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Abstract—This paper outlines different design options and 

most suitable memory devices for implementing dense vector-by-

matrix multiplication operation, the key operation in 

neuromorphic computing. The considered approaches are 

evaluated by modeling system-level performance of 55-nm 4-bit 

mixed-signal neuromorphic inference processor running common 

deep learning feedforward and recurrent neural network models.  
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I. INTRODUCTION 

The growing applications of neural networks calls for the 

development of efficient neuromorphic computing hardware. A 

very promising approach to address this need is to utilize 

mixed-signal (MS) circuits based on emerging nonvolatile 

memories (NVMs), which enables dense in-memory vector-by-

matrix multiplication (VMM) with low-to-medium precision, 

the most critical operation in inference computation. 

Though the general idea is similar for many MS-VMM 

circuits (Fig. 1a) [1, 2], there are differences in peripheral 

circuitry design and how input/output signals and weight are 

encoded, which in turn favor the specific choice of NVM. The 

goal of this paper is to compare different approaches and 

provide examples of their use in MS neuromorphic processor. 

II. MIXED-SIGNAL MULTIPLIER DESIGN OPTIONS 

MS-VMM circuits can be broadly classified by the type of 

input encoding and utilized signal amplification in the 

crosspoint memory cells (Fig. 1b). The choice of these options 

determines the optimal design of other parts VMM circuit, e.g. 

of the output integration (OI) and conversion (OC) circuits. 

Specifically, for the fastest, instant (INS) encoding, the 

inputs are encoded by the amplitudes of the fixed-duration 

voltage pulses (or current pulses in gate-coupled design [3]). In 

the linear (LIN) encoding, the inputs are applied sequentially, 

bit by bit, using fixed-duration digital pulses, so that the total 

input duration (Tin) is proportional to the input signal precision 

(p) [4]. For the slowest, exponential (EXP) time-based 

encoding, the inputs are encoded in the duration of the digital 

pulses, with the worst-case input time scaling as 2p with 

precision [5]. Digital inputs of LIN (and EXP) scheme 

eliminate the need for (allow to replace with more compact 

counters) potentially bulky DAC circuits needed in INS 

approach, at the cost of adding more complex clock distribution 

networks and other synchronization circuits. Higher switching 

activity in LIN, though, could result in higher dynamic energy. 

All floating gate memories in MS-VMM circuits are 

typically biased in subthreshold mode, thus providing signal 

amplification in the cell [2,3,5,6]. A subthreshold-based 

transistor in 1T1R cells can be also used as adjustable current 

source, by tuning resistance of source-connected memristor 

[4,7]. Alternatively, 1T1R (and 0T1R) can be used as purely 

passive cells.  

The lack of cell’s signal amplification generally means 

using more expensive active peripheral circuits. Indeed, the 

biggest advantage of active cells is high input/output array 

impedance, which greatly cuts OI and IC overheads [2]. On the 

other hand, the overhead of OI in passive cells circuit is 

typically quite heavy due high-gain sense amplifiers, and 

especially bad for LIN and EXP due to additional requirement 

of high bandwidth. A potential strength for active OI is superior 

precision due to better control of an input current. It should be 

 
Fig. 1. (a) Top level schematics for NVM-based mixed-signal VMM circuitry. 

(b) Design options. The first two / last four columns are also reffered as current-

mode / charge-based designs. (c) Performance comparison. The last two rows 
show potentials for increasing input/compute precision and improving all 

performance metrics due to memory/periphery feature scaling. 3D-NAND with 

INS encoding is also possible though only after substantial array redesign.      
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also noted that in EXP approach, OI overhead could be 

significant for large p due to large integration times and hence 

larger capacitors. This is less of an issue for passive LIN design 

due to efficient successive integration and division scheme [4]. 

The OIs’ outputs are turned into digital signals with ADCs 

or by converting output voltage into pulse duration and using 

time-to-digital converter. The latter approach is more practical 

for active LIN and EXP schemes, due to their negligible IC’s 

static energy consumption [4-7]. Also, the digital circuits in OI, 

IC, and OC are generally more efficient and conducive to 

aggressive technology scaling, compared to the analog ones.  

Main metrics of considered approaches are outlined in Fig. 

1c. (Note that Fig. 1 omits some more “digital” options, e.g. of 

using LIN with digital integration [8].)      

III. CASE STUDIES FOR NEUROMORPHIC PROCESSOR 

Three representative designs based on active cell 2D-NOR 
[2, 3], 1T-1R [4, 7] and 3D-NAND [6] were evaluated by 
modeling inference performance of 4-bit aCortex (Fig. 2a), a 
multi-purpose neuromorphic inference processor [2, 6], for 
popular deep learning models, such as GNMT-1024 recurrent 
network (with input sequence of 10), and image classifiers 
ResNet-152 and Inception-V1. The system-level estimates are 
based on simulations in 55-nm process, and, e.g., included 
line/device parasitics, leakages, and overheads of buses and 
tuning circuitry. 

As expected, area-efficiency (AE), which is defined as the 
weight capacity normalized to processor area, is the best for 3D-
NAND approach due to very dense memory cells (Fig. 2c, d). 
The second best is 1T-1R design due to relatively small cell area 
and very compact periphery. Energy efficiency (EE) closely 
follows AE for the first two approaches, while worse for the 3D-
NAND design due to much larger parasitics, i.e. high 
capacitance word planes/bit select lines and high pass voltages. 
The instant encoding and low operating currents of the 2D-NOR 
approach leads to faster VMM operation (Fig. 1c) and hence the 
highest system-level throughput for smaller networks. However, 
due to very compact periphery for both sensing and front-end 
and back-end conversion circuits, 1T-1R design has the best 

throughput at the system level. The superior memory density 
and relatively low assumed computing precision also help 
achieving high throughput for larger models in the 3D-NAND 
approach. 

Though the performance is generally much better compared 
to purely digital implementations, there are still many reserves 
for improvements. For example, shrinking the cell area in 1T-
1R design would improve performance. 3D-NAND approach 
would benefit from more compact, previously demonstrated 
capacitor implementations, while its AE can be further improved 
by sharing peripheral circuitry. Finally, let us note that the 
considered version of aCortex is optimized for EE. A better 
throughput can be achieved by sacrificing EE at the circuit and 
architecture levels. Understanding such tradeoffs is important 
future goal. Also, though preliminary results for sensitivity of 
performance to device and circuit non-idealities are encouraging 
[9], more extensive experimental verifications are needed.  
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Fig. 2. (a) The main components of aCortex architecture including centralized eDRAM-based memory, a configurable chain of digital buffers, 2D/3D arrays 

of MS-VMM blocks (PE), an array of neurons (IDU), and a digital auxiliary unit (AUX) used for infrequent pooling/addition/vector-vector multiplication 

operations. (b) Example of data movement during convolution operation on 2D-aCortex. The whole computation is perfomed one layer at a time by enabling 

specific PE blocks. (c) System-level estimates of major performance metrics and (d) thier breakdown. In panel c, the circle size represents the chip area, which 

is reported assuming minimum resources (mainly PEs) needed to run specific model. Note that due to possibility of disabling not utilized components, EE is 

almost the same when mapping smaller models on the largest, GNMT-compatible processor [2]. All circuit/memory assumptions are similar to cited references. 
For 1T-1R case, the cell area is 110 F2 (F = 55 nm), min/max cell current is 0.03 µA / 0.3 µA at 0.3 V operating conditions. 
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AE (MB/mm2) 0.17 0.26 0.27 0.26 0.37 0.38 4.3

Area (mm2) 37.9 147 293 24 102 209 18.4

NVM (%) 24.6 36.8 39.3 37.5 50.9 53.3 2.95

Periphery (%) 46.9 44.6 43.7 27.6 36.1 37.2 59.1

Other (digital) (%) 28.5 18.7 17.0 34.8 13.0 9.5 37.9

EE (TOp/J) 103 111 380 103 107 548 27.4 44.5 70.4

Computation (%) 29.3 32.3 69.3 19.8 25.8 55.8 67.5 73.2 94

Communication (%) 32.2 43.4 18.4 41.5 50.8 26.5 22.2 17.0 3.9

Memory access (%) 38.5 24.3 12.3 38.7 23.3 17.7 10.3 9.7 2.3

Throughput 

(TOp/s) 2.1 2.9 15 1.4 1.98 15.6 0.9 1.5 10.7

Inference time (ms) 2.3 6.5 0.16 3.4 9.5 0.16 5.2 12.6 0.23

(c) (d)

1:   2D-NOR, instant encoding
2:   1T-1R, linear encoding
3:   3D-NAND, exponential encoding



 


