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Intrinsic Bounds for Computing Precision in
Memristor-Based Vector-by-Matrix Multipliers

M. R. Mahmoodi*, A. F. Vincent**, H. Nili, and D. B. Strukov

Abstract— Analog computing with crossbars of memristors is a
promising approach to build compact energy-efficient vector-by-
matrix multiplier (VMM), a key block in many data-intensive
algorithms. However, device non-linearity, process variations,
interconnect parasitics, noise, and memory state drift limit the
computing precision of such systems. In this paper, we investigate
the impact of such non-idealities in analog current-mode memristive
VMMs through simulations and experiments on the most
prospective passive crossbars. We show that there is an optimal
tuning voltage to minimize the computation error. Furthermore,
error balancing and bootstrapping are introduced as two techniques
for improving the precision. It is also shown that when size of VxN
crossbar is scaled up, the optimum interconnect wire conductance
should increase quadratically with /V to preserve the computing
precision when using naive error balancing approach, and that the
differential scheme is imperative for temperature insensitive
operation and also to reduce the IR-drop effect.

Index Terms— ReRAM, Analog Computing, Computing
Precision, Vector-by-Matrix Multiplier, Artificial Neural Network

I. INTRODUCTION

he emergence of new promising nonvolatile memory

technologies [1] has renewed interest in analog and
mixed-signal computing, especially for VMM, which is
broadly used in data-intensive algorithms. This work is
focused on hardware implementations based on resistive
switching devices (also known as ReRAM or
memristors). By coupling experimental work on crossbars
of metal-oxide memristors (Fig. la) with circuit-level
simulations, this paper investigates the impact of device
and circuit imperfections (such as device nonlinearity and
variations, line resistance), and crossbar topology on the
computing precision of analog VMM circuits and
provides insights into their possible improvements. To
make our analytical study more general, we target two
applications of VMM circuits: an analog mutli-layer
perceptron implementation and 2D convolution for edge
detection filtering. Furthermore, due to the so-far limited
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Fig. 1. (a) Experimental /-V curve of a TiO2 memristor. Inset shows
scanning electron microscopy image of a 20x20 passive crossbar
circuit. (b) Single-quadrant and (c) differential NXN crossbar circuit
with memristive crosspoint devices.

write endurance of memristors, we assume infrequent
conductance tuning, which makes the write operation and
memory selector issues of a less concern.

Several works in the literature addressed similar topics,
but with a focus on devices with selectors [2-4], write
operation [5], or programming error due to variations [6].
Nonlinear input mapping is proposed in [ 7] to compensate
device nonlinearity. However, variations and interconnect
parasitics are neglected in that study. Only linear devices
and the impact of IR drop are considered in [8]. Passive
crossbar circuits are explored in [9] using a simplified
model focusing only on nonlinearity and IR drop.
Similarly, Ref. [23] proposes a conversion algorithm to
minimize the error due to device non-idealities and IR
drop. Finally, some works explored the impact of non-
idealities in the context of specific applications, such as
for neuromorphic computing [10, 11], which is typically
much more resilient to precision errors, or digital memory
[12].

II. MODELING METHODOLOGY

We model NXN crossbar circuits with passively
integrated TiO,., memristors (Fig. 1), based on the
technology developed by our group [13, 15, 16, 19]. Our
general focus is on circuit and device parameters, e.g.
values of N, wire conductance gwir, and memristor
currents, specific to our technology. However, the
considered TiO,. devices have rather typical I-V
characteristics of many metal-oxide memristors and since
we also extend our analysis to larger gwi values,
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Fig. 2. Example of (a, c) experimentally measured, and (b, d) fitted
models of static /-V characteristics for 50 devices, studied at two
ambient temperatures. The developed model accurately predicts
device currents within range of non-disturbing voltages, based on
the single current measurement at 0.1 V.

Table 1. Notations (top) and related equations (bottom).
N Linear dimensions of crossbar array

Number of connections used for bootstrapping per crossbar
line
Largest (non-disturbing) voltage applied to the crossbar circuit

B

Unx inputs during operation

kU nax Voltage at which device conductance is tuned

Guire Crossbar line (full-pitch- long segment) conductance (Fig. 1b)
Gyj Crosspoint device conductance (Fig. 1b)

Gmins Gmax Minimum, maximum value of G;;

™ n-th element of the output current vector
)

ideal Ideal value for I™, i.e. for linear devices and Guire—0

11 max Maximum absolute current value
€ Relative (computing) current error — see below
[€[09.9% 99.9% percentile of ||, also referred as worst-case error
w Weight value, assumed in [0, 1] and [-1, 1] ranges for single-
(T . ; . .
quadrant and differential topologies, respectively
Sing]e_ Gij = Gpin + VVij (Gmax - Gmin)
Quadrant e= (1™ = 150 / Wlmax
Gy = Gj—Gjj
Differential GiJ]r‘ = Gmin + (1 * Wij) X (Gmax = Gmin)/2

e= (M~ 1)/ @ ma)

representative of more advanced fabrication processes
(e.g., with larger aspect ratio crossbar electrodes made of
higher conductance metals, compared to those used in our
circuits) we believe that the results of this paper are quite
general.

Simulation results are obtained from SPICE using an
in-house phenomenological compact model of TiO»
memristors [14,25]. As opposed to previous work, this
compact model is developed based on an extensive
statistical study and captures the device imperfections
needed for a comprehensive analysis of memristive

circuits and systems. The studied non-idealities include
nonlinearities in static I-V characteristics, device-to-
device variations, noise, and temperature dependency
(e.g., see Fig. 2).

We consider conventional memristor-based VMM
topology in which data are encoded in voltage amplitude
of signals. Compared to time-based encoding, the
voltage-mode approach is fully compatible with the most
prospective passive (“OT1R”) technology and is
potentially more promising, in terms of throughput and
energy efficiency, particularly in medium precision
regimes — see, €.g., our previous works on system level
analysis [21-22].

We study both single-quadrant (Fig. 1b) and
differential (Fig. 1c) topologies and take into account
parasitic wire resistance of a memristive crossbar circuits.
For each crossbar size N, we randomly generated 512
input voltage vectors, with vector elements uniformly
distributed in the range [0, Umax] - see Table I for the
definition of all parameters used in this study. In addition,
512 crossbar circuits are randomly generated, each with
unique device-to-device (d2d) variations and crosspoint
conductances (at 0.1 V), uniformly distributed in the
range [Gmin, Gmax]. The crosspoint conductances were
obtained indirectly by first generating dimensionless
weights and then converting them according to the VMM
topology (Table I). The VMM errors were then calculated
for all combinations of input vectors and crossbar circuits,
with a total of 256k configurations for each N. Most of the
results are reported in terms |g|og.o%, Which is 99.9%
percentile of output current errors |¢| for each studied
crossbar size N, where |e| is the absolute difference
between ideal and the actual output current, normalized to
its maximum value.

I[II. COMPUTING PRECISION ANALYSIS

A. Parasitics, device nonlinearity, and process variations

In our first study, we consider gwie = 0.4 S, which
corresponds to the measured line conductance in  20x20
crossbar circuits [15,16] (but smaller compared to other
recent works [2]). Fig. 3 shows histograms of the
simulated output currents for each output of a 16x16
VMM circuit, for different topologies, biasing strategies,
and temperatures. The single-quadrant architecture
severely suffers from the voltage drop on interconnect
parasitics. Biasing the word lines from both sides can help
to mitigate the shift and the spread of the errors with
respect to the output index (Fig. 3a, b) at the temperature
(25 °C) used during programming. (A more general and
powerful biasing approach is further discussed in Section
IV.) Nevertheless, it does not reduce the sensitivity to the
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Fig. 3. Simulated results for output current error € for (a-d) single-
quadrant and (e-i) differential topologies implementing 16x16
VMM. Output #0 (#0 and #15) is the closest to where the input
voltages are applied to for single-quadrant (differential) topology.
Panels (a, c, e, g) are for single-sided voltage biasing, while (b, d, £,
i) are for double-sided ones. Top and bottom panels are for 25 °C
and 85 °C, respectively. For all cases, Gmin= 10 uS, Gmax= 100 puS,
and Umax=0.16 V.

temperature (Fig. 3¢, d). The differential scheme (Fig. 3e-
1), however, centers and narrows down the distribution of
output errors around zero. This is because the effective
conductance of the device is (almost) a monotonic
function of temperature. Hence, the temperature related
terms cancel out in the differential topology. Combined
with two-sided voltage biasing, this topology is
particularly appealing to keep the error as low as possible.
Despite conservative choice of gwire, |€|99.9% 1s still below
1.5% and 0.75%, for 85 °C and 25 °C, respectively (Fig.
3f, 1).

For a more practical case of larger crossbar circuits, the
finite gwir. can cause significant voltage drops, reducing
the effective voltage drop on the crosspoint device (Fig.
4a). At smaller gwir, the |€|oogy is roughly inversely
proportional to the square of gwire, Which is consistent with
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Fig. 4. (a) Heatmap of normalized (by Umax) average voltages across
crosspoint devices in a 64x64 crossbar circuit with g . = 0.4 S and

double-sided voltage biasing, simulated at room temperature (25
°C), for two different values of Umax and ranges of device
conductances. (b) Simulated worst-case error as a function of g, .

for differential 32x32 circuit. Inset shows the results for 64x64
differential crossbar circuit simulated at room temperature. (c)
Extrapolated wire conductance gwire, which is required to ensure the
1% worst-case error.

the worst-case error due to the IR drops on the crossbar
lines. At larger guwire, |€|09.9% is leveling, independent of the
voltage and the conductance ranges (Fig. 4b). In fact,
lgloo.ov slightly increases before plateauing, due to
excessive currents injected by nonlinear devices at higher
biases, which compensates the current deficiency created
by IR drops on the crossbar lines. In addition, intrinsic
device characteristics, e.g., the higher temperature
sensitivity in lower conductance ranges also have a
significant impact on the error.

Furthermore, the error plateau is lower for smaller N
(Fig. 4b inset). Assuming gwire > 1 S similar to [2], Fig. 4b
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results predict |€|o9.0% < 1% at 25 °C, even for large, >1K-
cell crossbar circuit. Unsurprisingly, gwire should be
increased quadratically with N to ensure error below 1%
(Fig. 4c). Also, the differential topology is naturally more
immune to IR-drop because its impact on the currents
through both devices is compensated by a differential
pair.

For relatively small crossbar circuits with smaller
voltage drops, device nonlinearity becomes the main
precision-limiting factor, while for larger crossbar
circuits, the dominant factor is interconnect parasitics
(Fig. 5). On the other hand, device-to-device variations do
not have much impact on the error, at least for the
considered applications. This is because write-verify
tuning algorithm allows to accurately program the device
conductance at read voltage despite variations in /-V
characteristics. Furthermore, the impact of device-to-
device variations reduce even further for large crossbars
due to averaging.

B. Noise, state drift, and peripheral circuit considerations

In a current-mode VMM circuit, the total noise in the
differential output currents (e.g., I* in Fig. 1¢) is equal to
the sum of the noises of the corresponding crosspoint
memristors, which share the same output crossbar line.
Current fluctuations through different devices are
independent and the signal-to-noise ratio (SNR) of the
output current, assuming maximum current output range,
is proportional to VN. For high-speed operation, e.g. >200
MHz, the noise spectrum is predominately white, and
neglecting the input-referred current noise of the
peripherals (which is often well below that of crossbar
[17]), SNR > 35 dB for 16x16 crossbar circuit, which is
equivalent to >5 bits of precision, >50 dB (> 8 bit) for N
= 64, and increases further with V.

For most applications, it is imperative that crosspoint
devices retain their conductance state over a long period
of time. Otherwise, frequent retuning would be required,
and/or the loss of accuracy due to the memory state drift
should be considered.  Accelerated retention
measurements at 85 °C over 15h for in-house 325
crossbar-integrated TiO, devices showed < 0.8% average
change in conductance, with < 2.7% standard deviation
(Fig. 6). Such conductance drift can be safely neglected,
by performing infrequent retuning, e.g., every 6 months.

We should also note that the design of precise
peripheral circuits is rather straightforward. For example,
a buffered transimpedance amplifier can be utilized to
supply the current for the crossbar array, while
maintaining the impedance matching conditions on the
crossbar lines. Such amplifiers can be designed with near
ideal transfer characteristics, and hence won’t degrade
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Fig. 5. Impact of I-V static nonlinearity and d2d variations on the
worst-case error, for differential topology.

|Experiment with -
- 324 devices n 1———————
S 501@ 85°C for 15h 2100~
[} 1<AG>=-0.781% (0] 1
0

O 254s5td(AG)=2.67%

10
. Timel(h)
-10 -5 0 5 10 15
AG = (Gend — Ginit)/Ginit (%)
Fig. 6. Experimental results for memory state retention, showing
change in device conductance, measured at 0.1 V, after baking for
15 h at 85°C.

computing accuracy. Its area and energy overhead,
especially for crossbar circuits with high conductance
crosspoint devices, could be a concern. However, the
peripheral overhead can be greatly reduced by taking
advantage of tunability of analog-grade memory cells,
e.g. to compensate offsets due to process variations in the
sensing and driving circuitry, as suggested in [18].

IV. TECHNIQUES FOR IMPROVING PRECISION

The computing error due to nonlinearity in the static /-
V characteristics can be reduced by optimizing procedure
of mapping weights to the memory states of crosspoint
devices. In case of ideal, linear devices, the slope of /-V
curve, i.e. the memory state, is typically assessed by
measuring device current at the highest operating voltage
(Umax), when using write-verify tuning algorithm [13]. For
the devices with nonlinear /-V curves, such approach
leads to negligible error at Umax voltage input, but the error
might be significant at voltages below Unax due to smaller
effective conductance. To reduce such error, the
crosspoint devices can be tuned at smaller voltages kUnnax,
where 0 < k£ < 1, i.e. by setting device’s effective
conductance at /(kUmax)/(kUmax) to the desired value at the
tuning algorithm. In this case, the error would be the
smallest at kUmax and is more balanced between the larger
and smaller ranges of the input voltages (Fig. 7a inset).

For the in-house devices, G = 100 pS, and the
distribution of the inputs assumed in the modeling
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improving precision and two assumptions of wire conductance.
Wire resistance of the spare lines is neglected in the analysis of the
bootstrapped circuits.
(Section II), the computing error is minimized by using &
~sqrt(2)/2 = 0.71 (Fig. 7a). Fig. 7b shows a comparison
of VMM output currents from crossbar circuits with ideal
(linear) devices, and those with nonlinear devices for two
cases of k. As expected from Fig. 7a results, the currents

are higher for £ = 0.5 due to larger error integral at higher
input voltages. The distribution of currents for the case of
nonlinear devices is almost perfectly matching the ideal
one when using optimal k. This is because individual
current errors of single devices (i.e., those in computed
product terms) are canceling each other out when device
currents are added up on the crossbar lines.

The error balancing technique works well when voltage
drops on the crossbar lines are not significant. However,
the error can be even larger otherwise compared to
suboptimal balancing approach, e.g., for 32x32 circuit
with gwire = 0.4 S (Fig. 8). This is because IR drops across
crossbar lines compensate higher currents for the
suboptimal balancing (i.e., right shift of the currents in the
histogram in Fig. 7b). One solution to deal with large IR
drops is to compute optimal values of k based on the
particular device location in the crossbar, e.g. by
combining the balancing technique with the one described
in Ref. 23.

An orthogonal solution is to employ a bootstrapping
technique, e.g., similar to the one used in NOR flash
memory circuits. In a bootstrapped design, all crossbar
lines are backed up with spare lines, which, e.g., can be
routed in the lower metal layers for back-end-integrated
crossbar circuits. Each spare line is connected to the
original crossbar line in B > 1 locations (denoted as “Bx-
bootstrapping”), which are equally distributed along the
length of the line. For example, B = 2 implies that the
original and spare lines are connected at the edges of the
crossbar, i.e., corresponds to the already mentioned
double-sided architecture. For 3x- bootstrapping, there
are three connections - one in the middle and two at ends
of the line, etc.

Bootstrapping technique significantly improves the
computing precision (Fig. 8a), while comes at the
typically acceptable cost of utilizing additional metal
layers below and/or above crossbar array. For passive
memristor technology, bootstrapping also requires
increasing crossbar dimensions from N to N+B-2 to
accommodate connections inside the crossbar array,
though such overhead is minor for the most practical cases
N>>B.

V. APPLICATION DEMONSTRATIONS

The proposed techniques for improving precision are
further verified by modeling two representative
applications of mixed-signal current-mode VMM circuits.
The first studied application is an edge detection with 5x5
Laplacian of Gaussian filter, in which convolution of an
image with a specific filter is computed to extract high
frequency information or image edges (Fig. 9). The image
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convolution operation was modeled assuming differential
architecture with 25 inputs and 1 output for the specific
image (Fig. 9a) using a hybrid approach. In particular, 50
devices in a 20x20 crossbar circuit were tuned to the
desired values corresponding to the kernel weights (Fig.
9b), at the voltages specific to the used %, and their static
I-V characteristics collected. The data were then fitted
using approach discussed in [25] and used for simulating
dot-product currents. 8 different implementations, with
different k, B, and gwi are studied (Fig. 9e inset),
including ideal case scenario, i.e. with gyir. = 00 and linear
I-V characteristics. Fig. 9c shows an example of filtered
image assuming scenario D, i.e., using measured [-V
characteristics, k= 0.5, B =2, and gwir. = 0.4 S.

The results show that due to smaller parasitics, the
crosspoint device nonlinearity is a major source of
computing error, see, €.g., scenario A vs. B (Fig. 9d, e).
This is why balancing technique is the most useful for this
application. Indeed, among the considered nonlinear
device scenarios B, D, F, G, H, the error is smaller for
scenarios F, G, H. On the other hand, bootstrapping does
not help and can actually increase error (e.g. E cf. B, and
F cf. H). This is due to already mentioned compensation
of IR drops across crossbar. Even k£ = 0.71 is apparently
not optimal (and hence H has smaller error than F) for this
particular application because of different distributions of
conductances and inputs as compared those used in Figs.
7 and 8.

The second studied application is neuromoprhic
inference of MNIST benchmark images using 784-64-10
multilayer perceptron classifier with rectified linear
activation (Fig. 10). The first layer is modeled by
assuming that 24 64x64 and 2 17x64 crossbar circuits are
connected in two 785x64 virtual crossbars to realize
differential architecture, while the second layer is
modeled with two 65%10 crossbar circuits. (The
additional inputs is due to the bias.) The other
hyperparameters and ex-situ training approach (with 60k
/ 20k training / test images) are similar to [20].

The inference is simulated using memristor compact
model which accounts for d2d variations in [-V
characteristics [25], and also assuming that input voltages
for physical crossbar circuits are applied individually (i.e.
that N < 64). The computing error in the first MLP layer
(error in the output currents), and the corresponding
classification errors are shown in Fig. 10c and d,
respectively, for several scenarios (Fig. 10¢). The results
show that, unlike for previously studied application, the
impact of IR drops on the performance is more severe
compared to device nonlinearity (test 2 cf. tests 1 and 3).
This is due to smaller devices’ conductances (i.e. large
number of small weights as shown in Fig. 10b) as well as
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Fig. 9. Modeling of edge detection algorithm using 5x5 Laplacian
of Gaussian filter assuming differential implementation based on
two 25x1 memristive crossbar circuits and taking into account
device’s I-V nonlinearity and d2d variations: (a) Original image, (b)
effective conductance of a differential pair used to implement a 5x5
filter. X and Y are filter dimensions. (c) simulation results for the
computed image assuming 2Xbootstrapping and gwire = 0.4 S. (d)
The worst-case error and (e) output current histograms for several
considered scenarios. The details for each studied scenario are
provided in the inset of panel e. T = 25°C, Umax=0.16 V.

larger crossbar circuits. Both VMM error and the
classification accuracy improves by increasing the
crossbar line conductance (tests 4, 6, 7, 8, 9) and/or
number of bootstrapping connections (tests 6, 10, 11).
Similar to previous application, a small non-zero wire
resistance could be beneficial for compensating current
overshoot (test 3 cf. test 9). The results also show that the
error is the largest for the single sided architecture (test 4)
for which only half of the crossbar circuits were employed
in modeling, while a combination of more optimal
balancing and aggressive boostrapping leads to the
classification performance of 2.09%. This number is close
to the best-case 2%, obtained by simulating the same
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MLP network in a software using high precision
arithmetics — see, e.g. test 13 cf. test 1.

VI. SUMMARY

We have developed a framework for circuit-level
simulations of memristive crossbar circuits and utilized
comprehensive device models as well as experimentally
measured data for metal-oxide memristors to investigate
the impact of various imperfections on the computing
precision of analog memristor-based VMM circuits.
Using statistical numerical simulations, we quantified the
impact of interconnect parasitics and analyzed different
topologies on the precision under range of temperatures.
Finally, error balancing and bootstrapping techniques
were proposed to mitigate device and circuit
imperfections, which are further verified by modeling two
representative applications.
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perceptron network: (a) Studied network. (b) Histogram of VMM
weights for classification of MNIST benchmark images, obtained
using ex-situ training method. (c) Simulated error in the output
currents of the 1% layer VMM circuits and (d) corresponding
misclassification errors for several studied scenarios (tests). The
details for each studied scenario are provided in the inset of panel d.
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