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Abstract—We introduce “aCortex”, an extremely energy
efficient, fast, compact, and versatile neuromorphic processor
architecture suitable for acceleration of a wide range of neural
network inference models. The most important feature of our
processor is a configurable mixed-signal computing array of
vector-by-matrix multiplier (VMM) blocks utilizing embedded
nonvolatile memory arrays for storing weight matrices. Analog
peripheral circuitry for data conversion and high-voltage
programming are shared among a large array of VMM blocks to
facilitate compact and energy-efficient analog-domain VMM
operation of different types of neural network layers. Other
unique features of aCortex include configurable chain of buffers
and data buses, a simple and efficient instruction set architecture
and its corresponding multi-agent controller, programmable
quantization range, and a customized refresh-free embedded
dynamic random-access memory. The energy-optimal aCortex
with 4-bit analog computing precision was designed in 55 nm
process with embedded NOR flash memory. Its physical
performance was evaluated using experimental data from testing
individual circuit elements and physical layout of key components
for several common benchmarks, namely Inception-vl and
ResNet-152, two state-of-the-art deep feedforward networks for
image classification, and GNTM, a Google’s deep recurrent
network for language translation. The system level simulation
results for these benchmarks show energy efficiency of 97,106, and
336 TOp/J, respectively, combined with up to 15 TOp/s computing
throughput and 0.27 MB/mm? storage efficiency. Such estimated
performance results compare favorably with those of previously
reported mixed-signal accelerators based on much less mature
aggressively scaled resistive switching memories.

Index Terms — Artificial Neural Networks, Neuromorphic
Inference Accelerator, Mixed-Signal Circuits, Nonvolatile Memory,
Floating-Gate Memory, Machine Learning

I.  INTRODUCTION

The rapidly growing range of applications of machine
learning for image classification, speech recognition, and
natural language processing along with maturing of the neural
network algorithms, especially for deep learning, have led to an
urgent need in a specialized neuromorphic hardware [1-3]. At
least for the next several years, the demand for fast, low-
precision inference accelerators will remain higher than for
higher-precision systems for network training, as projected by
NVidia Corp., a leading company in the machine learning
hardware [4].

The vast majority of the proposed neuromorphic accelerators
from industry and academia are digital [5-8] — see also
extensive review of various proposals in [2]. The most natural
approaches, however, are based on analog and mixed-signal
circuits [9-30]. Though the core principles of analog computing

had been developed almost four decades ago [9, 10], its efficient
implementations were enabled only recently [14-30] due to the
emergence of novel continuous-state, nonvolatile, memory
devices [31, 32]. Such memories enable very dense
implementation of weights and of in-memory computing for
vector-by-matrix multiplication, the most common operation in
machine learning. Among different candidates, the resistive
switching memories, including phase change and conductive
bridge memories, metal-oxide memristors (also known as
ReRAM or RRAM [31]) are perhaps the most promising due to
their excellent scaling prospects. Their technology, however, is
still in need of improvement, which is less of a problem for
another excellent candidate, floating gate (FG) memories, e.g.
those based on redesigned commercial-grade embedded NOR
flash [22, 32, 33]. Though planar FG cells are less dense than
passively integrated memristors, their main advantage is FG
cell amplification, which simplifies and reduces overhead of
peripheral circuitry. It is worth noting that the limited
endurance of memristors and FG memories is less of an issue
for inference applications, since the weights are typically
reprogrammed infrequently.

In this paper, we present a multi-purpose inference
accelerator, dubbed “aCortex”, that is designed to capitalize on
in-memory mixed-signal computing with nonvolatile
memories. Though the idea of employing mixed-signal VMM
based on nonvolatile memories for multi-purpose inference
accelerators is not new [23-27], our work is novel in several
aspects. Its key advantage is more extensive use of analog
computing, not only for VMM computation but also for data
transfer. Such approach minimizes the area/energy/delay
overhead of the sensing and data conversion peripheries which
are key factors limiting the efficiency of the mixed-signal
neural accelerators [23-30]. A more compact design, in turn,
reduces communication overhead due to shorter distances for
data transfer. Moreover, data transfer overhead is further
reduced by using a configurable chain of buffers exploiting the
data reuse for convolution operation, programmable data buses
that can be efficiently tailored on the fly to a particular
utilization of mixed-signal array, and a custom-designed
refresh-free embedded dynamic random-access memory
(eDRAM) tailored to meet the retention time requirement. We
also propose a simple and efficient instruction set architecture
(ISA) along with a multi-agent controller, which takes
advantage of the eligible time-overlap between consecutive
micro-operations while minimizing the instruction memory
(IM) requirement. Finally, we developed a system-level
estimator which imports the target network’s computational
graph along with experimental and circuit-level simulation
results for different architecture components, including digital-
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Fig. 1. (a) aCortex top-level architecture. The location of the components crudely corresponds to the actual layout and is chosen to reduce data transfer overhead.
For clarity, the architecture is shown for N = M = 4 and most of the control lines and the circuitry for testing / weight tuning are omitted. (b) Example of a weight
kernel mapping on aCortex VMM blocks, layer-by-layer operation scheduling, and corresponding content of main memory over time. (c) aCortex active blocks/bus

portions during the execution of the layer #1 of the neural network shown in (b).

to-analog converters (DACs), analog-to-digital converters
(ADCs), sense amplifiers, memory cells, digital blocks, and
buses, maps the weight kernels onto the two-dimensional (2D)
array of nonvolatile memory (NVM) blocks, and finally
produces a comprehensive performance report considering
various non-idealities such as leakages and line parasitics.
Using such simulator, we perform a detailed performance
analysis based on the actual layout in 55-nm process with
embedded NOR flash memory. Note that unlike many
proposals based on emerging memory technologies, core
components have been previously taped out using commercial
processes and successfully tested and we used such
experimental data in our analysis.

In Supplementary Information (SI) Section S.I we introduce
today’s major neural layer types and present their hardware-
friendly re-arrangement targeting a  weight-stationary
implementation. The overall aCortex architecture and operation
scheme, as well as the internal structure of its main components
are presented in Section II. This section also introduces the
proposed instruction set architecture (ISA) along with the
controller architecture. More details on the ISA are provided in
Section S.II. The general framework for mapping applications
into aCortex and our case study for three representative neural
network inference tasks are provided in Section III. In Section
IV, we provide the circuit diagram and experimental/simulation
results for FG-based implementation of aCortex’s core
computing units in 55-nm technology node. We then perform a
design space exploration for architectural parameters and
provide a detailed system-level report for a semi-optimal design
point. Related prior works are discussed and compared to
aCortex in Section S.III. The paper is concluded in Section V,
where important future works are outlined.

II. ACORTEX ARCHITECTURE
A. Top-Level Architecture

As shown in Fig. 1a, the major processor’s components are
auxiliary unit (AUX), microcontroller, main memory, and two

mixed-signal processing units (MSPU). Each MSPU includes a
configurable chain of input digital buffer blocks, a flexible 2D
array of VMM blocks, and an array of output neuron blocks.
The architecture can be loosely characterized as Harvard
weight-major type [2]. The instructions are stored in
microcontroller’s dedicated SRAM-based instruction memory.
All frequently changing data, i.e. input, output, and temporary
data, are kept in eDRAM-based main memory, while fixed
weights, which would be typically precomputed at ex-situ
training, are stored in NVM arrays of MSPU’s VMM blocks.
The inference task is specified by a program code based on
custom instructions and corresponding set of neural layer
weight matrices. Assuming the code is loaded, and all weights
are set up accordingly, the inference is computed by loading
input data to the main memory, executing a code to perform the
inference task, and storing the computed results back in the
main memory. In particular, the stationary weight matrices
corresponding to various network layers are packed in the 2D
array of VMM blocks (Fig. 1b), and the inference is performed
in a layer-by-layer manner by sequentially reading the layer
input from the main memory into the digital buffer blocks,
activating the appropriate VMM and neuron blocks to perform
the target neural layer, and then temporarily storing the
intermediate results in the main memory for computing the next
layer. Note that some of the neural layers, such as CNV and
LSTM require multiple VMM operations with various input
data on the same weight matrix to complete. In this case, the
corresponding VMM/neuron blocks are activated multiple
times during the execution of each neural network layer - more
details on that are provided in Sections III and S.I below.
Flexible activation of VMM/neuron blocks enables compact
implementation of a set of neural network layers with various
VMM sizes while maximizing the energy efficiency by cutting
off the active power consumption of unutilized VMM/neuron
blocks. Moreover, aCortex minimizes the energy overhead of
data transfer by cutting off the unutilized portion of data buses
and effectively reducing their length via disabling further data
propagation. For example, Fig. 1c shows the active blocks and
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Fig. 2. (a) Schematic diagram of mixed-signal VMM and neuron blocks
including their connectivity and required control signals (blue). Neuron block
includes four stages, namely global sensing, re-scaling unit, activation
function, and ADC. (b) The control circuitry, which facilitates flexible
activation of the target VMM/neuron block, and cuts unutilized portions of the
VMM input and store buses. Square labeled with ‘c’ denotes comparator for
selecting a specific neuron. For clarity, some of the details, e.g. circuitry for
setting up enable bits and some neuron control circuitry, are not shown.

buses when the processor is computing the first layer of the
neural network shown in Fig. 1b.

All inference data, i.e. inputs and outputs of the MSPU’s
VMM blocks, as well as effective weight precision, are p bit. A
set of p bits is defined as one data word. We specifically
consider p = 4, which is typically sufficient for running state-
of-the-art image classification inference without loss of
functional performance [34, 35]. Blocks and buses are sized
according to a global architecture parameter K, defined as the
granularity of neural computation and data transfer on aCortex.

B. Main memory

Main memory is implemented with eDRAM technology,
whose retention time is tailored for a refresh-free operation. In
particular, it is organized as an array of eDRAM blocks, each
with Kp-bit I/O data port. The multi-banked structure allows to
read and write K data words simultaneously, i.e. to supply data
to one digital buffer block and receive data from one neuron
block. The required memory capacity and its retention time are
calculated by monitoring the memory content and the longest
lifetime of intermediate data for the inference of the target
neural networks (Fig. 1b).

C. Mixed-Signal Processing Unit: Array of VMM Blocks

Each MSPU is comprised of two N-by-M arrays (quadrants)
of VMM circuit blocks located on each side of a column with

N neuron blocks. Each VMM block features K-by-2K array of
NVM cells, which is suitable for implementing analog-mode
differential K-by-K VMM operation; K p-bit front-end DACs;
and 2K back-end local sensing circuitry (Fig. 2a). The data to a
single column of VMM block array is fed via Kp-bit wide
digital programmable “VMM input” bus from the
corresponding distributed memory buffer block. The VMM
block outputs are connected via analog “VMM output” buses,
which are 2K lines wide, to the corresponding neuron blocks.
More circuit details on the data conversion and
sensing/summation for the considered VMM design based on
2D-NOR flash memory technology is provided in Section I'V-
A.

Column/row enable lines (denotes as CE/RE) span the
MSPU quadrants in vertical/ horizontal directions and are used
to activate the desired VMM blocks at each processing step.
Specifically, a given VMM block is activated only if its
compute enable signal (CoE = CE A RE) is equal to “1” (Fig.
2b). These control lines allow to flexibly implement a wide
range of VMM sizes (from KxK to 2MKxNK) while cutting off
the active power consumption of unutilized VMM/neuron
blocks. Moreover, a Kp-bit wide VMM input bus repeater with
horizontally shared enable control line (RBE) is integrated in
each VMM block (Fig. 2a) to speed up data propagation as well
as to minimize its energy overhead by cutting the unutilized
portion of the VMM input bus. The logic circuitry and single-
bit registers producing CE and RE/RBE control lines are
integrated in digital buffer and neuron blocks, respectively.

The programming/erasure circuitry consists of decoders and
level-shifters, which are shared by NVM arrays of VMM blocks
and are placed at the outer margins of the VMM block arrays
(Fig. la), and row/column access switches, placed at the
periphery of each VMM block, controlling the applied signals.

D.Mixed-Signal Processing Unit: Neuron Block

A neuron block includes K identical neuron units. All units
perform in parallel summation/integration of the analog data
supplied from the corresponding VMM output lines, re-scale
the integrated data (if needed), apply the selected activation
function, and finally convert the results to digital domain using
ADCs (Fig. 2a). The rescaling unit enables a wide range of
quantization ranges, e.g. needed to operate with different VMM
input sizes, via adjusting neuron’s analog input amplitude to
match the fixed operating input range of the activation functions
and ADC units. The activation function can be selected from
linear, rectified linear, sigmoid, or hyperbolic tangent types, to
support a wide range of neural layers (Section S.I). Neuron
block outputs are digitized with p-bit ADCs and temporarily
latched in their embedded digital memory. The digital results
are then passed via Kp-bit wide digital “store” bus to the main
memory. Such data transfer, i.e. the ‘“store” operation, is
performed in one step per neuron block, so that, e.g., a total of
N steps is required to transfer data from all neurons in one
MSPU. The specific number of processor cycles required for
each step varies based on the location of the neuron block, i.e.
its distance from the main memory. In particular, the store bus
data are passed via a Kp-bit 2-to-1 multiplexer in each neuron
block. These multiplexers act as a bus repeater for the utilized
portion of the store bus, and is also used to decouple and
deactivate its unutilized portion.
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Fig. 3. (a) A detailed circuit implementation of the digital buffer block (DBB).
Control circuitry is shown with blue color. Square labeled with ‘c’ denotes
comparator for selecting a specific DBB. For clarity, some of the details are not
shown. (b) Examples of three DBB chain configurations scenarios.
Specifically, scenario #1 shows loading (sequentially) data exclusively from
the load bus. Scenarios #2, 3 show loading data from load bus into DBBs and
simultaneously shifting data between DBBs connected in a two-block shift
register (#2) or a four-block shift register configuration (#3).

The RE and RBE signals (which control the target neuron
block and the corresponding VMM blocks it serves, and cut the
VMM input bus, respectively) are configured with “row-select”
single-bit flip-flops of the neuron blocks (Fig. 2b). Specifically,
the row-select flip-flops of neuron blocks are connected via
XOR gates, with output of XOR gate directly controlling RE
line. To preselect RE signals for the contiguous set of rows (e.g.
rows 10 through 15), row-select bits of neuron blocks in the first
(10), closest to the main memory, and in the last+1 (16) row of
the selected set of rows are set to “1”, while others are set to
“0”. This implementation results in activating all selected rows
(i.e. setting RE =1 for rows 10 through 15). On the other hand,
using a simple NAND gate which detects a transition from
selected to unselected row, RBE is de-asserted only for the
last+1 row of the selected group of rows (Fig. 2b), which
effectively cuts the downstream VMM input bus.

E. Mixed-Signal Processing Unit: Digital Buffer Block

The data to digital buffer blocks (DBB) in each quadrant are
supplied from main memory via Kp—bit wide digital “load” bus
(Fig. 1a). The DBB’s internal logic circuitry is designed to
flexibly support various data flow scenarios - from simple load
(Fig. 3b: scenario #1) to “load and shift” configuration (Fig. 3b:
scenarios #2, 3). The flexible “load and shift” configuration
enables efficient computation of CNV layers with a wide range
of specifications (filter size and stride) while taking advantage
of the row-wise data reuse (Fig. S1b).

Specifically, the input to each DBB is supplied by a Kp-bit-
wide 2-to-1 multiplexer, which selects the input source between
the load bus (i.e. main memory) and the previous DBB. For
simplicity, we assume that only one DBB can be loaded from
the load bus at one step, by setting the address of the target DBB
on the buffer address bus. Similar to the data transfer from
neurons, the number of processor cycles required for each step
varies based on the location of the DBB.

The shift operations are supported by properly configuring a
“shift-bit” flip-flop in each DBB and are masked by “shift
enable” line. In particular, the shift register configurations are

programmed by setting shift bits to “1” for all the DBBs except
for the first block of shift register (Fig. 3b). Setting shift bit to
“1” of a particular DBB is performed concurrently with loading
that DBB from load bus by asserting “shift mode” control line.
(Note that row-wise execution of the CNV layer typically starts
by loading all DBBs with row data from main memory, with all
shift operations disabled by de-asserting shift enable signal line,
so that all shift bits are typically configured at this time.) Once
shift bits are properly configured, simultaneously with loading
new data into DBB, the already loaded data in DBBs can be
shifted between the remaining blocks of that shift register (e.g.
shifted to the right in scenario #2 and #3 of Fig. 3b). This is
performed with internal “master shift command” signal, which
enables latching data from previous DBBs of the specific shift
register whenever its shift bit and enable signals are set to “1”".

Additionally, each DBB has a single-bit SR latch to specify
the target VMM block columns, i.e. to set column enable (CE)
signal, which is configured similarly to shift-bit flip-flop. It also
has a bus repeater on the load bus, which is disabled when the
DBB is loaded, to stop downstream data propagation on the bus
(Fig. 3a).

F. Mixed-Signal Processing Unit: VMM Computation

Assuming that the target VMM columns are pre-selected
(CE=1) and the desired row-select bits are set, VMM operation
is performed by applying a positive pulse to “VMM_OP”
command signal. This signal enables the neuron blocks
associated with the selected rows as well as their input VMM
blocks for which CE=1 via propagating through the RE and
then CoE lines. Naturally, the VMM _ OP pulse width should be
longer than the worst-case end-to-end VMM operation time, i.e.
the time it takes from the moment inputs are applied to DAC to
that of latching ADC outputs.

G. Auxiliary Unit

Auxiliary unit (AUX) is provisioned to perform less frequent
digital computations in neuromorphic inference. In particular,
this block is used to perform in parallel K p-bit vector-by-vector
operations such as additions, subtractions, and fixed-precision
multiplications. It also performs comparison in max-pooling
operation, which is typically used in CNNs. (An average
pooling, another typical operation, can be implemented directly
in a mixed-signal domain with properly adjusted weights.)
AUX consists of an array of arithmetic logic units (ALUs),
multipliers, and internal registers. During max-pooling
operation, the register holds the current maximum value and
feeds it to one of the ALU’s inputs to compare to the next input
value fed from the main memory through the load bus. The
outputs of AUX blocks can be written back to main memory via
store bus.

H. Controller and Instruction Set Architecture

The most typical operations on aCortex involves loading
multiple DBBs with data from the main memory, performing
vector-by-matrix computation, and then moving the results
from neuron blocks back into the main memory. Accordingly,
aCortex controller includes three separate agents as loader,
operator, and collector, each dedicated to performing one of
these frequently-used operations (Fig. 4a). These agents are
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TABLE I. MICROARCHITECTURAL PARAMETERS

Parameter Description Typical

Input/weight/computing precision; also bit length of 4

P each data word

M # digital buffer blocks / columns of VMM blocks in 3
one MSPU quadrant

N # neuron blocks / rows of VMM blocks in one MSPU 64
Computation granularity; also VMM block

K dimensions, buffer/neuron block size, and digital bus 64

and main memory I/O width in terms of words

configured and synchronized using a main controller. Such
multi-agent structure shrinks the code size, enables eligible time
overlapping between these operations, and minimizes the
engagement of the main controller, which in turn reduces the
controller time overhead.

The main components of each agent are listed in Fig. 4c. The
loader is responsible for reading data from the main memory
into the DBB/AUX blocks using the load bus. This agent uses
two counters to support burst mode in which multiple data
packs with a pre-configured main memory/DBB initial
addresses and strides are loaded. Moreover, the loader uses a
load bus counter to adjust the load time based on the physical
distance between the main memory and the target DBB. Such
distance is extracted from the most significant bits of the DBB
address considering that the location of neuron and DBBs are
counted from the center of the chip outwards, starting from 1.
For example, load time = memory read time -+
ceiling(DBB_address/32) for the case when passing data on the
load bus through 32 DBBs takes one controller cycle. The
collector which 1is responsible for storing back the
neuron/AUX’s output to the main memory has a similar
structure to the loader. The operator has an embedded counter
to produce the appropriate pulse width of VMM_OP control
signal for the VMM operation. It also holds the neuron scaling
factor, the type of activation function selector, and AUX
function control bits. The main controller instructions are
further detailed in Section S.II.

III. APPLICATION MAPPING

Application mapping process of a given neural network on
aCortex involves checking accelerator resource requirements
(i.e. main memory and MSPU) and producing a weight
mapping and machine code to setup the accelerator. Similar
process is also used in the accelerator design to estimate the
required main memory and MSPU resources, and to optimize
their specifications (M, N, K) for the target range of
applications. Such process starts with extracting the
computational graph and finding the optimal topological
partitioning and ordering of the computational steps (Fig. 5a).
In such graph, the vertices are computation kernels (i.e. neural
layers) while the edges are input/output data. In general, finding
the optimal sorting of a given graph is an NP hard problem.
However, layer-by-layer operation scheme of aCortex, resulted
from our energy-optimal design, reduces the complexity of the
problem. After obtaining the graph and scheduling order, the
next step is to check the memory requirement throughout the
inference steps. In aCortex, 3D data are stored in the main
memory in a row first, column second, and channel/feature map
third order (Fig. 5b). Following this order, multiple channels of
one data pixel (and adjacent pixels in a row in the case of CNV
stride >1) are always grouped into K-word-long data packs (Fig.
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Fig. 4. (a) Top-level representation of the multi-agent controller and
connectivity between different agents and the rest of the architecture, (b)
examples of agent operation timing diagram when the load operation is
completed before (scenario #1) and after (scenario #2) the collect operation,
and (c) the main components of each controller’s agent.

S1b). One pack of K-word data is then mapped into a word line
of main memory block and can be read/written simultaneously.
Such data placement in the main memory enables burst mode
read/write using controller’s loader/collector. Note that due to
quantization such scheme may result in underutilized memory,
e.g. when the number of channels/feature maps is not divisible
by K.

Considering such data arrangement, the memory usage after
each inference step (i.e. neural layer) is calculated by drawing
a cut in the computational graph which separates the already
computed portions of the graph (network processing steps)
from the upcoming ones, and adding up all the edges that are
crossed. Since during execution of each layer both its inputs and
outputs are present in the main memory, the upper-bound for
the total memory usage is calculated by adding up the memory
usages for two consecutive cuts and subtracting their overlap
edges.

We applied this algorithm to three studied networks, namely
Inception-vl [36] and ResNet-152 [37] DNNs for image
classification, and GNMT [38], a Google’s neural machine
translation network featuring a 16-layer LSTM network with
bi-directional encoder layers, with the vector length of 1024 and
the sequence size of 10. For example, Fig. 5¢ shows such
process for an Inception neural layer and an unfolded 2-layer
LSTM network. As this figure shows, the memory requirement
is limited by the initial layers of the DNNs (for 4-bit
computation with the data pack quantization of K = 64).

In the next step the weight matrices are mapped into MSPUs
using a greedy search algorithm (Fig. 6a), for which input
parameters are the number of available MSPU’s columns (M),
architecture granularity parameter (K), the number of tries
(epoch), and the list of weight kernels (LoK). In one iteration
of the algorithm, the kernels are first randomly ordered and then
greedily mapped in a row-first manner, in the given order, to
the array of VMM blocks. Such procedure is repeated epoch
times and mapping configuration with the smallest number of
occupied VMM blocks is selected. Furthermore, the mapping
process is repeated for different M’ < M to search for a square
shaped mapping of occupied VMM blocks (Fig. 6b) to
minimize the average data transfer distance between MSPU’s
active VMM/neuron blocks and the main memory (and hence
to increase energy-efficiency) — see more discussion on that in
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example showing computational graph cuts for evaluating the amount of main memory occupied during various steps of inference for a single Inception layer (left)
and a multi-layer LSTM network (right). (d) The utilized main memory graph as a function of network processing step for the studied benchmark networks.

[stat, mspu_arr ]=pack(mspu_arr, Kernel)
if (stat = “done”) {
break;}
//if not successful, add an empty row to mspu_arr and try again
mspu_arr = vertcat(mspu_arr, zeros(1,2M))
¥
}
// compare packing from current epoch with the best previous packing
//and replace if more compact packing achieved
if (size(mspu_arr, 2) <N_min {
mSpu_map=mspu_arr;
N_min= size(mspu_arr, 2) }

—~
(o)
~

Inception-vl

\> J

Section IV-B. The results of this optimization process for our
target networks are shown in Fig. 6¢-e.

The mapped locations of weight kernels are then used in the
compilation process to generate the machine code for handling
the data flow and operation of the network. The number of
instructions for initializing and operating each layer type is
estimated for the system-level analysis based on the proposed
ISA (presented in Sections II-H and S.1I).

IV. CIRCUIT DESIGN AND PERFORMANCE EVALUATION
A. 55-nm FG-based Implementation of Mixed-Signal Blocks

While aCortex can be realized with variety of NVM
technologies, the focus of this paper is on a mature industrial-
grade flash-memory technology that have already enabled
extremely compact and energy-efficient implementations of
mixed-signal circuits [20]. The key advantage of such
implementation, as compared to, e.g., those based on resistive
switching devices [31], is the FG cell’s inherent signal
amplification and low operation currents, which greatly relax
the requirement for sensing circuitry gain, and enables very
compact peripheral circuits [20]. Moreover, the experimental
results for the chip-to-chip statistics, long-term drift, and
temperature sensitivity of the FG-based mixed-signal circuit

______________ (d)

) \ ) Large Network
// pseudo code for weight packing function (a) (b) ————————
mspu_map = Weight_packing(M, K, epoch, LoK){ | Medlum Network
Quantize(LoK, K) // quantize List of Kernels (LoK) based on K 1 |
Dim_check(LoK, 2M) // break kernels if input size > 2M : : r—-
N_min=inf. //set min. num. of VMM block columns to infinity 1 1 :
for i=l:iepoch {// pack the kernels “epoch” times and pick the best 1 1 1
Shuffle(LoK) // shuffle list of kernels for each epoch 1 1 1
mspu_arr=zeros(1,2M) // initialize memory array to 1 x2M : : 1
for Kernelin LoK { // pack kernels one at a time 1 1 1
while { 1 b
// search for empty space and set “stat” to “done” if successful 1

e ——
ResNet-152

~_~
(¢”]
~

9T

GNMT-1024

1

128
Fig. 6. (a) Pseudo code for aCortex weight kernel packing algorithm. (b) Preferred mapping locations of various neural network sizes. (c-e) Weight kernel mapping
results for Inception-v1, ResNet-152, and GNMT-1024 for K=64. Each pixel shows one VMM block colored according to the neural layer occupying it.

prototypes strongly attest to suitability of this memory
technology for developing complex, practically-useful neural
accelerators [17, 22]. More specifically, the proposed
architecture was evaluated for the implementation based on
ESF-3 (embedded split-gate flash) technology in which FG
cells were redesigned for analog computing applications [17].

The proposed mixed-signal circuits allow for efficient
implementation of different types of activation functions,
kernel sizes, and quantization ranges, which are essential
features of multi-purpose inference accelerator (Fig. 7a). In
particular, the VMM operation is implemented using gate-
coupled design [17]. In such approach, inputs are encoded as
currents, which are applied to the peripheral FG transistors (Fig.
7a). The weights are encoded in the memory state of the array
FG devices, while peripheral FG device are typically
programmed to the low threshold states (maximum current) for
optimal operation [17]. The multiplication of an input with the
corresponding weight, is performed by a pair of FG transistors,
one at the periphery and one inside the array. The currents from
different array FG devices are summed up on the drain (row)
line at the local sense amplifier to complete dot-product
operation computation.

The front-end input conversion is realized using current
steering (CS) DAC architecture, a viable choice considering its
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low power consumption, compact footprint, and fast turn on/off
time at relatively low precision. A 4-bit PMOS-based CS DAC
circuits source the current into peripheral FG devices.

The developed current-mode global sensing circuit of a
neuron block has excellent wideband current following
behavior and provides very low input impedance, while limiting
drain voltage distortion. To reduce process variation overhead
associated with an offset error, two additional FG devices are
provisioned in each channel (drain line) and are used either to
source or sink the input referred offset current.

The input current scaling of a neuron block is implemented
using a binary-weighted current mirror structure controlled by
the multi-bit digital input (Fig. 7a). As already mentioned in
Section I1.D, this feature is needed to adjust quantization range
in accordance with the maximum VMM circuit output currents
(which would vary, e.g., with the size of the weight kernels),
and hence to minimize losses in functional performance due to
quantization of activation function outputs.

The 4-bit current-mode ADC has a 1-bit per stage cyclic
design which generates the 4-bit digital output in 4 cycles. FG
transistors are also employed for offset/compensation in the
high-speed comparator and to generate reference currents.

The sigmoid and ReLU activation functions are implemented
directly in the ADC, without using any other additional
circuitry, by appropriately choosing reference currents, i.e.
quantization levels of the ADC. Linear and hyperbolic tangent
functions are emulated via input biasing and appropriate weight
scaling (Fig. 7b). DACs/ADCs are designed for unipolar data
and can be reused, without any circuit modification, for bipolar
data by utilizing offset-binary representation. More details on
the circuit structure for the design of PVT-resilient CS DAC
circuit and algorithmic ADC can be found in [20].

Fig. 7c provides the VMM performance results as a function
of K based on the measurements of ESF3 memory devices and
post-layout simulations of peripheral circuitry. These data are
used to estimate system-level performance.

B. Main Memory and Buses in 55-nm Technology Node

The main memory is implemented using asymmetric 2T gain
embedded DRAM cells with boosted power supply [39]. The
retention time of eDRAM cells was changed to 100 ps by
reducing leakage and adjusting biases, with 99.9% bit yield
confirmed by block-level Monte Carlo simulations [39]. The
memory performance was modeled using CACTI tool [40]. We
also developed a bus area/energy/delay model as a function of
bus length and repeater size using post-layout simulations
considering all device/interconnect parasitics.

C. System-Level Results and Design Space Exploration

We have developed a software framework that utilizes the
post-layout energy/speed/area metrics for all the aCortex’s
building blocks (buffers, buses, DACs, ADCs, integrators, and
digital circuits) to evaluate the system-level performance for
any target DNN/RNN network. This framework uses the list of
processing tasks for a given neural network to map the VMM
kernels on the NVM devices embedded in the VMM blocks,
and then generate a detailed performance report for the given
set of architecture specifications. Using such tool, we have
performed a preliminary exploration of architectural parameters
(i.e. K and MSPU aspect ratio, AR = M/N) to optimize the
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Fig. 7. (a) VMM/neuron schematic for the FG-based mixed-signal universal
neural computing scheme supporting both positive/negative input/output as
well as various (non)linear activation functions. (b) The configuration of the
computing elements for various scenarios (desired activation function and
input type). (c) Performance results for a VMM connected to a neuron block as
a function of K assuming 4-bit computing precision, maximum cell current of
16 nA, maximum current of 1 pA and unity gain for local sensing, maximum
ADC input current of 5 pA, and ADC input scaling range of Q = 5. Such
numbers are selected based on optimal operation conditions [17] and our
analysis of the weight and output distributions for the considered neural
networks. Also, note that the area numbers are calculated for active circuitry
only (i.e. no programming/erasure circuitry included).

processor performance for the aforementioned target neural
networks. A detailed study of these benchmark networks (Figs.
5, 6) has shown that a IMB MM is sufficient to store all
intermediate data, while the flow control program requires at
most 4KB of instruction memory. Moreover, the controller
energy/delay is estimated in an instruction-by-instruction
manner in which the required machine code for initializing and
performing each layer type has been evaluated.

Fig. S2 shows the system-level energy efficiency (EE),
throughput, and area with respect to K and AR for these
networks. Larger K typically results in higher throughput due to
wider bus widths and consequently higher data transfer rate. It
also improves the EE by reducing the VMM block peripheral
circuitry energy consumption (trend clearly seen in Fig. S2c).
Moreover, the increase in throughput results in lower leakage
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TABLE II. ACORTEX SYSTEM-LEVEL RESULTS AND BREAKDOWNS *

Network Specification

Number of Parameters 7.2x10° 5.52x107 1.3x108
Number of Operations 5.2x10° 2.0x10'° 2.6x10°
Architectural Specification
K 64 64 64
M 38 80 128
N (top/bottom) 16/18 48/48 64/64
Main Memory Capacity 1 MB
Number of Memory R/W 3.3x10° 8.1x10° 1.7x10*
Main Memory Utilizat. (%) 47.8 59.8 5.07
VMM block Utilization (%) 67.5 87.6 100
Area Breakdown (%)
Main Memory 17.3 44 22
Sensing Circuitry 15.6 23.5 25.1
FG Arrays 24.5 36.8 39.3
DACs 4.5 6.8 7.3
Neuron Blocks 0.06 0.04 0.03
Programming/Erasure** 26.5 14.2 11.3
Others 11.5 14.2 14.8
Energy Breakdown (%)
Main Memory 36.3 232 10.9
Sensing Circuitry 16.4 12 33.6
FG Arrays 3.5 2.5 7.1
DACs 6.8 49 13.8
Neuron Blocks 0.8 1.1 0.9
Buses 30.1 414 16.2
Leakage 33 13.5 16.8
Others 2.8 1.4 0.7
Performance Summary
Area (mm?) 37 146 293
Power (mW) 20.6 26.5 44.5
Inference Time (ms) 2.37 6.72 0.16
EE (TOp/J) 97 106.2 335.8
Throughput (TOp/s) 2.00 2.9 14.94

* Because of more optimal overlapped execution and refined estimates for
DAC circuits, the numbers are slightly adjusted compared to preliminary ones
reported in Ref. [19]. ** The area overhead of programming/erasure circuitry
is estimated as (245.5M +120N)xK pm?>.

energy which further increases EE. However, for the networks
with medium and small weight kernels (i.e. ResNet-152 and
Inception-v1), larger K results in under-utilization of active
blocks, and buses, as well as an increase in the number of
required VMM blocks to map the network, which in turn
increases the energy overhead of the analog peripheral circuitry
and buses. As such negative effects outweigh the positive ones,
the overall system-level EE and throughput are getting worse
for larger K. For DNNs, the load bus delay/energy typically
plays a more significant role in the system throughput/EE
compared to the store bus due to higher input-to-output data
transfer ratio in convolution operations. Such property leads to
higher throughput/EE for smaller AR (i.e. relatively shorter
load bus) in these networks. The opposite of this trend is
observed for GNMT in which the LSTM layers have smaller
input-to-output data transfer ratio. Note that such trends do not
consistently hold due to network-specific weight packing
efficiency with respect to AR.

The accelerator area decreases for larger values of K due to
larger sharing factor of analog peripheries, hence smaller area
overhead of DACs and sensing circuitry (Fig. S2). This trend
does not hold for Inception-v1 in which smaller weight kernels
result in the VMM block under-utilization and lower weight
packing efficiency which outweigh the gain in peripheral
circuitry area efficiency.

The results for different networks indicate K = 64 and AR =
2 as a semi-optimal design point for which block utilization and
load/store bus energy/delay are somewhat balanced. Detailed
performance report and area/energy breakdowns for this design
point are presented in Table II. As these results show, the
energy consumption is dominated by data transfer and
intermediate data storage for DNNs with smaller size weight
kernels, such as Inception-v1 and ResNet-152 networks. On the
other hand, the energy consumption is dominated by sensing
circuitry and DACs, even despite larger accelerator area (and
hence larger data transfer energy consumption) for GNMT
inference task. This is because GNMT inference involves larger
size VMM operations (weight kernels), which ultimately leads
to larger compute-to-communication ratio and allows to take
better advantage of analog-domain computing. Also, note that
area overhead of high-voltage programming/erasure and VMM
peripheral circuits is quite low (as compared to other NVM-
based accelerators) due to their effective sharing, and, in fact,
the area of aCortex is dominated by FG memory cells. Thus,
the detailed results show that the integration density is one of
the key properties of memory devices for the energy-efficient
inference accelerators.

The performance comparison of aCortex against its major
fully digital [5-7] and mixed signal [23, 24] competitors shows
that aCortex achieves a significantly higher performance,
especially for mobile/IoT applications, for which the storage
efficiency (MB/mm?), and EE are the most important metrics
(Fig. S3). In order to make a fair comparison, we performed a
highly optimistic projection of the performance metrics for the
mixed-signal architectures to 55-nm, 4-bit design point.
According to these estimations, aCortex achieves ~28x/~65%
improvement in EE over ISAAC [23] / PUMA [24], while
maintaining a comparable SE and enduring a relatively small
drop in throughput (~0.3x/~0.4x). Note that these architectures
do not consider the overhead of programming/erasure circuitry
which could impact the performance results.

V. CONCLUSION

This paper discusses aCortex, a novel multi-purpose mixed-
signal architecture for accelerating neuromorphic inference.
The presented architecture is optimized for energy efficiency,
which is achieved by performing most of the computations and
some of the data transfer in the analog domain and by
maximizing sharing of peripheral and programming / erasure
circuitry among VMM blocks. Simulation results for 4-bit
aCortex implemented with embedded NOR flash memory in 55
nm process show record-breaking energy -efficiency at
favorable area efficiency as compared to previously suggested
mixed-signal accelerators.

Though latency of aCortex is already sufficient for practical
applications, its speed and computing throughput can be further
significantly improved by performing more VMM
computations in parallel, overlapping data transfer over the
busses and VMM computations, and pipelining and/or
increasing the bandwidth of the buses. Such modifications may
require increasing the bandwidth of main memory and
designing controller/ISA capable of handling multiple layer
operations, and will naturally reduce the energy efficiency.
Understanding energy efficiency — latency tradeoffs of aCortex
architecture is one of the important future research goals.
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SUPPLEMENTARY INFORMATION

S.I. NEURAL LAYERS AND WEIGHT-STATIONARY HARDWARE
COMPATIBILITY

Artificial neural networks (ANNS) consist of a common core
computing “neuron” cell. Capturing the basic behavior of its
biological counterpart, the artificial neuron calculates the
weighted summation of inputs passing through a (non)linear
activation function, f{), as y = f (X%, x;w;) where x and w are
inputs and weights, respectively. Targeting various
applications, different multi-layer ANNs with various layer-
types (i.e. neuron connectivity and activation functions) have
been developed [1]. We next briefly review the layer operation
for today’s most popular ANN models, which, e.g., occupy
95% of Google’s data center workload [5], and present their
weight-stationary hardware-friendly re-arrangement.

A. Fully-Connected (FC) Layer

FC is the most common ANN layer, e.g. in multi-layer
perceptron (MLP) networks, which are used for classification,
prediction, etc., and convolution neural networks (CNN), which
are mainly used for image classification/recognition [1]. In the
FC layer, each neuron in the input layer feeds all the output
neurons through a set of weights. As shown in Fig. Sla, FC
layer can be re-organized as a weight-stationary VMM
followed by an activation function. In such VMM, weight
matrix (green) is stationary, and the input elements (blue) are
vertically shared and propagated through all the weight
columns at the same time. Accordingly, all weight locations
simultaneously perform multiply-and-add operation, and the
outputs (shown with orange color) are calculated in parallel.

R, -
| C; Yi}'m = Z Z Z Xs.i+p,s.j+q,kWp,q,k,m
g w—

B. Convolutional (CNV) Layer

CNV is the core neural layer of CNNs, the dominant network
in computer vision, which uses a special connectivity pattern to
efficiently exploit the spatial locality of inputs while extracting
image features. This layer type includes multiple channels of
3D weight matrices, each applied over the whole 3D input data
in a sliding window fashion, to produce its corresponding
output feature map as shown in Fig. S1b. This figure also shows
our target scheme to map the CNV operation into a weight-
stationary VMM structure. In this scheme, CNV operation is
performed in a row-first manner in which one output pixel (for
all the channels) is calculated at a time. At the input, the CNV
row-wise data reuse is exploited using multiple “load and shift”
chains of input buffers. This input buffer array feeds a
stationary 2D weight matrix, which is a reshaped and stacked
representation of the 3D CNV filters. Accordingly, the output
vector represents different channels of one output pixel location
at a time. Note that in this scheme, different input channels of
each input pixel location (C; elements) can be grouped in one
input data pack without disturbing the data flow (Fig. S1b).
Moreover, for the strides larger than unity (s > 1), every s
adjacent pixels in the row direction can also be grouped into one
input data pack. Hence, for a given CNV operation, the data
pack size can be any divisor of Cixs.

C. Recurrent Layer

Recurrent neural layers aim to extract and interpret the
information encoded into the temporal locality in a sequence of
inputs using a feedback connection and a sequential operation.
Long-short-term-memory (LSTM) is one of the most popular
recurrent layers, which is widely used in language translation
and speech recognition [1]. Fig. S1c shows the original LSTM
structure and its weight-stationary re-arrangement. As shown,
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Supplementary Information Fig. S1. Network structure and hardware-friendly representation of the most popular neural layers: (a) fully-connected layer, (b)
convolution layer, and (c) long-short-term-memory (LSTM) layer, all targeting a weight-stationary dataflow scheme. Note that the red arrows represent the

dataflow, and the numbers represent location index.
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the LSTM’s computational effort is dominated by VMM
operations for which the input vector is obtained via
concatenating the current element of the input sequence and a
hidden state [/.1, x/]. Accordingly, the VMM’s weight matrix is
obtained by stacking the forget (f), candidate (C), input (i), and
output (o) weight matrices. The rest of the LSTM computation
includes basic element-wise vector operations and recurrent
data transfer for the next step. Note that unlike CNV, the LSTM
computation includes bipolar inputs and multiple activation
function types which calls for a more generalized computing
scheme supporting such cases — see Fig. 7b and its discussion
in Section IV.A. Moreover, LSTM layers typically have very
large weight matrices resulting in a larger compute-to-
communication ratio. Hence the computing efficiency typically
plays a more significant role (compared to data transfer
efficiency) in the overall efficiency of inference task for such
layers.

S.II. INSTRUCTION SET ARCHITECTURE DETAILS
The main controller instructions are:

Agent configuration: CNF agent, (mstr), (nstr/bstr)

Configure the agent (i.e. loader/collector) with appropriate
parameters such as memory stride (mstr) and neuron/buffer
stride (nstr/bstr) which are immediate fields in the instruction.

Load: M2B rm, rb, cnt, smode, sen

Command the loader to load cnt data packs (each K words)
starting from initial memory address specified by register rm
into the digital buffer blocks starting from the initial address
specified in register rb (assuming that strides are pre-
configured). smode field specifies the new value loaded to the
shift bit in each digital buffer block, and sen enables “load and
shift” operation.

Compute: VMM  nsf, af

Command the operator to start VMM computation while
simultaneously configuring the neuron scaling factor (nsf) and
activation function type (af).

Collect: N2M rn, rm, cnt

Command the collector to collect cnt data packs (each K
words) from neuron blocks starting from initial address
specified by register 7n into the memory locations starting from
initial address specified in register rm (assuming that strides are
pre-configured).

Row select: RSEL n_addr

Set the row select bit in the neuron block specified by n_addr
tO 6‘1”.
Synchronize: WAIT agent

Hault the main controller until the target agent finishes its
task.

Reset: RST
Reset all the column and row select bits.

The remaining instructions include simple arithmetic (i.e.
add/sub, addi/subi) and (non-)conditional control (i.e. jmp,
djnz, call, return) instructions. Note that for the considered

applications, all data in main memory are used before they have
to be refreshed. Therefore, for simplicity, we will not discuss
refresh operation, though its implementation is straightforward
and can be performed explicitly using either M2B instruction or
automatically by memory controller.

S.III PRIOR WORK

At the system-level, many efforts have been recently made to
exploit the efficiency of mixed-signal operators and develop an
efficient DNN/RNN processor architecture [23-30].

Specifically, ISAAC [23] and PUMA [24] architectures are
2D mesh structure of tiles where each tile contains several small
fixed-size ReRAM-based VMM units (typically 128x128) with
dedicated input/output peripheral circuitry. In these
architectures, one shared memory is implemented in each tile
for storing intermediate data and communication between
VMMs, while the communication between the tiles are
performed through a shared 2D bus structure. Such heavily
granular multi-core design approach is followed with the aim of
increasing the utilization, minimizing the data transfer
overhead, and maximizing throughput via pipelining and
parallel processing. However, data conversion and
communication overhead due to partial VMM operation, static
power consumption of the analog blocks, large area overhead
of the neurons / DACs / ADCs, and large control and
communication overhead between tiles’VMMs limit the
performance of such architectures, especially when running
relatively complex computational graphs such as of Inception
and ResNet.

RENO [25] and Harmonica [26] are, respectively, a ReRAM-
based reconfigurable neuromorphic computing accelerator and
a heterogeneous computing system based on such accelerator.
This accelerator utilizes a mixed-signal centralized mesh
interconnect network to reduce DAC/ADC overhead while
increasing the throughput via passing the analog output directly
to the next layer. However, this approach is only optimized for
fully-connected multi-layer networks and associative
memories. Moreover, despite lowering the DAC/ADC
overhead, the accelerator performance is impacted by costly
mixed-signal routers.

Pipelayer [27] explores the trade-off between hardware
resource of ReRAM array and performance utilizing the notion
of parallelism granularity targeting both training and inference.
This architecture uses a spike-based integrate and fire scheme
to eliminate DAC/ADC overhead. However, input multi-level
encoding and output spike generation overhead still results in
inferior efficiency.

PRIME [28] is a ReRAM based architecture proposing the
application of morphable memory blocks with small extra add-
on circuitry which can be configured as computational unit on
demand. Such morphable memory blocks result in a compact
and energy efficient design by reusing the memory block
peripheries for computation. However, the performance of
PRIME is negatively impacted by lack of data-reuse for
convolution, high data conversion/transfer overhead due to
small analog-domain VMM, i.e. kernel breakdown, and latency
overhead due to SA/neuron sharing. Additionally, the very
limited switching endurance of ReRAM makes the main idea of
PRIME hardly practical.
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Supplementary Information Fig. S2. Design space exploration for aCortex performance metrics, i.e. energy efficiency (TOp/J), throughput (TOp/s), and area
(mm?), with respect to the key architectural parameters, i.e. granularity (K) and aspect ratio, (AR=M/N) for three benchmark neural networks (GNMT-1024 RNN;

ResNet-152 and Inception-vl DNNs).
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DaDianNao[6] TPU[5] UNPU[7]* ISAAC [23] PUMA [24] aCortex
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Approach digital digital digital ReRAM ReRAM 2D-NOR
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Supplementary Information Fig. S3. (a) Performance comparison of aCortex with the state-of-the-art digital and mixed-signal neuromorphic processor
architectures. Except for TPU, all performance results are based on simulations. * Highly optimistic mapping of performance metrics to 4-bit computing precision
and 55-nm technology node. #The performance numbers do not include overhead of external memory access (weights/intermediate data). (b) Energy efficiency
versus throughput scatter plot for the approaches listed in (a). The size of bubbles represents the area of the processors.

RAPIDNN [29] is also a ReRAM based architecture which
aims to improve the hardware performance through minimizing
the required computing precision while achieving similar
network accuracy. Precision is reduced by utilizing a
reinterpretation mechanism (non-linear quantization of
inputs/weights/outputs based on statistical data). Moreover, in
this architecture all neural functionalities are implemented
inside the memory using a direct digital lookup table-based
technique which eliminates costly DAC/ADC/neuron.
However, semi-sequential VMM operation and lack of data-
reuse for convolution result in performance drop for large scale
neuromorphic  applications especially those involving
convolution operation. Besides, the architecture suffers from
data encoding overhead despite eliminating data conversion
overhead.



