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Abstract—We introduce “aCortex”, an extremely energy 

efficient, fast, compact, and versatile neuromorphic processor 

architecture suitable for acceleration of a wide range of neural 

network inference models. The most important feature of our 

processor is a configurable mixed-signal computing array of 

vector-by-matrix multiplier (VMM) blocks utilizing embedded 

nonvolatile memory arrays for storing weight matrices. Analog 

peripheral circuitry for data conversion and high-voltage 

programming are shared among a large array of VMM blocks to 

facilitate compact and energy-efficient analog-domain VMM 

operation of different types of neural network layers. Other 

unique features of aCortex include configurable chain of buffers 

and data buses, a simple and efficient instruction set architecture 

and its corresponding multi-agent controller, programmable 

quantization range, and a customized refresh-free embedded 

dynamic random-access memory. The energy-optimal aCortex 

with 4-bit analog computing precision was designed in 55 nm 

process with embedded NOR flash memory. Its physical 

performance was evaluated using experimental data from testing 

individual circuit elements and physical layout of key components 

for several common benchmarks, namely Inception-v1 and 

ResNet-152, two state-of-the-art deep feedforward networks for 

image classification, and GNTM, a Google’s deep recurrent 

network for language translation. The system level simulation 

results for these benchmarks show energy efficiency of 97, 106, and 

336 TOp/J, respectively, combined with up to 15 TOp/s computing 

throughput and 0.27 MB/mm2 storage efficiency. Such estimated 

performance results compare favorably with those of previously 

reported mixed-signal accelerators based on much less mature 

aggressively scaled resistive switching memories. 

  

Index Terms — Artificial Neural Networks, Neuromorphic 

Inference Accelerator, Mixed-Signal Circuits, Nonvolatile Memory, 

Floating-Gate Memory, Machine Learning 

I. INTRODUCTION 

The rapidly growing range of applications of machine 

learning for image classification, speech recognition, and 

natural language processing along with maturing of the neural 

network algorithms, especially for deep learning, have led to an 

urgent need in a specialized neuromorphic hardware [1-3]. At 

least for the next several years, the demand for fast, low-

precision inference accelerators will remain higher than for 

higher-precision systems for network training, as projected by 

NVidia Corp., a leading company in the machine learning 

hardware [4].  

The vast majority of the proposed neuromorphic accelerators 

from industry and academia are digital [5-8] – see also 

extensive review of various proposals in [2]. The most natural 

approaches, however, are based on analog and mixed-signal 

circuits [9-30]. Though the core principles of analog computing 

had been developed almost four decades ago [9, 10], its efficient 

implementations were enabled only recently [14-30] due to the 

emergence of novel continuous-state, nonvolatile, memory 

devices [31, 32]. Such memories enable very dense 

implementation of weights and of in-memory computing for 

vector-by-matrix multiplication, the most common operation in 

machine learning. Among different candidates, the resistive 

switching memories, including phase change and conductive 

bridge memories, metal-oxide memristors (also known as 

ReRAM or RRAM [31]) are perhaps the most promising due to 

their excellent scaling prospects. Their technology, however, is 

still in need of improvement, which is less of a problem for 

another excellent candidate, floating gate (FG) memories, e.g. 

those based on redesigned commercial-grade embedded NOR 

flash [22, 32, 33]. Though planar FG cells are less dense than 

passively integrated memristors, their main advantage is FG 

cell amplification, which simplifies and reduces overhead of 

peripheral circuitry. It is worth noting that the limited 

endurance of memristors and FG memories is less of an issue 

for inference applications, since the weights are typically 

reprogrammed infrequently. 

In this paper, we present a multi-purpose inference 

accelerator, dubbed “aCortex”, that is designed to capitalize on 

in-memory mixed-signal computing with nonvolatile 

memories. Though the idea of employing mixed-signal VMM 

based on nonvolatile memories for multi-purpose inference 

accelerators is not new [23-27], our work is novel in several 

aspects. Its key advantage is more extensive use of analog 

computing, not only for VMM computation but also for data 

transfer. Such approach minimizes the area/energy/delay 

overhead of the sensing and data conversion peripheries which 

are key factors limiting the efficiency of the mixed-signal 

neural accelerators [23-30]. A more compact design, in turn, 

reduces communication overhead due to shorter distances for 

data transfer. Moreover, data transfer overhead is further 

reduced by using a configurable chain of buffers exploiting the 

data reuse for convolution operation, programmable data buses 

that can be efficiently tailored on the fly to a particular 

utilization of mixed-signal array, and a custom-designed 

refresh-free embedded dynamic random-access memory 

(eDRAM) tailored to meet the retention time requirement. We 

also propose a simple and efficient instruction set architecture 

(ISA) along with a multi-agent controller, which takes 

advantage of the eligible time-overlap between consecutive 

micro-operations while minimizing the instruction memory 

(IM) requirement. Finally, we developed a system-level 

estimator which imports the target network’s computational 

graph along with experimental and circuit-level simulation 

results for different architecture components,  including digital-
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to-analog converters (DACs), analog-to-digital converters 

(ADCs), sense amplifiers, memory cells, digital blocks, and 

buses, maps the weight kernels onto the two-dimensional (2D) 

array of nonvolatile memory (NVM) blocks, and finally 

produces a comprehensive performance report considering 

various non-idealities such as leakages and line parasitics. 

Using such simulator, we perform a detailed performance 

analysis based on the actual layout in 55-nm process with 

embedded NOR flash memory. Note that unlike many 

proposals based on emerging memory technologies, core 

components have been previously taped out using commercial 

processes and successfully tested and we used such 

experimental data in our analysis. 

 In Supplementary Information (SI) Section S.I we introduce 

today’s major neural layer types and present their hardware-

friendly re-arrangement targeting a weight-stationary 

implementation. The overall aCortex architecture and operation 

scheme, as well as the internal structure of its main components 

are presented in Section II. This section also introduces the 

proposed instruction set architecture (ISA) along with the 

controller architecture. More details on the ISA are provided in 

Section S.II. The general framework for mapping applications 

into aCortex and our case study for three representative neural 

network inference tasks are provided in Section III. In Section 

IV, we provide the circuit diagram and experimental/simulation 

results for FG-based implementation of aCortex’s core 

computing units in 55-nm technology node. We then perform a 

design space exploration for architectural parameters and 

provide a detailed system-level report for a semi-optimal design 

point. Related prior works are discussed and compared to 

aCortex in Section S.III. The paper is concluded in Section V, 

where important future works are outlined.  

II. ACORTEX ARCHITECTURE 

A. Top-Level Architecture 

As shown in Fig. 1a, the major processor’s components are 

auxiliary unit (AUX), microcontroller, main memory, and two 

mixed-signal processing units (MSPU). Each MSPU includes a 

configurable chain of input digital buffer blocks, a flexible 2D 

array of VMM blocks, and an array of output neuron blocks. 

The architecture can be loosely characterized as Harvard 

weight-major type [2]. The instructions are stored in 

microcontroller’s dedicated SRAM-based instruction memory. 

All frequently changing data, i.e. input, output, and temporary 

data, are kept in eDRAM-based main memory, while fixed 

weights, which would be typically precomputed at ex-situ 

training, are stored in NVM arrays of MSPU’s VMM blocks.  

The inference task is specified by a program code based on 

custom instructions and corresponding set of neural layer 

weight matrices. Assuming the code is loaded, and all weights 

are set up accordingly, the inference is computed by loading 

input data to the main memory, executing a code to perform the 

inference task, and storing the computed results back in the 

main memory. In particular, the stationary weight matrices 

corresponding to various network layers are packed in the 2D 

array of VMM blocks (Fig. 1b), and the inference is performed 

in a layer-by-layer manner by sequentially reading the layer 

input from the main memory into the digital buffer blocks, 

activating the appropriate VMM and neuron blocks to perform 

the target neural layer, and then temporarily storing the 

intermediate results in the main memory for computing the next 

layer. Note that some of the neural layers, such as CNV and 

LSTM require multiple VMM operations with various input 

data on the same weight matrix to complete. In this case, the 

corresponding VMM/neuron blocks are activated multiple 

times during the execution of each neural network layer - more 

details on that are provided in Sections III and S.I below.   

Flexible activation of VMM/neuron blocks enables compact 

implementation of a set of neural network layers with various 

VMM sizes while maximizing the energy efficiency by cutting 

off the active power consumption of unutilized VMM/neuron 

blocks. Moreover, aCortex minimizes the energy overhead of 

data transfer by cutting off the unutilized portion of data buses 

and effectively reducing their length via disabling further data 

propagation. For example, Fig. 1c shows the active blocks and 

 

 
Fig. 1. (a) aCortex top-level architecture. The location of the components crudely corresponds to the actual layout and is chosen to reduce data transfer overhead. 

For clarity, the architecture is shown for N = M = 4 and most of the control lines and the circuitry for testing / weight tuning are omitted. (b) Example of a weight 
kernel mapping on aCortex VMM blocks, layer-by-layer operation scheduling, and corresponding content of main memory over time. (c) aCortex active blocks/bus 

portions during the execution of the layer #1 of the neural network shown in (b). 
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buses when the processor is computing the first layer of the 

neural network shown in Fig. 1b. 

All inference data, i.e. inputs and outputs of the MSPU’s 

VMM blocks, as well as effective weight precision, are p bit. A 

set of p bits is defined as one data word.  We specifically 

consider p = 4, which is typically sufficient for running state-

of-the-art image classification inference without loss of 

functional performance [34, 35]. Blocks and buses are sized 

according to a global architecture parameter K, defined as the 

granularity of neural computation and data transfer on aCortex.  

B. Main memory 

Main memory is implemented with eDRAM technology, 

whose retention time is tailored for a refresh-free operation. In 

particular, it is organized as an array of eDRAM blocks, each 

with Kp-bit I/O data port. The multi-banked structure allows to 

read and write K data words simultaneously, i.e. to supply data 

to one digital buffer block and receive data from one neuron 

block. The required memory capacity and its retention time are 

calculated by monitoring the memory content and the longest 

lifetime of intermediate data for the inference of the target 

neural networks (Fig. 1b). 

C. Mixed-Signal Processing Unit: Array of VMM Blocks 

Each MSPU is comprised of two N-by-M arrays (quadrants) 

of VMM circuit blocks located on each side of a column with 

N neuron blocks. Each VMM block features K-by-2K array of 

NVM cells, which is suitable for implementing analog-mode 

differential K-by-K VMM operation; K p-bit front-end DACs; 

and 2K back-end local sensing circuitry (Fig. 2a). The data to a 

single column of VMM block array is fed via Kp-bit wide 

digital programmable “VMM input” bus from the 

corresponding distributed memory buffer block. The VMM 

block outputs are connected via analog “VMM output” buses, 

which are 2K lines wide, to the corresponding neuron blocks. 

More circuit details on the data conversion and 

sensing/summation for the considered VMM design based on 

2D-NOR flash memory technology is provided in Section IV-

A. 

Column/row enable lines (denotes as CE/RE) span the 

MSPU quadrants in vertical/ horizontal directions and are used 

to activate the desired VMM blocks at each processing step. 

Specifically, a given VMM block is activated only if its 

compute enable signal (CoE = CE ∧ RE) is equal to “1” (Fig. 

2b). These control lines allow to flexibly implement a wide 

range of VMM sizes (from K×K to 2MK×NK) while cutting off 

the active power consumption of unutilized VMM/neuron 

blocks. Moreover,  a Kp-bit wide VMM input bus repeater with 

horizontally shared enable control line (RBE) is integrated in 

each VMM block (Fig. 2a) to speed up data propagation as well 

as to minimize its energy overhead by cutting the unutilized 

portion of the VMM input bus. The logic circuitry and single-

bit registers producing CE and RE/RBE control lines are 

integrated in digital buffer and neuron blocks, respectively. 

The programming/erasure circuitry consists of decoders and 

level-shifters, which are shared by NVM arrays of VMM blocks 

and are placed at the outer margins of the VMM block arrays 

(Fig. 1a), and row/column access switches, placed at the 

periphery of each VMM block,  controlling the applied signals.  

D. Mixed-Signal Processing Unit: Neuron Block 

A neuron block includes K identical neuron units. All units 

perform in parallel summation/integration of the analog data 

supplied from the corresponding VMM output lines, re-scale 

the integrated data (if needed), apply the selected activation 

function, and finally convert the results to digital domain using 

ADCs (Fig. 2a). The rescaling unit enables a wide range of 

quantization ranges, e.g. needed to operate with different VMM 

input sizes, via adjusting neuron’s analog input amplitude to 

match the fixed operating input range of the activation functions 

and ADC units. The activation function can be selected from 

linear, rectified linear, sigmoid, or hyperbolic tangent types, to 

support a wide range of neural layers (Section S.I). Neuron 

block outputs are digitized with p-bit ADCs and temporarily 

latched in their embedded digital memory. The digital results 

are then passed via Kp–bit wide digital “store” bus to the main 

memory. Such data transfer, i.e. the “store” operation, is 

performed in one step per neuron block, so that, e.g., a total of 

N steps is required to transfer data from all neurons in one 

MSPU. The specific number of processor cycles required for 

each step varies based on the location of the neuron block, i.e. 

its distance from the main memory. In particular, the store bus 

data are passed via a Kp-bit 2-to-1 multiplexer in each neuron 

block. These multiplexers act as a bus repeater for the utilized 

portion of the store bus, and is also used to decouple and 

deactivate its unutilized portion. 

 

 
Fig. 2. (a) Schematic diagram of mixed-signal VMM and neuron blocks 
including their connectivity and required control signals (blue). Neuron block 

includes four stages, namely global sensing, re-scaling unit, activation 

function, and ADC. (b) The control circuitry, which facilitates flexible 
activation of the target VMM/neuron block, and cuts unutilized portions of the 

VMM input and store buses. Square labeled with ‘c’ denotes comparator for 

selecting a specific neuron. For clarity, some of the details, e.g. circuitry for 

setting up enable bits and some neuron control circuitry, are not shown.       
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The RE and RBE signals (which control the target neuron 

block and the corresponding VMM blocks it serves, and cut the 

VMM input bus, respectively) are configured with “row-select” 

single-bit flip-flops of the neuron blocks (Fig. 2b). Specifically, 

the row-select flip-flops of neuron blocks are connected via 

XOR gates, with output of XOR gate directly controlling RE 

line. To preselect RE signals for the contiguous set of rows (e.g. 

rows 10 through 15), row-select bits of neuron blocks in the first 

(10), closest to the main memory, and in the last+1 (16) row of 

the selected set of rows are set to “1”, while others are set to 

“0”. This implementation results in activating all selected rows 

(i.e. setting RE  = 1 for rows 10 through 15). On the other hand, 

using a simple NAND gate which detects a transition from 

selected to unselected row, RBE is de-asserted only for the 

last+1 row of the selected group of rows (Fig. 2b), which 

effectively cuts the downstream VMM input bus. 

E. Mixed-Signal Processing Unit: Digital Buffer Block 

The data to digital buffer blocks (DBB) in each quadrant are 

supplied from main memory via Kp–bit wide digital “load” bus 

(Fig. 1a). The DBB’s internal logic circuitry is designed to 

flexibly support various data flow scenarios - from simple load 

(Fig. 3b: scenario #1) to “load and shift” configuration (Fig. 3b: 

scenarios #2, 3). The flexible “load and shift” configuration 

enables efficient computation of CNV layers with a wide range 

of specifications (filter size and stride) while taking advantage 

of the row-wise data reuse (Fig. S1b).  

Specifically, the input to each DBB is supplied by a Kp-bit-

wide 2-to-1 multiplexer, which selects the input source between 

the load bus (i.e. main memory) and the previous DBB. For 

simplicity, we assume that only one DBB can be loaded from 

the load bus at one step, by setting the address of the target DBB 

on the buffer address bus. Similar to the data transfer from 

neurons, the number of processor cycles required for each step 

varies based on the location of the DBB.  

The shift operations are supported by properly configuring a 

“shift-bit” flip-flop in each DBB and are masked by “shift 

enable” line. In particular, the shift register configurations are 

programmed by setting shift bits to “1” for all the DBBs except 

for the first block of shift register (Fig. 3b). Setting shift bit to 

“1” of a particular DBB is performed concurrently with loading 

that DBB from load bus by asserting “shift mode” control line. 

(Note that row-wise execution of the CNV layer typically starts 

by loading all DBBs with row data from main memory, with all 

shift operations disabled by de-asserting shift enable signal line, 

so that all shift bits are typically configured at this time.) Once 

shift bits are properly configured, simultaneously with loading 

new data into DBB, the already loaded data in DBBs can be 

shifted between the remaining blocks of that shift register (e.g. 

shifted to the right in scenario #2 and #3 of Fig. 3b). This is 

performed with internal “master shift command” signal, which 

enables latching data from previous DBBs of the specific shift 

register whenever its shift bit and enable signals are set to “1”. 

Additionally, each DBB has a single-bit SR latch to specify 

the target VMM block columns, i.e. to set column enable (CE) 

signal, which is configured similarly to shift-bit flip-flop. It also 

has a bus repeater on the load bus, which is disabled when the 

DBB is loaded, to stop downstream data propagation on the bus 

(Fig. 3a).     

F. Mixed-Signal Processing Unit: VMM Computation 

Assuming that the target VMM columns are pre-selected 

(CE=1) and the desired row-select bits are set, VMM operation 

is performed by applying a positive pulse to “VMM_OP” 

command signal. This signal enables the neuron blocks 

associated with the selected rows as well as their input VMM 

blocks for which CE=1 via propagating through the RE and 

then CoE lines. Naturally, the VMM_OP pulse width should be 

longer than the worst-case end-to-end VMM operation time, i.e. 

the time it takes from the moment inputs are applied to DAC to 

that of latching ADC outputs.  

G. Auxiliary Unit 

Auxiliary unit (AUX) is provisioned to perform less frequent 

digital computations in neuromorphic inference. In particular, 

this block is used to perform in parallel K p-bit vector-by-vector 

operations such as additions, subtractions, and fixed-precision 

multiplications. It also performs comparison in max-pooling 

operation, which is typically used in CNNs. (An average 

pooling, another typical operation, can be implemented directly 

in a mixed-signal domain with properly adjusted weights.) 

AUX consists of an array of arithmetic logic units (ALUs), 

multipliers, and internal registers. During max-pooling 

operation, the register holds the current maximum value and 

feeds it to one of the ALU’s inputs to compare to the next input 

value fed from the main memory through the load bus. The 

outputs of AUX blocks can be written back to main memory via 

store bus. 

H.  Controller and Instruction Set Architecture 

The most typical operations on aCortex involves loading 

multiple DBBs with data from the main memory, performing 

vector-by-matrix computation, and then moving the results 

from neuron blocks back into the main memory. Accordingly, 

aCortex controller includes three separate agents as loader, 

operator, and collector, each dedicated to performing one of 

these frequently-used operations (Fig. 4a). These agents are 

 

 

 
Fig. 3. (a) A detailed circuit implementation of the digital buffer block (DBB). 

Control circuitry is shown with blue color. Square labeled with ‘c’ denotes 

comparator for selecting a specific DBB. For clarity, some of the details are not 

shown. (b) Examples of three DBB chain configurations scenarios. 

Specifically, scenario #1 shows loading (sequentially) data exclusively from 

the load bus. Scenarios #2, 3 show loading data from load bus into DBBs and 
simultaneously shifting data between DBBs connected in a two-block shift 

register (#2) or a four-block shift register configuration (#3).  
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configured and synchronized using a main controller. Such 

multi-agent structure shrinks the code size, enables eligible time 

overlapping between these operations, and minimizes the 

engagement of the main controller, which in turn reduces the 

controller time overhead.  

The main components of each agent are listed in Fig. 4c. The 

loader is responsible for reading data from the main memory 

into the DBB/AUX blocks using the load bus. This agent uses 

two counters to support burst mode in which multiple data 

packs with a pre-configured main memory/DBB initial 

addresses and strides are loaded. Moreover, the loader uses a 

load bus counter to adjust the load time based on the physical 

distance between the main memory and the target DBB. Such 

distance is extracted from the most significant bits of the DBB 

address considering that the location of neuron and DBBs are 

counted from the center of the chip outwards, starting from 1. 

For example, load_time = memory_read_time + 

ceiling(DBB_address/32) for the case when passing data on the 

load bus through 32 DBBs takes one controller cycle. The 

collector which is responsible for storing back the 

neuron/AUX’s output to the main memory has a similar 

structure to the loader. The operator has an embedded counter 

to produce the appropriate pulse width of VMM_OP control 

signal for the VMM operation. It also holds the neuron scaling 

factor, the type of activation function selector, and AUX 

function control bits. The main controller instructions are 

further detailed in Section S.II. 

III. APPLICATION MAPPING 

Application mapping process of a given neural network on 

aCortex involves checking accelerator resource requirements 

(i.e. main memory and MSPU) and producing a weight 

mapping and machine code to setup the accelerator. Similar 

process is also used in the accelerator design to estimate the 

required main memory and MSPU resources, and to optimize 

their specifications (M, N, K) for the target range of 

applications. Such process starts with extracting the 

computational graph and finding the optimal topological 

partitioning and ordering of the computational steps (Fig. 5a). 

In such graph, the vertices are computation kernels (i.e. neural 

layers) while the edges are input/output data. In general, finding 

the optimal sorting of a given graph is an NP hard problem. 

However, layer-by-layer operation scheme of aCortex, resulted 

from our energy-optimal design, reduces the complexity of the 

problem. After obtaining the graph and scheduling order, the 

next step is to check the memory requirement throughout the 

inference steps. In aCortex, 3D data are stored in the main 

memory in a row first, column second, and channel/feature map 

third order (Fig. 5b). Following this order, multiple channels of 

one data pixel (and adjacent pixels in a row in the case of CNV 

stride >1) are always grouped into K-word-long data packs (Fig. 

S1b). One pack of K-word data is then mapped into a word line 

of main memory block and can be read/written simultaneously. 

Such data placement in the main memory enables burst mode 

read/write using controller’s loader/collector. Note that due to 

quantization such scheme may result in underutilized memory, 

e.g. when the number of channels/feature maps is not divisible 

by K.  

Considering such data arrangement, the memory usage after 

each inference step (i.e. neural layer) is calculated by drawing 

a cut in the computational graph which separates the already 

computed portions of the graph (network processing steps) 

from the upcoming ones, and adding up all the edges that are 

crossed. Since during execution of each layer both its inputs and 

outputs are present in the main memory, the upper-bound for 

the total memory usage is calculated by adding up the memory 

usages for two consecutive cuts and subtracting their overlap 

edges.  

We applied this algorithm to three studied networks, namely 

Inception-v1 [36] and ResNet-152 [37] DNNs for image 

classification, and GNMT [38], a Google’s neural machine 

translation network featuring a 16-layer LSTM network with 

bi-directional encoder layers, with the vector length of 1024 and 

the sequence size of 10. For example, Fig. 5c shows such 

process for an Inception neural layer and an unfolded 2-layer 

LSTM network. As this figure shows, the memory requirement 

is limited by the initial layers of the DNNs (for 4-bit 

computation with the data pack quantization of K = 64). 

In the next step the weight matrices are mapped into MSPUs 

using a greedy search algorithm (Fig. 6a), for which input 

parameters are the number of available MSPU’s columns (M’), 

architecture granularity parameter (K), the number of tries 

(epoch), and the list of weight kernels (LoK).  In one iteration 

of the algorithm, the kernels are first randomly ordered and then 

greedily mapped in a row-first manner, in the given order, to 

the array of VMM blocks. Such procedure is repeated epoch 

times and mapping configuration with the smallest number of 

occupied VMM blocks is selected. Furthermore, the mapping 

process is repeated for different M’ ≤ M to search for a square 

shaped mapping of occupied VMM blocks (Fig. 6b) to 

minimize the average data transfer distance between MSPU’s 

active VMM/neuron blocks and the main memory (and hence 

to increase energy-efficiency) – see more discussion on that in 

 

 
Fig. 4. (a) Top-level representation of the multi-agent controller and 
connectivity between different agents and the rest of the architecture, (b) 

examples of agent operation timing diagram when the load operation is 

completed before (scenario #1) and after (scenario #2) the collect operation, 
and (c) the main components of each controller’s agent.  
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TABLE I. MICROARCHITECTURAL PARAMETERS 

Parameter Description Typical  

p 
Input/weight/computing precision; also bit length of 

each data word 
4 

M 
# digital buffer blocks / columns of VMM blocks in 
one MSPU quadrant 

32 

N # neuron blocks / rows of VMM blocks in one MSPU 64 

K 

Computation granularity; also VMM block 

dimensions, buffer/neuron block size, and digital bus 
and main memory I/O width in terms of words 

64 
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Section IV-B. The results of this optimization process for our 

target networks are shown in Fig. 6c-e. 

The mapped locations of weight kernels are then used in the 

compilation process to generate the machine code for handling 

the data flow and operation of the network. The number of 

instructions for initializing and operating each layer type is 

estimated for the system-level analysis based on the proposed 

ISA (presented in Sections II-H and S.II).  

IV. CIRCUIT DESIGN AND PERFORMANCE EVALUATION 

A. 55-nm FG-based Implementation of Mixed-Signal Blocks 

While aCortex can be realized with variety of NVM 

technologies, the focus of this paper is on a mature industrial-

grade flash-memory technology that have already enabled 

extremely compact and energy-efficient implementations of 

mixed-signal circuits [20]. The key advantage of such 

implementation, as compared to, e.g., those based on resistive 

switching devices [31], is the FG cell’s inherent signal 

amplification and low operation currents, which greatly relax 

the requirement for sensing circuitry gain, and enables very 

compact peripheral circuits [20]. Moreover, the experimental 

results for the chip-to-chip statistics, long-term drift, and 

temperature sensitivity of the FG-based mixed-signal circuit 

prototypes strongly attest to suitability of this memory 

technology for developing complex, practically-useful neural 

accelerators [17, 22]. More specifically, the proposed 

architecture was evaluated for the implementation based on 

ESF-3 (embedded split-gate flash) technology in which FG 

cells were redesigned for analog computing applications [17].  

The proposed mixed-signal circuits allow for efficient 

implementation of different types of activation functions, 

kernel sizes, and quantization ranges, which are essential 

features of multi-purpose inference accelerator (Fig. 7a). In 

particular, the VMM operation is implemented using gate-

coupled design [17]. In such approach, inputs are encoded as 

currents, which are applied to the peripheral FG transistors (Fig. 

7a). The weights are encoded in the memory state of the array 

FG devices, while peripheral FG device are typically 

programmed to the low threshold states (maximum current) for 

optimal operation [17].  The multiplication of an input with the 

corresponding weight, is performed by a pair of FG transistors, 

one at the periphery and one inside the array. The currents from 

different array FG devices are summed up on the drain (row) 

line at the local sense amplifier to complete dot-product 

operation computation.   

The front-end input conversion is realized using current 

steering (CS) DAC architecture, a viable choice considering its 

 

 
Fig. 5. (a) Application mapping flow-chart performed on the host computer. (b) Mapping scheme of a 3D data structure into the aCortex’s main memory. (c) An 
example showing computational graph cuts for evaluating the amount of main memory occupied during various steps of inference for a single Inception layer (left) 

and a multi-layer LSTM network (right). (d) The utilized main memory graph as a function of network processing step for the studied benchmark networks. 
 

 
Fig. 6. (a) Pseudo code for aCortex weight kernel packing algorithm. (b) Preferred mapping locations of various neural network sizes. (c-e) Weight kernel mapping 

results for Inception-v1, ResNet-152, and GNMT-1024 for K=64. Each pixel shows one VMM block colored according to the neural layer occupying it.  
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// pseudo code for weight packing function 

mspu_map = Weight_packing(M, K, epoch, LoK){

Quantize(LoK, K) // quantize List of Kernels (LoK) based on K

Dim_check(LoK, 2M) // break kernels if input size > 2M

N_min=inf.  // set min. num. of VMM block columns to infinity

for i=1:epoch { // pack the kernels “epoch” times and pick the best

Shuffle(LoK) // shuffle list of kernels for each epoch

mspu_arr=zeros(1,2M) // initialize memory array to 1 2M

for Kernel in LoK { // pack kernels one at a time

while {

// search for empty space and set “stat” to “done” if successful

[stat, mspu_arr ]=pack(mspu_arr, Kernel)

if (stat = “done”) {

break;}

// if not successful, add an empty row to mspu_arr and try again

mspu_arr = vertcat(mspu_arr, zeros(1,2M))

}

}

// compare packing from current epoch with the best previous packing

//and replace if more compact packing achieved

if (size(mspu_arr, 2) <N_min {

mspu_map=mspu_arr;

N_min= size(mspu_arr, 2) }

}
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low power consumption, compact footprint, and fast turn on/off 

time at relatively low precision. A 4-bit PMOS-based CS DAC 

circuits source the current into peripheral FG devices.  

The developed current-mode global sensing circuit of a 

neuron block has excellent wideband current following 

behavior and provides very low input impedance, while limiting 

drain voltage distortion. To reduce process variation overhead 

associated with an offset error, two additional FG devices are 

provisioned in each channel (drain line) and are used either to 

source or sink the input referred offset current.  

The input current scaling of a neuron block is implemented 

using a binary-weighted current mirror structure controlled by 

the multi-bit digital input (Fig. 7a). As already mentioned in 

Section II.D, this feature is needed to adjust quantization range 

in accordance with the maximum VMM circuit output currents 

(which would vary, e.g., with the size of the weight kernels), 

and hence to minimize losses in functional performance due to 

quantization of activation function outputs. 

The 4-bit current-mode ADC has a 1-bit per stage cyclic 

design which generates the 4-bit digital output in 4 cycles. FG 

transistors are also employed for offset/compensation in the 

high-speed comparator and to generate reference currents.  

The sigmoid and ReLU activation functions are implemented 

directly in the ADC, without using any other additional 

circuitry, by appropriately choosing reference currents, i.e. 

quantization levels of the ADC. Linear and hyperbolic tangent 

functions are emulated via input biasing and appropriate weight 

scaling (Fig. 7b). DACs/ADCs are designed for unipolar data 

and can be reused, without any circuit modification, for bipolar 

data by utilizing offset-binary representation. More details on 

the circuit structure for the design of PVT-resilient CS DAC 

circuit and algorithmic ADC can be found in [20]. 

Fig. 7c provides the VMM performance results as a function 

of K based on the measurements of ESF3 memory devices and 

post-layout simulations of peripheral circuitry. These data are 

used to estimate system-level performance. 

B. Main Memory and Buses in 55-nm Technology Node 

The main memory is implemented using asymmetric 2T gain 

embedded DRAM cells with boosted power supply [39]. The 

retention time of eDRAM cells was changed to 100 µs by 

reducing leakage and adjusting biases, with 99.9% bit yield 

confirmed by block-level Monte Carlo simulations [39]. The 

memory performance was modeled using CACTI tool [40]. We 

also developed a bus area/energy/delay model as a function of 

bus length and repeater size using post-layout simulations 

considering all device/interconnect parasitics. 

C. System-Level Results and Design Space Exploration 

We have developed a software framework that utilizes the 

post-layout energy/speed/area metrics for all the aCortex’s 

building blocks (buffers, buses, DACs, ADCs, integrators, and 

digital circuits) to evaluate the system-level performance for 

any target DNN/RNN network. This framework uses the list of 

processing tasks for a given neural network to map the VMM 

kernels on the NVM devices embedded in the VMM blocks, 

and then generate a detailed performance report for the given 

set of architecture specifications. Using such tool, we have 

performed a preliminary exploration of architectural parameters 

(i.e. K and MSPU aspect ratio, AR = M/N) to optimize the 

processor performance for the aforementioned target neural 

networks. A detailed study of these benchmark networks (Figs. 

5, 6) has shown that a 1MB MM is sufficient to store all 

intermediate data, while the flow control program requires at 

most 4KB of instruction memory. Moreover, the controller 

energy/delay is estimated in an instruction-by-instruction 

manner in which the required machine code for initializing and 

performing each layer type has been evaluated.  

Fig. S2 shows the system-level energy efficiency (EE), 

throughput, and area with respect to K and AR for these 

networks. Larger K typically results in higher throughput due to 

wider bus widths and consequently higher data transfer rate. It 

also improves the EE by reducing the VMM block peripheral 

circuitry energy consumption (trend clearly seen in Fig. S2c). 

Moreover, the increase in throughput results in lower leakage 

 

 
Fig. 7. (a) VMM/neuron schematic for the FG-based mixed-signal universal 

neural computing scheme supporting both positive/negative input/output as 
well as various (non)linear activation functions. (b) The configuration of the 

computing elements for various scenarios (desired activation function and 

input type). (c) Performance results for a VMM connected to a neuron block as 
a function of K assuming 4-bit computing precision, maximum cell current of 

16 nA, maximum current of 1 µA and unity gain for local sensing, maximum 

ADC input current of 5 µA, and ADC input scaling range of Q = 5. Such 
numbers are selected based on optimal operation conditions [17] and our 

analysis of the weight and output distributions for the considered neural 

networks. Also, note that the area numbers are calculated for active circuitry 
only (i.e. no programming/erasure circuitry included). 
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energy which further increases EE. However, for the networks 

with medium and small weight kernels (i.e. ResNet-152 and 

Inception-v1), larger K results in under-utilization of active 

blocks, and buses, as well as an increase in the number of 

required VMM blocks to map the network, which in turn 

increases the energy overhead of the analog peripheral circuitry 

and buses. As such negative effects outweigh the positive ones, 

the overall system-level EE and throughput are getting worse 

for larger K. For DNNs, the load bus delay/energy typically 

plays a more significant role in the system throughput/EE 

compared to the store bus due to higher input-to-output data 

transfer ratio in convolution operations. Such property leads to 

higher throughput/EE for smaller AR (i.e. relatively shorter 

load bus) in these networks. The opposite of this trend is 

observed for GNMT in which the LSTM layers have smaller 

input-to-output data transfer ratio. Note that such trends do not 

consistently hold due to network-specific weight packing 

efficiency with respect to AR.  

The accelerator area decreases for larger values of K due to 

larger sharing factor of analog peripheries, hence smaller area 

overhead of DACs and sensing circuitry (Fig. S2). This trend 

does not hold for Inception-v1 in which smaller weight kernels 

result in the VMM block under-utilization and lower weight 

packing efficiency which outweigh the gain in peripheral 

circuitry area efficiency.  

The results for different networks indicate K = 64 and AR ≈ 

2 as a semi-optimal design point for which block utilization and 

load/store bus energy/delay are somewhat balanced. Detailed 

performance report and area/energy breakdowns for this design 

point are presented in Table II. As these results show, the 

energy consumption is dominated by data transfer and 

intermediate data storage for DNNs with smaller size weight 

kernels, such as Inception-v1 and ResNet-152 networks. On the 

other hand, the energy consumption is dominated by sensing 

circuitry and DACs, even despite larger accelerator area (and 

hence larger data transfer energy consumption) for GNMT 

inference task. This is because GNMT inference involves larger 

size VMM operations (weight kernels), which ultimately leads 

to larger compute-to-communication ratio and allows to take 

better advantage of analog-domain computing. Also, note that 

area overhead of high-voltage programming/erasure and VMM 

peripheral circuits is quite low (as compared to other NVM-

based accelerators) due to their effective sharing, and, in fact, 

the area of aCortex is dominated by FG memory cells.  Thus, 

the detailed results show that the integration density is one of 

the key properties of memory devices for the energy-efficient 

inference accelerators. 

The performance comparison of aCortex against its major 

fully digital [5-7] and mixed signal [23, 24] competitors shows 

that aCortex achieves a significantly higher performance, 

especially for mobile/IoT applications, for which the storage 

efficiency (MB/mm2), and EE are the most important metrics 

(Fig. S3). In order to make a fair comparison, we performed a 

highly optimistic projection of the performance metrics for the 

mixed-signal architectures to 55-nm, 4-bit design point. 

According to these estimations, aCortex achieves ~28×/~65× 

improvement in EE over ISAAC [23] / PUMA [24], while 

maintaining a comparable SE and enduring a relatively small 

drop in throughput (~0.3×/~0.4×). Note that these architectures 

do not consider the overhead of programming/erasure circuitry 

which could impact the performance results.     

V.  CONCLUSION 

This paper discusses aCortex, a novel multi-purpose mixed-

signal architecture for accelerating neuromorphic inference. 

The presented architecture is optimized for energy efficiency, 

which is achieved by performing most of the computations and 

some of the data transfer in the analog domain and by 

maximizing sharing of peripheral and programming / erasure 

circuitry among VMM blocks. Simulation results for 4-bit 

aCortex implemented with embedded NOR flash memory in 55 

nm process show record-breaking energy efficiency at 

favorable area efficiency as compared to previously suggested 

mixed-signal accelerators. 

 Though latency of aCortex is already sufficient for practical 

applications, its speed and computing throughput can be further 

significantly improved by performing more VMM 

computations in parallel, overlapping data transfer over the 

busses and VMM computations, and pipelining and/or 

increasing the bandwidth of the buses. Such modifications may 

require increasing the bandwidth of main memory and 

designing controller/ISA capable of handling multiple layer 

operations, and will naturally reduce the energy efficiency. 

Understanding energy efficiency – latency tradeoffs of aCortex 

architecture is one of the important future research goals. 

 

TABLE II. ACORTEX SYSTEM-LEVEL RESULTS AND BREAKDOWNS *  

 Inc.-v1 ResNet-152 GNMT 

Network Specification 

Number of Parameters 7.2×106 5.52×107 1.3×108 

Number of Operations 5.2×109 2.0×1010 2.6×109 

Architectural Specification 

K 64 64 64 

M 38 80 128 

N (top/bottom) 16/18 48/48 64/64 

Main Memory Capacity 1 MB 

Number of Memory R/W 3.3×105 8.1×105 1.7×104 

Main Memory Utilizat. (%) 47.8 59.8 5.07 

VMM block Utilization (%) 67.5 87.6 100 

Area Breakdown (%) 

Main Memory 17.3 4.4 2.2 

Sensing Circuitry 15.6 23.5 25.1 

FG Arrays 24.5 36.8 39.3 

DACs 4.5 6.8 7.3 

Neuron Blocks 0.06 0.04 0.03 

Programming/Erasure** 26.5 14.2 11.3 

Others 11.5 14.2 14.8 

Energy Breakdown (%)  

Main Memory 36.3 23.2 10.9 

Sensing Circuitry 16.4 12 33.6 

FG Arrays 3.5 2.5 7.1 

DACs 6.8 4.9 13.8 

Neuron Blocks 0.8 1.1 0.9 

Buses 30.1 41.4 16.2 

Leakage 3.3 13.5 16.8 

Others 2.8 1.4 0.7 

Performance Summary 

Area (mm2) 37 146 293 

Power (mW) 20.6 26.5 44.5 

Inference Time (ms) 2.37 6.72 0.16 

EE (TOp/J) 97 106.2 335.8 

Throughput (TOp/s) 2.00 2.9 14.94 

* Because of more optimal overlapped execution and refined estimates for 

DAC circuits, the numbers are slightly adjusted compared to preliminary ones 

reported in Ref. [19]. ** The area overhead of programming/erasure circuitry 
is estimated as (245.5M +120N)×K µm2. 
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SUPPLEMENTARY INFORMATION 

S.I.   NEURAL LAYERS AND WEIGHT-STATIONARY HARDWARE 

COMPATIBILITY 

Artificial neural networks (ANNs) consist of a common core 

computing “neuron” cell. Capturing the basic behavior of its 

biological counterpart, the artificial neuron calculates the 

weighted summation of inputs passing through a (non)linear 

activation function, f(), as 𝑦 = 𝑓( 𝑥𝑖𝑤𝑖
𝑚
𝑖 1 ) where x and w are 

inputs and weights, respectively. Targeting various 

applications, different multi-layer ANNs with various layer-

types (i.e. neuron connectivity and activation functions) have 

been developed [1]. We next briefly review the layer operation 

for today’s most popular ANN models, which, e.g., occupy 

95% of Google’s data center workload [5], and present their 

weight-stationary hardware-friendly re-arrangement.  

A. Fully-Connected (FC) Layer 

FC is the most common ANN layer, e.g. in multi-layer 

perceptron (MLP) networks, which are used for classification, 

prediction, etc., and convolution neural networks (CNN), which 

are mainly used for image classification/recognition [1]. In the 

FC layer, each neuron in the input layer feeds all the output 

neurons through a set of weights. As shown in Fig. S1a, FC 

layer can be re-organized as a weight-stationary VMM 

followed by an activation function. In such VMM, weight 

matrix (green) is stationary, and the input elements (blue) are 

vertically shared and propagated through all the weight 

columns at the same time. Accordingly, all weight locations 

simultaneously perform multiply-and-add operation, and the 

outputs (shown with orange color) are calculated in parallel. 

B. Convolutional (CNV) Layer 

CNV is the core neural layer of CNNs, the dominant network 

in computer vision, which uses a special connectivity pattern to 

efficiently exploit the spatial locality of inputs while extracting 

image features. This layer type includes multiple channels of 

3D weight matrices, each applied over the whole 3D input data 

in a sliding window fashion, to produce its corresponding 

output feature map as shown in Fig. S1b. This figure also shows 

our target scheme to map the CNV operation into a weight-

stationary VMM structure. In this scheme, CNV operation is 

performed in a row-first manner in which one output pixel (for 

all the channels) is calculated at a time. At the input, the CNV 

row-wise data reuse is exploited using multiple “load and shift” 

chains of input buffers. This input buffer array feeds a 

stationary 2D weight matrix, which is a reshaped and stacked 

representation of the 3D CNV filters. Accordingly, the output 

vector represents different channels of one output pixel location 

at a time. Note that in this scheme, different input channels of 

each input pixel location (CI elements) can be grouped in one 

input data pack without disturbing the data flow (Fig. S1b). 

Moreover, for the strides larger than unity (s > 1), every s 

adjacent pixels in the row direction can also be grouped into one 

input data pack. Hence, for a given CNV operation, the data 

pack size can be any divisor of CI×s. 

C. Recurrent Layer 

Recurrent neural layers aim to extract and interpret the 

information encoded into the temporal locality in a sequence of 

inputs using a feedback connection and a sequential operation. 

Long-short-term-memory (LSTM) is one of the most popular 

recurrent layers, which is widely used in language translation 

and speech recognition [1]. Fig. S1c shows the original LSTM 

structure and its weight-stationary re-arrangement. As shown, 
 

 

Supplementary Information Fig. S1. Network structure and hardware-friendly representation of the most popular neural layers: (a) fully-connected layer, (b) 

convolution layer, and (c) long-short-term-memory (LSTM) layer, all targeting a weight-stationary dataflow scheme. Note that the red arrows represent the 
dataflow, and the numbers represent location index.  
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the LSTM’s computational effort is dominated by VMM 

operations for which the input vector is obtained via 

concatenating the current element of the input sequence and a 

hidden state [ht-1, xt]. Accordingly, the VMM’s weight matrix is 

obtained by stacking the forget (f), candidate (C), input (i), and 

output (o) weight matrices. The rest of the LSTM computation 

includes basic element-wise vector operations and recurrent 

data transfer for the next step. Note that unlike CNV, the LSTM 

computation includes bipolar inputs and multiple activation 

function types which calls for a more generalized computing 

scheme supporting such cases – see Fig. 7b and its discussion 

in Section IV.A. Moreover, LSTM layers typically have very 

large weight matrices resulting in a larger compute-to-

communication ratio. Hence the computing efficiency typically 

plays a more significant role (compared to data transfer 

efficiency) in the overall efficiency of inference task for such 

layers. 

S.II.   INSTRUCTION SET ARCHITECTURE DETAILS 

The main controller instructions are: 

Agent configuration: CNF agent, (mstr), (nstr/bstr) 

Configure the agent (i.e. loader/collector) with appropriate 

parameters such as memory stride (mstr) and neuron/buffer 

stride (nstr/bstr) which are immediate fields in the instruction. 

Load: M2B   rm, rb, cnt, smode, sen 

Command the loader to load cnt data packs (each K words) 

starting from initial memory address specified by register rm 

into the digital buffer blocks starting from the initial address 

specified in register rb (assuming that strides are pre-

configured). smode field specifies the new value loaded to the 

shift bit in each digital buffer block, and sen enables “load and 

shift” operation.  

Compute: VMM  nsf, af 

Command the operator to start VMM computation while 

simultaneously configuring the neuron scaling factor (nsf) and 

activation function type (af).  

Collect: N2M  rn, rm, cnt 

Command the collector to collect cnt data packs (each K 

words) from neuron blocks starting from initial address 

specified by register rn into the memory locations starting from 

initial address specified in register rm (assuming that strides are 

pre-configured).  

Row select: RSEL n_addr 

Set the row select bit in the neuron block specified by n_addr 

to “1”. 

Synchronize: WAIT agent 

Hault the main controller until the target agent finishes its 

task. 

Reset: RST 

Reset all the column and row select bits. 

The remaining instructions include simple arithmetic (i.e. 

add/sub, addi/subi) and (non-)conditional control (i.e. jmp, 

djnz, call, return) instructions. Note that for the considered 

applications, all data in main memory are used before they have 

to be refreshed.  Therefore, for simplicity, we will not discuss 

refresh operation, though its implementation is straightforward 

and can be performed explicitly using either M2B instruction or 

automatically by memory controller. 

S.III   PRIOR WORK 

At the system-level, many efforts have been recently made to 

exploit the efficiency of mixed-signal operators and develop an 

efficient DNN/RNN processor architecture [23-30]. 

Specifically, ISAAC [23] and PUMA [24] architectures are 

2D mesh structure of tiles where each tile contains several small 

fixed-size ReRAM-based VMM units (typically 128×128) with 

dedicated input/output peripheral circuitry. In these 

architectures, one shared memory is implemented in each tile 

for storing intermediate data and communication between 

VMMs, while the communication between the tiles are 

performed through a shared 2D bus structure. Such heavily 

granular multi-core design approach is followed with the aim of 

increasing the utilization, minimizing the data transfer 

overhead, and maximizing throughput via pipelining and 

parallel processing. However, data conversion and 

communication overhead due to partial VMM operation, static 

power consumption of the analog blocks, large area overhead 

of the neurons / DACs / ADCs, and large control and 

communication overhead between tiles/VMMs limit the 

performance of such architectures, especially when running 

relatively complex computational graphs such as of Inception 

and ResNet.  

RENO [25] and Harmonica [26] are, respectively, a ReRAM-

based reconfigurable neuromorphic computing accelerator and 

a heterogeneous computing system based on such accelerator. 

This accelerator utilizes a mixed-signal centralized mesh 

interconnect network to reduce DAC/ADC overhead while 

increasing the throughput via passing the analog output directly 

to the next layer. However, this approach is only optimized for 

fully-connected multi-layer networks and associative 

memories. Moreover, despite lowering the DAC/ADC 

overhead, the accelerator performance is impacted by costly 

mixed-signal routers. 

Pipelayer [27] explores the trade-off between hardware 

resource of ReRAM array and performance utilizing the notion 

of parallelism granularity targeting both training and inference. 

This architecture uses a spike-based integrate and fire scheme 

to eliminate DAC/ADC overhead. However, input multi-level 

encoding and output spike generation overhead still results in 

inferior efficiency. 

PRIME [28] is a ReRAM based architecture proposing the 

application of morphable memory blocks with small extra add-

on circuitry which can be configured as computational unit on 

demand. Such morphable memory blocks result in a compact 

and energy efficient design by reusing the memory block 

peripheries for computation. However, the performance of 

PRIME is negatively impacted by lack of data-reuse for 

convolution, high data conversion/transfer overhead due to 

small analog-domain VMM, i.e. kernel breakdown, and latency 

overhead due to SA/neuron sharing. Additionally, the very 

limited switching endurance of ReRAM makes the main idea of 

PRIME hardly practical. 
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RAPIDNN [29] is also a ReRAM based architecture which 

aims to improve the hardware performance through minimizing 

the required computing precision while achieving similar 

network accuracy. Precision is reduced by utilizing a 

reinterpretation mechanism (non-linear quantization of 

inputs/weights/outputs based on statistical data). Moreover, in 

this architecture all neural functionalities are implemented 

inside the memory using a direct digital lookup table-based 

technique which eliminates costly DAC/ADC/neuron. 

However, semi-sequential VMM operation and lack of data-

reuse for convolution result in performance drop for large scale 

neuromorphic applications especially those involving 

convolution operation. Besides, the architecture suffers from 

data encoding overhead despite eliminating data conversion 

overhead. 

 

 

 

 

Supplementary Information Fig. S2. Design space exploration for aCortex performance metrics, i.e. energy efficiency (TOp/J), throughput (TOp/s), and area 

(mm2), with respect to the key architectural parameters, i.e. granularity (K) and aspect ratio, (AR=M/N) for three benchmark neural networks (GNMT-1024 RNN; 

ResNet-152 and Inception-v1 DNNs). 
 

 
Supplementary Information Fig. S3. (a) Performance comparison of aCortex with the state-of-the-art digital and mixed-signal neuromorphic processor 
architectures. Except for TPU, all performance results are based on simulations.  * Highly optimistic mapping of performance metrics to 4-bit computing precision 

and 55-nm technology node. #The performance numbers do not include overhead of external memory access (weights/intermediate data). (b) Energy efficiency 

versus throughput scatter plot for the approaches listed in (a). The size of bubbles represents the area of the processors. 
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