
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—We introduce “aCortex”, an extremely energy

efficient, fast, compact, and versatile neuromorphic processor

architecture suitable for acceleration of a wide range of neural

network inference models. The most important feature of our

processor is a configurable mixed-signal computing array of

vector-by-matrix multiplier (VMM) blocks utilizing embedded

nonvolatile memory arrays for storing weight matrices. Analog

peripheral circuitry for data conversion and high-voltage

programming are shared among a large array of VMM blocks to

facilitate compact and energy-efficient analog-domain VMM

operation of different types of neural network layers. Other

unique features of aCortex include configurable chain of buffers

and data buses, a simple and efficient instruction set architecture

and its corresponding multi-agent controller, programmable

quantization range, and a customized refresh-free embedded

dynamic random-access memory. The energy-optimal aCortex

with 4-bit analog computing precision was designed in 55 nm

process with embedded NOR flash memory. Its physical

performance was evaluated using experimental data from testing

individual circuit elements and physical layout of key components

for several common benchmarks, namely Inception-v1 and

ResNet-152, two state-of-the-art deep feedforward networks for

image classification, and GNTM, a Google’s deep recurrent

network for language translation. The system level simulation

results for these benchmarks show energy efficiency of 97, 106, and

336 TOp/J, respectively, combined with up to 15 TOp/s computing

throughput and 0.27 MB/mm2 storage efficiency. Such estimated

performance results compare favorably with those of previously

reported mixed-signal accelerators based on much less mature

aggressively scaled resistive switching memories.

Index Terms — Artificial Neural Networks, Neuromorphic

Inference Accelerator, Mixed-Signal Circuits, Nonvolatile Memory,

Floating-Gate Memory, Machine Learning

I. INTRODUCTION

The rapidly growing range of applications of machine

learning for image classification, speech recognition, and

natural language processing along with maturing of the neural

network algorithms, especially for deep learning, have led to an

urgent need in a specialized neuromorphic hardware [1-3]. At

least for the next several years, the demand for fast, low-

precision inference accelerators will remain higher than for

higher-precision systems for network training, as projected by

NVidia Corp., a leading company in the machine learning

hardware [4].

The vast majority of the proposed neuromorphic accelerators

from industry and academia are digital [5-8] – see also

extensive review of various proposals in [2]. The most natural

approaches, however, are based on analog and mixed-signal

circuits [9-30]. Though the core principles of analog computing

had been developed almost four decades ago [9, 10], its efficient

implementations were enabled only recently [14-30] due to the

emergence of novel continuous-state, nonvolatile, memory

devices [31, 32]. Such memories enable very dense

implementation of weights and of in-memory computing for

vector-by-matrix multiplication, the most common operation in

machine learning. Among different candidates, the resistive

switching memories, including phase change and conductive

bridge memories, metal-oxide memristors (also known as

ReRAM or RRAM [31]) are perhaps the most promising due to

their excellent scaling prospects. Their technology, however, is

still in need of improvement, which is less of a problem for

another excellent candidate, floating gate (FG) memories, e.g.

those based on redesigned commercial-grade embedded NOR

flash [22, 32, 33]. Though planar FG cells are less dense than

passively integrated memristors, their main advantage is FG

cell amplification, which simplifies and reduces overhead of

peripheral circuitry. It is worth noting that the limited

endurance of memristors and FG memories is less of an issue

for inference applications, since the weights are typically

reprogrammed infrequently.

In this paper, we present a multi-purpose inference

accelerator, dubbed “aCortex”, that is designed to capitalize on

in-memory mixed-signal computing with nonvolatile

memories. Though the idea of employing mixed-signal VMM

based on nonvolatile memories for multi-purpose inference

accelerators is not new [23-27], our work is novel in several

aspects. Its key advantage is more extensive use of analog

computing, not only for VMM computation but also for data

transfer. Such approach minimizes the area/energy/delay

overhead of the sensing and data conversion peripheries which

are key factors limiting the efficiency of the mixed-signal

neural accelerators [23-30]. A more compact design, in turn,

reduces communication overhead due to shorter distances for

data transfer. Moreover, data transfer overhead is further

reduced by using a configurable chain of buffers exploiting the

data reuse for convolution operation, programmable data buses

that can be efficiently tailored on the fly to a particular

utilization of mixed-signal array, and a custom-designed

refresh-free embedded dynamic random-access memory

(eDRAM) tailored to meet the retention time requirement. We

also propose a simple and efficient instruction set architecture

(ISA) along with a multi-agent controller, which takes

advantage of the eligible time-overlap between consecutive

micro-operations while minimizing the instruction memory

(IM) requirement. Finally, we developed a system-level

estimator which imports the target network’s computational

graph along with experimental and circuit-level simulation

results for different architecture components, including digital-

aCortex: An Energy-Efficient Multi-Purpose

Mixed-Signal Inference Accelerator

Mohammad Bavandpour, Mohammad R. Mahmoodi, and Dmitri B. Strukov, Senior Member, IEEE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

to-analog converters (DACs), analog-to-digital converters

(ADCs), sense amplifiers, memory cells, digital blocks, and

buses, maps the weight kernels onto the two-dimensional (2D)

array of nonvolatile memory (NVM) blocks, and finally

produces a comprehensive performance report considering

various non-idealities such as leakages and line parasitics.

Using such simulator, we perform a detailed performance

analysis based on the actual layout in 55-nm process with

embedded NOR flash memory. Note that unlike many

proposals based on emerging memory technologies, core

components have been previously taped out using commercial

processes and successfully tested and we used such

experimental data in our analysis.

 In Supplementary Information (SI) Section S.I we introduce

today’s major neural layer types and present their hardware-

friendly re-arrangement targeting a weight-stationary

implementation. The overall aCortex architecture and operation

scheme, as well as the internal structure of its main components

are presented in Section II. This section also introduces the

proposed instruction set architecture (ISA) along with the

controller architecture. More details on the ISA are provided in

Section S.II. The general framework for mapping applications

into aCortex and our case study for three representative neural

network inference tasks are provided in Section III. In Section

IV, we provide the circuit diagram and experimental/simulation

results for FG-based implementation of aCortex’s core

computing units in 55-nm technology node. We then perform a

design space exploration for architectural parameters and

provide a detailed system-level report for a semi-optimal design

point. Related prior works are discussed and compared to

aCortex in Section S.III. The paper is concluded in Section V,

where important future works are outlined.

II. ACORTEX ARCHITECTURE

A. Top-Level Architecture

As shown in Fig. 1a, the major processor’s components are

auxiliary unit (AUX), microcontroller, main memory, and two

mixed-signal processing units (MSPU). Each MSPU includes a

configurable chain of input digital buffer blocks, a flexible 2D

array of VMM blocks, and an array of output neuron blocks.

The architecture can be loosely characterized as Harvard

weight-major type [2]. The instructions are stored in

microcontroller’s dedicated SRAM-based instruction memory.

All frequently changing data, i.e. input, output, and temporary

data, are kept in eDRAM-based main memory, while fixed

weights, which would be typically precomputed at ex-situ

training, are stored in NVM arrays of MSPU’s VMM blocks.

The inference task is specified by a program code based on

custom instructions and corresponding set of neural layer

weight matrices. Assuming the code is loaded, and all weights

are set up accordingly, the inference is computed by loading

input data to the main memory, executing a code to perform the

inference task, and storing the computed results back in the

main memory. In particular, the stationary weight matrices

corresponding to various network layers are packed in the 2D

array of VMM blocks (Fig. 1b), and the inference is performed

in a layer-by-layer manner by sequentially reading the layer

input from the main memory into the digital buffer blocks,

activating the appropriate VMM and neuron blocks to perform

the target neural layer, and then temporarily storing the

intermediate results in the main memory for computing the next

layer. Note that some of the neural layers, such as CNV and

LSTM require multiple VMM operations with various input

data on the same weight matrix to complete. In this case, the

corresponding VMM/neuron blocks are activated multiple

times during the execution of each neural network layer - more

details on that are provided in Sections III and S.I below.

Flexible activation of VMM/neuron blocks enables compact

implementation of a set of neural network layers with various

VMM sizes while maximizing the energy efficiency by cutting

off the active power consumption of unutilized VMM/neuron

blocks. Moreover, aCortex minimizes the energy overhead of

data transfer by cutting off the unutilized portion of data buses

and effectively reducing their length via disabling further data

propagation. For example, Fig. 1c shows the active blocks and

Fig. 1. (a) aCortex top-level architecture. The location of the components crudely corresponds to the actual layout and is chosen to reduce data transfer overhead.

For clarity, the architecture is shown for N = M = 4 and most of the control lines and the circuitry for testing / weight tuning are omitted. (b) Example of a weight
kernel mapping on aCortex VMM blocks, layer-by-layer operation scheduling, and corresponding content of main memory over time. (c) aCortex active blocks/bus

portions during the execution of the layer #1 of the neural network shown in (b).

(a)

Main Memory
(MM)

AUX

Controller
Data in/out

N

M

(b) Target Neural Network

Layer #1 Layer #2 Layer #3 Layer #4

D1 D2 D3 D4 D5

D1,2 D2,3 D2,3,4 D4,5D1 D5

Layer #1 Layer #2 Layer #3 Layer #4Idle Idle

time

Operation:

MM Content:

Mapping to aCortex

(c)

y

x

Code

disabled block

Cut downstream
VMM input bus

Cut upstream
store bus

Cut downstream load bus

K K VMM block

K-element neuron block

Kp-bit digital buffer block

Prog./erasure circuitry

Kp-bit digital load bus

Kp-bit digital input bus

2K-l ine analog output bus

Kp-bit digital store bus

M
SP

U
 #

1
M

SP
U

 #
0

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

buses when the processor is computing the first layer of the

neural network shown in Fig. 1b.

All inference data, i.e. inputs and outputs of the MSPU’s

VMM blocks, as well as effective weight precision, are p bit. A

set of p bits is defined as one data word. We specifically

consider p = 4, which is typically sufficient for running state-

of-the-art image classification inference without loss of

functional performance [34, 35]. Blocks and buses are sized

according to a global architecture parameter K, defined as the

granularity of neural computation and data transfer on aCortex.

B. Main memory

Main memory is implemented with eDRAM technology,

whose retention time is tailored for a refresh-free operation. In

particular, it is organized as an array of eDRAM blocks, each

with Kp-bit I/O data port. The multi-banked structure allows to

read and write K data words simultaneously, i.e. to supply data

to one digital buffer block and receive data from one neuron

block. The required memory capacity and its retention time are

calculated by monitoring the memory content and the longest

lifetime of intermediate data for the inference of the target

neural networks (Fig. 1b).

C. Mixed-Signal Processing Unit: Array of VMM Blocks

Each MSPU is comprised of two N-by-M arrays (quadrants)

of VMM circuit blocks located on each side of a column with

N neuron blocks. Each VMM block features K-by-2K array of

NVM cells, which is suitable for implementing analog-mode

differential K-by-K VMM operation; K p-bit front-end DACs;

and 2K back-end local sensing circuitry (Fig. 2a). The data to a

single column of VMM block array is fed via Kp-bit wide

digital programmable “VMM input” bus from the

corresponding distributed memory buffer block. The VMM

block outputs are connected via analog “VMM output” buses,

which are 2K lines wide, to the corresponding neuron blocks.

More circuit details on the data conversion and

sensing/summation for the considered VMM design based on

2D-NOR flash memory technology is provided in Section IV-

A.

Column/row enable lines (denotes as CE/RE) span the

MSPU quadrants in vertical/ horizontal directions and are used

to activate the desired VMM blocks at each processing step.

Specifically, a given VMM block is activated only if its

compute enable signal (CoE = CE ∧ RE) is equal to “1” (Fig.

2b). These control lines allow to flexibly implement a wide

range of VMM sizes (from K×K to 2MK×NK) while cutting off

the active power consumption of unutilized VMM/neuron

blocks. Moreover, a Kp-bit wide VMM input bus repeater with

horizontally shared enable control line (RBE) is integrated in

each VMM block (Fig. 2a) to speed up data propagation as well

as to minimize its energy overhead by cutting the unutilized

portion of the VMM input bus. The logic circuitry and single-

bit registers producing CE and RE/RBE control lines are

integrated in digital buffer and neuron blocks, respectively.

The programming/erasure circuitry consists of decoders and

level-shifters, which are shared by NVM arrays of VMM blocks

and are placed at the outer margins of the VMM block arrays

(Fig. 1a), and row/column access switches, placed at the

periphery of each VMM block, controlling the applied signals.

D. Mixed-Signal Processing Unit: Neuron Block

A neuron block includes K identical neuron units. All units

perform in parallel summation/integration of the analog data

supplied from the corresponding VMM output lines, re-scale

the integrated data (if needed), apply the selected activation

function, and finally convert the results to digital domain using

ADCs (Fig. 2a). The rescaling unit enables a wide range of

quantization ranges, e.g. needed to operate with different VMM

input sizes, via adjusting neuron’s analog input amplitude to

match the fixed operating input range of the activation functions

and ADC units. The activation function can be selected from

linear, rectified linear, sigmoid, or hyperbolic tangent types, to

support a wide range of neural layers (Section S.I). Neuron

block outputs are digitized with p-bit ADCs and temporarily

latched in their embedded digital memory. The digital results

are then passed via Kp–bit wide digital “store” bus to the main

memory. Such data transfer, i.e. the “store” operation, is

performed in one step per neuron block, so that, e.g., a total of

N steps is required to transfer data from all neurons in one

MSPU. The specific number of processor cycles required for

each step varies based on the location of the neuron block, i.e.

its distance from the main memory. In particular, the store bus

data are passed via a Kp-bit 2-to-1 multiplexer in each neuron

block. These multiplexers act as a bus repeater for the utilized

portion of the store bus, and is also used to decouple and

deactivate its unutilized portion.

Fig. 2. (a) Schematic diagram of mixed-signal VMM and neuron blocks
including their connectivity and required control signals (blue). Neuron block

includes four stages, namely global sensing, re-scaling unit, activation

function, and ADC. (b) The control circuitry, which facilitates flexible
activation of the target VMM/neuron block, and cuts unutilized portions of the

VMM input and store buses. Square labeled with ‘c’ denotes comparator for

selecting a specific neuron. For clarity, some of the details, e.g. circuitry for

setting up enable bits and some neuron control circuitry, are not shown.

c

neuron block

VMM block VMM block

Row Enable (RE)

Row Bus Enable (RBE)

CoE

Column Enable (CE)
neuron
Address

(N_ADRR)

CoE

Column Enable (CE)

RBERBE

VMM_OP
Store
Enable

(SE)

NRE

from previous neuron block

To next neuron block

Kpbit digital VMM input bus

Kp–bit store bus

neuron block

Y = tanh(Wx)

VMM
output
bus from
right
quadrant

VMM block

Bus Repeater

Comp.
Enable (CoE)

DAC

K×2K
NVM
Array

Row Bus Enable
(RBE) Sensing

Circuitry

VMM block

Bus Repeater

Comp.
Enable (CoE)

DAC

K×2K
NVM
Array

Row Bus Enable
(RBE) Sensing

Circuitry

×

ADC

analog data
rescaling

neuron
scaling
factor
(NSF)

activation
function
selector

(AFS)

neuron
read

enable
(NRE)

2K lines VMM output bus

(a)

(b)

Comp.
Enable (CoE)

CoE

row select bit

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

The RE and RBE signals (which control the target neuron

block and the corresponding VMM blocks it serves, and cut the

VMM input bus, respectively) are configured with “row-select”

single-bit flip-flops of the neuron blocks (Fig. 2b). Specifically,

the row-select flip-flops of neuron blocks are connected via

XOR gates, with output of XOR gate directly controlling RE

line. To preselect RE signals for the contiguous set of rows (e.g.

rows 10 through 15), row-select bits of neuron blocks in the first

(10), closest to the main memory, and in the last+1 (16) row of

the selected set of rows are set to “1”, while others are set to

“0”. This implementation results in activating all selected rows

(i.e. setting RE = 1 for rows 10 through 15). On the other hand,

using a simple NAND gate which detects a transition from

selected to unselected row, RBE is de-asserted only for the

last+1 row of the selected group of rows (Fig. 2b), which

effectively cuts the downstream VMM input bus.

E. Mixed-Signal Processing Unit: Digital Buffer Block

The data to digital buffer blocks (DBB) in each quadrant are

supplied from main memory via Kp–bit wide digital “load” bus

(Fig. 1a). The DBB’s internal logic circuitry is designed to

flexibly support various data flow scenarios - from simple load

(Fig. 3b: scenario #1) to “load and shift” configuration (Fig. 3b:

scenarios #2, 3). The flexible “load and shift” configuration

enables efficient computation of CNV layers with a wide range

of specifications (filter size and stride) while taking advantage

of the row-wise data reuse (Fig. S1b).

Specifically, the input to each DBB is supplied by a Kp-bit-

wide 2-to-1 multiplexer, which selects the input source between

the load bus (i.e. main memory) and the previous DBB. For

simplicity, we assume that only one DBB can be loaded from

the load bus at one step, by setting the address of the target DBB

on the buffer address bus. Similar to the data transfer from

neurons, the number of processor cycles required for each step

varies based on the location of the DBB.

The shift operations are supported by properly configuring a

“shift-bit” flip-flop in each DBB and are masked by “shift

enable” line. In particular, the shift register configurations are

programmed by setting shift bits to “1” for all the DBBs except

for the first block of shift register (Fig. 3b). Setting shift bit to

“1” of a particular DBB is performed concurrently with loading

that DBB from load bus by asserting “shift mode” control line.

(Note that row-wise execution of the CNV layer typically starts

by loading all DBBs with row data from main memory, with all

shift operations disabled by de-asserting shift enable signal line,

so that all shift bits are typically configured at this time.) Once

shift bits are properly configured, simultaneously with loading

new data into DBB, the already loaded data in DBBs can be

shifted between the remaining blocks of that shift register (e.g.

shifted to the right in scenario #2 and #3 of Fig. 3b). This is

performed with internal “master shift command” signal, which

enables latching data from previous DBBs of the specific shift

register whenever its shift bit and enable signals are set to “1”.

Additionally, each DBB has a single-bit SR latch to specify

the target VMM block columns, i.e. to set column enable (CE)

signal, which is configured similarly to shift-bit flip-flop. It also

has a bus repeater on the load bus, which is disabled when the

DBB is loaded, to stop downstream data propagation on the bus

(Fig. 3a).

F. Mixed-Signal Processing Unit: VMM Computation

Assuming that the target VMM columns are pre-selected

(CE=1) and the desired row-select bits are set, VMM operation

is performed by applying a positive pulse to “VMM_OP”

command signal. This signal enables the neuron blocks

associated with the selected rows as well as their input VMM

blocks for which CE=1 via propagating through the RE and

then CoE lines. Naturally, the VMM_OP pulse width should be

longer than the worst-case end-to-end VMM operation time, i.e.

the time it takes from the moment inputs are applied to DAC to

that of latching ADC outputs.

G. Auxiliary Unit

Auxiliary unit (AUX) is provisioned to perform less frequent

digital computations in neuromorphic inference. In particular,

this block is used to perform in parallel K p-bit vector-by-vector

operations such as additions, subtractions, and fixed-precision

multiplications. It also performs comparison in max-pooling

operation, which is typically used in CNNs. (An average

pooling, another typical operation, can be implemented directly

in a mixed-signal domain with properly adjusted weights.)

AUX consists of an array of arithmetic logic units (ALUs),

multipliers, and internal registers. During max-pooling

operation, the register holds the current maximum value and

feeds it to one of the ALU’s inputs to compare to the next input

value fed from the main memory through the load bus. The

outputs of AUX blocks can be written back to main memory via

store bus.

H. Controller and Instruction Set Architecture

The most typical operations on aCortex involves loading

multiple DBBs with data from the main memory, performing

vector-by-matrix computation, and then moving the results

from neuron blocks back into the main memory. Accordingly,

aCortex controller includes three separate agents as loader,

operator, and collector, each dedicated to performing one of

these frequently-used operations (Fig. 4a). These agents are

Fig. 3. (a) A detailed circuit implementation of the digital buffer block (DBB).

Control circuitry is shown with blue color. Square labeled with ‘c’ denotes

comparator for selecting a specific DBB. For clarity, some of the details are not

shown. (b) Examples of three DBB chain configurations scenarios.

Specifically, scenario #1 shows loading (sequentially) data exclusively from

the load bus. Scenarios #2, 3 show loading data from load bus into DBBs and
simultaneously shifting data between DBBs connected in a two-block shift

register (#2) or a four-block shift register configuration (#3).

(a) Column
Enable (CE)

c

Shift
bit

S R

Kp-bit VMM
input bus

Kp-bit digital
buffer

clk
reset
shift mode
shift enable
buffer address
(BUF_ADRR)

Kp-bit load bus

master
shift
command
(MSC) digital

buffer
blockc

Shift
bit

S R

Bus Repeater

0000

1

0

1

0

111

0

(b)

Scenario #1 Scenario #2 Scenario #3

Shift bit content

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

configured and synchronized using a main controller. Such

multi-agent structure shrinks the code size, enables eligible time

overlapping between these operations, and minimizes the

engagement of the main controller, which in turn reduces the

controller time overhead.

The main components of each agent are listed in Fig. 4c. The

loader is responsible for reading data from the main memory

into the DBB/AUX blocks using the load bus. This agent uses

two counters to support burst mode in which multiple data

packs with a pre-configured main memory/DBB initial

addresses and strides are loaded. Moreover, the loader uses a

load bus counter to adjust the load time based on the physical

distance between the main memory and the target DBB. Such

distance is extracted from the most significant bits of the DBB

address considering that the location of neuron and DBBs are

counted from the center of the chip outwards, starting from 1.

For example, load_time = memory_read_time +

ceiling(DBB_address/32) for the case when passing data on the

load bus through 32 DBBs takes one controller cycle. The

collector which is responsible for storing back the

neuron/AUX’s output to the main memory has a similar

structure to the loader. The operator has an embedded counter

to produce the appropriate pulse width of VMM_OP control

signal for the VMM operation. It also holds the neuron scaling

factor, the type of activation function selector, and AUX

function control bits. The main controller instructions are

further detailed in Section S.II.

III. APPLICATION MAPPING

Application mapping process of a given neural network on

aCortex involves checking accelerator resource requirements

(i.e. main memory and MSPU) and producing a weight

mapping and machine code to setup the accelerator. Similar

process is also used in the accelerator design to estimate the

required main memory and MSPU resources, and to optimize

their specifications (M, N, K) for the target range of

applications. Such process starts with extracting the

computational graph and finding the optimal topological

partitioning and ordering of the computational steps (Fig. 5a).

In such graph, the vertices are computation kernels (i.e. neural

layers) while the edges are input/output data. In general, finding

the optimal sorting of a given graph is an NP hard problem.

However, layer-by-layer operation scheme of aCortex, resulted

from our energy-optimal design, reduces the complexity of the

problem. After obtaining the graph and scheduling order, the

next step is to check the memory requirement throughout the

inference steps. In aCortex, 3D data are stored in the main

memory in a row first, column second, and channel/feature map

third order (Fig. 5b). Following this order, multiple channels of

one data pixel (and adjacent pixels in a row in the case of CNV

stride >1) are always grouped into K-word-long data packs (Fig.

S1b). One pack of K-word data is then mapped into a word line

of main memory block and can be read/written simultaneously.

Such data placement in the main memory enables burst mode

read/write using controller’s loader/collector. Note that due to

quantization such scheme may result in underutilized memory,

e.g. when the number of channels/feature maps is not divisible

by K.

Considering such data arrangement, the memory usage after

each inference step (i.e. neural layer) is calculated by drawing

a cut in the computational graph which separates the already

computed portions of the graph (network processing steps)

from the upcoming ones, and adding up all the edges that are

crossed. Since during execution of each layer both its inputs and

outputs are present in the main memory, the upper-bound for

the total memory usage is calculated by adding up the memory

usages for two consecutive cuts and subtracting their overlap

edges.

We applied this algorithm to three studied networks, namely

Inception-v1 [36] and ResNet-152 [37] DNNs for image

classification, and GNMT [38], a Google’s neural machine

translation network featuring a 16-layer LSTM network with

bi-directional encoder layers, with the vector length of 1024 and

the sequence size of 10. For example, Fig. 5c shows such

process for an Inception neural layer and an unfolded 2-layer

LSTM network. As this figure shows, the memory requirement

is limited by the initial layers of the DNNs (for 4-bit

computation with the data pack quantization of K = 64).

In the next step the weight matrices are mapped into MSPUs

using a greedy search algorithm (Fig. 6a), for which input

parameters are the number of available MSPU’s columns (M’),

architecture granularity parameter (K), the number of tries

(epoch), and the list of weight kernels (LoK). In one iteration

of the algorithm, the kernels are first randomly ordered and then

greedily mapped in a row-first manner, in the given order, to

the array of VMM blocks. Such procedure is repeated epoch

times and mapping configuration with the smallest number of

occupied VMM blocks is selected. Furthermore, the mapping

process is repeated for different M’ ≤ M to search for a square

shaped mapping of occupied VMM blocks (Fig. 6b) to

minimize the average data transfer distance between MSPU’s

active VMM/neuron blocks and the main memory (and hence

to increase energy-efficiency) – see more discussion on that in

Fig. 4. (a) Top-level representation of the multi-agent controller and
connectivity between different agents and the rest of the architecture, (b)

examples of agent operation timing diagram when the load operation is

completed before (scenario #1) and after (scenario #2) the collect operation,
and (c) the main components of each controller’s agent.

(a) (c)

Operator

Collector

Loader

Main
Controller

to buffer/AUX
blocks

to/from
neuron/AUX blocks

to
 n

e
u

ro
n

/A
U

X
b

lo
ck

s

to
/fro

m
 M

ain
 M

em
o

ry

Agent Main Components

Main
Controller

- Instruction memory
- ALU
- Register bank

Operator

- VMM pulse width counter
- Neuron scaling factor register
- Activation function register
- AUX function controller

Loader
- Main memory and buffer address
generator counters

- Load bus counter

Collector
- Main memory and neuron address
generator counters

- Store bus counter
Data Address Control

Collector
Operator
Loader

Scenario #1 Scenario #2 time

(b)

TABLE I. MICROARCHITECTURAL PARAMETERS

Parameter Description Typical

p
Input/weight/computing precision; also bit length of

each data word
4

M
digital buffer blocks / columns of VMM blocks in
one MSPU quadrant

32

N # neuron blocks / rows of VMM blocks in one MSPU 64

K

Computation granularity; also VMM block

dimensions, buffer/neuron block size, and digital bus
and main memory I/O width in terms of words

64

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Section IV-B. The results of this optimization process for our

target networks are shown in Fig. 6c-e.

The mapped locations of weight kernels are then used in the

compilation process to generate the machine code for handling

the data flow and operation of the network. The number of

instructions for initializing and operating each layer type is

estimated for the system-level analysis based on the proposed

ISA (presented in Sections II-H and S.II).

IV. CIRCUIT DESIGN AND PERFORMANCE EVALUATION

A. 55-nm FG-based Implementation of Mixed-Signal Blocks

While aCortex can be realized with variety of NVM

technologies, the focus of this paper is on a mature industrial-

grade flash-memory technology that have already enabled

extremely compact and energy-efficient implementations of

mixed-signal circuits [20]. The key advantage of such

implementation, as compared to, e.g., those based on resistive

switching devices [31], is the FG cell’s inherent signal

amplification and low operation currents, which greatly relax

the requirement for sensing circuitry gain, and enables very

compact peripheral circuits [20]. Moreover, the experimental

results for the chip-to-chip statistics, long-term drift, and

temperature sensitivity of the FG-based mixed-signal circuit

prototypes strongly attest to suitability of this memory

technology for developing complex, practically-useful neural

accelerators [17, 22]. More specifically, the proposed

architecture was evaluated for the implementation based on

ESF-3 (embedded split-gate flash) technology in which FG

cells were redesigned for analog computing applications [17].

The proposed mixed-signal circuits allow for efficient

implementation of different types of activation functions,

kernel sizes, and quantization ranges, which are essential

features of multi-purpose inference accelerator (Fig. 7a). In

particular, the VMM operation is implemented using gate-

coupled design [17]. In such approach, inputs are encoded as

currents, which are applied to the peripheral FG transistors (Fig.

7a). The weights are encoded in the memory state of the array

FG devices, while peripheral FG device are typically

programmed to the low threshold states (maximum current) for

optimal operation [17]. The multiplication of an input with the

corresponding weight, is performed by a pair of FG transistors,

one at the periphery and one inside the array. The currents from

different array FG devices are summed up on the drain (row)

line at the local sense amplifier to complete dot-product

operation computation.

The front-end input conversion is realized using current

steering (CS) DAC architecture, a viable choice considering its

Fig. 5. (a) Application mapping flow-chart performed on the host computer. (b) Mapping scheme of a 3D data structure into the aCortex’s main memory. (c) An
example showing computational graph cuts for evaluating the amount of main memory occupied during various steps of inference for a single Inception layer (left)

and a multi-layer LSTM network (right). (d) The utilized main memory graph as a function of network processing step for the studied benchmark networks.

Fig. 6. (a) Pseudo code for aCortex weight kernel packing algorithm. (b) Preferred mapping locations of various neural network sizes. (c-e) Weight kernel mapping

results for Inception-v1, ResNet-152, and GNMT-1024 for K=64. Each pixel shows one VMM block colored according to the neural layer occupying it.

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

Neural
Network

Computational Graph Extraction

Memory Requirement Analysis

Network Weight Kernel Mapping

Machine Code Generation

Loading the input data

Run

Collecting the results

H
o

st
 C

o
m

p
u

te
r

X(i,j,k)
1≤i≤R
1≤j≤C
1≤k≤F

R

C

F
X(1,:,:)

X(2,:,:)

.

.

.

X(R,:,:)

Memory
Address X(1,1,:)

X(1,2,:)

.

.

.

X(1,C,:)

Row Stride

X(1,1,1)

X(1,1,2)

.

.

.

X(1,1,F)

Column Stride

1×1
CNV 1×1

CNV
1×1
CNV

3×3
Max-Pool

5×5
CNV

3×3
CNV

1×1
CNV

Filter Concatenation

A

B C D

E F G

A B

C
Unfold

LSTM
Cell

Input
sequence

Output
sequence

LSTM
Cell D

(a) (b)

(c)

(d)

Network Processing Step #

U
se

d
 M

a
in

 M
e

m
o

ry
 (

K
B

)

Inception-v1

ResNet-152

GNMT-1024

// pseudo code for weight packing function

mspu_map = Weight_packing(M, K, epoch, LoK){

Quantize(LoK, K) // quantize List of Kernels (LoK) based on K

Dim_check(LoK, 2M) // break kernels if input size > 2M

N_min=inf. // set min. num. of VMM block columns to infinity

for i=1:epoch { // pack the kernels “epoch” times and pick the best

Shuffle(LoK) // shuffle list of kernels for each epoch

mspu_arr=zeros(1,2M) // initialize memory array to 1 2M

for Kernel in LoK { // pack kernels one at a time

while {

// search for empty space and set “stat” to “done” if successful

[stat, mspu_arr]=pack(mspu_arr, Kernel)

if (stat = “done”) {

break;}

// if not successful, add an empty row to mspu_arr and try again

mspu_arr = vertcat(mspu_arr, zeros(1,2M))

}

}

// compare packing from current epoch with the best previous packing

//and replace if more compact packing achieved

if (size(mspu_arr, 2) <N_min {

mspu_map=mspu_arr;

N_min= size(mspu_arr, 2) }

}

(a)

(c) (e)

R
e

sN
e

t-
15

2
G

N
M

T
-1

0
2

4
36

18
1

6

80

48
4

8

128

64
6

4

In
ce

p
ti

o
n

-v
1

Small Network

Medium Network

Large Network(b) (d)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

low power consumption, compact footprint, and fast turn on/off

time at relatively low precision. A 4-bit PMOS-based CS DAC

circuits source the current into peripheral FG devices.

The developed current-mode global sensing circuit of a

neuron block has excellent wideband current following

behavior and provides very low input impedance, while limiting

drain voltage distortion. To reduce process variation overhead

associated with an offset error, two additional FG devices are

provisioned in each channel (drain line) and are used either to

source or sink the input referred offset current.

The input current scaling of a neuron block is implemented

using a binary-weighted current mirror structure controlled by

the multi-bit digital input (Fig. 7a). As already mentioned in

Section II.D, this feature is needed to adjust quantization range

in accordance with the maximum VMM circuit output currents

(which would vary, e.g., with the size of the weight kernels),

and hence to minimize losses in functional performance due to

quantization of activation function outputs.

The 4-bit current-mode ADC has a 1-bit per stage cyclic

design which generates the 4-bit digital output in 4 cycles. FG

transistors are also employed for offset/compensation in the

high-speed comparator and to generate reference currents.

The sigmoid and ReLU activation functions are implemented

directly in the ADC, without using any other additional

circuitry, by appropriately choosing reference currents, i.e.

quantization levels of the ADC. Linear and hyperbolic tangent

functions are emulated via input biasing and appropriate weight

scaling (Fig. 7b). DACs/ADCs are designed for unipolar data

and can be reused, without any circuit modification, for bipolar

data by utilizing offset-binary representation. More details on

the circuit structure for the design of PVT-resilient CS DAC

circuit and algorithmic ADC can be found in [20].

Fig. 7c provides the VMM performance results as a function

of K based on the measurements of ESF3 memory devices and

post-layout simulations of peripheral circuitry. These data are

used to estimate system-level performance.

B. Main Memory and Buses in 55-nm Technology Node

The main memory is implemented using asymmetric 2T gain

embedded DRAM cells with boosted power supply [39]. The

retention time of eDRAM cells was changed to 100 µs by

reducing leakage and adjusting biases, with 99.9% bit yield

confirmed by block-level Monte Carlo simulations [39]. The

memory performance was modeled using CACTI tool [40]. We

also developed a bus area/energy/delay model as a function of

bus length and repeater size using post-layout simulations

considering all device/interconnect parasitics.

C. System-Level Results and Design Space Exploration

We have developed a software framework that utilizes the

post-layout energy/speed/area metrics for all the aCortex’s

building blocks (buffers, buses, DACs, ADCs, integrators, and

digital circuits) to evaluate the system-level performance for

any target DNN/RNN network. This framework uses the list of

processing tasks for a given neural network to map the VMM

kernels on the NVM devices embedded in the VMM blocks,

and then generate a detailed performance report for the given

set of architecture specifications. Using such tool, we have

performed a preliminary exploration of architectural parameters

(i.e. K and MSPU aspect ratio, AR = M/N) to optimize the

processor performance for the aforementioned target neural

networks. A detailed study of these benchmark networks (Figs.

5, 6) has shown that a 1MB MM is sufficient to store all

intermediate data, while the flow control program requires at

most 4KB of instruction memory. Moreover, the controller

energy/delay is estimated in an instruction-by-instruction

manner in which the required machine code for initializing and

performing each layer type has been evaluated.

Fig. S2 shows the system-level energy efficiency (EE),

throughput, and area with respect to K and AR for these

networks. Larger K typically results in higher throughput due to

wider bus widths and consequently higher data transfer rate. It

also improves the EE by reducing the VMM block peripheral

circuitry energy consumption (trend clearly seen in Fig. S2c).

Moreover, the increase in throughput results in lower leakage

Fig. 7. (a) VMM/neuron schematic for the FG-based mixed-signal universal

neural computing scheme supporting both positive/negative input/output as
well as various (non)linear activation functions. (b) The configuration of the

computing elements for various scenarios (desired activation function and

input type). (c) Performance results for a VMM connected to a neuron block as
a function of K assuming 4-bit computing precision, maximum cell current of

16 nA, maximum current of 1 µA and unity gain for local sensing, maximum

ADC input current of 5 µA, and ADC input scaling range of Q = 5. Such
numbers are selected based on optimal operation conditions [17] and our

analysis of the weight and output distributions for the considered neural

networks. Also, note that the area numbers are calculated for active circuitry
only (i.e. no programming/erasure circuitry included).

Function Input Sel. Unit
Weight
Scaling

Bias (Ib) Output

Rectified
Linear

positive ReLU 1 0
positive

offset-binary ReLU 2

Sigmoid
positive SGM 1 0

positive
offset-binary SGM 2

Tanh
positive SGM 1 0 offset-

binaryoffset-binary SGM 2

Linear
positive ReLU 0.5 +

 offset-
binaryoffset-binary ReLU 1

(b)

DAC

xm

DAC

xbias

DAC

x2

DAC

x1

F
G

 M
em

o
ry

 A
rr

a
y

Input Data Conversion

Sensing

Circuitry

 ×+-
SGM

ReLU

A
D

C

NSFQ-1 NSF1 NSF0

S=W/L

Iinput

Ioutput

neuron scaling factor (NSF)

neuron blockVMM block(a)

 =

 =

 =

 ,
 =

-
 ,

0 100 200 300 400 500
10

12

14

16

18

20

22

24

26
AEEE THAr. En. Set.

N,M (VMM Size)

 Settling (ns)

 Energy (pJ)

 Area*(mm2)

 EE. (POps/J)

 TH. (TOps/s)

 AE. (TOps/s/mm2)

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

0

5

10

15

20

25

30

35

40

45

50

20

25

30

35

40

45

50

55

60

65

70

75

80
(c)

K (VMM Size)

S
2Q-1

S
2Q

. . .

S
2

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

energy which further increases EE. However, for the networks

with medium and small weight kernels (i.e. ResNet-152 and

Inception-v1), larger K results in under-utilization of active

blocks, and buses, as well as an increase in the number of

required VMM blocks to map the network, which in turn

increases the energy overhead of the analog peripheral circuitry

and buses. As such negative effects outweigh the positive ones,

the overall system-level EE and throughput are getting worse

for larger K. For DNNs, the load bus delay/energy typically

plays a more significant role in the system throughput/EE

compared to the store bus due to higher input-to-output data

transfer ratio in convolution operations. Such property leads to

higher throughput/EE for smaller AR (i.e. relatively shorter

load bus) in these networks. The opposite of this trend is

observed for GNMT in which the LSTM layers have smaller

input-to-output data transfer ratio. Note that such trends do not

consistently hold due to network-specific weight packing

efficiency with respect to AR.

The accelerator area decreases for larger values of K due to

larger sharing factor of analog peripheries, hence smaller area

overhead of DACs and sensing circuitry (Fig. S2). This trend

does not hold for Inception-v1 in which smaller weight kernels

result in the VMM block under-utilization and lower weight

packing efficiency which outweigh the gain in peripheral

circuitry area efficiency.

The results for different networks indicate K = 64 and AR ≈

2 as a semi-optimal design point for which block utilization and

load/store bus energy/delay are somewhat balanced. Detailed

performance report and area/energy breakdowns for this design

point are presented in Table II. As these results show, the

energy consumption is dominated by data transfer and

intermediate data storage for DNNs with smaller size weight

kernels, such as Inception-v1 and ResNet-152 networks. On the

other hand, the energy consumption is dominated by sensing

circuitry and DACs, even despite larger accelerator area (and

hence larger data transfer energy consumption) for GNMT

inference task. This is because GNMT inference involves larger

size VMM operations (weight kernels), which ultimately leads

to larger compute-to-communication ratio and allows to take

better advantage of analog-domain computing. Also, note that

area overhead of high-voltage programming/erasure and VMM

peripheral circuits is quite low (as compared to other NVM-

based accelerators) due to their effective sharing, and, in fact,

the area of aCortex is dominated by FG memory cells. Thus,

the detailed results show that the integration density is one of

the key properties of memory devices for the energy-efficient

inference accelerators.

The performance comparison of aCortex against its major

fully digital [5-7] and mixed signal [23, 24] competitors shows

that aCortex achieves a significantly higher performance,

especially for mobile/IoT applications, for which the storage

efficiency (MB/mm2), and EE are the most important metrics

(Fig. S3). In order to make a fair comparison, we performed a

highly optimistic projection of the performance metrics for the

mixed-signal architectures to 55-nm, 4-bit design point.

According to these estimations, aCortex achieves ~28×/~65×

improvement in EE over ISAAC [23] / PUMA [24], while

maintaining a comparable SE and enduring a relatively small

drop in throughput (~0.3×/~0.4×). Note that these architectures

do not consider the overhead of programming/erasure circuitry

which could impact the performance results.

V. CONCLUSION

This paper discusses aCortex, a novel multi-purpose mixed-

signal architecture for accelerating neuromorphic inference.

The presented architecture is optimized for energy efficiency,

which is achieved by performing most of the computations and

some of the data transfer in the analog domain and by

maximizing sharing of peripheral and programming / erasure

circuitry among VMM blocks. Simulation results for 4-bit

aCortex implemented with embedded NOR flash memory in 55

nm process show record-breaking energy efficiency at

favorable area efficiency as compared to previously suggested

mixed-signal accelerators.

 Though latency of aCortex is already sufficient for practical

applications, its speed and computing throughput can be further

significantly improved by performing more VMM

computations in parallel, overlapping data transfer over the

busses and VMM computations, and pipelining and/or

increasing the bandwidth of the buses. Such modifications may

require increasing the bandwidth of main memory and

designing controller/ISA capable of handling multiple layer

operations, and will naturally reduce the energy efficiency.

Understanding energy efficiency – latency tradeoffs of aCortex

architecture is one of the important future research goals.

TABLE II. ACORTEX SYSTEM-LEVEL RESULTS AND BREAKDOWNS *

 Inc.-v1 ResNet-152 GNMT

Network Specification

Number of Parameters 7.2×106 5.52×107 1.3×108

Number of Operations 5.2×109 2.0×1010 2.6×109

Architectural Specification

K 64 64 64

M 38 80 128

N (top/bottom) 16/18 48/48 64/64

Main Memory Capacity 1 MB

Number of Memory R/W 3.3×105 8.1×105 1.7×104

Main Memory Utilizat. (%) 47.8 59.8 5.07

VMM block Utilization (%) 67.5 87.6 100

Area Breakdown (%)

Main Memory 17.3 4.4 2.2

Sensing Circuitry 15.6 23.5 25.1

FG Arrays 24.5 36.8 39.3

DACs 4.5 6.8 7.3

Neuron Blocks 0.06 0.04 0.03

Programming/Erasure** 26.5 14.2 11.3

Others 11.5 14.2 14.8

Energy Breakdown (%)

Main Memory 36.3 23.2 10.9

Sensing Circuitry 16.4 12 33.6

FG Arrays 3.5 2.5 7.1

DACs 6.8 4.9 13.8

Neuron Blocks 0.8 1.1 0.9

Buses 30.1 41.4 16.2

Leakage 3.3 13.5 16.8

Others 2.8 1.4 0.7

Performance Summary

Area (mm2) 37 146 293

Power (mW) 20.6 26.5 44.5

Inference Time (ms) 2.37 6.72 0.16

EE (TOp/J) 97 106.2 335.8

Throughput (TOp/s) 2.00 2.9 14.94

* Because of more optimal overlapped execution and refined estimates for

DAC circuits, the numbers are slightly adjusted compared to preliminary ones

reported in Ref. [19]. ** The area overhead of programming/erasure circuitry
is estimated as (245.5M +120N)×K µm2.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

pp. 436-444, May 2015.
[2] V. Sze, Y.H. Chen, T.J. Yang, and J. Emer, “Efficient processing of deep

neural networks: A tutorial and survey”, Proceedings of IEEE, vol. 105

(12), pp. 2295-2329, 2017.
[3] N.P. Jouppi, C. Young, N. Patil, and D. Patterson, “A domain-specific

architecture for deep neural networks”, Communications of ACM, vol. 61

(9), pp. 50-59, 2018.
[4] NVIDIA Corp. Investor day presentation (2017).

[5] N.P. Jouppi et al., “In-datacenter performance analysis of a tensor

processing unit,” in: Proc. International Symposium on Computer
Architecture (ISCA’17), Toronto, Canada, June 2017, pp. 1-12.

[6] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in:

Proc. International Symposium on Microarchitecture (MICRO’14),
Cambridge, MA, Oct. 2014, pp. 609-622.

[7] J. Lee et al., “UNPU: An energy-efficient deep neural network accelerator

with fully variable weight bit precision,” IEEE Journal of Solid-State
Circuits, vol. 54, no.1, pp.173-185, 2018.

[8] Y.H. Chen, T. Krishna, J.S. Emer, and V. Sze, “Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural

networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-

138, 2017.

[9] C. Mead, Analog VLSI and Neural Systems. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1989.

[10] R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics to
neurobiology,” Neural Computation, vol. 10, pp. 1601–1638, 1998.

[11] S. Chakrabartty and G. Cauwenberghs, “Sub-microwatt analog VLSI

trainable pattern classifier,” IEEE Journal of Solid-State Circuits , vol. 42,

pp. 1169–1179, 2007.
[12] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Frontiers in

Neuroscience, vol. 5, art. 73, 2011.

[13] J. Hasler and H. B. Marr, “Finding a roadmap to achieve large
neuromorphic hardware systems,” Frontiers in Neuroscience, vol. 7, art.

118, 2013.

[14] F. Merrikh Bayat et al., “Implementation of multilayer perceptron
network with highly uniform passive memristive crossbar circuits”,

Nature Communications, vol. 9, art. 2331, 2018.

[15] M. J. Marinella et al.. “Multiscale co-design analysis of energy, latency,
area, and accuracy of a ReRAM analog neural training accelerator”, IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8,

pp. 86-101, 2018.
[16] C. Li et al., “Analogue signal and image processing with large memristor

crossbars”, Nature Electronics, vol. 1, art. 52, 2018.

[17] X. Guo et al., “Temperature-insensitive analog vector-by-matrix
multiplier based on 55 nm NOR flash memory cells”, in: Proc. Custom

Integrated Circuit Conference (CICC’17), Austin, TX, Apr.-May 2017,

pp. 1-4.
[18] M. Bavandpour, M.R. Mahmoodi, and D. Strukov, “Energy-efficient

time-domain vector-by-matrix multiplier for neurocomputing and

beyond,” in: IEEE Transactions on Circuits and Systems II: Express
Briefs, 2019.

[19] M. Bavandpour et al., “Mixed-signal neuromorphic inference
accelerators: Recent results and future prospects,” in: Proc. International

Electron Devices Meeting (IEDM’18), San Francisco, CA, Dec. 2018, pp.

20.4.1-20.4.4
[20] M.R. Mahmoodi, and D.B. Strukov, “An ultra low energy internally

analog, externally digital vector-matrix multiplier circuit based on NOR

flash memory technology,” in: Proc. Design Automation Conference

(DAC’18), San Francisco, CA, June 2018, art. 22.

[21] G. W. Burr et al., “Experimental demonstration and tolerancing of a large-

scale neural network using phase-change memory as the synaptic weight
element”, IEEE Transactions on Electron Devices, vol. 62, pp. 3498-

3507, 2015.

[22] X. Guo et al., “Fast, energy-efficient, robust, and reproducible mixed
signal neuromorphic classifier based on embedded NOR flash memory

technology”, in: Proc. International Electron Devices Meeting

(IEDM’17), San Francisco, CA, Dec. 2017, pp. 6.5.1-6.5.4.
[23] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator

with in-situ analog arithmetic in crossbars,” in: Proc. International

Symposium on Computer Architecture (ISCA’16), Seoul, Korea, June
2016, pp. 14-26.

[24] A. Ankit et al., “PUMA: A programmable ultra-efficient memristor-based

accelerator for machine learning inference,” in: Proc. Conference on

Architectural Support for Programming Languages and Operating

Systems (ASPLOS’19), Providence, RI, Apr. 2019, pp. 715-731.
[25] X. Liu et al., “RENO: A high-efficient reconfigurable neuromorphic

computing accelerator design,” in: Proc. Design Automation Conference

(DAC’15), San Francisco, CA, June 2015, pp. 1-6.
[26] X. Liu et al., “Harmonica: A framework of heterogeneous computing

systems with memristor-based neuromorphic computing accelerators,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63
(5), pp. 617-628, 2016.

[27] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined ReRAM-

based accelerator for deep learning,” in: Proc. Symposium on High
Performance Computer Architecture (HPCA’17), Austin, TX, Feb. 2017,

pp. 541-552.

[28] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in: Proc.

International Symposium on Computer Architecture (ISCA’16), Seoul,

Korea, June 2016, pp. 27-39.
[29] M. Imani et al., “RAPIDNN: In-memory deep neural network

acceleration framework,” arXiv:1806.05794, 2018.

[30] H.Y. Chang et al., “AI hardware acceleration with analog memory:
Micro-architectures for low energy at high speed,” IBM Journal of

Research and Development, vol. 63 (6), pp. 8:1-8:14, 2019.

[31] D. Strukov and H. Kohlstedt, “Resistive switching phenomena in thin
films: Materials, devices, and applications,” MRS Bulletin, vol. 37, pp.

108-114, 2012.
[32] F. Merrikh Bayat et. al, “Model-based high-precision tuning of NOR flash

memory cells for analog computing applications”, in: Proc. Device

Research Conference (DRC’16), Newark, DE, June 2016, pp. 1-2.
[33] F. Merrikh Bayat et al., “Redesigning commercial floating-gate memory

for analog computing applications”, in: Proc. International Symposium

on Circuits and Systems (ISCAS’15), Lisbon, Portugal, May 2015, pp.
1921-1924.

[34] A. Mishra, E. Nurvitadhi, J.J. Cook, and D. Marr. “WRPN: Wide reduced-

precision networks.” arXiv:1709.01134, 2017.
[35] I. Hubara et al., “Quantized neural networks: Training neural networks

with low precision weights and activations,” arXiv:1609.07061, Sep.
2016.

[36] C. Szegedy et al., “Going deeper with convolutions,” in: Proc.

Conference on Computer Vision and Pattern Recognition (CVPR’15),
Boston, MA, June-July 2015, pp. 1-9.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in: Proc. Conference on Computer Vision and Pattern
Recognition (CVPR’16), Las Vegas, NV, June-July 2016, pp. 770-778.

[38] Y. Wu et al., “Google's neural machine translation system: Bridging the

gap between human and machine translation,” arXiv:1609.08144, 2016.
[39] K.C. Chun, P. Jain, T.-H. Kim, and C.H. Kim, “A 667MHZ logic-

compatible embedded DRAM featuring an asymmetric 2T gain cell for

high speed on-die caches,” IEEE Journal of Solid-State Circuits, vol. 4
(2), pp. 547-559, 2012.

[40] N. Muralimanohar, R. Balasubramonian, and N.P. Jouppi, “CACTI 6.0:

A tool to understand large caches,” Technical Report, HP Labs, HPL-
2009-85, 2009.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

SUPPLEMENTARY INFORMATION

S.I. NEURAL LAYERS AND WEIGHT-STATIONARY HARDWARE

COMPATIBILITY

Artificial neural networks (ANNs) consist of a common core

computing “neuron” cell. Capturing the basic behavior of its

biological counterpart, the artificial neuron calculates the

weighted summation of inputs passing through a (non)linear

activation function, f(), as 𝑦 = 𝑓(𝑥𝑖𝑤𝑖
𝑚
𝑖 1) where x and w are

inputs and weights, respectively. Targeting various

applications, different multi-layer ANNs with various layer-

types (i.e. neuron connectivity and activation functions) have

been developed [1]. We next briefly review the layer operation

for today’s most popular ANN models, which, e.g., occupy

95% of Google’s data center workload [5], and present their

weight-stationary hardware-friendly re-arrangement.

A. Fully-Connected (FC) Layer

FC is the most common ANN layer, e.g. in multi-layer

perceptron (MLP) networks, which are used for classification,

prediction, etc., and convolution neural networks (CNN), which

are mainly used for image classification/recognition [1]. In the

FC layer, each neuron in the input layer feeds all the output

neurons through a set of weights. As shown in Fig. S1a, FC

layer can be re-organized as a weight-stationary VMM

followed by an activation function. In such VMM, weight

matrix (green) is stationary, and the input elements (blue) are

vertically shared and propagated through all the weight

columns at the same time. Accordingly, all weight locations

simultaneously perform multiply-and-add operation, and the

outputs (shown with orange color) are calculated in parallel.

B. Convolutional (CNV) Layer

CNV is the core neural layer of CNNs, the dominant network

in computer vision, which uses a special connectivity pattern to

efficiently exploit the spatial locality of inputs while extracting

image features. This layer type includes multiple channels of

3D weight matrices, each applied over the whole 3D input data

in a sliding window fashion, to produce its corresponding

output feature map as shown in Fig. S1b. This figure also shows

our target scheme to map the CNV operation into a weight-

stationary VMM structure. In this scheme, CNV operation is

performed in a row-first manner in which one output pixel (for

all the channels) is calculated at a time. At the input, the CNV

row-wise data reuse is exploited using multiple “load and shift”

chains of input buffers. This input buffer array feeds a

stationary 2D weight matrix, which is a reshaped and stacked

representation of the 3D CNV filters. Accordingly, the output

vector represents different channels of one output pixel location

at a time. Note that in this scheme, different input channels of

each input pixel location (CI elements) can be grouped in one

input data pack without disturbing the data flow (Fig. S1b).

Moreover, for the strides larger than unity (s > 1), every s

adjacent pixels in the row direction can also be grouped into one

input data pack. Hence, for a given CNV operation, the data

pack size can be any divisor of CI×s.

C. Recurrent Layer

Recurrent neural layers aim to extract and interpret the

information encoded into the temporal locality in a sequence of

inputs using a feedback connection and a sequential operation.

Long-short-term-memory (LSTM) is one of the most popular

recurrent layers, which is widely used in language translation

and speech recognition [1]. Fig. S1c shows the original LSTM

structure and its weight-stationary re-arrangement. As shown,

Supplementary Information Fig. S1. Network structure and hardware-friendly representation of the most popular neural layers: (a) fully-connected layer, (b)

convolution layer, and (c) long-short-term-memory (LSTM) layer, all targeting a weight-stationary dataflow scheme. Note that the red arrows represent the
dataflow, and the numbers represent location index.

1 2

Wf×

σ (.)

Wi×

σ (.)

WC×

tanh (.)

Wo×

σ (.)

ft it Ct
~ ot

×

×
tanh (.)

×

t-1 t
+

CtCt-1

ht-1 ht

xt LSTM Cell
1 2
1 2

21
21
21

σ (.)

σ (.)

σ (.)

σ (.)

ta
n

h
 (.)

σ (.)

σ (.)

×

× +

tanh (.)

×

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3 3

4

3

3

3

4

3

3

3

5

4

4

4

5

4

4

4

6 6

f (.)

f (.)

f (.)

1

1

1

1

2

2

2

2

3

3

3

3

1
2
3

f (.)

f (.)

f (.)

1

2

3

1
11

3
33

2
2

2

1

2

3

f (.)

f (.)

f (.)

Input

Vec. (X)
Weight

Matrix (W)

Output

Vec. (Y)

(a) (b)

(c)

 𝑖 𝑚 = 𝑖 𝑚

 1

 1

 1

1 2 3
4 5 6
7 8 9

1 2
3 4

1 2
3 4

1 2
3 4

×

×

×

1 2

3 4

f (.)

f (.)

f (.)

Input FM (X) Filters (W) Output FM (Y)

CI

R
CI

s

𝑓 = 1 𝑥
 = 𝑖 1 𝑥 𝑖
 = 1 𝑥
 = 𝑓 1

 = 1 𝑥
 = ()

1 ×

+ Multiply-Accumulate

(MAC) Operation

Storage

element

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

the LSTM’s computational effort is dominated by VMM

operations for which the input vector is obtained via

concatenating the current element of the input sequence and a

hidden state [ht-1, xt]. Accordingly, the VMM’s weight matrix is

obtained by stacking the forget (f), candidate (C), input (i), and

output (o) weight matrices. The rest of the LSTM computation

includes basic element-wise vector operations and recurrent

data transfer for the next step. Note that unlike CNV, the LSTM

computation includes bipolar inputs and multiple activation

function types which calls for a more generalized computing

scheme supporting such cases – see Fig. 7b and its discussion

in Section IV.A. Moreover, LSTM layers typically have very

large weight matrices resulting in a larger compute-to-

communication ratio. Hence the computing efficiency typically

plays a more significant role (compared to data transfer

efficiency) in the overall efficiency of inference task for such

layers.

S.II. INSTRUCTION SET ARCHITECTURE DETAILS

The main controller instructions are:

Agent configuration: CNF agent, (mstr), (nstr/bstr)

Configure the agent (i.e. loader/collector) with appropriate

parameters such as memory stride (mstr) and neuron/buffer

stride (nstr/bstr) which are immediate fields in the instruction.

Load: M2B rm, rb, cnt, smode, sen

Command the loader to load cnt data packs (each K words)

starting from initial memory address specified by register rm

into the digital buffer blocks starting from the initial address

specified in register rb (assuming that strides are pre-

configured). smode field specifies the new value loaded to the

shift bit in each digital buffer block, and sen enables “load and

shift” operation.

Compute: VMM nsf, af

Command the operator to start VMM computation while

simultaneously configuring the neuron scaling factor (nsf) and

activation function type (af).

Collect: N2M rn, rm, cnt

Command the collector to collect cnt data packs (each K

words) from neuron blocks starting from initial address

specified by register rn into the memory locations starting from

initial address specified in register rm (assuming that strides are

pre-configured).

Row select: RSEL n_addr

Set the row select bit in the neuron block specified by n_addr

to “1”.

Synchronize: WAIT agent

Hault the main controller until the target agent finishes its

task.

Reset: RST

Reset all the column and row select bits.

The remaining instructions include simple arithmetic (i.e.

add/sub, addi/subi) and (non-)conditional control (i.e. jmp,

djnz, call, return) instructions. Note that for the considered

applications, all data in main memory are used before they have

to be refreshed. Therefore, for simplicity, we will not discuss

refresh operation, though its implementation is straightforward

and can be performed explicitly using either M2B instruction or

automatically by memory controller.

S.III PRIOR WORK

At the system-level, many efforts have been recently made to

exploit the efficiency of mixed-signal operators and develop an

efficient DNN/RNN processor architecture [23-30].

Specifically, ISAAC [23] and PUMA [24] architectures are

2D mesh structure of tiles where each tile contains several small

fixed-size ReRAM-based VMM units (typically 128×128) with

dedicated input/output peripheral circuitry. In these

architectures, one shared memory is implemented in each tile

for storing intermediate data and communication between

VMMs, while the communication between the tiles are

performed through a shared 2D bus structure. Such heavily

granular multi-core design approach is followed with the aim of

increasing the utilization, minimizing the data transfer

overhead, and maximizing throughput via pipelining and

parallel processing. However, data conversion and

communication overhead due to partial VMM operation, static

power consumption of the analog blocks, large area overhead

of the neurons / DACs / ADCs, and large control and

communication overhead between tiles/VMMs limit the

performance of such architectures, especially when running

relatively complex computational graphs such as of Inception

and ResNet.

RENO [25] and Harmonica [26] are, respectively, a ReRAM-

based reconfigurable neuromorphic computing accelerator and

a heterogeneous computing system based on such accelerator.

This accelerator utilizes a mixed-signal centralized mesh

interconnect network to reduce DAC/ADC overhead while

increasing the throughput via passing the analog output directly

to the next layer. However, this approach is only optimized for

fully-connected multi-layer networks and associative

memories. Moreover, despite lowering the DAC/ADC

overhead, the accelerator performance is impacted by costly

mixed-signal routers.

Pipelayer [27] explores the trade-off between hardware

resource of ReRAM array and performance utilizing the notion

of parallelism granularity targeting both training and inference.

This architecture uses a spike-based integrate and fire scheme

to eliminate DAC/ADC overhead. However, input multi-level

encoding and output spike generation overhead still results in

inferior efficiency.

PRIME [28] is a ReRAM based architecture proposing the

application of morphable memory blocks with small extra add-

on circuitry which can be configured as computational unit on

demand. Such morphable memory blocks result in a compact

and energy efficient design by reusing the memory block

peripheries for computation. However, the performance of

PRIME is negatively impacted by lack of data-reuse for

convolution, high data conversion/transfer overhead due to

small analog-domain VMM, i.e. kernel breakdown, and latency

overhead due to SA/neuron sharing. Additionally, the very

limited switching endurance of ReRAM makes the main idea of

PRIME hardly practical.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

RAPIDNN [29] is also a ReRAM based architecture which

aims to improve the hardware performance through minimizing

the required computing precision while achieving similar

network accuracy. Precision is reduced by utilizing a

reinterpretation mechanism (non-linear quantization of

inputs/weights/outputs based on statistical data). Moreover, in

this architecture all neural functionalities are implemented

inside the memory using a direct digital lookup table-based

technique which eliminates costly DAC/ADC/neuron.

However, semi-sequential VMM operation and lack of data-

reuse for convolution result in performance drop for large scale

neuromorphic applications especially those involving

convolution operation. Besides, the architecture suffers from

data encoding overhead despite eliminating data conversion

overhead.

Supplementary Information Fig. S2. Design space exploration for aCortex performance metrics, i.e. energy efficiency (TOp/J), throughput (TOp/s), and area

(mm2), with respect to the key architectural parameters, i.e. granularity (K) and aspect ratio, (AR=M/N) for three benchmark neural networks (GNMT-1024 RNN;

ResNet-152 and Inception-v1 DNNs).

Supplementary Information Fig. S3. (a) Performance comparison of aCortex with the state-of-the-art digital and mixed-signal neuromorphic processor
architectures. Except for TPU, all performance results are based on simulations. * Highly optimistic mapping of performance metrics to 4-bit computing precision

and 55-nm technology node. #The performance numbers do not include overhead of external memory access (weights/intermediate data). (b) Energy efficiency

versus throughput scatter plot for the approaches listed in (a). The size of bubbles represents the area of the processors.

0
100
200
300
400

3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8

AR=0.5 AR=1 AR=2 AR=4

0

10

20

30

3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8

AR=0.5 AR=1 AR=2 AR=4

0
200
400
600
800

3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8

AR=0.5 AR=1 AR=2 AR=4

0

50

100

150

32 64

12
8 32 64

12
8 32 64

12
8 32 64

12
8

AR=0.5 AR=1 AR=2 AR=4

0
1
2
3
4
5

3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8

AR=0.5 AR=1 AR=2 AR=4

0

100

200

300

32 64

12
8 32 64

12
8 32 64

12
8 32 64

12
8

AR=0.5 AR=1 AR=2 AR=4

0

50

100

150

32 64

1
2

8 32 64

1
2

8 32 64

1
2

8 32 64

1
2

8

AR=0.5 AR=1 AR=2 AR=4

0
0.5

1
1.5

2
2.5

32 64

1
2

8 32 64

1
2

8 32 64

1
2

8 32 64

1
2

8

AR=0.5 AR=1 AR=2 AR=4

0

20

40

60

32 64

1
2

8 32 64

1
2

8 32 64

1
2

8 32 64

1
2

8

AR=0.5 AR=1 AR=2 AR=4

EE (TOp/J) Throughput (TOp/s) Area (mm2)
In

ce
p

ti
o

n
-v

1
R

e
sN

e
t-

1
5

2
G

N
M

T-
1

0
2

4

K

K

K

DaDianNao [6] TPU [5] UNPU[7] # ISAAC [23] PUMA [24] aCortex

Technology node 28 nm 28 nm 65 nm 32 nm 32 nm 55 nm

Approach digital digital digital ReRAM ReRAM 2D-NOR

Clock (MHz) 606 700 200 1200 1000 700

Precision (bits) 16 fixed point 8 fixed point 1-16 (4 here) 16 fixed point16 fixed point4 fixed point

Area (mm2) 88 330 16 85.4 90.6 293

Power (W) 20.1 40 297 65.8 62.5 0.044

Throughput

(TOp/s)
5.54 92 1.38 39.9 52.31 14.94

SE (MB/mm2) 0.2 off-chip off-chip 0.74 (0.25*) 0.76 (0.257*) 0.273

EE (TOp/J) 0.286 0.43 11.6 0.35 (5.14*) 0.84 (12.09*) 335.8

0.1

1

10

100

1000

0 20 40 60 80 100

EE
 (

TO
p

/J
)

Throughput (TOp/s)

(a) (b)

aCortex

PUMA

ISAAC

UNPU

TPU

DaDianNao

