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Abstract— Analog computing with crossbars of memristors is a 

promising approach to build compact energy-efficient vector-by-

matrix multiplier (VMM), a key block in many data-intensive 

algorithms. However, device non-linearity, process variations, 

interconnect parasitics, noise, and memory state drift limit the 

computing precision of such systems. In this paper, we investigate 

the impact of such non-idealities in analog current-mode memristive 

VMMs through simulations and experiments on the most 

prospective passive crossbars. We show that there is an optimal 

tuning voltage to minimize the computation error. Furthermore, 

error balancing and bootstrapping are introduced as two techniques 

for improving the precision. It is also shown that when size of N×N 

crossbar is scaled up, the optimum interconnect wire conductance 

should increase quadratically with N to preserve the computing 

precision when using naive error balancing approach, and that the 

differential scheme is imperative for temperature insensitive 

operation and also to reduce the IR-drop effect.  

Index Terms— ReRAM, Analog Computing, Computing 

Precision, Vector-by-Matrix Multiplier, Artificial Neural Network  

 

I. INTRODUCTION 

he emergence of new promising nonvolatile memory 

technologies [1] has renewed interest in analog and 

mixed-signal computing, especially for VMM, which is 

broadly used in data-intensive algorithms. This work is 

focused on hardware implementations based on resistive 

switching devices (also known as ReRAM or 

memristors). By coupling experimental work on crossbars 

of metal-oxide memristors (Fig. 1a) with circuit-level 

simulations, this paper investigates the impact of device 

and circuit imperfections (such as device nonlinearity and 

variations, line resistance), and crossbar topology on the 

computing precision of analog VMM circuits and 

provides insights into their possible improvements. To 

make our analytical study more general, we target two 

applications of VMM circuits: an analog mutli-layer 

perceptron implementation and 2D convolution for edge 

detection filtering. Furthermore, due to the so-far limited 

write endurance of memristors, we assume infrequent 

conductance tuning, which makes the write operation and 

memory selector issues of a less concern.  

Several works in the literature addressed similar topics, 

but with a focus on devices with selectors [2-4], write 

operation [5], or programming error due to variations [6]. 

Nonlinear input mapping is proposed in [7] to compensate 

device nonlinearity. However, variations and interconnect 

parasitics are neglected in that study. Only linear devices 

and the impact of IR drop are considered in [8]. Passive 

crossbar circuits are explored in [9] using a simplified 

model focusing only on nonlinearity and IR drop. 

Similarly, Ref. [23] proposes a  conversion algorithm to 

minimize the error due to device non-idealities and IR 

drop. Finally, some works explored the impact of non-

idealities in the context of specific applications, such as 

for neuromorphic computing  [10, 11], which is typically 

much more resilient to precision errors, or digital memory 

[12]. 

II. MODELING METHODOLOGY 

We model N×N crossbar circuits with passively 

integrated TiO2-x memristors (Fig. 1), based on the 

technology developed by our group [13, 15, 16, 19]. Our 

general focus is on circuit and device parameters, e.g. 

values of N, wire conductance gwire, and memristor 

currents, specific to our technology. However, the 

considered TiO2-x devices have rather typical I-V 

characteristics of many metal-oxide memristors and since 

we also extend our analysis to larger gwire values, 
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Fig. 1. (a) Experimental I-V curve of a TiO2 memristor. Inset shows 

scanning electron microscopy image of a 20×20 passive crossbar 

circuit. (b) Single-quadrant and (c) differential N×N crossbar circuit 

with memristive crosspoint devices.  
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representative of more advanced fabrication processes 

(e.g., with larger aspect ratio crossbar electrodes made of 

higher conductance metals, compared to those used in our 

circuits) we believe that the results of this paper are quite 

general.  

Simulation results are obtained from SPICE using an 

in-house phenomenological compact model of TiO2 

memristors [14,25]. As opposed to previous work, this 

compact model is developed based on an extensive 

statistical study and captures the device imperfections 

needed for a comprehensive analysis of memristive 

circuits and systems. The studied non-idealities include 

nonlinearities in static I-V characteristics, device-to-

device variations, noise, and temperature dependency 

(e.g., see Fig. 2). 

We consider conventional memristor-based VMM 

topology in which data are encoded in voltage amplitude 

of signals. Compared to time-based encoding, the 

voltage-mode approach is fully compatible with the most 

prospective passive (“0T1R”) technology and is 

potentially more promising, in terms of throughput and 

energy efficiency, particularly in medium precision 

regimes – see, e.g., our previous works on system level 

analysis [21-22].  

We study both single-quadrant (Fig. 1b) and 

differential (Fig. 1c) topologies and take into account 

parasitic wire resistance of a memristive crossbar circuits. 

For each crossbar size N, we randomly generated 512 

input voltage vectors, with vector elements uniformly 

distributed in the range [0, Umax] - see Table I for the 

definition of all parameters used in this study. In addition, 

512 crossbar circuits are randomly generated, each with 

unique device-to-device (d2d) variations and crosspoint 

conductances (at 0.1 V), uniformly distributed in the 

range [Gmin, Gmax]. The crosspoint conductances were 

obtained indirectly by first generating dimensionless 

weights and then converting them according to the VMM 

topology (Table I). The VMM errors were then calculated 

for all combinations of input vectors and crossbar circuits, 

with a total of 256k configurations for each N. Most of the 

results are reported in terms |ε|99.9%, which is 99.9% 

percentile of output current errors |ε| for each studied 

crossbar size N, where |ε| is the absolute difference 

between ideal and the actual output current, normalized to 

its maximum value. 

III. COMPUTING PRECISION ANALYSIS 

A. Parasitics, device nonlinearity, and process variations 

In our first study, we consider gwire = 0.4 S, which 

corresponds to the measured line conductance in   20×20 

crossbar circuits [15,16] (but smaller compared to other 

recent works [2]). Fig. 3 shows histograms of the 

simulated output currents for each output of a 16×16 

VMM circuit, for different topologies, biasing strategies, 

and temperatures. The single-quadrant architecture 

severely suffers from the voltage drop on interconnect 

parasitics. Biasing the word lines from both sides can help 

to mitigate the shift and the spread of the errors with 

respect to the output index (Fig. 3a, b) at the temperature 

(25 °C) used during programming. (A more general and 

powerful biasing approach is further discussed in Section 

IV.) Nevertheless, it does not reduce the sensitivity to the 

 

Fig. 2. Example of (a, c) experimentally measured, and (b, d) fitted 

models of static I-V characteristics for 50 devices, studied at two 

ambient temperatures. The developed model accurately predicts 

device currents within range of non-disturbing voltages, based on 

the single current measurement at 0.1 V. 
 

Table I. Notations (top) and related equations (bottom).  

 

 

N Linear dimensions of crossbar array 

B 
Number of connections used for bootstrapping per crossbar 

line  

Umax 
Largest (non-disturbing) voltage applied to the crossbar circuit 

inputs during operation 

kUmax Voltage at which device conductance is tuned 

gwire  Crossbar line (full-pitch- long segment) conductance (Fig. 1b) 

𝐺𝑖𝑗 Crosspoint device conductance (Fig. 1b) 

𝐺min, 𝐺max Minimum, maximum value of 𝐺𝑖𝑗 

𝐼(𝑛) n-th element of the output current vector 

𝐼ideal
(𝑛)

 Ideal value for 𝐼(𝑛), i.e. for linear devices and gwire→∞ 

|𝐼|max Maximum absolute current value 

ε Relative (computing) current error – see below 

|ε|99.9% 99.9% percentile of |ε|, also referred as worst-case error 

𝑊𝑖𝑗 
Weight value, assumed in [0, 1] and [-1, 1] ranges for single-

quadrant and differential topologies, respectively 

Single-

quadrant 

𝐺𝑖𝑗 =  𝐺min +𝑊𝑖𝑗(𝐺max − 𝐺min) 

ε = (𝐼(𝑛) −  𝐼ideal
(𝑛) ) / |𝐼|max 

Differential 

𝐺𝑖𝑗 =  𝐺𝑖𝑗
+ − 𝐺𝑖𝑗

− 

𝐺𝑖𝑗
± = 𝐺min + (1 ±𝑊𝑖𝑗) × (𝐺max −  𝐺min)/2 

ε = (𝐼(𝑛) −  𝐼ideal
(𝑛) ) / (2 |𝐼|max) 
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temperature (Fig. 3c, d). The differential scheme (Fig. 3e-

i), however, centers and narrows down the distribution of 

output errors around zero. This is because the effective 

conductance of the device is (almost) a monotonic 

function of temperature. Hence, the temperature related 

terms cancel out in the differential topology. Combined 

with two-sided voltage biasing, this topology is 

particularly appealing to keep the error as low as possible. 

Despite conservative choice of gwire, |ε|99.9% is still below 

1.5% and 0.75%, for 85 ˚C and 25 ˚C, respectively (Fig. 

3f, i).  

For a more practical case of larger crossbar circuits, the 

finite gwire can cause significant voltage drops, reducing 

the effective voltage drop on the crosspoint device (Fig. 

4a). At smaller gwire, the |ε|99.9% is roughly inversely 

proportional to the square of gwire, which is consistent with 

the worst-case error due to the IR drops on the crossbar 

lines. At larger gwire, |ε|99.9% is leveling, independent of the 

voltage and the conductance ranges (Fig. 4b). In fact, 

|ε|99.9% slightly increases before plateauing, due to 

excessive currents injected by nonlinear devices at higher 

biases, which compensates the current deficiency created 

by IR drops on the crossbar lines. In addition, intrinsic 

device characteristics, e.g., the higher temperature 

sensitivity in lower conductance ranges also have a 

significant impact on the error.  

Furthermore, the error plateau is lower for smaller N 

(Fig. 4b inset). Assuming gwire > 1 S similar to [2], Fig. 4b 

 

 
Fig. 3. Simulated results for output current error ε for (a-d) single-

quadrant and (e-i) differential topologies implementing 16×16 

VMM. Output #0 (#0 and #15) is the closest to where the input 

voltages are applied to for single-quadrant (differential) topology. 

Panels (a, c, e, g) are for single-sided voltage biasing, while (b, d, f, 

i) are for double-sided ones. Top and bottom panels are for 25 ˚C 

and 85 ˚C, respectively. For all cases, Gmin = 10 µS, Gmax = 100 µS, 

and Umax = 0.16 V. 
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Fig. 4. (a) Heatmap of normalized (by Umax) average voltages across 

crosspoint devices in a 64×64 crossbar circuit with g
wire 

= 0.4 S and 

double-sided voltage biasing, simulated at room temperature (25 

˚C), for two different values of Umax and ranges of device 

conductances. (b) Simulated worst-case error as a function of g
wire

 

for differential 32×32 circuit. Inset shows the results for 64×64 

differential crossbar circuit simulated at room temperature. (c) 

Extrapolated wire conductance gwire, which is required to ensure the 

1% worst-case error. 
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results predict |ε|99.9% < 1% at 25 ˚C, even for large, >1K-

cell crossbar circuit. Unsurprisingly, gwire should be 

increased quadratically with N to ensure error below 1% 

(Fig. 4c). Also, the differential topology is naturally more 

immune to IR-drop because its impact on the currents 

through both devices is compensated by a differential 

pair. 

For relatively small crossbar circuits with smaller 

voltage drops, device nonlinearity becomes the main 

precision-limiting factor, while for larger crossbar 

circuits, the dominant factor is interconnect parasitics 

(Fig. 5). On the other hand, device-to-device variations do 

not have much impact on the error, at least for the 

considered applications. This is because write-verify 

tuning algorithm allows to accurately program the device 

conductance at read voltage despite variations in I-V 

characteristics. Furthermore, the impact of device-to-

device variations reduce even further for large crossbars 

due to averaging. 

B. Noise, state drift, and peripheral circuit considerations 

In a current-mode VMM circuit, the total noise in the 

differential output currents (e.g., I± in Fig. 1c) is equal to 

the sum of the noises of the corresponding crosspoint 

memristors, which share the same output crossbar line. 

Current fluctuations through different devices are 

independent and the signal-to-noise ratio (SNR) of the 

output current, assuming maximum current output range, 

is proportional to √N. For high-speed operation, e.g. >200 

MHz, the noise spectrum is predominately white, and 

neglecting the input-referred current noise of the 

peripherals (which is often well below that of crossbar 

[17]), SNR > 35 dB for 16×16 crossbar circuit, which is 

equivalent to >5 bits of precision, >50 dB (> 8 bit) for N 

= 64, and increases further with N. 

For most applications, it is imperative that crosspoint 

devices retain their conductance state over a long period 

of time. Otherwise, frequent retuning would be required, 

and/or the loss of accuracy due to the memory state drift 

should be considered. Accelerated retention 

measurements at 85 °C over 15h for in-house 325 

crossbar-integrated TiO2 devices showed < 0.8% average 

change in conductance, with < 2.7% standard deviation 

(Fig. 6). Such conductance drift can be safely neglected, 

by performing infrequent retuning, e.g., every 6 months.  

We should also note that the design of precise 

peripheral circuits is rather straightforward. For example, 

a buffered transimpedance amplifier can be utilized to 

supply the current for the crossbar array, while 

maintaining the impedance matching conditions on the 

crossbar lines. Such amplifiers can be designed with near 

ideal transfer characteristics, and hence won’t degrade 

computing accuracy. Its area and energy overhead, 

especially for crossbar circuits with high conductance 

crosspoint devices, could be a concern. However, the 

peripheral overhead can be greatly reduced by taking 

advantage of tunability of analog-grade memory cells, 

e.g. to compensate offsets due to process variations in the 

sensing and driving circuitry, as suggested in [18]. 

IV. TECHNIQUES FOR IMPROVING PRECISION 

The computing error due to nonlinearity in the static I-

V characteristics can be reduced by optimizing procedure 

of mapping weights to the memory states of crosspoint 

devices. In case of ideal, linear devices, the slope of I-V 

curve, i.e. the memory state, is typically assessed by 

measuring device current at the highest operating voltage 

(Umax), when using write-verify tuning algorithm [13]. For 

the devices with nonlinear I-V curves, such approach 

leads to negligible error at Umax voltage input, but the error 

might be significant at voltages below Umax due to smaller 

effective conductance. To reduce such error, the 

crosspoint devices can be tuned at smaller voltages kUmax, 

where 0 < k ≤ 1, i.e. by setting device’s effective 

conductance at I(kUmax)/(kUmax) to the desired value at the 

tuning algorithm. In this case, the error would be the 

smallest at kUmax and is more balanced between the larger 

and smaller ranges of the input voltages (Fig. 7a inset).  

For the in-house devices, G = 100 µS, and the 

distribution of the inputs assumed in the modeling 

 
 

 
Fig. 5. Impact of I-V static nonlinearity and d2d variations on the 

worst-case error, for differential topology. 

 
Fig. 6. Experimental results for memory state retention, showing 

change in device conductance, measured at 0.1 V, after baking for 

15 h at 85˚C. 
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(Section II), the computing error is minimized by using k 

≈ sqrt(2)/2 ≈ 0.71  (Fig. 7a). Fig. 7b shows a comparison 

of VMM output currents from crossbar circuits with ideal 

(linear) devices, and those with nonlinear devices for two 

cases of k. As expected from Fig. 7a results, the currents 

are higher for k = 0.5 due to larger error integral at higher 

input voltages. The distribution of currents for the case of 

nonlinear devices is almost perfectly matching the ideal 

one when using optimal k. This is because individual 

current errors of single devices (i.e., those in computed 

product terms) are canceling each other out when device 

currents are added up on the crossbar lines.    

The error balancing technique works well when voltage 

drops on the crossbar lines are not significant. However, 

the error can be even larger otherwise compared to 

suboptimal balancing approach, e.g., for 32×32 circuit 

with gwire = 0.4 S (Fig. 8). This is because IR drops across 

crossbar lines compensate higher currents for the 

suboptimal balancing (i.e., right shift of the currents in the 

histogram in Fig. 7b). One solution to deal with large IR 

drops is to compute optimal values of k based on the 

particular device location in the crossbar, e.g. by 

combining the balancing technique with the one described 

in Ref. 23.  

An orthogonal solution is to employ a bootstrapping 

technique, e.g., similar to the one used in NOR flash 

memory circuits. In a bootstrapped design, all crossbar 

lines are backed up with spare lines, which, e.g., can be 

routed in the lower metal layers for back-end-integrated 

crossbar circuits. Each spare line is connected to the 

original crossbar line in B > 1 locations (denoted as “B×-

bootstrapping”), which are equally distributed along the 

length of the line. For example, B = 2 implies that the 

original and spare lines are connected at the edges of the 

crossbar, i.e., corresponds to the already mentioned 

double-sided architecture. For 3×- bootstrapping, there 

are three connections - one in the middle and two at ends 

of the line, etc.  

Bootstrapping technique significantly improves the 

computing precision (Fig. 8a), while comes at the 

typically acceptable cost of utilizing additional metal 

layers below and/or above crossbar array. For passive 

memristor technology, bootstrapping also requires 

increasing crossbar dimensions from N to N+B-2 to 

accommodate connections inside the crossbar array, 

though such overhead is minor for the most practical cases 

N >>B.  

V. APPLICATION DEMONSTRATIONS 

The proposed techniques for improving precision are 

further verified by modeling two representative 

applications of mixed-signal current-mode VMM circuits. 

The first studied application is an edge detection with 5×5 

Laplacian of Gaussian filter, in which convolution of an 

image with a specific filter is computed to extract high 

frequency information or image edges (Fig. 9). The image 

 

 
Fig. 7. (a) Ratio between positive and negative error integrals, 

calculated from the measured I-V characteristics of TiO2 devices 

which were tuned to have I(kUmax)/(kUmax) = 100 µS at 27˚C, as a 

function of used k value. Inset shows schematically definition of 

positive (red) and negative (blues) current error integrals for single 

devices. (b) Simulated output currents in a 32×32 single-quadrant 

architecture with nonlinear crosspoint devices, when tuned at k = 0.5 

(black line) and k = 0.71 (red line), and ideal linear devices (grey-

filled area).  

 

 
Fig. 8. Worst-case error for (a) 32×32 crossbar circuit and (b) as a 

function of crossbar linear size, when using various techniques for 

improving precision and two assumptions of wire conductance.  

Wire resistance of the spare lines is neglected in the analysis of the 

bootstrapped circuits.   
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convolution operation was modeled assuming differential 

architecture with 25 inputs and 1 output for the specific 

image (Fig. 9a) using a hybrid approach. In particular, 50 

devices in a 20×20 crossbar circuit were tuned to the 

desired values corresponding to the kernel weights (Fig. 

9b), at the voltages specific to the used k, and their static 

I-V characteristics collected. The data were then fitted 

using approach discussed in [25] and used for simulating 

dot-product currents. 8 different implementations, with 

different k, B, and gwire are studied (Fig. 9e inset), 

including ideal case scenario, i.e. with gwire = ∞ and linear 

I-V characteristics. Fig. 9c shows an example of filtered 

image assuming scenario D, i.e., using measured I-V 

characteristics, k = 0.5, B = 2, and gwire = 0.4 S.  

The results show that due to smaller parasitics, the 

crosspoint device nonlinearity is a major source of 

computing error, see, e.g., scenario A vs. B (Fig. 9d, e). 

This is why balancing technique is the most useful for this 

application. Indeed, among the considered nonlinear 

device scenarios B, D, F, G, H, the error is smaller for 

scenarios F, G, H. On the other hand, bootstrapping does 

not help and can actually increase error (e.g. E cf. B, and 

F cf. H). This is due to already mentioned compensation 

of IR drops across crossbar. Even k = 0.71 is apparently 

not optimal (and hence H has smaller error than F) for this 

particular application because of different distributions of 

conductances and inputs as compared those used in Figs. 

7 and 8.  

The second studied application is neuromoprhic 

inference of MNIST benchmark images using 784-64-10 

multilayer perceptron classifier with rectified linear 

activation (Fig. 10). The first layer is modeled by 

assuming that 24 64×64 and 2 17×64 crossbar circuits are 

connected in two 785×64 virtual crossbars to realize 

differential architecture, while the second layer is 

modeled with two 65×10 crossbar circuits. (The 

additional inputs is due to the bias.) The other 

hyperparameters and ex-situ training approach (with 60k 

/ 20k training / test images) are similar to [20].  

The inference is simulated using memristor compact 

model which accounts for d2d variations in I-V 

characteristics [25], and also assuming that input voltages 

for physical crossbar circuits are applied individually (i.e. 

that N ≤ 64). The computing error in the first MLP layer 

(error in the output currents), and the corresponding 

classification errors are shown in Fig. 10c and d, 

respectively, for several scenarios (Fig. 10e). The results 

show that, unlike for previously studied application, the 

impact of IR drops on the performance is more severe 

compared to device nonlinearity (test 2 cf. tests 1 and 3). 

This is due to smaller devices’ conductances (i.e. large 

number of small weights as shown in Fig. 10b) as well as 

larger crossbar circuits. Both VMM error and the 

classification accuracy improves by increasing the 

crossbar line conductance (tests 4, 6, 7, 8, 9) and/or 

number of bootstrapping connections (tests 6, 10, 11). 

Similar to previous application, a small non-zero wire 

resistance could be beneficial for compensating current 

overshoot (test 3 cf. test 9). The results also show that the 

error is the largest for the single sided architecture (test 4) 

for which only half of the crossbar circuits were employed 

in modeling, while a combination of more optimal 

balancing and aggressive boostrapping leads to the 

classification performance of 2.09%. This number is close 

to the best-case 2%, obtained by simulating the same 

 

 

 
Fig. 9. Modeling of edge detection algorithm using 5×5 Laplacian 

of Gaussian filter assuming differential implementation based on 

two 25×1 memristive crossbar circuits and taking into account 

device’s I-V nonlinearity and d2d variations: (a) Original image, (b) 

effective conductance of a differential pair used to implement a 5×5 

filter. X and Y are filter dimensions. (c) simulation results for the 

computed image assuming 2×bootstrapping and gwire = 0.4 S. (d) 

The worst-case error and (e) output current histograms for several 

considered scenarios. The details for each studied scenario are 

provided in the inset of panel e. T  =  25˚C, Umax = 0.16 V.   
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MLP network in a software using high precision 

arithmetics – see, e.g. test 13 cf. test 1.  

VI. SUMMARY 

We have developed a framework for circuit-level 

simulations of memristive crossbar circuits and utilized 

comprehensive device models as well as experimentally 

measured data for metal-oxide memristors to investigate 

the impact of various imperfections on the computing 

precision of analog memristor-based VMM circuits.  

Using statistical numerical simulations, we quantified the 

impact of interconnect parasitics and analyzed different 

topologies on the precision under range of temperatures. 

Finally, error balancing and bootstrapping techniques 

were proposed to mitigate device and circuit 

imperfections, which are further verified by modeling two 

representative applications. 
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Fig. 10. Modeling of image classification inference with multilayer 

perceptron network: (a) Studied network. (b) Histogram of VMM 

weights for classification of MNIST benchmark images, obtained 

using ex-situ training method. (c) Simulated error in the output 

currents of the 1st layer VMM circuits and (d) corresponding 

misclassification errors for several studied scenarios (tests). The 

details for each studied scenario are provided in the inset of panel d. 
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