and the proof is omitted.
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We remark that the number of non-zero singular values of Q is directly linked to the total
number v of high-pass filters. The larger the number of singular values equal to 1, the smaller
the number of rows of Σ2 is going to be, thus providing us with a tool to control the overall
redundancy of the affine family XΨ.

However, this is not the only notable aspect of this construction. All singular values σ1 ≥
σ2 ≥ · · · ≥ σL+1 come from the pre-designed filters induced by D1. If σi = 1 for i = 1, . . . , L + 1,
then whatever complementary filters we add using D2 can be considered as the only part of the
framelet construction over which we have no control, for it is determined by VT. This observation
leads us to consider (ii), the second point mentioned in the beginning of this section.

One way to control the D2-contributions is to eliminate the chance of introducing zeros as
singular values, or in other words, by ensuring that rank(Q) = N. As we will see in Theorem
3.2, this can be done in a way that keeps the resulting singular values σi as close to 1 as possible.
Nevertheless, this is one aspect of the D2-construction we do not control.

The next theorem shows there exist matrices D1 for which we can jointly maximize all singu-
lar values of Q under the constraint σmax(Q) ≤ 1. Moreover, provided that rank(Q) = N, we
want to see how accurate an approximation of an L2 function f one can obtain when disregard-
ing the completion matrix D2. For this, recall that if Ψ = (ψ1, . . . , ψv) is a multi-wavelet whose
corresponding affine family X0

φ,Ψ forms a Parseval frame for L2(Rs), then the Calderon Condition
states

|φ̂(γ)|2 +
∞

∑
j=0

v

∑
i=1

∣∣∣ψ̂i

( γ

2j

)∣∣∣2 = 1.

We define

E := 1−
∞

∑
j=0

L

∑
i=1

∣∣∣ψ̂i

( γ

2j

)∣∣∣2 − |φ̂(γ)|2 =
∞

∑
j=0

v

∑
i=L+1

∣∣∣ψ̂i

( γ

2j

)∣∣∣2 ,

as well as the reconstruction error of f

E( f ) : = ‖ f ‖2
L2
−

∞

∑
j=0

∑
k∈Zs

L

∑
i=1
|〈 f , ψi,j,k〉|2 − ∑

k∈Zs

|〈 f , Tkφ〉|2

=
∞

∑
j=0

∑
k∈Zs

v

∑
i=L+1

|〈 f , ψi,j,k〉|2.

We seek to establish a connection between the reconstruction error E( f ) and the simultaneously
maximized singular values of Q.

3.2 Theorem. (a) Let c be a 1× N vector such that ‖c‖2 = 1 and suppose the rows of D1, {di}L
i=1,

satisfy
dicT = 0

for all i. For λ ∈ RL, we define Q(λ) :=
(

c
diag(λ)D1

)
and

fc(λ) := trace
(

QT(λ)Q(λ)
)

.

Then the problem

P :

{
max fc(λ)

subject to
∥∥QT(λ)Q(λ)

∥∥ ≤ 1

admits a solution.

(b) Let λ̃ ∈ RL be a solution of problem P and let D̃1 = diag
(

λ̃
)

D1 ∈ RL×N be such that rank(Q) =

N. Then
E( f ) ≤ σ‖ f ‖2

L2
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where σ := 1− σ2
N and the truncated non-homogeneous affine wavelet family

{Dj
2Tkψi : j ∈ Z, k ∈ Zs, i = 1, . . . , L} ∪ {Tkφ : k ∈ Zs}

is a frame with lower frame bound σ2
N and upper frame bound 1.

Proof. (a) We define Γ =
{

λ ∈ RL :
∥∥QT(λ)Q(λ)

∥∥ ≤ 1
}

and notice that for any D1 ∈ RL×N with
rows in the orthogonal complement of c, if λ ∈ Γ, then

σmax (Q(λ)) ≤ 1.

Moreover, Γ is non-empty since 0L ∈ Γ, but also bounded. Now for a sequence (λn)n∈N ⊂ Γ such
that λn → λ0, we have

‖QT(λn)Q(λn)−QT(λ0)Q(λ0)‖ = ‖DT
1
(
diag(λn)

2 − diag(λ0)
2)D1‖

≤ ‖D1‖2 ∥∥diag
(
λ2

n − λ2
0
)∥∥→ 0

as n→ ∞ and so Γ is also closed. The result follows by the continuity of the trace function fc.
(b) Since the rows of D̃1 are orthogonal to c and since ‖c‖2 = 1, we have σ1 = 1. Then by applying
Lemma 3.1 to D̃1, we have

ΣT
1 Σ1 = diag(1, σ2

2 , . . . , σ2
N)

and
ΣT

2 Σ2 = (0, 1− σ2
2 , . . . , 1− σ2

N),

where Σ1 and Σ2 are defined as in Lemma 3.1. First, we claim

v

∑
i=L+1

|Hi,1(γ)|2 ≤ (1− σ2
N)

v

∑
i=1
|Hi,1(γ)|2. (8)

Indeed, since σ2
N − σ2

i ≤ 0 for all i = 1, . . . , N, we notice that the matrix

S : = ΣT
2 Σ2 − (1− σ2

N)
(

ΣT
1 Σ1 + ΣT

2 Σ2 − diag(1, 0, . . . , 0)
)

= diag(0,−σ2
2 + σ2

N , . . . ,−σ2
N−1 + σ2

N , 0)

is negative semi-definite. Hence

w∗(γ)
(

M1/2
)T

VSVT M1/2w(γ) =
v

∑
i=L+1

|Hi,1(γ)|2 − (1− σ2
N)

v

∑
i=1
|Hi,1(γ)|2 ≤ 0

for M1/2 = diag(
√

an1 , . . . ,
√

anN ) and for almost every γ ∈ Ts. Next, let θj : Ts → C be given by

θj(·) =
j−1

∏
k=0

H0(2j−1−k·)H1(2j·)

for any j ≥ 0. Recall that the Fundamental Function Θ : Ts → R+ associated with the family XΨ
is given by

Θ(·) =
∞

∑
j=0
|θj(·)|2

and recall that, [15, 17], for almost every γ ∈ Ts we have

lim
j→∞

Θ
( γ

2j

)
= 1. (9)
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We begin by considering the error of approximation for two scales of resolution. Specifically, using
(8) and the definition of the Fundamental function above, we have

v

∑
i=L+1

1

∑
j=0

∣∣∣ψ̂i

( γ

2j

)∣∣∣2 =
v

∑
i=L+1

(∣∣ψ̂i(γ)
∣∣2 + ∣∣∣ψ̂i

(γ

2

)∣∣∣2)

≤ σ
v

∑
i=1

(∣∣∣H1,i

(γ

2

)∣∣∣2 ∣∣∣φ̂ (γ

2

)∣∣∣2 + ∣∣∣H1,i

(γ

4

)∣∣∣2 ∣∣∣φ̂ (γ

4

)∣∣∣2)
= σ

(∣∣∣H1

(γ

2

)∣∣∣2 ∣∣∣H0

(γ

4

)∣∣∣2 + ∣∣∣H1

(γ

4

)∣∣∣2) ∣∣∣φ̂ (γ

4

)∣∣∣2
= σ

1

∑
j=0

∣∣∣θj

(γ

4

)∣∣∣2 ∣∣∣φ̂ (γ

4

)∣∣∣2
≤ σΘ

(γ

4

) ∣∣∣φ̂ (γ

4

)∣∣∣2
for almost every γ ∈ Ts. Hence if j0 ∈ N, proceeding inductively using the same technique yields

v

∑
i=L+1

j0

∑
j=0

∣∣∣ψ̂i

( γ

2j

)∣∣∣2 ≤ σ
j0

∑
j=0

∣∣∣θj

( γ

2j0+1

)∣∣∣2 ∣∣∣φ̂ ( γ

2j0+1

)∣∣∣2
≤ σΘ

( γ

2j0+1

) ∣∣∣φ̂ ( γ

2j0+1

)∣∣∣2
Finally, using (9) and φ̂(0) = 1 and by letting j0 tend to infinity we obtain E ≤ σ. The result
follows from Theorem 3.2 of [44] for Parseval frames.

A characterization of Directional Vanishing Moments (DVM)

Recall that for a given unit vector β ∈ Rs, we say a compactly supported wavelet ψ has n vanishing
moments in the direction of β if

Dr
βψ̂(0) = 0

for all r = 0, 1, . . . , n− 1, where Dr
β represents the r-th order directional derivative in the direction

of β. A routine calculation shows

Dr
β f̂ (0) = F

(
(−2πi(x · β))r f (x)

)
(0)

for every compactly supported f ∈ L1, where F denotes the Fourier transform. The previous
equation shows that DVM act just like regular moments, primarily in the direction of β. As in the
one-dimensional case, the number of directional vanishing moments of a wavelet ψ is expected to
affect the rate of decay of the frame coefficients with respect to the scale j at various directions
at any point, especially at points of singularity. We illustrate this effect with Figure 1 below.
Specifically, we consider a cubic polynomial image and the high-pass filter

h =

 0.1655 −0.2372 0.0718
−0.0073 0.0146 −0.0073
−0.0207 0.0414 −0.0207


corresponding to a wavelet with four DVM in the direction of (0, 1) and we notice that 2D convo-
lution with h produces an output with no edges.
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Figure 1: Left: Cubic spline interpolation of binary image containing a single horizontal non-zero band. Values
in this image are constant in the direction of (0, 1). Right: 2D convolution with h defining a wavelet with 4
directional vanishing moments in the direction of (0, 1). As expected, the lower polynomial degree of the
intensity profile of the left panel relative to the number of DVM of h parallel to (0, 1) practically flatten the
cubic spline bump in the middle of the left panel.

Next, assuming B ∈ Rv×N is a solution to Problem [A′], we translate the DVM orders of a wavelet
ψi into certain geometric conditions in RN via the following characterization:

3.3 Proposition. Let β ∈ Rs and Ψ = (ψi)
v
i=1 be a multi-wavelet arising from a matrix D as described in

Theorem 2.6. Then if di denotes the i-th row vector of D, a given wavelet ψi has n vanishing moments in
the direction of β if and only if

cZrdT
i = 0

for all r = 0, 1, . . . , n− 1 and for Z := diag(β · n1, . . . , β · nN).

Proof. Since the multi-wavelet Ψ satisfies the two-scale equation Ψ̂(2·) = H1(·)φ̂(·), we infer that
ψi has n vanishing moments in the direction of β if and only if H1,i has n vanishing moments in the
direction of β, where H1,i denotes the i-th component of H1. Next, using D2

β to denote the second
order directional derivative in the direction of β, we have

D2
β (H1,i(γ)) = Dβ

(
Dβ (H1,i(γ))

)
= Dβ

((
∇ ∑

nk∈J

√
ank di,ke2πink ·γ

)
· β
)

= 2πiDβ

(
∑

nk∈J

√
ank di,ke2πink ·γ(β · nk)

)
= (2πi)2 ∑

nk∈J

√
ank di,ke2πink ·γ(β · nk)

2.

Proceeding inductively we find that the r-th order directional derivative in the direction of β is
given by

Dr
β (H1,i(γ)) = (2πi)r ∑

nk∈J

√
ank di,ke2πink ·γ(β · nk)

r.

Therefore, a given wavelet ψi has n vanishing moments in the direction of β if and only if

∑
nk∈J

√
ank di,k(β · nk)

r = 0

for all r = 0, 1, . . . , n− 1, or equivalently if and only if

cZrdT
i = 0

for all r = 0, 1, . . . , n− 1.
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Next, based on Proposition 3.3, we claim that for a given set of low-pass filter polynomial
exponents {nk}N

k=1, there exist uncountably many direction vectors for which one can construct
wavelets with N− 1 DVM inducing solutions to Problem [A′]. The following proposition supports
this claim.

3.4 Proposition. There exists a unit vector β ∈ Rs and a vector d ∈ RN such that the high-pass filter
with coefficients (√ank dk)

N
k=1 induces a wavelet with N − 1 vanishing moments in the direction of β.

Proof. First, we claim that there always exists a vector β ∈ Rs such that all dot products

β · nk, k = 1, . . . , N

are distinct. Equivalently, one can always find a β such that (nk − nt) · β 6= 0 for all k 6= t. Indeed,
to not have (nk− nt) · β = 0 for some β and for all k 6= t, we have to exclude (N

2 ) hyperplanes from
Rs. However, by Baire’s Category Theorem, Rs is not the union of a finite number of hyperplanes
and hence uncountably many such β vectors exist. Next, for such a β ∈ Rs we consider the N×N
Vandermonde matrix

V =


1 · · · 1

n1 · β · · · nN · β
(n1 · β)2 · · · (nN · β)2

...
. . .

...
(n1 · β)N−1 · · · (nN · β)N−1


for which det(V) 6= 0, since all β · nk, k = 1, . . . , N are distinct. Moreover, the matrix

R := V diag(
√

an1 , . . . ,
√

anN ) =



√
an1 · · · √

anN

(n1 · β)
√

an1 · · · (nN · β)
√

anN

(n1 · β)2√an1 · · · (nN · β)2√anN
...

. . .
...

(n1 · β)N−1√an1 · · · (nN · β)N−1√anN


is invertible, since ank 6= 0 and so the last column vector of R−1 is orthogonal to all first N− 1 rows
of R. Therefore, by Proposition 3.3, choosing d to be the last column vector of R−1 and applying
Theorem 3.2(a) implies that the corresponding wavelet ψ has N − 1 vanishing moments in the
direction of β.

3.5 Remark. Although we cannot expect the order of directional vanishing moments to exceed
N − 1, the previous proposition shows that there are uncountably many direction vectors β for
which this order of moments is realized.

4 Examples
As indicated in Sections 2 and 3, the purpose of this work is to develop techniques to hand-
craft affine Parseval framelet sets, or at least handcraft the part of them which most significantly
contributes to multidimensional image reconstructions. In this section, we propose a four-step
algorithmic process via which, for any high-pass filter

H(·) = (H1(·), . . . , HL(·))T ∈ LL×1
2 (Ts)

with components Hi(·) = ∑N
k=1 bi

nk
e2πink ·, i = 1, . . . , L, one can force a Parseval framelet for L2(Rs)

to comprise wavelets ψi with corresponding high-pass filters (up to scalar multiplications). Us-
ing this algorithm, we construct classes of representative examples of explicit affine framelet sets
containing atoms implementable by sparse filters with directional characteristics. The algorithm
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below can easily be applied to every finite set of high-pass filters of our choice, multiplied by an
appropriate set of scalars.

Specifically, for nk ∈ J ⊂ Zs, let H0 be a low-pass filter with positive coefficients a = (ank)
N
k=1

and H be any high-pass filter of the form

H(·) =

b1
n1

. . . b1
nN

...
...

bL
n1
· · · bL

nN


 e2πin1·

...
e2πinN ·


with H(0) = 0.

Step 1: We define the 1× N vector c =
(√ank

)N
k=1 and notice that for any λ ∈ RL, the matrix

D1(λ) = diag(λ)

b1
n1

. . . b1
nN

...
...

bL
n1
· · · bL

nN


1/cn1

. . .
1/cnN


is well-defined and D1(λ)cT = 0, since H is a high-pass filter and therefore satisfies ∑N

k=1 bi
nk

=
0 for all i = 1, . . . , L.

Step 2: We use Theorem 3.2(a) to obtain λ∗ such that

trace
(

cTc + D1(λ
∗)TD1(λ

∗)
)
=

{
max trace

(
cTc + D1(λ)

TD1(λ)
)

subject to
∥∥cTc + D1(λ)

TD1(λ)
∥∥ ≤ 1

Step 3: We use Lemma 3.1 to find a completion matrix D2 for which the rows of c
D1(λ

∗)
D2

 ∈ R(v+1)×N , v ≥ N − 1,

form a Parseval frame for RN .

Step 4: We use Theorem 2.6 to guarantee that the wavelets ψi with corresponding high-pass filters
λ∗i Hi, i = 1, . . . , L are components of a multi-wavelet Ψ whose associated family XΨ is a
Parseval framelet for L2(Rs). Indeed, this follows from Theorem 2.6(a), since the high-pass
filter matrix B is obtained by

B =

(
D1(λ

∗)
D2

)cn1

. . .
cnN


4.1 Remark. 1. The cost of incorporating into Ψ the frame wavelets defined by λ∗i Hi is paid in

part by having to incorporate into Ψ the filters that come from D2. This cost can only be
controlled if we select multiple high pass filters of our choice for which we have rank(Q) =
N. This particular process will become more clear in what follows.

2. The previous algorithm demonstrates the potentially limited role of the refinable function
in the construction of H1. Specifically, the algorithm shows that its main part can come
from H. As we see, as long as H has enough hand-picked filters to exhaust the available
dimensionality of the construction space RN , the D2-contribution in the high-pass filter set
H1 may be limited as measured by the reconstruction error E(·). Consequently, we are led
to the conclusion that the significance of the refinable function is limited as the only role its
seems to play is to set N.
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In the spirit of the previous remark, we introduce the typical models of high-pass filter designs
of our choice, including high-pass filters acting as first and second order directional finite-difference,
Prewitt and Sobel operators, known to produce desirable results in edge and singularity detection
in 2-D imaging applications.

We recall that first and second order directional finite-difference filters are associated with the
operators δh,u and δ2

h,u, respectively, where

δh,u[ f ](·) = f (·+ hu)− f (· − hu),

and
δ2

h,u[ f ](·) = f (·+ hu)− 2 f (·) + f (· − hu).

In one dimension, the corresponding filter matrices are (1, 0,−1) and (1,−2, 1) (see [12]). Those
are used to generate tensor product filters, such as the Prewitt and Sobel filters [45] given by

Px =

−1 0 1
−1 0 1
−1 0 1

 Py =

−1 −1 −1
0 0 0
1 1 1


and

Sx =

1 0 −1
2 0 −2
1 0 −1

 Sy =

 1 2 1
0 0 0
−1 −2 −1

 ,

respectively. Both the Prewitt and Sobel operators are used to approximate or detect horizontal
and vertical intensity changes. They are obtained as tensor products of smoothing and finite-
difference operators, hence they are separable. We are interested in directing the action of such
operators to several orientations to promote sparse decompositions and use them in feature ex-
traction applications. For example, we notice that the matrices

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0




0 0 0 0 0
0 0 0 0 1
0 0 −2 0 0
1 0 0 0 0
0 0 0 0 0




0 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 0



−1 0 1 0 0
0 0 0 0 0
0 −2 0 2 0
0 0 0 0 0
0 0 −1 0 1


are sparse and oriented at 63.43◦, 26.57◦, 135◦ and 116.57◦, respectively, but cannot be obtained as
tensor products of one-dimensional kernels. This is where our algorithm comes in handy, since
it permits filters like the above to be part of filter families inducing Parseval framelets. Next, we
construct families of wavelet frames arising from Cardinal B-spline refinable functions, whose
low-pass filters have positive coefficients.

For N1N2 = N, let h be an N1 × N2 filter matrix. We define the map Λ : RN1×N2 → RN given
by

Λ(h) = (hN1,1, . . . , hN1,N2 , hN1−1,1, . . . , hN1−1,N2 , . . . , h1,1, . . . , h1,N2) ∈ RN

to turn h from a matrix to a vector, in accordance to Theorem 2.6. As will become clear in examples
4.3,4.4 and 4.5, we use Λ in the following way: first, we pre-specify the form of a desirable high-
pass filter matrix, say h, and then we define

d(λ) := λ

(
Λ(h)k

cnk

)N

k=1
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for a given vector c = (cnk)
N
k=1. We then apply Steps 2,3 and 4 of our algorithm as stated above.

When we do this for more than one filter h, then we must solve the optimization problem of
Theorem 3.2(a). If the filters we intend to use give pairwise orthogonal vectors through Λ, then
the steps of the algorithm presented above can be applied to each filter individually.

The first case we examine is a high-pass filter family arising when we only apply Lemma 3.1
and Theorem 2.6. In other words, we do not pre-design any of the filters.

4.2 Example. Let ϕ be the one-dimensional second order cardinal B-spline refinable function with
corresponding low-pass filter

µ0(γ) =

(
1 + e2πiγ

2

)2

=
1
4

(
1 + 2e2πiγ + e4πiγ

)
, γ ∈ T

and consider φ to be the tensor product refinable function ϕ⊗ ϕ. Then H0(γ) = µ0(γ1)µ0(γ2) for
γ = (γ1, γ2) ∈ T2 and the low-pass filter matrix is given by

h0 =
1

16

1 2 1
2 4 2
1 2 1

 .

Using Λ, we define

c =
1
4

(
1,
√

2, 1,
√

2, 2,
√

2, 1,
√

2, 1
)

.

For symmetry purposes we translate φ so as to obtain J = {−1, 0, 1} × {−1, 0, 1}. If we merely
apply the SVD method of Lemma 3.1 we obtain

B = 10−2



−8.84 31.8 −1.77 −3.54 −7.07 −3.54 −1.77 −3.54 −1.77
−6.25 −2.5 23.8 −2.5 −5 −2.5 −1.25 −2.5 −1.25
−8.84 −3.54 −1.77 31.8 −7.07 −3.54 −1.77 −3.54 −1.77
−12.5 −5 −2.5 −5 40 −5 −2.5 −5 −2.5
−8.84 −3.54 −1.77 −3.54 −7.07 31.8 −1.77 −3.54 −1.77
−6.25 −2.5 −1.25 −2.5 −5 −2.5 23.8 −2.5 −1.25
−8.84 −3.54 −1.77 −3.54 −7.07 −3.54 −1.77 31.8 −1.77
−6.25 −2.5 −1.25 −2.5 −5 −2.5 −1.25 −2.5 23.8


We notice that the fifth column of B contains the constant terms in the generated high-pass filter
polynomials. Based on this observation, we note that even though Theorem 2.6 guarantees that B
induces a Parseval frame for L2(R2), none of the high-pass filter matrices are sparse, symmetric,
anti-symmetric, or directional.

SVD for the construction of the high-pass filter set was first used in [46] for proving the ex-
istence of periodic tight frame multiwavelets L2([0, 2π)s) arising from multi-refinable periodic
functions. As we see, apart from generating compactly supported frame wavelets, there is essen-
tially no luck in obtaining filters with some of the desirable properties by using SVD only.

4.3 Example. Let ϕ be an even-order cardinal B-spline refinable function and let φ be the tensor
product ϕ ⊗ ϕ as before, centered at the origin. Using Λ and the fact that the symmetry of h0
implies ani = anN−i+1 for i = 1, . . . , (N − 1)/2, we define

Q =

(
c

D1

)
=


√

an1 · · ·
√an(N−1)/2

√an(N+1)/2

√an(N−1)/2 · · ·
√

an1

−
√

2
2 · · · 0 0 0 · · ·

√
2

2
...

...
...

...
...

0 · · · −
√

2
2 0

√
2

2 · · · 0

 .
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We notice that D1 defines central-difference filters with orientations parallel to the vectors ni,
i = 1, . . . (N − 1)/2. If β is an arbitrary unit vector in R2, then we write

cZ =
(
(n1 · β)

√
an1 , . . . , (n(N+1)/2 · β)

√
an(N+1)/2 , . . . , (nN · β)

√
an1

)
as in Proposition 3.3 and note that the symmetry of the vectors ni and nN−i+1 about the origin
implies

ni · β = −nN−i+1 · β, i = 1, . . . ,
N − 1

2
.

This means that if a vector belongs to the orthogonal complement of the linear span of the rows of
Q, then it is automatically orthogonal to cZ. In this setting, the rows of Q are pairwise orthogonal
unit vectors. Any choice of a D2 matrix for which the rows of(

Q
D2

)
form a Parseval frame for RN will define an affine Parseval framelet for L2(R2), where the ψi
defined by the rows of D2 have exactly one directional vanishing moment for all β ∈ R2.

By Proposition 3.3, each of the high-pass filters generated by Q makes its corresponding wavelet
insensitive to singularities parallel to β when β is perpendicular to nk, since then the wavelet has
infinite moments along these directions. In fact, by continuity of the inner product, each wavelet
loses its sensitivity as β converges to the unit vector perpendicular to nk.
4.4 Example. Starting with the same refinable function φ as in example 4.2, our next effort is to
design B so that it is associated with four first-order and four second-order directional finite-
difference high-pass filter matrices. Specifically, we consider the matrices

h1 =

 0 0 1
0 0 0
−1 0 0

 , h2 =

0 1 0
0 0 0
0 −1 0

 , h3 =

1 0 0
0 0 0
0 0 −1

 , h4 =

 0 0 0
−1 0 1
0 0 0


h5 =

0 0 1
0 −2 0
1 0 0

 , h6 =

0 1 0
0 −2 0
0 1 0

 , h7 =

1 0 0
0 −2 0
0 0 1

 , h8 =

0 0 0
1 −2 1
0 0 0

 ,

which we vectorize using the map Λ to obtain the rows of D1(λ) given by dk(λ), k = 1, . . . , 8. This
gives the matrix

D1(λ) := diag(λ)



−4 0 0 0 0 0 0 0 4
0 −2

√
2 0 0 0 0 0 2

√
2 0

0 0 −4 0 0 0 4 0 0
0 0 0 −2

√
2 0 2

√
2 0 0 0

0 0 0 −2
√

2 4 −2
√

2 0 0 0
0 0 −4 0 4 0 −4 0 0
0 −2

√
2 0 0 4 0 0 −2

√
2 0

−4 0 0 0 4 0 0 0 −4


whose rows are in the orthogonal complement of c. Here the rows of D1(·) are not pairwise
orthogonal and so the largest singular value of

Q(λ) =

(
c

D1(λ)

)
is expected to be strictly greater than 1, even in the case where the rows of Q are normalized. At
this point, we invoke Theorem 3.2(a). Specifically, we can find an optimal λ∗ so that D1(λ

∗) is a
solution to {

max trace
(
cTc + DT

1 (λ)D1(λ)
)

subject to
∥∥cTc + DT

1 (λ)D1(λ)
∥∥ ≤ 1

.
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We use Matlab’s built-in function fmincon to solve this problem and obtain

λ∗ = (0.0442, 0.0884, 0.0442, 0.0884, 0.0234, 0.0293, 0.0088, 0.0316) ,

but also the high-pass filter coefficients

B = 10−2



−17.7 0 0 0 0 0 0 0 17.7
0 −25 0 0 0 0 0 25 0
0 0 −17.7 0 0 0 17.7 0 0
0 0 0 −25 0 25 0 0 0
0 0 0 −6.63 13.26 −6.63 0 0 0
0 0 −11.75 0 23.5 0 −11.75 0 0
0 −2.5 0 0 5 0 0 −2.5 0

−12.65 0 0 0 25.3 0 0 0 −12.65
0.002 0 0.001 0.0003 −0.008 0.0003 0.001 0 0.002
−8.52 0.0288 9.59 0.233 −2.66 0.233 9.59 0.0288 −8.52
5.46 −0.939 5.69 −19 17.5 −19 5.69 −0.939 5.46
3.39 −21.5 3.4 8.1 13.2 8.1 3.4 −21.5 3.39


by Lemma 3.1 and Theorem 2.6. The SVD process of Lemma 3.1 introduces four new filters, from
the lower four rows of B, in order to complete the Parseval frame for R9. Moreover, as shown
in example 4.3, the wavelets induced by the rows {bi}13

i=5 have first-order directional vanishing
moments in the direction of all β ∈ R2. If we decide to omit the four filters added by D2, Theorem
3.2(b) implies that for an arbitrary function f ∈ L2(R2), we have

E( f ) ≤ (1− σ2
9 )‖ f ‖2

L2
≈ 0.987‖ f ‖2

L2
.

Additionally, by Theorem 3.2(b), the family

{Dj
2Tkψi : j ∈ Z, k ∈ Zs, i = 1, . . . , 8}

is a frame, which guarantees the representation’s injectivity. We also point out that, if all the row-
vectors of D1(λ) are pairwise orthogonal, then the optimal λ∗ gives σi(D1(λ

∗)) = 1 for all i. The
reader may refer to [47] for a Parseval framelet induced by the first five rows of D1(λ). In that
paper we also present an application of the high-pass filter matrices arising from rows 3, 4, 5 and
6 of B given by

h3 = 10−2

17.7 0 0
0 0 0
0 0 −17.7

 h4 = 10−2

 0 0 0
−25 0 25

0 0 0


h4 = 10−2

 0 0 0
−6.63 13.26 −6.63

0 0 0

 h6 = 10−2

−11.75 0 0
0 23.5 0
0 0 −11.75


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Figure 2: This is a 256x256 image freely available with Matlab 2017. We use it to demonstrate the interaction
of the designed filters with singularities in various directions.
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Figure 3: Application of hi, i = 3, 4, 5, 6 constructed in Example 4.4 as discrete 2D-convolution kernels at
native reolution. The first two filters act as first-order directional central-difference filters oriented at 135◦ and
0◦, respectively. The last two act as second-order central-difference filters oriented at 0◦ and 135◦, respectively.
Note that singularity detection strength increases as edges are oriented closer to being perpendicular to the
orientation of each filter. In Fig. 5 we see that this effect may also be related to the anisotropy of the filter and
its size.

4.5 Example. We consider the fourth order cardinal B-spline refinable function

ϕ(x) =


1
6 x3, 0 < x ≤ 1
1
6 (−x3 + 12x2 − 18x + 8), 1 < x ≤ 2
1
6 (−x3 − 12x2 + 78x− 88), 2 < x ≤ 3
1
6 (x3 − 48x + 128), 3 < x ≤ 4
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with corresponding low-pass filter

µ0(γ) =

(
1 + e2πiγ

2

)4

=
1

16

(
1 + 4e2πiγ + 6e4πiγ + 4e6πiγ + e8πiγ

)
,

and we set φ to be the tensor product ϕ ⊗ ϕ. Then H0(γ) = µ0(γ1)µ0(γ2), the low-pass filter
matrix is given by

h0 =
1
64


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1


and c takes the form

c =
1
16

(
1, 2,
√

6, 2, 1, 2, 4, 2
√

6, 4, 2,
√

6, 2
√

6, 6, 2
√

6,
√

6, 2, 4, 2
√

6, 4, 2, 1, 2,
√

6, 2, 1
)

.

Centering φ at the origin implies J = {−2, . . . , 2} × {−2, . . . , 2}. We use our algorithm to create
filters with different orientations from those along which their corresponding finite-difference
kernels act. More specifically, we consider first and second-order filters of the form

0 0 0 −1 0
0 0 −1 0 1
0 −1 0 1 0
−1 0 1 0 0
0 1 0 0 0




0 0 −1 0 1
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0
−1 0 1 0 0




0 −1 0 1 0
0 −1 0 1 0
0 −1 0 1 0
0 −1 0 1 0
0 −1 0 1 0



−1 0 1 0 0
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0
0 0 −1 0 1




0 0 0 1 −1
0 0 1 −2 1
0 1 −2 1 0
1 −2 1 0 0
−1 1 0 0 0




0 0 1 −2 1
0 0 0 0 0
0 1 −2 1 0
0 0 0 0 0
1 −2 1 0 0




0 1 −2 1 0
0 1 −2 1 0
0 1 −2 1 0
0 1 −2 1 0
0 1 −2 1 0




1 −2 1 0 0
0 0 0 0 0
0 1 −2 1 0
0 0 0 0 0
0 0 1 −2 1

 .

First, with this new design approach we mimic one of the popular properties of curvelets and
shearlets: We define filters that act as singularity detectors perpendicularly to the local orientation
of a wavefront. Since our design is limited within J, the discreteness of this spatially limited
integer subgrid constrains our ability to direct the action of the associated differential operator
perpendicularly to the filter’s orientation. Moreover, the smaller number of bands of the filter
matrix relative to the length along its orientation seems to better focus the direction of its action
(see Fig. 5). This is something we also observe to a greater degree with shearlets and curvelets,
because they are designed in the frequency domain where one can control their shape more easily.

The prototype of each of the two classes of the filters we design in this example is directed
along the x or y axis. The third and seventh matrices above are the prototype filters for the first
and second order directional central difference operators acting along the x direction. Both filters
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have vertical orientation. To switch these filters to another orientation, we reposition their central
band by selecting one-by-one the lead point of the central band on the x and y-axis of the grid as
shown in Figure 4 below.

Figure 4: The dashed lines show four successive positions of central bands defining this pre-designed filter
set. Once the central band has been set, we choose its nearest diametrically opposite bands to create all first
and second-order finite difference filters allowed by this process.

This process gives a filter bank with 24 high pass filters with hand-picked orientations. Next,
SVD adds 24 more to complete a Parseval frame. The full list of all 48 filters of this example
and of Example 4.4 can be found in the supplementary file which can be retrieved from https:

//github.com/nkarantzas/multi-d-compactly-supported-PF- along with the codes used for
the generation of the presented filter-banks.
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Figure 5: Application of hi, i = 5, 6, 17, 18 at native resolution. The first two convolutions correspond to
filters with orientations at 135◦ and 153.43◦, respectively. The last two convolutions correspond to filters with
orientations at 135◦ and 153.43◦, respectively.
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4.6 Example. As promised in Section 2, we illustrate the geometric implications and complexities
of solving the system of equations (4) and (5). Equation (5) is relevant only when M is not a
diagonal matrix. Recall that our analysis in Sections 2 and 3 is based on M being diagonal. To
avoid computational complications, we consider the one-dimensional case, i.e., s = 1. Without
loss of generality, we assume {nk}N

k=1 are consecutive integers. Then
e2πi(n2−n1)γ = e2πi(n3−n2)γ = . . . = e2πi(nN−nN−1)γ

e2πi(n3−n1)γ = e2πi(n4−n2)γ = . . . = e2πi(nN−nN−2)γ

...
e2πi(nN−1−n1)γ = e2πi(nN−n2)γ.

The above equalities indicate that by rearranging and regrouping the monomials in (5) with re-
spect to a fixed-valued nt − nk, we conclude that equation (5) is satisfied if and only if

N−t

∑
k=1

mk,k+te−2πink+tq = 0,

for all t = 1, . . . , N − 1, which along with equation (4) give a full characterization of the problem.
However, even though the above equation indicates there is a relationship between the ele-

ments of the j-th off-diagonal of the matrix M, it does not provide us with any insight on the
dimension of the desired high-pass vector, or a definite way of acquiring it.

For example, in the setting of the classical construction of orthonormal wavelets, let H0 be a
low-pass filter with 4 coefficients given by a = [a1, a2, a3, a4] and H1 be a high-pass filter with co-
efficients B = [b1, b2, b3, b4]. Since M = aTa + BTB is symmetric, the previous system of equations
is equivalent to 

m11 + m22 + m33 + m44 = 1,
m11 −m22 + m33 −m44 = 0,
m12 + m23 + m34 = 0,
m12 −m23 + m34 = 0,
m13 + m24 = 0,
m13 −m24 = 0,
m14 = 0,

from which we deduce m13 = m14 = m23 = m24 = 0 and m12 = −m34. Now let vk ∈ R2,
k = 1, 2, 3, 4 be the column vectors of(

a
B

)
=

(
a1 a2 a3 a4
b1 b2 b3 b4

)
.

Then the above linear system suggests

• v1 is orthogonal to v3 and v4, and v2 is orthogonal to v3 and v4. Hence m12 6= 0, v1 ‖ v2 and
v3 ‖ v4.

• Finally, since m12 = −m34, if v1 and v2 are parallel, v3 and v4 must be anti-parallel and vice
versa.

This analysis indicates that the vectors vk can only form a capital T-shaped configuration as indeed

they do, for example in the Daubechies D4 case [48] where the corresponding matrix
(

a
B

)
is given

by (
a
B

)
=

1
8

(
1 +
√

3 3 +
√

3 3−
√

3 1−
√

3
1−
√

3
√

3− 3 3 +
√

3 −1−
√

3

)
.
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x

y

v1
v2

v3

v4

Finally, we notice that if one wants to have additional high-pass filters or increase the length of
the filters, the number of degrees of freedom increases significantly and the problem of maintain-
ing a geometric intuition of the underlying properties becomes more complex. Moreover, we note
that in the case of a four non-zero coefficient low-pass filter, we cannot have only non-negative
coefficients.
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