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ABSTRACT: Electronic resonances are metastable (N + 1)
electron states, in other words, discrete states embedded in an
electronic continuum. While great progress has been made for
certain types of resonancesfor example, temporary anions
created by attaching one excess electron to a closed shell
neutralresonances in general remain a great challenge of
quantum chemistry because a successful description of the decay
requires a balanced description of the bound and continuum aspect
of the resonance. Here, a smoothed Voronoi complex absorbing
potential (CAP) is combined with the XMS-CASPT2 method, which enables us to address the balance challenge by appropriate
choice of the CAS space. To reduce the computational cost, the method is implemented in the projected scheme. In this pilot
application, three temporary anions serve as benchmarks: the π* resonance state of formaldehyde; the π* and σ* resonance states of
chloroethene as functions of the C−Cl bond dissociation coordinate; and the 4

Πu and
2
Πu resonance states of N2

−. The convergence
of the CAP/XMS-CASPT2 results has been systematically examined with respect to the size of the active space. Resonance
parameters predicted by the CAP/XMS-CASPT2 method agree well with CAP/SAC-CI results (deviations of about 0.15 eV);
however, as expected, CAP/XMS-CASPT2 has clear advantages in the bond dissociation region. The advantages of CAP/XMS-
CASPT2 are further demonstrated in the calculations of 4

Πu and
2
Πu resonance states of N2

− including their 3
Σu

+ and 3
Δu parent

states. Three of the involved states (2Πu,
3
Σu

+, and 3
Δu) possess multireference character, and CAP/XMS-CASPT2 can easily

describe these states with a relatively modest active space.

■ INTRODUCTION

Resonance states or resonances are metastable states with at
least one open decay channel. Typical examples for electronic
resonances are temporary anions,1 multiply-charged anions,2

core-hole states decaying by Auger processes,3 and electronic
relaxation of valence-ionized clusters.4 Owing to their excess
energy, electronic resonances play often the role of reactive
intermediates in electron-induced or electron-catalyzed pro-
cesses.5,6

Resonance states of (N + 1) electron systems are
characterized by their energy, Er, above the N-electron system
and by their width, Γ, which is inversely related to their
lifetime, τ = ℏ/Γ.
Because resonances are part of the continuum, they cannot

be represented by square-integrable (L2) wavefunctions in a
straightforward way. Instead, computational methods for
resonances need to take the continuum nature of a decaying
state either explicitly (scattering methods) or implicitly (L2-
methods) into account. However, at the same time, electronic
resonances represent a many-electron system, and especially
the decay rates are highly sensitive to a balanced treatment of
electron correlation in the N and (N + 1) electron states. This
challenge is often referred to as the continuum-correlation
problem.

As is so often the case, no ideal solution exists. Regarding the
continuum aspect, scattering methods explicitly deal with the
continuum nature of the wavefunction and compute the
electron cross section, from which Er and Γ can be extracted by
numerical analysis. In contrast, L2-methods transform the
continuum problem so that only square-integrable wave-
functions are used, and Er and Γ are found by analyzing the
behavior of the eigenvalues of a parametrized Hamiltonian.
Although computing the scattering cross section in the
framework of L2-methods is usually anything but trivial, L2-
methods have clear advantages regarding the ease of
combination with high-level many-body methods.
Electron correlation is vital for computing reliable electron

affinities, in general, and for resonances it is even more
important. When computing electron affinities of bound
anions, electron-correlation needs to describe the N and the
(N + 1)-electron systems in a balanced way. Methods that
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guarantee this balance are called size-extensive (note: not size-
intensive). In resonances, in addition, the wavefunction for the
(N + 1) system combines aspects of the discrete state, which
has (N + 1)-electron character, with continuum aspects, which
has N-electron character because one electron occupies a
diffuse pseudo-continuum orbital, in other words, resonance
wavefunctions need to be internally size-extensive, too.
How well a given method fulfills the above requirements for

a given resonance can be tested at threshold. The resonance
position, Er, is determined by the inherent size-extensity of the
method, the width, Γ, however, is determined by the internal
size-extensity of the method. Clearly, Γ must vanish where Er =
0 and the resonance is turned into a bound state.
In this paper, the focus is on the complex absorbing

potential (CAP) method,7,8 which is a standard L2-method.
Other examples for L2-methods include the complex scaling
method,9 stabilization method,10 and analytical continuation of
the coupling constant (ACCC) method.11−13 In all L2-
methods, the resonance parameters, Er and Γ, are found by
analyzing the eigenvalues of a parametrized Hamiltonian.
Thus, a “single-point calculation” of a single Er and Γ pair
involves the computation of several eigenvalues for several
values of the parameter, and in general, multistate electronic
structure methods are needed, such as configuration
interaction-type methods, Green’s function approaches, or
equation-of-motion type approaches. The exception is the
ACCC method, which requires only the ground state (GS),
however, owing to the extrapolation step, ACCC is limited to
“close-to-threshold” resonances.
CAPs served originally as tools in wave packet propagation

to avoid reflections at the boundary of the numerical grid, and
their use for computing resonance states was discovered only
later (see ref 8 and references therein). In electronic structure
theory, CAPs were initially combined with multireference
configuration-interaction theory,14−18 Green’s function meth-
ods,19,20 and coupled-cluster related orbital theory.21 More
recently, the interest shifted to methods based on symmetry-
adapted cluster-configuration interaction (SAC-CI) method22

and equation-of-motion coupled cluster (EOM-CC) meth-
ods,23−25 which are closely related. Both methods yield by
construction multiple states (MS) and fulfill the balance
requirements as long as the decaying state and the continuum
states belong to the same excitation class, for example, for
temporary anions the resonance and the continuum are
represented by one-particle states. However, both methods
require a single-configuration reference state from which the
excitation space can be built and will become impractical in
bond breaking situations or in the study of Feshbach
resonances.
The most recent developments address this need: CAPs

were combined with the extended multiconfiguration quaside-
generate second-order perturbation theory (XMCQDPT2)
method26 to investigate Feshbach resonances. We note that
CAPs were very recently also combined with the XMS-
CASPT2 method;27 however, the primary focus of ref 27 is the
visualization of complex orbitals, while the theoretical method
for creating these orbitals is secondary and issues such as
performance and accuracy were not considered.
Multireference approaches represent the most natural way to

describe electronic states in the bond dissociation region or
states with several excited electrons.28−30 Static correlation is
dealt with in an initial complete active space self-consistent
field (CASSCF) step, and a state-averaged (SA) CASSCF

treatment can be used to obtain the references of a GS and
several low-lying excited states. Dynamic correlation is then
treated in a second step, and the most popular model is
probably complete-active-space second-order perturbation
theory (CASPT2).31,32 Extensions to MS are MS-CASPT233

and its generalization with Granovsky’s extension34 (XMS-
CASPT2)35 as well as MCQDPT236,37 and XMCQDPT2.34

The main difference between (X)MS-CASPT2 and
(X)MCQDPT2 lies in the formalism of the expansion of the
first-order wave function; (X)MS-CASPT2 is based on an
internally contracted basis ansatz, whereas the (X)MCQDPT2
uses an uncontracted determinant basis for the expansion.
Note that the compactness of an internally contracted basis in
(X)MS-CASPT2 has been exploited to combine it with the
density matrix renormalization group wave function formal-
ism.38

Turning to the CAP itself, we note that in the recent CAP/
XMCQDPT226 and CAP/XMS-CASPT227 combinations, so-
called Cartesian and spherical box-CAPs were employed. In a
box-CAP, the CAP vanishes in a central region, is switched on
at a particular cutoff radius, and then grows in some manner
typically quadraticallyafter that. The difference between a
Cartesian and a spherical box-CAP is whether the potential is
defined for each Cartesian or for a radial coordinate. Here, we
combine XMS-CASPT2 with a smooth Voronoi CAP,39,40

which is similar to a box-CAP that is zero in the inner region
and possesses a cutoff radius, however, the switching
coordinate is the distance-to-the-nearest-atom. Thus, iso-
contour surfaces of a Voronoi CAP resemble smoothed van-
der-Waals surfaces of the molecular system.
For small compact molecules, Voronoi CAPs offer no great

advantages over box-CAPs, indeed, the need to compute the
Voronoi matrix elements numerically represents a major
disadvantage in these cases. However, Voronoi CAPs show
the same symmetry as the Hamiltonian and, more importantly,
adapt to changes in molecular geometry far more flexibly than
box-CAPs.40−42 As an extreme example, consider the following
solvation model: a temporary anion in the coordinate origin
surrounded by six solvent molecules at a distance R from the
origin centered on the positive and negative Cartesian axes. If
R is increased from a small value representing solvation to a
large value representing the unsolvated molecule, the cutoff
parameter of a box-CAP needs to be increased accordingly so
as to include the solvent molecules in the CAP-box, and
converging the basis set will become increasingly difficult if not
impossible. In contrast, a Voronoi CAP will adapt to any
change in R without change of its cutoff parameter, and the
one-particle basis set needed to converge the CAP calculation
will be largely independent of R. As stated above, this example
is somewhat artificial; however, it clearly demonstrates that
Voronoi CAPs represent a more natural choice in bond-
breaking or cluster dissociation situations.
Here, we present a combination of a Voronoi CAP with the

XMS-CASPT2 method. Similar to CAP/CI,18 CAP/SAC-CI,22

and CAP/XMCQDPT2,26 the CAP calculation itself is
performed in the projected scheme, that is, first a suitable
number of eigenstates of the real Hamiltoniantypically all
states up to a certain energyare computed, and then the
CAP Hamiltonian is projected into this subspace of the real
Hamiltonian. The method has been implemented in the orz
program package.43 As a first pilot application, we choose two
cases that enable us to directly compare CAP/XMS-CASPT2
with CAP/SAC-CI: the well-characterized resonance state of
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formaldehyde and the potential energy curves (PECs) of the
σ* and π* resonances of chloroethene along the C−Cl
dissociation coordinate. Extension of the active space and the
orbitals included in the XMS-CASPT2 calculations are
systematically examined. As an example for resonances with
multireference character, we compare the 4

Πu and 2
Πu

resonance states of N2
−.

■ METHOD

Theory. A CAP calculation yields the complex Siegert
energy of a resonance as44,45

E E i /2res r= − Γ (1)

where Er and Γ, are the resonance position and width. To do
so, a CAP, −iW, is added to the physical Hamiltonian, H,
yielding a non-Hermitian, complex-symmetric Hamiltonian

H H W( ) iη η= − (2)

where η is a strength parameter. In this work, we use a smooth
Voronoi CAP which wraps around the molecule like a van der
Waals cavity.39 In principle, the resonance energy, Eres, is
independent of η provided η > 0; however, if finite basis sets
are used, Eres becomes η-dependent and is obtained from one
of the η-trajectories of the eigenvalues of H(η). The eigenvalue
representing the resonance can normally be identified by its
“stabilization”, in other words, its η-velocity shows a minimum,
and it is at this CAP strength at which the resonance energy
should be evaluated.8,19 Moreover, a first-order correction for
CAP artifacts can be applied, and the corrected trajectories,
E(η) − dE(η)/d(ln η), were computed similar to previous
studies.8,22,41

In this study, we evaluate the matrix elements of H(η) as
follows

H H H( ) iCAP/XMS CASPT2 XMS CASPT2 CAP
η η= −

μν μν μν

‐ ‐

(3)

using the effective Hamiltonian matrix determined by usual
(X)MS-CASPT2 calculations, denoted Hμν

XMS‑CASPT2. Equation
3 is thus represented in the model space spanned by the same
state basis as used for forming Hμν

XMS‑CASPT2, given as33,35

H H H H
1

2
( )XMS CASPT2 ref (2) (2)

= + +
μν μν μν νμ

‐

(4)

where Hμν
ref are the matrix elements of XMS-rotated CASSCF

energies written as Hμν
ref = ⟨μ|H|ν⟩ and Hμν

(2) are XMS-CASPT2
second-order energy corrections given by Hμν

(2) = ⟨μ|H|Ψν
(1)⟩.

Note that |μ⟩ and |ν⟩ denote XMS-rotated CASSCF wave
functions. In principle, the CAP part of eq 3 should be
evaluated at the CASPT2 level for consistency; however, as has
been shown in ref 26 for the uncontracted CAP/XMCQDPT2
variant, it is sufficientand computationally less costlyto
evaluate the CAP matrix elements in an approximate manner
using the CASSCF wave functions

H W
CAP

μ ν= | |
μν (5)

because these expressions can be readily evaluated using the
one-electron reduced density matrix and transition density
matrix of XMS-rotated CASSCF wave functions. The XMS-
CASPT2 matrix (eq 4) and η-independent CAP matrix (eq 5)
may be separately calculated and stored prior to the η-
trajectory calculations.

Computational Details. Using CAP/SAC-CI and CAP/
XMS-CASPT2, we study the π* resonance of H2CO

− (2B1

state), the σ* and π* resonances of CH2CHCl
− (2A′ and 2A″

states, respectively), as well as the 4
Πu and

2
Πu resonances of

N2
−. All optimized geometries in this work were obtained at

the B3LYP/cc-pVDZ level of theory.46,47 Cartesian coor-
dinates can be found in the Supporting Information.
All CAP/XMS-CASPT2 calculations were performed

following the procedure described in Figure 1. First, the
neutral molecule was calculated at the Hartree−Fock (HF)
level. A set of no strongly correlated orbitals, which are suitable
for describing static correlation, was selected and included in
an active space, denoted as CAS(ne,no). This active space was
optimized in a subsequent CASSCF calculation of the GS of
the neutral molecule. In the next step, the active space was
augmented with a set of nvirt lowest (in energy) virtual (or
diffuse) orbitals, which are eigenfunctions of the generalized
Fock operator built from the CAS(ne,no) density matrix. We
note that this way of choosing virtual orbitals may not be fully
optimized; however, it allows us to systematically investigate

Figure 1. Schematic representation of the calculations performed in this work. CAS(ne,no) and nvirt, which determine the size of the active space,
can be simultaneously varied.
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the convergence of the results with respect to nvirt. The GS of
the neutral molecule was calculated with CASCI/CASPT2
using this active space CAS(ne,no + nvirt) (no + nvirt orbitals
containing ne electrons). On the other hand, nvirt states of the
anion were calculated with CASCI/SA-XMS-CASPT2 using
the same set of orbitals and the same orbital space (no + nvirt
active orbitals). For convenience of description, we use a
unified notation CAS(ne,no) + nvirt to represent the CAS(ne,no
+ nvirt) and CAS(ne + 1,no + nvirt) active spaces of the neutral
molecule and the anion, respectively. The resonance position
Er and width Γ were then extracted by analyzing the η-
trajectories.
Both Er and Γ depend on various factors, such as the

character of the active orbitals,26 the one particle basis set, and
the CAP cutoff.22 The latter two have been extensively
examined in a series of studies using CAP/SAC-CI.22,40,41,48 In
this work, we focus on the impact of the first factor by using
different combinations of CAS(ne,no) and nvirt. We study the
2B1 resonance of H2CO

−, employing four CAS(ne,no) active
spaces. The largest one is CAS(6,5) comprising one (σCO,
σCO* ) pair, one (πCO, πCO* ) pair, and one oxygen lone pair (see
also Figure 1). This active space is expected to give a good
description of the wave function for the subsequent PT2
treatment.49 The active space can be reduced by removing the
(σCO, σCO* ) pair, giving a CAS(4,3); and the oxygen lone pair,
leading to a CAS(2,2). Finally, one can employ the smallest
“active space” CAS(0,0), that is, the CASSCF calculation was
skipped and the HF canonical orbitals were used instead. For
each CAS(ne,no), we used a wide range of nvirt from 5 to 17
orbitals. All virtual orbitals included in this way always
correspond to the nvirt lowest virtual orbitals in b1 symmetry.
Notice that in the calculations with CAS(0,0) + nvirt, the GS

of the neutral molecule was calculated with a CAS(0,0 + nvirt)
“active space”, that is, HF. Consequently, CASPT2 calculations
on top of this active space give results which are (i)
independent of the nvirt value and (ii) similar to those of
standard MP2. We note that owing to a modified zeroth-order
Hamiltonian, CAS(0,0 + nvirt)-PT2 and MP2 results do not
strictly coincide (normally, ionization-potential-electron-affin-
ity (IPEA) and imaginary shifts are employed in CASPT2; if
these are set to 0, the two methods are equivalent).
To study the σ* and π* resonances of CH2CHCl

−, we used
two CAS(ne,no) active spaces: CAS(0,0) (or HF) and
CAS(2,2). The latter active space consists of the (σCCl, σCCl* )
pair (see Figure S1) which describes the C−Cl bond
dissociation. The active spaces were then expanded by adding
nvirt = 17 a′ or 10 a″ virtual orbitals, respectively.
In the applications to the 4

Πu and
2
Πu resonance states of

N2
−, we employed a minimal active space comprising all

nitrogen 2p orbitals (6 active orbitals in total). In all
calculations, D2h point group symmetry was exploited and
the cc-pVTZ + [2s5p2d] basis set was employed. We used
nvirt = 10, including five πux (b3u) and five πuy (b2u) virtual
orbitals to maintain the symmetry of the wave function.
For the CAP/SAC-CI calculations, the SAC-CI SD-R

method50,51 employing the direct algorithm for the calculating
σ-vectors52 was used for the electron-attachment (EA) scheme.
Nonvariational calculations denoted as SAC-CI NV were
adopted. To reduce the computational cost, we employed the
perturbation selection for both R and S operators.53 Following
the benchmark calculations regarding the energy thresholds of
operator selection,54 we adopted so-called Level Four accuracy

with energy thresholds of λg = 5 × 10−6 and λe = 5 × 10−7

Hartree in the present calculations.
For the CAP, we adopted the soft Voronoi potential defined

in ref 39. The only parameter of the Voronoi potential, which
is the distance from the atomic centers to the switch-on-edge
of the CAP, rcut, was set to 3.0 Bohr for formaldehyde and 4.0
Bohr for chloroethene and N2. Systematic examinations
regarding this parameter were performed previously, and
only a very mild dependence of the resonance energy was
found. Yet, for rcut values in the chosen parameter range, the
most pronounced stabilizations of the η-trajectories were
obtained.40,41

All CAP/SAC-CI calculations were done with the Gaussian
09 package.55 The CAP/XMS-CASPT2 calculations were
performed with the orz program package.43 In all SAC-CI
and CASPT2 calculations, all core electrons were kept frozen.
We analyze the role of the basis set size by employing two
Dunning basis sets cc-pVnZ (n = D, T).47,56 The basis sets of
all nonhydrogen atoms were further augmented with even-
tempered diffuse functions contracted to [2s5p2d].22 In the
CASPT2 calculations, we used an IPEA shift29 of 0.25 au and
an imaginary shift30 of 0.1 au to avoid intruder states.

■ RESULTS AND DISCUSSION
2B1 Resonance of Formaldehyde Anion. The electronic

structure of formaldehyde is ...(5a1)
2(1b1)

2(2b2)
2. When

formaldehyde captures one electron, this electron occupies a
b1 virtual orbital, forming a 2B1 π* resonance. This resonance
has been experimentally characterized by its electron trans-
mission spectrum (ETS)57,58 and vibrational excitation
spectrum59 and computationally studied with numerous
methods (see Table 1). It can be seen that different theoretical
methods give different results, for example, Er varies widely
from 0.7 to 1.5 eV. All SAC-CI and EOM-CCSD-based
methods predict more consistent Er values in the range 1.1−1.3

Table 1. Resonance Position Er and Width Γ (in eV) of the
2B1 Resonance of H2CO

− Calculated with Different
Methods

method Er (eV) Γ (eV)

experiment

electron transmission spectroscopya 0.86o, 0.65p

vibrational excitationb 0.87o

calculated

complex Kohnc ∼1.0 ∼0.5

dilated electron propagatord 0.89−1.0 0.10−0.12

R-matrix 1.32e, 1.46f 0.55e, 0.79f

finite-element-discrete-modelg 0.682 0.429

CAP/EOM-EA-CCSD (1st order)h 1.314 0.277

CIP-FSMRCCi 0.76 0.32

CAP/SAC-CIj 1.119 0.462

CAP/SAC-CIk 1.191 0.414

CAP/XMS-CASPT2k,l,m 1.173 0.395

CAP/XMS-CASPT2k,l,n 1.266−1.279 0.470−0.483

aReferences 57 and 58. bReference 59. cReference 60. dReference 61.
eReference 62. fReference 63. gReference 64. hReference 25, aug-cc-
pVTZ + [3s3p3d(C)] diffuse functions. iReference 65, double-ζ basis
set + [4p1d/1p] diffuse functions. jReference 22, cc-pVTZ +
[2s5p2d/2s2p] diffuse functions. kThis work, cc-pVTZ + [2s5p2d]
diffuse functions. lResults at the largest nvirt values.

mCAS(0,0) + 17
active space. nRange of CAS(2,2), CAS(4,3), and CAS(6,5) results.
oVertical electron affinity. pAdiabatic electron affinity.
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eV. Most methods tend to overestimate Er as compared to the
experimental values of 0.65 eV (adiabatic) and 0.86 eV
(vertical). It is clear that the adiabatic attachment energy is
considerably lower than the vertical value22 and that the
experimentally observed progression is therefore broad and
that the intensities of each vibrational state are impacted not
only by Franck−Condon factors but also by their lifetimes.
Thus, only a model of the ETS or electron impact vibrational
excitation spectrum can be directly compared with experiment.
As mentioned above, we will study the impact of two factors

(i) the basis set size and more importantly, (ii) the choice of
active space controlled by the CAS(ne,no) active space and nvirt.
All CAP/XMS-CASPT2 results can be found in Figures 2 and
3 as well as Tables S1 and S2.

We first focus on the results calculated with the cc-pVDZ +
[2s5p2d] basis set (Figure 2). It can be seen that nvirt is a
crucial factor determining the accuracy of the calculations and
governing whether the resonance could be found from the η-
trajectories. For instance, if nvirt is not sufficiently large (nvirt ≤
5), we failed to locate the resonance state. With the CAS(0,0)
active space, we observed a weak dependence of Er and Γ on
nvirt. At the smallest nvirt = 6, Er = 1.402 eV and Γ = 0.547 eV,
being in good agreement with the values calculated at the
largest nvirt (Er = 1.327 eV and Γ = 0.513 eV). In contrast, the
larger active spaces yield results depending strongly on nvirt.
For example, using a small nvirt in combination with CAS(6,5)
can cause an error of ∼0.5 eV for Er and up to ∼1 eV for Γ.

Satisfactory results are achieved only at larger nvirt values
(≥13).
It is not trivial to explain the markedly different convergence

behaviors of Er with respect to nvirt between CAS(0,0) and the
larger active spaces. In the former case, we expect that the
results primarily depend on the nature (shape and eigenvalue)
of nvirt b1 virtual orbitals. Upon expanding the CAS(0,0) with
the (πCO, πCO* ) pair belonging to the b1 irrep, all b1 virtual
orbitals are “perturbed”. This perturbation is correlated to the
large difference between CAS(0,0) and CAS(2,2) results at
small nvirt. In contrast, going from CAS(2,2) to CAS(4,3) or
CAS(6,5), only orbitals belonging to either a1 or b2 irrep were
added. The perturbation of these orbitals to the b1 virtual space
is certainly minimal; consequently, we found similar
convergence behaviors between CAS(2,2), CAS(4,3), and
CAS(6,5).
Despite having different convergence behaviors, all four

active spaces predict fairly similar results at the largest nvirt
value: Er = 1.327−1.427 eV and Γ = 0.513−0.611 eV. Such
similar predictions are attributed to the fact that the wave
function of formaldehyde at its equilibrium geometry is already
well characterized at the HF level. This behavior can in general
be expected in molecules with negligible static electron
correlation, and for shape resonances of such molecules the
size-extensive methods CAP/SAC-CI or CAP/EOM-EA-
CCSD have an advantage.
We now briefly discuss the effect of the basis set size

(double-ζ vs triple-ζ) on the results (see Figures 2 and 3). We
only consider the data at the largest nvirt. In agreement with the
previous CAP/SAC-CI work, it turned out that the size of the
valence basis set is less critical than the size of the diffuse basis
set.22 We found that with CAP/XMS-CASPT2, going from
double to triple-ζ quality reduces the resonance position by
0.11−0.16 eV and narrow the width by 0.09−0.14 eV. The
reduction of the computed resonance position can be
explained in terms of the anion benefitting more than the
neutral molecule from increasing the valence basis set size.22

We finally compare the CAP/XMS-CASPT2 data to the
results calculated with different CAP-augmented methods and
the experimental data. Because the formaldehyde 2B1

resonance is a single-reference case, we expect that CAP/
SAC-CI, CAP/EOM-CCSD, and CAP/XMS-CAS methods
yield comparable results. Indeed, all these methods agree with
each other to within 0.2 eV. While CAP/SAC-CI predicts Er =
1.191 eV and Γ = 0.414 eV, CAP/XMS-CAS(0,0) + 17-PT2
predicts slightly smaller Er and Γ values of 1.173 and 0.395 eV,
respectively. On the other hand, the larger active spaces
systematically give larger resonance energies and widths,
1.266−1.279 and 0.470−0.483 eV, respectively. All results
are in good agreement with the data reported by Zuev et al.,25

adopting CAP/EOM-EA-CCSD (1.314 and 0.277 eV for Er

and Γ, respectively). As compared with the experiment, all
recent CAP calculations overestimate Er by 0.44 eV (CAP/
EOM-EA-CCSD), 0.32 eV (CAP/SAC-CI), and 0.3−0.4 eV
(CAP/XMS-CASPT2).

σ* and π* Resonance States of Chloroethene Anion.
The dissociative electron attachment (DEA) process, AB + e−

→ [AB−]* → A + B−, in unsaturated chlorohydrocarbons has
been the subject of study in numerous experimental and
theoretical studies.66−78 It has been proposed that the
dissociation mechanism of this class of compound involves
the initial formation of a relatively long lived π* resonance and
subsequent coupling with a σ* resonance that promotes the

Figure 2. Resonance position Er and width Γ (in eV) of the π* 2B1

resonance of H2CO
−, calculated with different CAS(ne,no) + nvirt, cc-

pVDZ + [2s5p2d] diffuse functions.

Figure 3. Resonance position Er and width Γ (in eV) of the π* 2B1

resonance of H2CO
−, calculated with different CAS(ne,no) + nvirt, cc-

pVTZ + [2s5p2d] diffuse functions.
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dissociation of the C−Cl bond,73 but is only short-lived in the
vicinity of the equilibrium geometry. However, it has been
pointed out that this mechanism will compete with direct
formation of the σ* resonance.79

Here, chloroethene is studied to test the new method
combination, and we start by calculating the σ* and π*

resonances, which are 2A′ and 2A″ states in Cs symmetry, using
CAP/XMS-CASPT2 and CAP/SAC-CI. The experimental
resonance positions, as well as previously reported and our
current theoretical results are summarized in Table 2.

In CAP/XMS-CASPT2 calculations, we used two CAS-
(ne,no) active spaces: CAS(0,0) and CAS(2,2) (see also Figure
S1). The CAS(2,2) active space represents the minimal active
space to correctly describe the multireference character of the
wave function upon dissociation of the C−Cl bond. On top of
each CAS(ne,no), we included 10 a″ or 17 a′ virtual orbitals in
the calculations of the π* and σ* resonances, respectively. Yet,
unfortunately, we were unable to clearly identify the σ*
resonance in all CAS(2,2) + 17 and in two CAS(0,0) + 17
calculations. This is a known problem; as a rule, σ* resonances
have large widths and stabilize therefore much further from the
real axis than π* resonances. One canas a ruleidentify the
resonance trajectory, but, againas a rulethe resonance
trajectory tends to show no or only weak stabilizations. Two
strategies could be adopted to alleviate this problem. The
straightforward one is to include more diffuse orbitals in the
active space. However, this drastically increases the computa-
tional cost. A more efficient way is to manually select a set of
virtual orbitals based on preliminary calculations at a lower
computational level, such as CIS, as suggested by Kunitsa et
al.26 This strategy, however, introduces a certain bias and does
by no means guarantee that the resonance trajectory will show
a clear stabilization.
The resonance positions and widths at different d(C−Cl)

values are shown in Figure 4. Numerical results can be found in
Tables S3 and S4. We first compare the results of SAC-CI and
XMS-CASPT2 using the CAS(0,0) + nvirt active space. Both
methods give similar Er results (with differences of 0.1−0.2
eV) and predict that the resonance positions decrease when
increasing the C−Cl bond distance. Moreover, SAC-CI
systematically produces smaller Er values as compared to
XMS-CASPT2 around the equilibrium structure (d(C−Cl) =
1.75−2.10 Å). For the resonance widths Γ, both methods
predict comparable results with differences of less than 0.05 eV
in most cases and of 0.11 eV in the worst-case scenario.

We now turn to a comparison between the CAS(0,0) + nvirt
and CAS(2,2) + nvirt active spaces. As we failed to identify the
σ* resonance in the CAS(2,2) + 17 calculations, we discuss
here only the π* resonance. Based on the multireference
character of the wave function provided in Table S6, we expect
that the two active spaces should give almost identical
resonance positions and widths at short C−Cl bond distances.
Indeed, the differences are less than 0.02 eV for d(C−Cl) =
1.75−2.00 Å. At distances longer than 2.10 Å, however, the
multireference character increases, and consequently,
CAS(0,0) is expected to perform more and more poorly.
Practically, CAS(0,0) systematically underestimates the π*
resonance positions as compared to the results produced by
the CAS(2,2) active space, and at the longest bond distance
(2.75 Å), its error has grown to 0.65 eV. Also, the resonance
width predicted by CAS(0,0) at this distance is too small (0.07
eV) as compared to the CAS(2,2) value (0.16 eV).
In Figure 5, we plot the PECs of the GS of the neutral

molecule, as well as the σ* and π* resonances of the anion

along the bond stretching coordinate d(C−Cl). We use the
total energy of the GS at the equilibrium structure as a
reference. We focus on the results around the equilibrium
where the two resonance PECs cross. As discussed above,
because the wave function around this point is well described
by HF, CAP/SAC-CI and CAP/XMS-CASPT2 results are in
excellent agreement with each other. They both predict that (i)
the σ* and π* curves cross at d(C−Cl) ≈ 1.9 Å and (ii) the σ*
resonance disappears at d(C−Cl) > 2.15 Å. This one-

Table 2. Resonance Position Er (in eV) of the σ* and π*

Resonances of CH2CHCl− Calculated with Different
Methods

method σ* (eV) π* (eV)

experiment

electron transmission spectroscopya,b 2.84 1.28

calculated

CAP/ADC(2)c 2.36 1.59

CAP/EOM-EA-CCSDd 1.730

CAP/SAC-CIe 2.530 1.718

CAP/XMS-CASPT2 ∼2.65f 1.810g

aReference 73. bReference 72. cReference 66, cc-pVDZ + [1s8p2d1f]
basis set. dReference 78, aug-cc-pVTZ + 3p basis set. eThis work, cc-
pVDZ + [2s5p2d] basis set. fEstimated, based on the CAP/SAC-CI
result, see text. gCAS(2,2) + 10.

Figure 4. Resonance position Er and width Γ (in eV) of the σ* and π*
resonances of chloroethene anion, calculated with CAP/SAC-CI and
CAP/XMS-CASPT2. At d(C−Cl) > 2.10 Å, the σ* resonance
disappears (Er < 0 and Γ = 0).

Figure 5. PECs of the GS of the neutral molecule, σ*, and π*

resonances of the anion calculated with SAC-CI and XMS-CASPT2.
nvirt = 10 and 17 for σ* and π* resonances, respectively.
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dimensional cut through the multidimensional crossing cone is
consistent with earlier studies of the DEA mechanism.73

It is also interesting to discuss the PECs at larger bond
distances. The results produced by CAS(2,2) + nvirt should be
more reliable than those of SAC-CI and CAS(0,0) + nvirt.
Neither of the latter two can fully reproduce the CAS(2,2) +
nvirt PECs for long bond lengths. For example CAS(0,0) + nvirt
moderately overbinds the C−Cl bond due to its intrinsic
failure of describing bond dissociation, whereas SAC-CI
predicts a too steep σ* curve.
Finally, it is noteworthy to compare our results at the

equilibrium geometry to previously reported results and the
experimental data. We crudely estimate the σ* resonance
position at the CAS(0,0) + 17 level to be ∼2.65 eV (see Table
2). This crude estimation is based on the CAP/SAC-CI value
(2.53 eV) and on the observation that CAP/SAC-CI gives
smaller Er values than CAS(0,0) + 17 by ∼0.15 eV (vide
supra). Again, all recent CAP-based methods predict similar
results to within 0.3 eV. As compared to the experimental data,
the accuracies are acceptable. All methods systematically
underestimate the σ* resonance position by 0.2−0.5 eV and
overestimate the π* resonance position by 0.3−0.5 eV. Such
different deviations have been discussed in detail in the
previous work of Feuerbacher et al.66

4
Πu and 2

Πu Resonance States of N2
−. The N2

− anion
has been the subject of numerous experimental and theoretical
studies.18,20,25,26,80−89 Most work focused on the 2

Πgresonance
(1σg)

2(1σu)
2(2σg)

2(2σu)
2(1πu)

4(3σg)
2(1πg*)

1, a well-known
shape-type resonance having very short lifetimes.80 On the
other hand, much longer-lived (at least 10 μs) resonance states
have been experimentally observed.89,90 Based on CCSD(T)
calculations, Sommerfeld and Cederbaum91 initially proposed
the 4

Πu resonance state as a candidate for the observed long-
lived state. This state has an electronic configuration
(1σg)

2(1σu)
2(2σg)

2(2σu)
2(1πu)

3(3σg)
2(1πg*)

2 and it can be
thought of as a πu → πg* excitation of the 2

Πg shape resonance
or as formed by electron attachment to either the A3

Σu
+ or the

W3
Δu triplet states of N2, which are both described by the

configuration (1σg)
2(1σu)

2(2σg)
2(2σu)

2(1πu)
3(3σg)

2(1πg*)
1. At

the CCSD(T) level of theory, the 4
Πu state turns out to be a

long-lived resonance state (with a lifetime of about 2 × 10−12

s) and it is stable with respect to vertical autodetachment to
the A3

Σu
+ by 0.28 eV. However, in a joint experimental and

theoretical work later, Andersen et al.92 provided evidence that

the long-lived N2
− species should be rather attributed to the

6
Σu

+ and 6
Πu

+ sextet states with decay into the 5
Σg

+ parent
state.
One problem plaguing the CCSD(T) study from the onset

is that the 3
Σu

+ triplet state of N2 exhibits strong multireference
character, rending the CCSD(T) curve crossing unreliable.
Indeed, the wave function of this state around the equilibrium
geometry is qualitatively described as a mixture of two
determinants [core]8(3σg)

2(1πux)
2(1πuy)

1(1πgx*)
1(1πgy*)

0 and
[core]8(3σg)

2(1πux)
1(1πuy)

2(1πgx*)
0(1πgy*)

1 (see also Table 3).
Thus, this state can be best described using multireference
approaches such as CASSCF/CASPT2.
Here, the PECs of the 4

Πu and 2
Πu resonances are

investigated as the first real test for the CAP/XMS-CASPT2
method. In particular, the doublet state has not been described
in the literature before and represents a challenge because both
the resonance and the parent show strong multireference
character (see Table 3).
The CAP/XMS-CASPT2 PECs of the 3

Σu
+ and 3

Δu parent
states of N2, as well as the

4
Πu and

2
Πu resonance states of N2

−,
are shown in Figure 6. The equilibrium bond lengths of the
3
Δu and 3

Σu
+ states predicted by CAP/XMS-CASPT2 are

1.282 and 1.292 Å, respectively. Both results are in good

Table 3. Wavefunction of Different States of N2 and N2
− Calculated with CASSCF(6,6) at d = 1.30 Å

molecule state D2h irrep dominant determinanta coefficient weight

N2 A3
Σu

+ 3B1u |(σg)
2(πux)

2(πuy)
↑(πgx*)

↑(πgy*)
0⟩ 0.676 0.457

|(σg)
2(πux)

↑(πuy)
2(πgx*)

0(πgy*)
↑⟩ 0.676 0.457

W3
Δu

3Au |(σg)
2(πux)

↑(πuy)
2(πgx*)

↑(πgy*)
0⟩ 0.685 0.470

|(σg)
2(πux)

2(πuy)
↑(πgx*)

0(πgy*)
↑⟩ 0.685 0.470

W3
Δu

3B1u |(σg)
2(πux)

2(πuy)
↑(πgx*)

↑(πgy*)
0⟩ 0.685 0.470

|(σg)
2(πux)

↑(πuy)
2(πgx*)

0(πgy*)
↑⟩ −0.685 0.470

N2
− 4

Πu
4B3u |(σg)

2(πux)
2(πuy)

↑(πgx*)
↑(πgy*)

↑⟩ 0.989 0.979
4
Πu

4B2u |(σg)
2(πux)

↑(πuy)
2(πgx*)

↑(πgy*)
↑⟩ 0.989 0.979

2
Πu

2B2u |(σg)
2(πux)

↓(πuy)
2(πgx*)

↑(πgy*)
↑⟩ 0.499 0.249

|(σg)
2(πux)

↑(πuy)
2(πgx*)

↓(πgy*)
↑⟩ 0.610 0.372

|(σg)
2(πux)

2(πuy)
↑(πgx*)

2(πgy*)
0⟩ 0.559 0.313

2
Πu

2B3u |(σg)
2(πux)

2(πuy)
↓(πgx*)

↑(πgy*)
↑⟩ 0.499 0.249

|(σg)
2(πux)

2(πuy)
↑(πgx*)

↑(πgy*)
↓⟩ 0.610 0.372

|(σg)
2(πux)

↑(πuy)
2(πgx*)

0(πgy*)
2⟩ 0.559 0.313

aCore orbital = (1σg)
2(1σu)

2(2σg)
2(2σu)

2.

Figure 6. PECs (in eV) of the 3
Σu

+ and 3
Δu states of N2; and the 4

Πu

and 2
Πu resonance states of N2

−, calculated with CAP/XMS-CASPT2,
nvirt = 10, cc-pVTZ + [2s5p2d] basis set. The minimum of the 3

Σu
+

state is used as the reference. The resonance width (Γ) of the 4
Πu and

2
Πu resonance states is represented as the line width of the curve. For
d = 1.53−2.28 Å, Γ(4Πu) is 0.
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agreement with the experimental values of 1.278 and 1.287 Å,
respectively.93 The 4

Πu and 2
Πu resonance states have

significantly longer equilibrium bond lengths (1.444 and
1.402 Å, respectively) due to the occupation of the
antibonding πg* orbitals. The CAP/XMS-CASPT2 equilibrium
bond length of 4

Πu is quite close to the values calculated with
CCSD(T)91 and third-order many-body perturbation theory,92

that is, 1.430 and 1.44 Å, respectively.
The results shown in Figure 6 clearly indicate that the 2

Πu

state is unstable with respect to the 3
Σu

+ state at all geometries,
whereas it crosses the 3

Δu state at d = 1.44 Å and is unstable to
both decay channels at small bond lengths only. Accordingly,
its width is always positive, fairly large at short bond distances
(up to 0.6 eV at d = 1.28 Å), but rapidly decreases after
crossing the 3

Δu state (see also Figure S3). Thus, the 2
Πu state

represents a so-called core-excited shape resonance, and we
predict its lifetime to be short.
As compared to the doublet state, the 4

Πu state turns out to
be a different story entirely. First, it is much more stable,
leading to three crossing points at d = 1.53 and 2.28 Å with the
3
Σu

+ state and at d ≈ 1.30 Å with the 3
Δu state. Unsurprisingly,

CAP/XMS-CASPT2 predicts the triplet states significantly
stabilized in respect with the quartet state, and in contrast to
CCSD(T),91 the adiabatic electron affinity is −0.8 eV, and the
4
Πu state is unstable with respect to vertical autodetachment by
0.37 eV. Along the PEC, the quartet state changes its character:
between 1.53 and 2.28 Å it is a Feshbach resonance, outside
this range it is a core-excited shape resonance. As it has core-
excited-shape resonance character at its equilibrium geometry,
all vibrational states are expected to be short-lived.
Second, we consider the close correlation between the 4

Πu

PEC and its width, which suggests that even though CAP/
XMS-CASPT2 is formerly not size extensive, for all practical
purposes it is. While for d > 2.28 Å, the 4

Πu state is less stable
than the 3

Σu
+ state, and Γ(4Πu) possesses accordingly a finite

value, for d = 1.53−2.28 Å, the 4
Πu state is more stable than

both triplet states, and Γ(4Πu) must vanish, which it does (see
inset in Figures 6 and S2). At d = 1.53 Å, the 4

Πu state
recrosses the 3

Σu
+ state, reopening the N2

−(4Πu) → N2(
3
Σu

+)
+ e− decay channel and Γ(4Πu) increases slowly. Finally, the
decay channel N2

−(4Πu) → N2(
3
Δu) + e− opens at d = 1.30 Å,

leading to a steep increase in Γ(4Πu) as a function of d (see
inset in Figure 6). As the curve crossings perfectly reflect the
positions at which Γ vanishes, we conclude that the balance
requirement between the parent and the resonance state as
well as the internal balance requirement in the resonance
wavefunction is satisfied to the extent noticeable on the scales
of our Figures.

■ SUMMARY

We have introduced a combination of a Voronoi CAP with the
XMS-CASPT2 method, which has been implemented in our
own XMS-CASPT2 code.43 The corrected η-trajectories of the
present approach provided stable resonance energy in most
cases; however, for certain CAS spaces, σ* resonances could
not be clearly identified, and finding a reliable method for σ*
resonances remains an open question.
Benchmark calculations were performed for the π*

resonance state of formaldehyde. The CAP/XMS-CASPT2
method provided vertical resonance energy and width in
excellent agreement with SAC-CI- and EOM-CCSD-based
methods. Extension of the CAS was systematically studied, and

it was shown that even small CAS spaces provide very good
results. Using just HF (CAS(0,0)) and therefore effectively
MP2 yields reasonable results compared to SAC-CI or EOM-
CCSD.
The new method was also applied to the PECs of the π* and

σ* resonance states of chloroethene along the C−Cl bond
dissociation coordinate. The CAP/XMS-CASPT2 results again
agree well with those obtained using CAP/SAC-CI, yielding
systematically lower resonance energies by about 0.15 eV than
CAP/SAC-CIat least for this systema fact used for the
estimation of the σ* resonance energy at the equilibrium
geometry. This estimation was unfortunately needed, because
CAP/XMS-CASPT2 seems to be slightly less robust regarding
the quality of the produced η-trajectories, that is, although the
resonance trajectories can be identified, neither the trajectories
nor the corrected trajectories show a pronounced stabilization
behavior. While the lack of stabilization may be considered to
represent a curse for the new method as is, CAP/XMS-
CASPT2 contains in a sense its own cure: it is much more
flexible than, say, CAP/SAC-CI, and now that we identified a
reproducible failure, it can hopefully be addressed, by some
unbiased and computationally efficient scheme to select better
virtual orbitals for the CAP Hamiltonian.
The advantage of CAP/XMS-CASPT2 was clearly demon-

strated in the calculations of the PECs of the 4
Πu and 2

Πu

resonance states of N2
−. Here, the parent states, A 3

Σu
+ and

W 3
Δu, as well as the

2
Πu resonance state show pronounced

multireference character, HF fails to provide an adequate
description of the situation, and even relative energies obtained
with CCSD(T) cannot be trusted.
In conclusion, in this pilot work of CAP/XMS-CASPT2, we

have demonstrated the pros and cons of the method to study
different types of resonance states. Although it can be useful to
study resonances states having substantial multireference
character, some difficulties related to choosing active virtual
orbitals have been found, hindering its usage (at least in a
black-box manner). A promising way to overcome these issues
is to improve the description of the virtual active orbitals, using
the extended Koopmans’ theorem.94 It is unclear, however,
whether this will completely solve the impracticality issue in
the present form, that is, choosing which and how many
orbitals should be in the active space. Moreover, in larger
molecules and molecules without point group symmetry, the
problem of locating stable resonances will be certainly much
more difficult; thus, improving the virtual orbitals may not be a
realistic solution. A promising alternative would be some type
of SAC-CI like linear response theory in a multireference
framework.

■ ASSOCIATED CONTENT

*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01032.

Resonance position Er and width Γ of the 2B1 resonance
of H2CO

−, π*, and σ* resonances of CH2CHCl
−,

calculated with CAP/SAC-CI and CAP/XMS-CASPT2;
resonance position Er and width Γ of the 4

Πu and
2
Πu

resonances of N2
−, calculated with CAP/XMS-CASPT2;

weight of the leading configuration w and natural orbital
occupation number (NOON) in the CASSCF calcu-
lations of CH2CHCl; CAS(2,2) active space used in the
calculations of CH2CHCl; η-trajectories of the π* and

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.9b01032
J. Chem. Theory Comput. 2020, 16, 2606−2616

2613



σ* resonances of CH2CHCl
− at different C−Cl bond

distances; and cartesian coordinates of H2CO and
CH2CHCl (PDF)

■ AUTHOR INFORMATION

Corresponding Authors

Takeshi Yanai − Institute of Transformative Bio-Molecules
(WPI-ITbM) and Department of Chemistry, Graduate School
of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan;
Japan Science and Technology Agency, PRESTO, Kawaguchi,
Saitama 332-0012, Japan; Email: yanait@chem.nagoya-
u.ac.jp

Thomas Sommerfeld − Department of Chemistry and Physics,
Southeastern Louisiana University, Hammond, Louisiana
70402, United States; orcid.org/0000-0001-8105-5414;
Email: thomas.sommerfeld@selu.edu

Masahiro Ehara − Institute for Molecular Science and Research
Center for Computational Science, Okazaki 444-8585, Japan;
Elements Strategy Initiative for Catalysts and Batteries
(ESICB), Kyoto University, Kyoto 615-8520, Japan;
orcid.org/0000-0002-2185-0077; Email: ehara@ims.ac.jp

Authors

Quan Manh Phung − Institute of Transformative Bio-Molecules
(WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602,
Japan; orcid.org/0000-0001-8205-5328

Yuki Komori − Department of Chemistry, Graduate School of
Science, Nagoya University, Nagoya, Aichi 464-8602, Japan

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.9b01032

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the financial support from a
Grant-in-Aid for Scientific Research, Japan Society for the
Promotion of Science (JSPS), JP16H04104 and JP16H06511
(M.E.), and by JST, PRESTO Grant Number 17937609
(T.Y.). M.E. acknowledges a MEXT program (Ministry of
Education Culture, Sports, Science and Technology in Japan)
“Elements Strategy Initiative to Form Core Research Center.”
T.S. acknowledges the support by the National Science
Foundation under Grant CHE-1565495. The computations
were partially performed at the Research Center for Computa-
tional Science, Okazaki, Japan.

■ REFERENCES

(1) Jordan, K. D.; Burrow, P. D. Temporary Anion States of
Polyatomic Hydrocarbons. Chem. Rev. 1987, 87, 557−588.
(2) Sommerfeld, T. Lifetimes of Metastable Dianions: CN2

2−, C4
2−,

and CO3
2−. J. Phys. Chem. A 2000, 104, 8806−8813.

(3) Thompson, M.; Baker, M. D.; Christie, A.; Tyson, J. F. Auger
Electron Spectroscopy; John Wiley: New York, 1985.
(4) Santra, R.; Zobeley, J.; Cederbaum, L. S.; Tarantelli, F.
Intermolecular Coulombic Decay of Clusters. J. Electron Spectrosc.
Relat. Phenom. 2001, 114-116, 41−47.
(5) Mason, N. J. Electron-Induced Chemistry: A Forward Look. Int.
J. Mass Spectrom. 2008, 277, 31−34.
(6) Davis, D.; Vysotskiy, V. P.; Sajeev, Y.; Cederbaum, L. S. Electron
Impact Catalytic Dissociation: Two-Bond Breaking by a Low-Energy
Catalytic Electron. Angew. Chem., Int. Ed. 2011, 50, 4119−4122.

(7) Jolicard, G.; Austin, E. J. Optical Potential Stabilisation Method
for Predicting Resonance Levels. Chem. Phys. Lett. 1985, 121, 106−
110.
(8) Riss, U. V.; Meyer, H.-D. Calculation of Resonance Energies and
Widths Using the Complex Absorbing Potential Method. J. Phys. B:
At., Mol. Opt. Phys. 1993, 26, 4503−4535.
(9) Moiseyev, N. Quantum Theory of Resonances: Calculating
Energies, Widths and Cross-Sections by Complex Scaling. Phys. Rep.
1998, 302, 212−293.
(10) Hazi, A. U.; Taylor, H. S. Stabilization Method of Calculating
Resonance Energies: Model Problem. Phys. Rev. A: At., Mol., Opt.
Phys. 1970, 1, 1109.
(11) Kukulin, V. I.; Krasnopol’sky, V. M. Description of Few-Body
Systems via Analytical Continuation in Coupling Constant. J. Phys. A:
Math. Gen. 1977, 10, L33.
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(35) Shiozaki, T.; Győrffy, W.; Celani, P.; Werner, H.-J.
Communication: Extended Multi-State Complete Active Space
Second-Order Perturbation Theory: Energy and Nuclear Gradients.
J. Chem. Phys. 2011, 135, 081106.
(36) Nakano, H. Quasidegenerate Perturbation Theory with
Multiconfigurational Self-Consistent-Field Reference Functions. J.
Chem. Phys. 1993, 99, 7983−7992.
(37) Nakano, H. MCSCF Reference Quasidegenerate Perturbation
Theory with Epstein-Nesbet Partitioning. Chem. Phys. Lett. 1993, 207,
372−378.
(38) Yanai, T.; Saitow, M.; Xiong, X.-G.; Chalupsky,́ J.; Kurashige,
Y.; Guo, S.; Sharma, S. Multistate Complete-Active-Space Second-
Order Perturbation Theory Based on Density Matrix Renormalization
Group Reference States. J. Chem. Theory Comput. 2017, 13, 4829−
4840.
(39) Sommerfeld, T.; Ehara, M. Short-Range Stabilizing Potential
for Computing Energies and Lifetimes of Temporary Anions with
Extrapolation Methods. J. Chem. Phys. 2015, 142, 034105.
(40) Sommerfeld, T.; Ehara, M. Complex Absorbing Potentials with
Voronoi Isosurfaces Wrapping Perfectly Around Molecules. J. Chem.
Theory Comput. 2015, 11, 4627−4633.
(41) Ehara, M.; Fukuda, R.; Sommerfeld, T. Projected CAP/SAC-CI
Method with Smooth Voronoi Potential for Calculating Resonance
States. J. Comput. Chem. 2016, 37, 242−249.
(42) Sommerfeld, T.; Melugin, J. B.; Ehara, M. Temporary Anion
States of Ethene Interacting with Single Molecules of Methane,
Ethane, and Water. J. Phys. Chem. A 2018, 122, 2580−2586.
(43) Yanai, T.; Kurashige, Y.; Mizukami, W.; Chalupsky,́ J.; Lan, T.
N.; Saitow, M. Density Matrix Renormalization Group for Ab Initio
Calculations and Associated Dynamic Correlation Methods: A Review
of Theory and Applications. Int. J. Quantum Chem. 2015, 115, 283−
299.
(44) Gamow, G. Zur Quantentheorie des Atomkernes. Z. Phys.
1928, 51, 204−212.
(45) Siegert, A. J. F. On the Derivation of the Dispersion Formula
for Nuclear Reactions. Phys. Rev. 1939, 56, 750−752.
(46) Becke, A. D. Density-Functional Thermochemistry. III. The
Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648−5652.
(47) Dunning, T. H., Jr. Gaussian Basis Sets for Use in Correlated
Molecular Calculations. I. The Atoms Boron through Neon and
Hydrogen. J. Chem. Phys. 1989, 90, 1007−1023.
(48) Ehara, M.; Kanazawa, Y.; Sommerfeld, T. Low-lying π*

Resonances Associated with Cyano Groups: A CAP/SAC-CI Study.
Chem. Phys. 2017, 482, 169−177.
(49) Angeli, C.; Borini, S.; Ferrighi, L.; Cimiraglia, R. Ab Initio N-
Electron Valence State Perturbation Theory Study of the Adiabatic
Transitions in Carbonyl Molecules: Formaldehyde, Acetaldehyde, and
Acetone. J. Chem. Phys. 2005, 122, 114304.
(50) Nakatsuji, H. Cluster Expansion of the Wavefunction. Excited
States. Chem. Phys. Lett. 1978, 59, 362−364.

(51) Nakatsuji, H. Cluster Expansion of the Wavefunction. Electron
Correlations in Ground and Excited States by SAC (Symmetry-
Adapted-Cluster) and SAC CI Theories. Chem. Phys. Lett. 1979, 67,
329−333.
(52) Fukuda, R.; Nakatsuji, H. Formulation and Implementation of
Direct Algorithm for the Symmetry-Adapted Cluster and Symmetry-
Adapted Cluster-Configuration Interaction Method. J. Chem. Phys.
2008, 128, 094105.
(53) Nakatsuji, H. Cluster Expansion of the Wavefunction, Valence
and Rydberg Excitations, Ionizations, and Inner-Valence Ionizations
of CO2 and N2O Studied by the SAC and SAC CI Theories. Chem.
Phys. 1983, 75, 425−441.
(54) Fukuda, R.; Ehara, M. Efficiency of Perturbation-Selection and
Its Orbital Dependence in the SAC-CI Calculations for Valence
Excitations of Medium-Size Molecules. J. Comput. Chem. 2014, 35,
2163−2176.
(55) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A. et al. GAUSSIAN09 Rev. B.01; Gaussian Inc.:
Wallingford CT, 2010.
(56) Woon, D. E.; Dunning, T. H., Jr. Gaussian Basis Sets for Use in
Correlated Molecular Calculations. III. The Atoms Aluminum
through Argon. J. Chem. Phys. 1993, 98, 1358−1371.
(57) Choi, Y.; Jordan, K. D. Electron Transmission Spectra of
Carbonyl Fluoride: Determination of the Vertical Electron Affinity.
Chem. Phys. Lett. 1989, 156, 450−454.
(58) Burrow, P. D.; Michejda, J. A. Electron Transmission Study of
the Formaldehyde Electron Affinity. Chem. Phys. Lett. 1976, 42, 223−
226.
(59) Benoit, C.; Abouaf, R. Low-Energy Electron Collisions with
Formaldehyde: Interference Phenomena in the Differential Vibra-
tional Excitation Cross Section. Chem. Phys. Lett. 1986, 123, 134−
138.
(60) Schneider, B. I.; Rescigno, T. N.; McCurdy, C. W. Resonant
Vibrational Excitation of H2CO by Low-Energy Electron Impact.
Phys. Rev. A: At., Mol., Opt. Phys. 1990, 42, 3132−3134.
(61) Mahalakshmi, S.; Mishra, M. K. The 2B1 Shape Resonance in
Electron-Formaldehyde Scattering: An Investigation Using the
Dilated Electron Propagator Method. Chem. Phys. Lett. 1998, 296,
43−50.
(62) Kaur, S.; Baluja, K. L. Electron-Impact Study of Formaldehyde
Using the R-Matrix Method. J. Phys. B: At., Mol. Opt. Phys. 2005, 38,
3917−3933.
(63) Vinodkumar, M.; Bhutadia, H.; Antony, B.; Mason, N.
Electron-Impact Rotationally Elastic Total Cross Sections for H2CO
and HCOOH over a Wide Range of Incident Energy (0.01-2000 eV).
Phys. Rev. A: At., Mol., Opt. Phys. 2011, 84, 052701.
(64) Gallup, G. A. Application of the Finite-Element-Discrete-Model
Method for Calculating Resonance Properties. Phys. Rev. A: At., Mol.,
Opt. Phys. 2011, 84, 012701.
(65) Pal, S.; Vaval, N.; Sajeev, Y. Shape Resonance in Electron
Molecule Scattering Using Coupled Cluster Method. Indian J. Phys.
2007, 81, 1061−1067.
(66) Feuerbacher, S.; Sommerfeld, T.; Cederbaum, L. S.
Intersections of Potential Energy Surfaces of Short-Lived States:
The Complex Analogue of Conical Intersections. J. Chem. Phys. 2004,
120, 3201−3214.
(67) Skalicky,́ T.; Chollet, C.; Pasquier, N.; Allan, M. Properties of
the Π* and Σ* States of the Chlorobenzene Anion Determined by
Electron Impact Spectroscopy. Phys. Chem. Chem. Phys. 2002, 4,
3583−3590.
(68) Wiley, J. R.; Chen, E. C. M.; Wentworth, W. E. Bound Excited
States of Chloroethylene Anions Studied by Electron Capture
Negative Ion Mass Spectrometry. J. Phys. Chem. 1993, 97, 1256−
1257.
(69) Modelli, A. Electron Attachment and Intramolecular Electron
Transfer in Unsaturated Chloroderivatives. Phys. Chem. Chem. Phys.
2003, 5, 2923−2930.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.9b01032
J. Chem. Theory Comput. 2020, 16, 2606−2616

2615



(70) Modelli, A.; Venuti, M. Temporary Π* and Σ* Anions and
Dissociative Electron Attachment in Chlorobenzene and Related
Molecules. J. Phys. Chem. A 2001, 105, 5836−5841.
(71) Olthoff, J. K.; Tossell, J. A.; Moore, J. H. Electron Attachment
by Haloalkenes and Halobenzenes. J. Chem. Phys. 1985, 83, 5627−
5634.
(72) Stricklett, K. L.; Chu, S. C.; Burrow, P. D. Dissociative
Attachment in Vinyl and Allyl Chloride, Chlorobenzene and Benzyl
Chloride. Chem. Phys. Lett. 1986, 131, 279−284.
(73) Burrow, P. D.; Modelli, A.; Chiu, N. S.; Jordan, K. D.
Temporary Σ and Π Anions of the Chloroethylenes and
Chlorofluoroethylenes. Chem. Phys. Lett. 1981, 82, 270−276.
(74) Stockdale, J. A.; Hurst, G. S. Swarm Measurement of Cross
Sections for Dissociative Electron Capture in Heavy Water,
Chlorobenzene, and Bromobenzene. J. Chem. Phys. 1964, 41, 255−
261.
(75) Kaufel, R.; Illenberger, E.; Baumgar̈tel, H. Formation and
Dissociation of the Chloroethylene Anions. Chem. Phys. Lett. 1984,
106, 342−346.
(76) Sommerfeld, T. Electron-Induced Chemistry of 5-Chlorouracil.
ChemPhysChem 2001, 2, 677−679.
(77) Aflatooni, K.; Burrow, P. D. Total Cross Sections for
Dissociative Electron Attachment in Dichloroalkanes and Selected
Polychloroalkanes: The Correlation with Vertical Attachment
Energies. J. Chem. Phys. 2000, 113, 1455−1464.
(78) Benda, Z.; Jagau, T.-C. Understanding Processes Following
Resonant Electron Attachment: Minimum-Energy Crossing Points
between Anionic and Neutral Potential Energy Surfaces. J. Chem.
Theory Comput. 2018, 14, 4216−4223.
(79) Gallup, G. A.; Burrow, P. D.; Fabrikant, I. I. Reply to
“Comment on ‘Electron-Induced Bond Breaking at Low Energies in
HCOOH and Glycine: The Role of Very Short-Lived σ* Anion
States’”. Phys. Rev. A: At., Mol., Opt. Phys. 2009, 80, 046702.
(80) Schulz, G. J. Resonances in Electron-Impact on Diatomic-
Molecules. Rev. Mod. Phys. 1973, 45, 423−486.
(81) Kennerly, R. E. Absolute Total Electron Scattering Cross
Sections for N2 Between 0.5 and 50 eV. Phys. Rev. A: At., Mol., Opt.
Phys. 1980, 21, 1876−1883.
(82) Falcetta, M. F.; DiFalco, L. A.; Ackerman, D. S.; Barlow, J. C.;
Jordan, K. D. Assessment of Various Electronic Structure Methods for
Characterizing Temporary Anion States: Application to the Ground
State Anions of N2, C2H2, C2H4, and C6H6. J. Phys. Chem. A 2014,
118, 7489−7497.
(83) Izmaylov, A. F.; Adamson, S. O.; Zaitsevskii, A. Multi-
partitioning Many-Body Perturbation Theory Calculations on
Temporary Anions: Applications to N2

− and CO−. J. Phys. B: At.,
Mol. Opt. Phys. 2004, 37, 2321−2329.
(84) Mahalakshmi, S.; Venkatnathan, A.; Mishra, M. K. Application
of Higher Order Decouplings of the Dilated Electron Propagator to
2
Π CO−, 2

Πg N2
− and 2

Πg C2H2
− Shape Resonances. J. Chem. Phys.

2001, 115, 4549−4557.
(85) Honigmann, M.; Buenker, R. J.; Liebermann, H.-P. Complex
Self-Consistent Field and Multireference Single- and Double-
Excitation Configuration Interaction Calculations for the 2

Πg

Resonance State of N2
−. J. Chem. Phys. 2006, 125, 234304.

(86) Sajeev, Y.; Santra, R.; Pal, S. Correlated Complex Independent
Particle Potential for Calculating Electronic Resonances. J. Chem.
Phys. 2005, 123, 204110.
(87) Sajeev, Y.; Santra, R.; Pal, S. Analytically Continued Fock Space
Multireference Coupled-Cluster Theory: Application to the 2

Πg

Shape Resonance in e-N2 Scattering. J. Chem. Phys. 2005, 122,
234320.
(88) Zhou, Y.; Ernzerhof, M. Calculating the Lifetimes of Metastable
States with Complex Density Functional Theory. J. Phys. Chem. Lett.
2012, 3, 1916−1920.
(89) Gnaser, H. Formation of Metastable N2

− and CO− Anions in
Sputtering. Phys. Rev. A 1997, 56, R2518.

(90) Middleton, R.; Klein, J. Production of Metastable Negative Ions
in A Cesium Sputter Source: Verification of the Existence of N2

− and
CO−. Phys. Rev. A 1999, 60, 3786−3799.
(91) Sommerfeld, T.; Cederbaum, L. S. Long-Lived States of N2

−.
Phys. Rev. Lett. 1998, 80, 3723−3726.
(92) Andersen, T.; Bertelsen, K. A.; Raarup, M. K.; Rud, N.; Olsen,
J.; Veseth, L. Long-Lived States of N2

−: Formation, Lifetimes, and
Identity. Phys. Rev. A: At., Mol., Opt. Phys. 1999, 60, 3627−3632.
(93) Lofthus, A.; Krupenie, P. H. The Spectrum of Molecular
Nitrogen. J. Phys. Chem. Ref. Data 1977, 6, 113−307.
(94) Smith, D. W.; Day, O. W. Extension of Koopmans’ Theorem. I.
Derivation. J. Chem. Phys. 1975, 62, 113−114.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.9b01032
J. Chem. Theory Comput. 2020, 16, 2606−2616

2616


