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Abstract—This paper outlines different design options and
most suitable memory devices for implementing dense vector-by-
matrix multiplication operation, the key operation in
neuromorphic computing. The considered approaches are
evaluated by modeling system-level performance of 55-nm 4-bit
mixed-signal neuromorphic inference processor running common
deep learning feedforward and recurrent neural network models.
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I. INTRODUCTION

The growing applications of neural networks calls for the
development of efficient neuromorphic computing hardware. A
very promising approach to address this need is to utilize
mixed-signal (MS) circuits based on emerging nonvolatile
memories (NVMs), which enables dense in-memory vector-by-
matrix multiplication (VMM) with low-to-medium precision,
the most critical operation in inference computation.

Though the general idea is similar for many MS-VMM
circuits (Fig. 1a) [1, 2], there are differences in peripheral
circuitry design and how input/output signals and weight are
encoded, which in turn favor the specific choice of NVM. The
goal of this paper is to compare different approaches and
provide examples of their use in MS neuromorphic processor.

II. MIXED-SIGNAL MULTIPLIER DESIGN OPTIONS

MS-VMM circuits can be broadly classified by the type of
input encoding and utilized signal amplification in the
crosspoint memory cells (Fig. 1b). The choice of these options
determines the optimal design of other parts VMM circuit, e.g.
of the output integration (OI) and conversion (OC) circuits.

Specifically, for the fastest, instant (INS) encoding, the
inputs are encoded by the amplitudes of the fixed-duration
voltage pulses (or current pulses in gate-coupled design [3]). In
the linear (LIN) encoding, the inputs are applied sequentially,
bit by bit, using fixed-duration digital pulses, so that the total
input duration (7i,) is proportional to the input signal precision
(p) [4]. For the slowest, exponential (EXP) time-based
encoding, the inputs are encoded in the duration of the digital
pulses, with the worst-case input time scaling as 27 with
precision [5]. Digital inputs of LIN (and EXP) scheme
eliminate the need for (allow to replace with more compact
counters) potentially bulky DAC circuits needed in INS
approach, at the cost of adding more complex clock distribution
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Fig. 1. (a) Top level schematics for NVM-based mixed-signal VMM circuitry.
(b) Design options. The first two / last four columns are also reffered as current-
mode / charge-based designs. (c) Performance comparison. The last two rows
show potentials for increasing input/compute precision and improving all
performance metrics due to memory/periphery feature scaling. 3D-NAND with
INS encoding is also possible though only after substantial array redesign.

networks and other synchronization circuits. Higher switching
activity in LIN, though, could result in higher dynamic energy.

All floating gate memories in MS-VMM circuits are
typically biased in subthreshold mode, thus providing signal
amplification in the cell [2,3,5,6]. A subthreshold-based
transistor in 1TIR cells can be also used as adjustable current
source, by tuning resistance of source-connected memristor
[4,7]. Alternatively, 1TIR (and OTIR) can be used as purely
passive cells.

The lack of cell’s signal amplification generally means
using more expensive active peripheral circuits. Indeed, the
biggest advantage of active cells is high input/output array
impedance, which greatly cuts OI and IC overheads [2]. On the
other hand, the overhead of OI in passive cells circuit is
typically quite heavy due high-gain sense amplifiers, and
especially bad for LIN and EXP due to additional requirement
of high bandwidth. A potential strength for active OI is superior
precision due to better control of an input current. It should be
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Fig. 2. (a) The main components of aCortex architecture including centralized eDRAM-based memory, a configurable chain of digital buffers, 2D/3D arrays
of MS-VMM blocks (PE), an array of neurons (IDU), and a digital auxiliary unit (AUX) used for infrequent pooling/addition/vector-vector multiplication
operations. (b) Example of data movement during convolution operation on 2D-aCortex. The whole computation is perfomed one layer at a time by enabling
specific PE blocks. (¢) System-level estimates of major performance metrics and (d) thier breakdown. In panel c, the circle size represents the chip area, which
is reported assuming minimum resources (mainly PEs) needed to run specific model. Note that due to possibility of disabling not utilized components, EE is
almost the same when mapping smaller models on the largest, GNMT-compatible processor [21. All circuit/memory assumptions are similar to cited references.

also noted that in EXP approach, OI overhead could be
significant for large p due to large integration times and hence
larger capacitors. This is less of an issue for passive LIN design
due to efficient successive integration and division scheme [4].

The OIs’ outputs are turned into digital signals with ADCs
or by converting output voltage into pulse duration and using
time-to-digital converter. The latter approach is more practical
for active LIN and EXP schemes, due to their negligible IC’s
static energy consumption [4-7]. Also, the digital circuits in OI,
IC, and OC are generally more efficient and conducive to
aggressive technology scaling, compared to the analog ones.

Main metrics of considered approaches are outlined in Fig.
lc. (Note that Fig. 1 omits some more “digital” options, e.g. of
using LIN with digital integration [8].)

III. CASE STUDIES FOR NEUROMORPHIC PROCESSOR

Three representative designs based on active cell 2D-NOR
[2, 3], 1T-IR [4, 7] and 3D-NAND [6] were evaluated by
modeling inference performance of 4-bit aCortex (Fig. 2a), a
multi-purpose neuromorphic inference processor [2, 6], for
popular deep learning models, such as GNMT-1024 recurrent
network (with input sequence of 10), and image classifiers
ResNet-152 and Inception-V1. The system-level estimates are
based on simulations in 55-nm process, and, e.g., included
line/device parasitics, leakages, and overheads of buses and
tuning circuitry.

As expected, area-efficiency (AE), which is defined as the
weight capacity normalized to processor area, is the best for 3D-
NAND approach due to very dense memory cells (Fig. 2c, d).
The second best is 1T-1R design due to relatively small cell area
and very compact periphery. Energy efficiency (EE) closely
follows AE for the first two approaches, while worse for the 3D-
NAND design due to much larger parasitics, i.e. high
capacitance word planes/bit select lines and high pass voltages.
The instant encoding and low operating currents of the 2D-NOR
approach leads to faster VMM operation (Fig. 1¢) and hence the
highest system-level throughput for smaller networks. However,
due to very compact periphery for both sensing and front-end
and back-end conversion circuits, 1T-1R design has the best

throughput at the system level. The superior memory density
and relatively low assumed computing precision also help
achieving high throughput for larger models in the 3D-NAND
approach.

Though the performance is generally much better compared
to purely digital implementations, there are still many reserves
for improvements. For example, shrinking the cell area in 1T-
IR design would improve performance. 3D-NAND approach
would benefit from more compact, previously demonstrated
capacitor implementations, while its AE can be further improved
by sharing peripheral circuitry. Finally, let us note that the
considered version of aCortex is optimized for EE. A better
throughput can be achieved by sacrificing EE at the circuit and
architecture levels. Understanding such tradeoffs is important
future goal. Also, though preliminary results for sensitivity of
performance to device and circuit non-idealities are encouraging
[9], more extensive experimental verifications are needed.
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