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Abstract
In this paper, we demonstrate how machine learning could be used to quickly assess a student’s multimodal representational
thinking. Multimodal representational thinking is the complex construct that encodes how students form conceptual, perceptual,
graphical, or mathematical symbols in their mind. The augmented reality (AR) technology is adopted to diversify student’s
representations. The AR technology utilized a low-cost, high-resolution thermal camera attached to a smartphone which allows
students to explore the unseen world of thermodynamics. Ninth-grade students (N= 314) engaged in a prediction–observation–
explanation (POE) inquiry cycle scaffolded to leverage the augmented observation provided by the aforementioned device. The
objective is to investigate how machine learning could expedite the automated assessment of multimodal representational
thinking of heat energy. Two automated text classification methods were adopted to decode different mental representations
students used to explain their haptic perception, thermal imaging, and graph data collected in the lab. Since current automated
assessment in science education rarely considers multilabel classification, we resorted to the help of the state-of-the-art deep
learning technique—bidirectional encoder representations from transformers (BERT). The BERT model classified open-ended
responses into appropriate categories with higher precision than the traditional machine learning method. The satisfactory
accuracy of deep learning in assigning multiple labels is revolutionary in processing qualitative data. The complex student
construct, such as multimodal representational thinking, is rarely mutually exclusive. The study avails a convenient technique
to analyze qualitative data that does not satisfy the mutual-exclusiveness assumption. Implications and future studies are
discussed.

Keywords Heat transfer . Representational thinking . Augmented observation . Bidirectional encoder representations from
transformers (BERT) . Transfer learning . Automated text classification

Introduction

External representations display abstract concepts with con-
crete symbols or analogy (Shen and Confrey 2007; Xie 2011;
Namdar and Shen 2015). Representational thinking, which

could be operationally defined as the construct encoding
how one mentally forms conceptual, perceptual, graphical,
or mathematical symbols, is an essential precursor to foster
proficient math and science practices (Namdar and Shen
2015; Samuelsson et al. 2019; Jitendra et al. 2016; National
Research Council 2008; Next Generation Science Standards
Lead States 2013). In the past decade, the advancement of AR
technologies has transformed how external representations
could foster the representational thinking in the science labo-
ratory (Garzón and Acevedo 2019). Nevertheless, researchers
almost always determine the effectiveness of AR by student’s
improved conceptual understanding or attitude (Chang et al.
2018; Dunleavy et al. 2009; Garzón and Acevedo 2019; Wu
et al. 2013; Wu and Puntambekar 2012). Very few science
educators studied representational thinking in an AR-assisted
laboratory, probably because students often adopt multiple
representations at once, and the assessment could be very

* Shannon H. Sung
shannon@intofuture.org

1 Institute for Future Intelligence, 26 Rockland St., Natick, MA 01760,
USA

2 School of Teaching and Learning, University of Florida, 1221 SW
5th Ave, Gainesville, FL 32601, USA

3 Concord Consortium, 25 Love Lane, Concord, MA 01742, USA
4 Department of Teaching and Learning, University of Miami, 5202

University Drive, Coral Gables, FL 33124, USA

Journal of Science Education and Technology
https://doi.org/10.1007/s10956-020-09856-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s10956-020-09856-2&domain=pdf
http://orcid.org/0000-0001-5704-2920
mailto:shannon@intofuture.org


arduous and time-consuming for human coders (Sung et al.
2020). We resorted to the machine as an apprentice of humans
to relieve the constraint of the limited human-labor capacity.
The previous label classification in natural language process-
ing (NLP) all assume one code, and only one, to each analysis
unit against all available codes (e.g., Ha et al. 2011; Nehm
et al. 2012; Liu et al. 2016a). The existing machine learning
method would be unsuitable to perform desired automated
assessment, because most students innately manipulate multi-
ple modes of representational thinking at the same time (Sung
et al. 2020). It is imperative to search for an alternative method
that could be customized to meet our research goal in autom-
atizing the coding process. The study is, therefore, guided by
the research question:

What is the affordance of machine learning in promptly
assessing a student’s multimodal representational think-
ing in an AR-assisted lab?

Representational Thinking Functioning in an AR-
Assisted Thermodynamics Lab

Students constantly retrieve information from their cognitive
blackbox to explain abstract concepts like thermodynamics
(Clark and Jorde 2004; Pathare and Pradhan 2010; Reiner
et al. 2000; Wiser and Kipman 1988). In contrast to the ther-
mal vision possessed by some animals, humans need visual
aids to see the invisible heat transfer process (Xie 2011). This
type of super-sense might facilitate learning by expanding the
limited perceptual or visual capacity of students (Moreno
2006). According to the cognitive theory of multimedia learn-
ing, both external (i.e., verbal and visual) and internal repre-
sentations (i.e., tactile perception, mental image) could also be
used as one of the multimodal representations to diversify the
information input and, thus, increase the cognitive capacity
(Mayer and Moreno 2003; Moreno 2006). Therefore, the rep-
resentational thinking could be understood by how students
mentally process the sensory information input, which could
be in the form of physical touch, numerical symbols from a
temperature probe, verbal signals, etc. (Sung et al. 2020;
National Research Council 2008). It is believed that students’
adoption of multimodal representational thinking is an essen-
tial predecessor for conceptual change and development of
scientific modeling (National Research Council 2008). In this
article, the multimodal representational thinking could be con-
ceptualized as how one actively processes the multiple exter-
nal representations of thermal conductivity afforded by the
innovative technology (Sung et al. 2020). This assumption is
grounded in the cognitive theory of multimedia learning
(Mayer 2014), where Mayer suggested that people take in
sensory information and actively filter, select, organize, and
integrate the sensory input into mental constructs.

Researchers have been dedicated to developingmultimodal
computerized representations as learning aids to promote nor-
mative scientific understanding of heat (Clark and Jorde 2004;
Clough and Driver 1985; Donnelly et al. 2015; Lewis and
Linn 1994; Pathare and Pradhan 2010; Wiser and Kipman
1988). A smartphone app that incorporates infrared radiation
(IR) thermal imaging technology (i.e., SmartIR) could create
innovative channels to augment observation, and the external
representations could be internalized to help the users to un-
derstand heat conduction concepts (Samuelsson et al. 2019).
We operationally defined multimodal representational think-
ing of heat as one’s ability to mentally portray the multiple
external representations (Wu and Puntambekar 2012), such as
symbols, graphs, visual aids, and even thermal sensation input
as meaningful information for future retrieval. More specifi-
cally, we hypothesized that the internal mental representations
were externalized in the form of text-based explanation when
multimodal representational thinking is exercised during sci-
ence inquiry. This method deviates from studies that adopt
representa t iona l competency (e .g . , Magana and
Balachandran 2017) or representational fluency (e.g., Moore
et al. 2020) frameworks that were applied to directly encap-
sulate and assess the representational quality of students’ arti-
facts. We treated the multimodal representational thinking
more in line with how students embodied multiple represen-
tations (Walsh et al. 2020) and whether they apply and trans-
form the cognitive construct into textual representation in
explaining their thermal sensation and symbolic artifacts
(Sung et al. 2020).

Researchers in cognitive sciences, mathematics, and sci-
ence disciplines are dedicated to studying how external repre-
sentations are embodied and internalized into the form of rep-
resentational thoughts (Ainsworth 2008; Jitendra et al. 2016;
Walsh et al. 2020; Mayer 2014; Moore et al. 2020; Walsh
et al. 2020; Wu and Puntambekar 2012); however, to what
extent does students incorporate their mental representations
in explaining perception and interpreting data collected during
the laboratory activity remains scarce (Sung et al. 2020), not to
mention automated coding.

Applying Machine Learning in Automated
Assessment

Human coders rely heavily on a manual process accompanied
by constant comparison and contrast of their codes with others
to reconcile disagreement and to cross-validate their codes
until reaching satisfactory interrater reliability (Bailyn 1977;
Carbó et al. 2016; Este et al. 1998; Grolemund and Wickham
2014; Patton 2005; Tanana et al. 2016). The systematic train-
ing of human coders is labor-intensive and costly (Beggrow
et al. 2014; Blank 2004; Liu et al. 2016a; Nehm et al. 2012;
Tanana et al. 2016). Researchers resorted to machine scoring
tools, such as Computer-Assisted Scoring (CAS) (Beggrow
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et al. 2014), c-rater-ML (Liu et al. 2016a), SPSS Text
Analytics (SPSSTA) (Haudek et al. 2012), Summarization
Integrated Development Environment (SIDE) (Ha et al.
2011; Nehm et al. 2012), and so forth, to automate the scoring
process. Among many machine learning techniques, natural
language processing (NLP) is commonly applied in assessing
open-ended responses (e.g., Luo and Litman 2016), interview
transcripts (e.g., Beggrow et al. 2014; Tanana et al. 2016), and
other text artifacts (e.g., Krithika and Narayanan 2015). Some
NLP approach was completed by combining the baseline fea-
ture (Luo and Litman 2016) and by applying clustering anal-
ysis on scoring short text responses (Beggrow et al. 2014;
Zehner et al. 2016) and essays (Haudek et al. 2012;
Mehmood et al. 2017), while other NLP algorithms were
adopted to extract linguistic features from students’ text re-
sponses (Allen et al. 2016; Goodfellow et al. 2016; Zehner
et al. 2016). Since NLP is a mature method of automated
assessment, it has been widely applied in grading scientific
explanations (e.g., Ha et al. 2011; Liu et al. 2016a; Nehm
et al. 2012). The machine learning–based NLP did open up
a promising avenue to relieve the laborious task of coding
student artifacts, because it could generate reliable scores that
are comparable with human coders (Ha et al. 2011; Liu et al.
2016a; Mitchell 1997; Tanana et al. 2016; Zehner et al. 2016).
The drawback of the aforementioned tools is that they func-
tion under the assumption that the codes are mutually exclu-
sive to each other. In our previous study, we found that par-
ticipants’ language-based representations gave us some hints
that the participants have applied multimodal representational
thinking in explaining their tactile perception, pictorial ther-
mal imaging data, and graphical artifacts (Sung et al. 2020).
However, the process of applying multiple codes in accor-
dance with the coding scheme was time-consuming and la-
bor-intensive. An automated coding algorithm could be the
rescue.

Identifying Multimodal Representational Thinking via
Multilabel Text Classification

Previous educational research on both automated coding and
scoring primarily focused on the assignment of one code to
each artifact and assumed that the classification of codes is
mutually exclusive (e.g., Beggrow et al. 2014; Ha et al. 2011;
Liu et al. 2016a). Despite reported success in applying NLP in
automated coding, the limitation of the mutually exclusive
coding assumption does not entirely satisfy the requirement
in capturing multimodal representational thinking. Alternative
machine learning algorithms that could adequately classify the
complex cognitive processes with multiple possible codes are
called for. Luckily, a machine learning method—multilabel
text classification—could serve the purpose (Tsoumakas and
Katakis 2007).

In multilabel classification, there are more than two labels
for each selection, and there can be more than two labels
predicted by the classifier (Tsoumakas and Katakis 2007).
The multilabel classification techniques are (1) problem trans-
formation methods and (2) algorithm adaptation methods
(Tsoumakas and Katakis 2007). With problem transformation
methods, researchers frame multilabel classification problems
as one or more single-label classifications or regression prob-
lems. Common techniques of problem transformation
methods include (a) binary relevance, which builds K binary
classifiers for K labels, where K is the total unique count of
labels; (b) classifier chains that are built upon binary relevance
but also consider the correlation among labels; (c) label
powerset, which builds a multilabel classifier that treats every
combination of labels as new classes and then solves the prob-
lem using multilabel classification approaches; (d) pruned set,
which is similar with label powerset but removes labels whose
counts are lower than a user-defined threshold; and (e) ensem-
ble methods that build a set of multilabel classifiers with the
above problem transformation methods while making the de-
cisions on label predictions with a weighted vote by the
multiclass classifiers (Nareshpalsingh and Modi 2017;
Zhang and Zhou 2013). Due to its relative simplicity and
generalizability, binary relevance is widely adopted for
multilabel classification among the problem transformation
methods and showed desired results (SpolaôR et al. 2013;
Yeh et al. 2017; Zhang et al. 2018a). Feng et al. (2018) used
the binary relevance and label powerset methods to build
multilabel classifiers and compared their results with
multiclass classifiers. The results revealed that multilabel clas-
sification with problem transformation methods can yield
more accurate results than the alternative classifiers.

For algorithm adaptation methods, researchers modify
existing algorithms to handle multilabel classification directly.
While there are several methods for algorithm adaptation,
most of them are specific for traditional machine learning
algorithms such as decision trees and support vector machine
(SVM). The traditional machine learning methods are not ap-
plicable to process up-to-date algorithms, such as deep neural
networks (Nareshpalsingh and Modi 2017). The neural net-
work (NN)-based method is usually adopted to modify the
loss function. The NN-based models allow independent prob-
abilities for each label (Nareshpalsingh and Modi 2017),
which is by nature similar with binary relevance and classifier
chains.

Deep Learning Method and the Mighty Transformer

In recent years, deep learning or deep neural networks have
received heightened attention in the field of machine learning.
Unlike traditional machine learning approaches, such as
SVM, deep learning empowers researchers with more accu-
rate and desired results while requiring less effort on manually
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extracting features to optimize model performance
(Goodfellow et al. 2016). The advancement of deep learning
has drastically improved the fields of speech recognition, vi-
sual recognition, object detection, and many other domains
(LeCun et al. 2015). The existing educational studies suggest
that recurrent neural network (RNN), convolutional neural
network (CNN), and more standard machine learning tech-
niques, such as decision trees, are primary methods for auto-
mated text classification (Kastrati et al. 2019; Nanaware 2018;
Xing and Gao 2018). Researchers started to adopt the trans-
former mechanism in completing text classification tasks
(Vaswani et al. 2017). The transformer is a deep learning
architecture for NLP that is substantially optimized in its com-
putation capability compared to other deep learning models,
such as RNN and CNN (Vaswani et al. 2017; Zhang et al.
2018b). In addition to computational efficiency, models de-
rived from transformer architecture have performed outstand-
ingly in various NLP tasks such as text classification, reading
comprehension, and question-answering thanks to its
attention-based mechanism that is capable of capturing nu-
ances in linguistic contexts (Devlin et al. 2018; Li et al.
2018). The transformer-based models that have outstanding
performance could also be properly applied to transfer learn-
ing, which was not successful for deep learning models such
as RNN and CNN in NLP (Mou et al. 2016). Researchers can
leverage this layer of flexibility offered by transfer learning to
build new models based on existing parameters trained by
huge datasets (Devlin et al. 2018).

Models using transfer learning and transformer techniques
perform well on natural language inference and paraphrasing
(Fedus et al. 2018; Ruder et al. 2019), which are valuable in
increasing the accuracy of classification (Liu et al. 2016b). In this
study, we proposed the use of the deep learning model—
bidirectional encoder representations from transformers
(BERT) (Devlin et al. 2018)—to automate the analysis of stu-
dents’ textual responses. First and foremost, BERT performance
was outstanding on processing NLP tasks on reputable open-
source datasets, including text classification tasks (Devlin et al.
2018). Furthermore, BERT was revolutionary for NLP tasks
since it greatly improved on sentence-level learning compared
with previous deep learning models (Devlin et al. 2018). Before
BERT was created, programmers had been exerting their prima-
ry effort in improving the performance for word embedding
(Howard and Ruder 2018; Pennington et al. 2014; Peters et al.
2018; Rong 2014). Word embedding is a machine learning tech-
nique that assigns words with numbers so that words used in
similar contexts denote similar numeric representation. It is ad-
vantageous over the traditional bag of word (BOW) method,
which simply represents words with their frequency of occur-
rence in a sentence (Lilleberg et al. 2015). It usually outperforms
BOW because word embedding is capable of capturing the
semantic meanings of words (Lilleberg et al. 2015). However,
most of the word embeddings research neglect the contextual

meanings of words. For example, previous word embeddings
could not differentiate the term “pen” which is used for writing,
versus a pig “pen” on the farm. Although recent works such as
Embeddings from Language Models (ELMo) were able to learn
language contexts (e.g., Peters et al. 2018), the nature of learning
in such word embeddings was unidirectional (left-to-right or
right-to-left), which was suboptimal for performance and might
be problematic to adopt in further transfer learning techniques
(Devlin et al. 2018). BERT, on the other hand, was able to
perform NLP tasks based on both left and right contexts due to
its original language representation learning that simultaneously
considers bidirectional contexts (Devlin et al. 2018). Thanks to
the bidirectional nature of deep learning, BERT helped re-
searchers to analyze text data with higher precision. We take
advantage of the affordance of text classification in assessing
student’s multimodal representational thinking in the AR-
assisted lab.

To the best of our knowledge, this preliminary study would
present the first research attempt to apply multiple-labeling
technique in coding students’ multimodal representational
thinking that is externalized in the form of written representa-
tions. The complex construct is believed to be facilitated by
the mobile AR technology (Sung et al. 2020). We compared
two machine learning techniques: one is a commonly used
machine learning method (i.e., SVM) and the other is the most
recent deep learning technique (i.e., BERT). Specifically, we
applied these two machine learning techniques to extract the
cognitive processes associated with the multimodal represen-
tational thinking found in student lab reports.

Methods

Our team developed a smartphone IR application (i.e.,
SmartIR) that provides (1) color heat map, (2) virtual ther-
mometer, and (3) temperature–time graph features as three
modes of external representations to understand heat transfer.
These augmented observation features were designed to sup-
port representational thinking of users (see Fig. 1) (Sung et al.
2020). Specifically, the vision is augmented to see heat trans-
fer, and the tactile thermal perception is augmented with a
digital thermometer to transduce sensory data to an exact tem-
perature reading. The temperature–time graph shows that heat
transfer is a “process” and the temperature of a particular spot
receiving thermal energy would change accordingly with
time. In summary, the smartphone application (i.e., SmartIR)
could equip learners with spatial, transductive, and temporal
augmented thermal perception (see Fig. 2), to “see” heat trans-
fer. The cognitive functioning of augmented observation fea-
tures on SmartIR is introduced in the captions of Fig. 2 (see
Sung et al. 2020 for more details about the development of
SmartIR).
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Fig. 1 The figure depicts the research design and theoretical framework
of the source of representational thinking. The components in red-dashed
box indicate different modes of representations during the AR-assisted
heat conduction lab. The four modes of representations (three external
representations (green box) and one perceptual representation (orange
box)) adopted during the augmented observation phase of the

prediction–observation–explanation (POE) cycle could be used to acti-
vate fluid representational thinking. The coding scheme, the sources for
responses, and the goal of this study were also included in the research
outline. Machine learning was adopted to mitigate the researchers’ effort
in determining multimodal representational thinking

Fig. 2 a Spatial augmentation: The color heat map augments vision to
leverage understanding of energy transfer. b Transductive augmentation:
The virtual thermometer augments observation via transducing the

differential pixels on the heat map into respective temperature readings.
c Temporal augmentation: The temperature–time graph augments obser-
vation by highlighting the change of temperature over time

J Sci Educ Technol



Module Design

We adopted the prediction–observation–explanation (POE)
design pattern (e.g., Ebenezer et al. 2010). The “Two-
Thumbs Up” module used in this study focuses on heat con-
duction and thermal perception of heat transfer (see Appendix
Table 3 for activities and the POE question prompts
embedded in the module). The activity scaffolded students’
representational thinking by means of incorporating their ther-
mal sensation as well as the augmented observation features.
Student’s multimodal representation was elicited when
responding to the questions included in the module.

Participants and Context

Ninth-grade students from three public schools in the north-
eastern USA (N = 314) engaged in a heat conduction experi-
ment using the augmented observation tools developed for
SmartIR application (Fig. 2a–c; Sung et al. 2020). SmartIR
could be used to address science standards related to thermo-
dynamics to learn “the temperature of a substance changes
when thermal energy is transferred from or to a sample” (LP
E04) (Next Generation Science Assessment Task Collections
2019). The IR thermal imaging technology enables students to
experience thermal vision to actively observe the heat transfer
process, which facilitated augmented observation.

Data Collection and Analysis

Questions in the “Two-Thumbs Up”module were designed to
elicit students’ representational thinking to explain (1) the
thermal perceptions of both wooden and metal rulers before
and after they touch them and (2) their thermal sensation of
their thumbs (see Appendix Table 3). The questions prompted
students to reflect on their augmented observations enabled by
the SmartIR. Student’s representational thinking in the AR-
assisted lab was inferred by the answers they wrote in the lab
report in an electronic format when students responded to
POE prompts. Each student’s text response to every question
was considered as one coding unit. Four researchers discussed
the responses of one class in search of the evidence supporting
the themes and reached interrater reliability of 0.82 after cod-
ing 43.37% of a total of 572 responses (see Sung et al. 2020
for more details). Five main categories were summarized as a
result of the iterative human coding processes: (1) ideas fo-
cusing primarily on haptic perception (P), (2) abstract ideas
(A), (3) thermometer reading (R), (4) color heat map visuali-
zation (V), and (5) temperature–time graph (i.e., temperature
against time graph, T(t)) (G) (see Appendix Table 4 in the
supplement for the detailed coding scheme for human
raters). Multiple codes might be assigned to the same coding
unit, except for those responses with off-task or abstract ideas
(see Appendix Table 4 for the coding scheme to train NLP).

After coding, 416 responses were single labeled (73%), 111
responses were multilabeled (19%), and 45 responses (8%)
were coded as no response (NR) since their content was empty
or meaningless. Table 1 shows the frequency and examples of
each coding scheme.

Text Classification Pipeline

Figure 3 shows the steps we took to build and evaluate the
multilabel text classifiers with Python packages SpaCy, Scikit-
learn, and PyTorch: (1) We conducted data preprocessing to
normalize texts, which includes white space stripping on the
start and end of each response and transforming responses into
lower-case forms (Pranckevičius and Marcinkevičius 2017;
Nayak and Natarajan 2016); (2) we extracted linguistic fea-
tures from responses which allowed us to potentially enhance
the training of models. Although the extraction of such fea-
tures was controversial (Schenk et al. 2016), significant im-
provement on performance was observed (Pennacchiotti and
Popescu 2011; Pla and Hurtado 2014); (3) we trained
multilabel classifiers of SVM and BERT with plain texts
and texts with linguistic features, respectively; (4) we used
common metrics to evaluate the performance of multilabel
classifiers; and (5) we chose the best-performing model and
used it to predict the rest of the unlabeled data (n_unlabeled =
648). Details of each step are given in the following sections.

Feature Extraction

We used Python SpaCy to build two linguistic features:
part-of-speech (POS) and named entity recognition
(NER). POS tags describe the grammatical functionali-
ties of words such as verbs, adjectives, adverbs, and
punctuations. NER tags categorize information extracted
from words such as names of people, organizations, and
locations. Compared with POS, NER tags are more in-
formative, yet less common. Not every response would
contain information categorized by NER. Three new
datasets were created where preprocessed plain texts
were linked with POS, NER, and POS + NER features,
respectively. For models of BERT, we modified their
embedding layers to treat POS and NER tags as special
tokens because BERT’s tokenizers would otherwise treat
those linguistic features as unknown words and thus
affect performance.

Model Training and Performance Measures

In order to evaluate the performance of BERT thor-
oughly, we also used the traditional machine learning
algorithm SVM to provide a base performance. We
chose SVM because of its reported desirable perfor-
mance on multilabel classification with binary relevance
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method (Sun et al. 2017; Xu 2011). Python packages
PyTorch and Scikit-learn were used to test two types
of supervised machine learning algorithms: transfer

learning with BERT and SVM. In order to build
multilabel classifiers, we adopted binary cross-entropy
with logits in BERT’s loss function, which allowed us

Table 1 Frequency and example
of each coding scheme Code Examples Count

P After we touch them for a minute, the metal will heat upmore because it will absorb the
heat from our hand faster. (A11^, P2*)

148

I think that the metal ruler will feel cooler because it releases heat better than the
wooden ruler. (C9, P1)

Themetal will feel colder because metal retains far less heat than wood does. (G12, P1)

V The place where the thumb had touched the metal ruler was much higher than the place
the thumb had touched the wooden ruler because the metal ruler retained the thermal
energy much better as it is a better conductor. (A10, E3)

111

The metal conducts heat better than the wood, which is why the heat was able to travel
farther. (G14)

A The will return to the temperature they were before (A11, P3) 59
The metal one would absorb heat more rapidly than the wood one, since metal is a

conductor while wood is an insulator. (G7, P2)

G In the graph it shows how the longer we had the thumbs on them the hotter they got.
The spike in the middle is the temperature of the thumbs. (A12, Og2)

54

It’s demonstrating a spike in thermal energy after a certain period of time that goes
down after another period of time. (G8, Ob)

R The pattern shown on the image is two rulers, one metal, one wood, that are both at
room temperature. (A7, Oa)

44

P, V The fingers have lost heat because the heat has flowed into the two rulers. (A4, Od) 54
The heat from my thumbs traveled up the ruler. The wooden ruler barely got warmer

except for right under where my thumbs were. (A6, Ob)

R, V The pattern shown in this image is that the rulers are the same color as the foam board
behind them. This shows that the rulers are at the same temperature as the board,
which is room temperature. This can also be shown by the little thermometers on the
rulers because they both show relatively the same temperatures. (A3, Oa)

36

The rulers are at the same temperature as in (b) because the rulers are still heated, the
heat source is just removed so the temperature of both rulers will not increase. (G13,
Oc)

R, P The thermometer read warmer as they got closer to the thumbs because the thumbs
were the heat source and the heat energy was traveling down the ruler through
conduction. (G13, E2)

7

P, V, R One thumb was cooler than the other after touching two rulers, because it gave away
more heat to the metal ruler. Themetal ruler started out with a cooler temperature but
is a conductor, which is why it took more heat from the fingers. While the wooden
ruler was the opposite which is why the temperature of the finger that touched the
wood was warmer, and the finger that touched the metal was cooler. (G6, E4)

4

G, P The temperature of the thermometers are heating up with the warmth of my fingers, so
the bottom ones are the thermometers on the metal ruler. (A6, Og1)

4

G, R Both rulers decrease in temperature very quickly. If you look at the temperature, the
thermometer is 29.93 °C, while the wooden ruler is 30.07 °C. The metal ruler lost
heat faster than the wooden ruler did. (E4, Oc)

2

R, P, V The metal ruler is increasing temperature with energy flowing from my fingers to the
ruler. The wood ruler is darker and has a lower temperature than the metal ruler does.
(A7, Ob)

2

P, A The place where our fingers touch the rulers for longest will be the hottest and the heat
will spread from there. The metal ruler will have been heated more thoroughly
because it is a better conductor of heat. (A9, P2)

1

V, G When we put our thumbs on it, the temperature of each ruler increased. The metal
increased temperature faster and spread to more of the ruler than the wood did. (A11,
G2)

1

NR No response, blank 45

^Student ID

*POE prompt number
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to assign independent probability ranging from 0 to 1
for each representational thinking label. In terms of
SVM, we used the binary relevance method to train
six classifiers (P, A, R, V, G, and NR) independently
to achieve the goal of multilabel classification.

Depending on which algorithm it adopts, the labeled
dataset was split differently in the training process. For
SVM, 80% of the dataset was sampled randomly for 5-
fold cross-validation and hyperparameter tuning, while
the rest was used for testing. For BERT, a majority of
the dataset (60%) was used for training, while the rest
40% was evenly divided for validation and testing.
Specifically, the labeled data used to train the BERT
model was to detect features and classify lab report
responses. In the training of BERT, cross-validation
with human codes was not performed because the
BERT model has 12 layers with 110 million parameters
in the training process, and such deep learning models
are usually much more expensive to train than tradition-
al machine learning models. Thus, it would be imprac-
tical to iteratively cross-validate the training result with
human coders. Instead, we used 20% of the labeled data
that were not included in the training set to validate the
BERT models. The rest of the 20% served as testing
data to compare the labels generated by the BERT mod-
el and the labels given by human coders, which were
the same used for testing in SVM. Metrics received

from the testing dataset can serve as an indicator on
the model’s reliability as well as validity. The testing
dataset was labeled by the researchers, thus serving as
the golden truths, and the model does not see the con-
tent in the testing dataset during training. Therefore,
achieving a good performance on the testing dataset
indicates a good reliability and validity.

Model Performance Evaluation and Prediction

After model training, we used four metrics to evaluate
models that are commonly used for multilabel classifica-
tion: (1) receiver operating characteristic curve–area un-
der the curve (ROC–AUC), (2) one-error, (3) coverage
error, and (4) ranking loss (Alalga et al. 2016; Wu and
Zhou 2017; Sarker et al. 2013) (see Fig. 4). The ROC
curve is a probability curve plotted with false-positive
rates in the x-axis and true-positive rates in the y-axis,
and AUC is the area under the ROC curve. The ROC–
AUC score refers to AUC and measures how well a
model can discriminate between classes, and the higher
the AUC, the better a model predicts true negatives as
negative and true positives as positive (Fan et al. 2006).
In our case, a high ROC–AUC score means that, for
each mode of representational thinking, a model can ac-
curately decide if a response externally represents a cer-
tain mode of thinking (e.g., haptic perception (P)) or not.

Fig. 3 Block diagram demonstrating data processing flow of BERT and SVM. The figure depicts the index adopted to evaluate prediction accuracy
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One-error measures how many times the label with the
highest prediction probability does not correspond to that
assigned by the human (Tsoumakas et al. 2009). The
lower the one-error score, the better a model’s predic-
tions are aligned with human-coded responses in terms
of predictions with the highest probabilities. For exam-
ple, a one-error score of 0.1 means, on average, 90% of
the time (i.e., 1–0.1 = 0.9) the predicted label with the
highest probability is indeed one of the label(s) humans
have assigned to student responses. Coverage error indi-
cates the average discrepancy between the prediction-
probability label ranking versus the human-assigned la-
bels of a response (Tsoumakas et al. 2009). The best
value of coverage error is the average number of
human-assigned labels in all responses, and we want
the model to produce a number close to that average
number. Ranking loss measures the average fraction of
incorrectly ordered label pairs of responses, and the per-
fect score is 0 (Tsoumakas et al. 2009). Conceptually,
repeating in each response, we treat human-assigned la-
bels with values of 1 and otherwise 0 and then sort these
labels in a descending order. Then we iteratively sorted
labels in pairs, say labelp and labelv, meaning the re-
sponse is labeled as P or V. For each iteration, these
two labels are ranked based on prediction probability
and their rankings. If the rank of labelp is smaller or
equal to that of labelv, then we accumulate the loss by
1 because this scenario is deemed as reversely ordered.
The accumulated loss will then be divided by the prod-
uct of the number of 1s and 0s, namely the product of
cardinalities between positive and negative cases.
Iterating through every response, we will add up the
loss and eventually divide the summed loss by the num-
ber of responses. That being said, a label ranking of 0.1
means on average 10% label pairs are reversely or in-
correctly ordered.

Upon finishing evaluation, we selected the best-
performed model that achieved outstanding performance
on these four metrics to predict the rest of the unlabeled
responses (n_unlabeled = 648). In order to predict the
multimodal representational thinking in the multilabel
manner, we needed to select a probability threshold to
determine above which value the applicable label(s)
would be assigned to a response. This step closely resem-
bles the decision-making processes behind human coders.
To achieve the purpose of multilabel, we used the SCut
method to find an optimized threshold (Al-Otaibi et al.
2014). To be specific, we first generated prediction prob-
abilities of each label in the testing dataset, then we
searched in the threshold space within 0 to 1 to find a
value that maximizes the micro F-1 score. The micro F-
1 score is a value describing sensitivity and specificity
weighted by label sample sizes.

Results

Multilabel Classification

Table 2 shows the results of models using BERT and SVM.
The BERT model trained with plain texts achieved the best
performance on all four metrics, and its performance is signif-
icantly better than that of SVM. The high ROC–AUC score of
0.943 from the BERT model suggests its outstanding capabil-
ity on differentiating between classes. Figure 4 shows the best-
performed model of BERT outperforms the best-performed
SVM on all labels’ AUC. The low one-error of 0.225 shows
on average 77.5% (1–0.225) of the top-ranked label by the
BERT model is one of the ground true labels. The coverage
error of 1.667 indicates the average discrepancy between the
label ranking in order to capture all true labels is 1.667, which
is closer to the average number of true labels from responses
(i.e., 1.234), than SVM. The ranking loss of 0.071 suggests
the average percentage of incorrectly ordered label pairs of
responses is 7.1%, which means that most of the label
pairs are correctly ordered (92.9%). It is interesting to
see that adding linguistic features to BERT did not help
with its performance and even backfires, which aligns
with the findings of Schenk et al. (2016) that deep
learning might not benefit from manual feature engi-
neering. On the other hand, SVM achieved the best
result when data were augmented with POS features,
which resonates with the finding from Kovanović
et al. (2014). Since BERT with raw texts was best-
performed among all the models, we applied the SCut
method on it in search for the probability threshold to
accept labels, and the result suggested that a value of 0.272
achieved the best result on the testing dataset (see Fig. 5).

Despite the complex nature of deep learning, we conducted
Local Interpretable Model-Agnostic Explanations (LIME)
(Ribeiro et al. 2016) to visualize random responses for the
observation question to showcase how BERT extracts impor-
tant features and predicts the representational thinking labels.
LIME offers local explanations on models which is only ap-
plicable to specific responses. While understanding what a
deep learning model has learnt over all responses is possible
through methods such as Shapley Additive Explanations
(SHAP) (Lundberg and Lee 2017), suchmethods usually have
limited support on deep learning frameworks and thus are
challenging to apply. Conceptually, LIME explains how a
model weighs words of a specific response by changing texts
in the response (e.g., words removal or duplication) and build-
ing an explainable linear model with the modified responses.
The predictions on modified responses of a blackbox mod-
el will serve as the ground truth for LIME’s linear model.
The explanations from the linear model were reported to
be trustworthy explanations from the blackbox model
(Ribeiro et al. 2016).
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Figure 6 depicts BERT’s explanation on the sentence “The
heat is traveling up the ruler because the heat is moving from
the thumbs onto the ruler. Here the heat of the thumbs is
transferring onto both rulers.” BERT predicted that the prob-
ability of labeling this response into “color heat map

visualization (V)” and “haptic perception (P)” classifications
is 73% and 58%, respectively. The threshold for multiple la-
bels is 27.2%; thus, this response is coded as the student used
visual and perceptual representations as evidence to describe
their augmented observations.

Fig. 4 Comparison of ROC–AUC between BERT and SVM. Notice that the average ROC curve covers higher percentage of area than that from the
SVM (0.943 vs. 0.898), indicating that the BERT performed better than SVM

Table 2 Results of the multilabel
classification Model Feature ROC–

AUC
One-
error

Coverage error Ranking loss

BERT* Raw text 0.943 0.225 1.667 0.071

BERT POS 0.914 0.315 1.829 0.118

BERT NER 0.927 0.279 1.748 0.079

BERT POS + NER 0.842 0.369 2.414 0.151

SVM Raw text 0.896 0.297 1.982 0.115

SVM POS 0.898 0.252 1.874 0.096

SVM NER 0.895 0.279 1.955 0.11

SVM POS + NER 0.895 0.270 1.901 0.101

*The best-performed model among all. Data in italics stand for the best-performed model using the same
algorithm

J Sci Educ Technol



Discussion

This study speaks directly to redefining science assessment
from two perspectives: (1) automate the assessment of a com-
plex student construct and (2) apply deep learning in
multilabel text classification to ease human labor.

Science educators often infer student’s acquisition of
representational thinking through the indirect conceptual
learning outcome. In our previous study, we examined
student’s multimodal representational thinking during an
AR-assisted laboratory (Sung et al. 2020). The heat con-
duction lab used sensing technology to augment

observation during the POE cycle. We found that students
used multiple representations when they responded to the
lab report questions. While the findings proved that stu-
dents indeed applied the representations empowered by
the AR technology, the coding process was tedious and
labor-intensive. The qualitative data analysis was espe-
cially daunting because there were multiple possible
codes corresponding to each of the student’s responses.
Reviewing open-ended responses is innately arduous and
costly (Tanana et al. 2016). Even though STEM educators
proved that machine learning–based NLP is useful in au-
tomated assessment (e.g., Ha et al. 2011; Krithika and

Fig. 6 The visualization of how BERT performs deep learning in assigning multiple labels to the student response

Fig. 5 Searching for the threshold
value of BERT using SCut. The
threshold result indicated that if
the probability of a two or more
modes of representational
thinking is greater than 0.272, the
student is believed to practice
multimodal representational
thinking
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Narayanan 2015; Li et al. 2017; Liu et al. 2016a), very
few, if any, reported how they automated the assessment
of complex student constructs, such as multimodal repre-
sentations. In technical terms, most of the automated as-
sessment studies focused on assigning a single score to
each analysis unit, while the present study successfully
trained the machine to accurately assign multiple codes
to each response.

Searching for meaningful themes and valid categories in
massive qualitative data requires iterative discussion among
the analysts (DeLyser et al. 2013). The machine learning ap-
proach is comparable to humans, if not exceeding human
interrater reliability (e.g., Ha et al. 2011). It could replicate
this time-consuming process with satisfactory accuracy but
in a much shorter time. Deep learning (i.e., BERT), which is
a subset of the machine learning approach, proves to be more
accurate than traditional machine learning methods (i.e.,
SVM) based on the ROC–AUC scores. The nature of
BERT’s word embedding approach and the strength of trans-
fer learning architecture might contribute to its satisfactory
precision in assessing complex student constructs. BERT con-
siders contextualized meaning of a keyword instead of its
standalone definition, and the possibility of leveraging transfer
learning with BERT ensures an outstanding base performance
on language understanding. Taking the result for Fig. 6 for
instance, “heat of the thumb” is an important feature for the
“haptic perception (P)” code, and “heat traveling up the ruler”
is a critical symbol for “color heat map visualization (V)” code
regardless of the duplicative concept “heat” was used in these
two response segments. BERT’s predicted codes coincide
with human coding, and the visualization of logic behind the
multiple-label classifications also reassures the validity of the
BERT model. BERT’s feature engineering mimics the
decision-making process behind human coders. The training
process for BERT, however, is much more efficient than that
in training human coders (Sung et al. 2020). In addition, the
deep learning model adopted to automatically assess multiple
modes of representational thinking is a milestone. To the best
of our knowledge, this paper is the first report of applying
multilabel text classification in educational settings. Since
the multilabel model was not applied to the testing dataset
before training, the fact that the label-prediction results
showed fair agreement with human coders indicated BERT
is a promising model in decoding complex constructs.

The automated assessment could also speed up the identi-
fication of the complex constructs, such as multimodal repre-
sentational thinking used by students to explain the haptic
perception and the artifacts generated in an AR-assisted lab.
After specifying important combinations of terms and con-
text-embedding, student’s use of the AR features could be
automatically captured by the machine. Delegating the assess-
ment of multimodal representational thinking to the machine

is advantageous. Practitioners, educational researchers, and
AR-app developers would benefit from the information pop-
ulated by the machine. We will elaborate on how these per-
sonnel could take advantage of the automated assessment in
an AR-assisted lab below.

Teachers could promptly obtain and use the results gener-
ated by the deep learning model to differentiate student’s rep-
resentational thinking mode. BERT would be an effective
technique to provide just-in-time feedback for the instructors.
The automated analysis of the constructed responses could
reveal learners’ cognitive engagement and representational
thinking. Instructors, relieved from manual grading duty,
could now quickly identify disengaged students and take nec-
essary actions for early intervention. Also, teachers could ded-
icate more time to address a wide spectrum of tasks ranging
from monitoring common learning difficulties faced by the
group, to remedial pedagogies for individual students. The
latter task on tailoring feedback for a particular student is
especially beneficial for those who struggle in the lab. These
students might be stuck with a single mode of representational
thinking, and the lab instructor could redirect these students to
diverge thinking accordingly. As noted, heavy reliance on a
particular representation tends to impose higher extraneous
cognitive demands than diversifying representational input
(Mayer and Moreno 2003).

Educational researchers could immediately identify
themes to classify student responses and feed the useful
information to the AR technology developers. Software de-
velopers could take this advice to revise the app and en-
hance the user’s experience accordingly. The machine
would be a master “apprentice” in assisting researchers to
process text data in large-scale educational research. The
machine could perform the task tirelessly with satisfactory
results. The massive amount of information processing ca-
pacity makes the machine a perfect artificial intelligence
(AI) tutor during the hands-on science lab. The researchers
and developers could integrate the automated assessment in
the “smart” laboratories to provide immediate formative
assessment. Adopting machine algorithm as an AI tutor in
a hands-on lab is revolutionary; however, machine learning
has been widely used in computer-supported collaborative
learning, interactive synthetic tutoring system, and massive
open online courses that create tremendous amount of be-
havior data (Crossley et al. 2016; Hew et al. 2018;
McNamara et al. 2017; Nakamura et al. 2016). The scien-
tists who study cognitive theory of multimedia learning
could be rest assured that the complex representational
thinking inferred from the qualitative data analysis is based
on the rigorous deep learning result. The machine instantly
generates participant’s user experience data, so cognitive
scientists could decipher whether students’ cognitive ca-
pacity is overloaded or understimulated.
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Conclusions and Future Studies

Our study would contribute to the field of cognitive sci-
ences in multimedia learning, especially from the perspec-
tive of how students constructed and manipulated repre-
sentations offered by AR technology in real-time labora-
tory sessions. Specifically, studies show that the conjunc-
tion of sensory stimuli (i.e., augmented observation fea-
tures and tactile experience) would enhance learning out-
comes (Clark and Jorde 2004) and boost positive attitudes
on socioscientific issues with AR-assisted learning
(Chang et al. 2018). The AR-assisted laboratory displays
the learning of thermal energy concepts that is hard to
grasp otherwise. External representations need to be used
with caution because unclear multiple representations
might impose an extraneous cognitive load during the
learning process (Cook 2006). Therefore, explicit tutorials
should be included in a “smart” laboratory to coach stu-
dents how to make connections between different modes
of representations and the target concepts. We will offer
this type of tutorial in the future to see whether students
adopt more transductive and temperature-temporal aug-
mentation in the AR-assisted thermodynamics lab (see
Fig. 2b, c).

Since representational thinking is believed to be imperative
for scientific modeling and evidence-based reasoning (Gobert
and Pallant 2004; Hallström and Schönborn 2019; National
Research Council 2008), researchers could investigate how
different modes of representational thinking functions during
modeling or evidence-based reasoning processes (Sung et al.
2020; Brown et al. 2010). Student’s written responses could
be quickly quantified based on their quality of reasoning. The
complex cognitive processes could be assessed by number
and accuracy of evidence provided (e.g., Brown et al. 2010).
Interested researchers could also study how students adopt
different sources of representational thinking to support their
scientific claim. Further investigation could be conducted on
how students using more modes of representational thinking
in an AR-assisted lab might also perform better in evidence-
based reasoning or model-based learning.

Implications and Limitations

The implication for this finding is that the text recognition
function of BERT confirms and works hand-in-hand with
cognitive science theories. Practitioners could be comforted
that even a machine relies heavily on human-defined algo-
rithms and, thus, does not think by itself. We could train the
machine to learn based on foundational theories of interest.
Also, when we provide clear operational definitions of each
mode of representation, machine apprentices, such as BERT,
could transform into a master to process big data generated

during an AR-assisted lab with precision. Although there are
no definite criteria on how much data is needed for deep
learning, previous research suggested that traditional machine
learningmodels tended to significantly outperform deep learn-
ing when the training sample size is small (Tang et al. 2018).
However, this limitation of small training data size is relieved
by the adoption of the transfer learning model (Lan et al.
2019). Previously, deep learningmodels only allowed transfer
learning on word embeddings, in which researchers could
utilize word feature extraction results trained on a tremendous
dataset (Howard and Ruder 2018; Pennington et al. 2014;
Peters et al. 2018; Rong 2014). BERT, on the other hand,
initiated the breakthroughs on transferring all parameters to
end-task such as classification and language generation
(Devlin et al. 2018). Recent studies suggested transfer learn-
ing models based on BERT have achieved satisfactory results
on NLP with limited datasets (Bao and Qiao 2019; Lan et al.
2019). Admittedly, our current dataset is not sufficient enough
to evaluate the model effectively; thus, future research will re-
evaluate the model with larger datasets.

We did not directly investigate the conceptual change of
thermal energy or confirm student’s representational thinking
with follow-up interviews in this study; however, we believe
that teachers and researchers could take advantage of the aug-
mented observation features in an AR-assisted lab with care-
fully crafted conceptual assessment and interview questions
similar to Magana and Balachandran’s (2017) article about
representational competence. We recommend that instructors
present a scenario that imposes cognitive conflict, and then
students could apply their newly acquired “super-sense” to
reconstruct a more accurate representation of thermal percep-
tion. Such cognitive-conflicting moments might become the
prime time for a conceptual change (Başer 2006).

The study is based on a one snapshot pre- and post-test
research design without a control group, so the preliminary
findings might not be generalizable and need to be interpreted
with caution. However, we believe that the application of the
IR camera in the laboratory provides an unprecedented expe-
rience that could augment observations that could not be
achieved with the conventional laboratory setup.
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Appendix 1

Appendix 2

Table 3 Prompts used in the POE cycle

Prediction Observation Explanation

Before you do anything, answer the prediction
questions below.

1. When you touch the two rulers, which one will feel
cooler? Explain why.

2. What will happen to the temperature patterns of the
two rulers after you touch them for 1 minute (as
shown in the figure below)? Explain why.

3. What temperature pattern will happen to your two
fingers right after you move them away from the
rulers? Explain why.

Insert the final graph T(t)*:
•Which T in the graph are the thermometers on

the wood ruler? Which are the ones on the
metal ruler?

•Write a short description of the thermal energy
pattern that the graph is displaying.

Insert infrared images of thermal patterns
observed:

a. Insert the infrared image of the initial state of
two rulers, and briefly describe the pattern
you see.

b. Insert the infrared image of the state of two
rulers with thumbs pressing on them for 60 s,
and briefly describe the pattern you observed.

c. Insert the infrared image of the state of two
rulers immediately after thumbs move away,
and briefly describe the pattern you observed.

d. Insert the infrared image of the state of thumbs
immediately after they move away from
rulers, and briefly describe the pattern you
observed.

Use the IR images that you and your partner have
taken as evidence to check your prediction.
Whether your prediction is correct or not, explain
your observation based on the concepts of thermal
conduction and thermal conductivity.

1. When you touched the two rulers, which one felt
cooler? Explain why.

2. As the image in observation (b) shows, the two
rulers’ temperatures were different at the places 2
inches away from the thumbs. Explain why.

3. As the image in observation (c) shows, the places
two thumbs touched had different temperatures.
Explain why.

4. As the image in observation (d) shows, one thumb
was cooler than the other after touching two rulers.
Explain why.

*T(t) represents the temperature–time graph

Table 4 Coding scheme of the representations of thermal perceptions for coders

Code Definition Sample response

Thermometer
reading (R)

• Student’s response mentions specific temperature reading. • The wooden ruler was 31 degrees and the metal ruler was
29 degrees. The results were around the same.• Student refers to the term “temperature” in their response.

• The rulers are about the same temperature because they
were not being touched/they were both at room tempera-
ture.

• Student compares different temperatures in their response.

Color heat map
visualization (V)

Student’s response mentions visual aid or color with reference to the
position, location, change of color, spreading, directional,
time-related term, quantity-related term, etc.

• The rulers are getting warmer as the thumbs presses down
on them. The metal distributes the heat more evenly than
the wooden ruler.

• The metal one conducted heat away from my hand faster
[P, V], meaning it heated up faster

• One thumb was cooler than the other thumb because the
wooden ruler absorbed much more heat opposed to the
metal one.

Temperature–time graph
(G)

• Student’s response to the prompt mentions about the change of
temperature on the graph.

• In the beginning, the temperature increases in a short time
period.

• The temperature of the metal ruler was rising faster than
that of the wooden ruler.

• Student responds to the prompt about the graph directly.
• Student’s response incorporates “temperature” and “rate.”

Perception (P) • Student’s response mentions their perception of temperature. • One thumb is cooler than the other thumb [P] because one
ruler allows heat to travel through it better than the other
ruler [V].

• Student’s response mentions body parts (e.g., thumb, hand) that
includes sense of temperature.

Abstract (A)
conception

Student’s response ONLY infers abstract concepts, which cannot be
categorized into any other codes.

... will retain your body heat temp but soon return to the
temperature of the room reaching thermal equilibrium

Other (O) Irrelevant responses that do not address the question directly. • The graph did not come out very clearly, so it is hard to tell
which is which.

• I do not know.
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