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Abstract— We propose an extremely dense, energy-efficient
mixed-signal vector-by-matrix-multiplication (VMM) circuits
based on the existing 3D-NAND flash memory blocks, without any
need for their modification. Such compatibility is achieved using
time-domain-encoded VMM design. We have performed rigorous
simulations of such a circuit, taking into account non-idealities
such as drain-induced barrier lowering, capacitive coupling,
charge injection, parasitics, process variations, and noise. Our
results, for example, show that the 4-bit VMM of 200-element
vectors, using the commercially available 64-layer gate-all-around
macaroni-type 3D-NAND memory blocks designed in the 55-nm
technology node, may provide an unprecedented area efficiency of
0.14 pm?/byte and energy efficiency of ~11 fJ/Op, including the
input/output and other peripheral circuitry overheads.

Keywords—Mixed-signal VMM, 3D-NAND flash memory, Time
domain encoding scheme.

I. INTRODUCTION

The vector-by-matrix multiplication (VMM) is the most
common operation in deep neural networks and many other
tasks. This fact is the motivation for the current intensive
development of efficient VMM circuits and optimal
architectures for their deployment in neuromorphic processors.
Most VMM implementations are digital, with many commercial
and experimental processor architectures developed recently,
see, e.g. review in [1]. The performance of such processors on
VMM-heavy benchmarks is much higher compared to the
standard CPUs, in part due to using low-precision operations,
suitable for the most frequent inference function. Digital
approaches, however, lead to relatively sparse design, which
necessitates storing most of the synaptic weights off-chip, hence
paying large performance penalty for memory access. As
demonstrated by prior work, these inefficiencies could be
overcome by utilizing mixed-signal (MS) circuits based on
advanced analog-grade non-volatile memory devices [2, 3]. On
the other hand, MS approaches to the VMM tasks have their own
challenges. The developed technologies for fabrication of highly
scalable emerging memristive devices are not yet mature, still
requiring a substantial improvements in device-to-device
uniformity, and in device current reduction. The floating-gate
memory cells, whose optimal design mitigates these problems,
have relatively large cells, even if implemented by re-design of
highly optimized commercial flash memories [3]. The resulting
relatively low circuit density may lead, just like in the case of
the digital implementations, to significant inter- and intra-chip
data transfer overheads [3]. Additional concern is substantial
area/energy overhead of conversion between analog and digital
domains in MS inference accelerator architectures.

This work was supported by Samsung award SB190104.

These challenges have provided the main motivation for our
work - the development of VMM circuits and architectures
based on 3D-NAND memories [4]. Indeed, even the already
developed commercial 3D-NAND memory technology enables
record-breaking effective bit density, ultra-low fabrication cost
per bit, and multi-level cell programming capability [4], while
still rapidly advancing. Fig. la shows a typical 3D-NAND
memory architecture. In it, many layers of memory cells are
stacked on top of each other, with the cells connected in the z-
direction (normal to the chip surface) to form a “string”. On the
top of each string, there is a bit-select-line (BSL) transistor that
connects it to the bit line (BL). The memory block consists of a
2D (x-y-plane) mesh of such strings, with all memory cells of
the same level (i.e., at the same z-position) sharing the common
word-line (WL) metal plate. In addition, the strings share BSLs
in the x-direction, and BLs in the y-direction.

While showing a possible dramatic increase of the stored
weight density (scaling as the number of the cell layers), Fig. 1
also points to a major problem for the VMM implementation.
Namely, sharing of each word line by all cells of that layer does
not allow to use the “current-mode” approach that was
successfully employed for the adaptation of a commercial 2D
flash memory for MS-VMM [3]. In future, an appropriate
redesign of the 3D wiring (perhaps, as in the 2D work, not
touching the highly optimized memory cells) may be the best
option. However, such modification (assumed in the recent work
[5]) would require a major technological effort. (The approach
in [5] also requires using high-resistance and high-capacitance
WL on the critical path).

The main contribution of our work is to show that the time-
domain approach to the VMM function [6-9] may enable using
commercial 3D-NAND memories without any modification.
After describing this approach in the beginning of section 2, we
then use the balance of the paper to present quantitative analysis
of the possible performance of the resulting 3D-VMM blocks,
taking into account various non-idealities impacting their
performance.

II. 3D-VMM DESIGN

A. Time-domain VMM

The target analog VMM operation may be represented as
1
Vi =;Z§W=1Wijxi, (1
where x;, wy, and y; are real numbers, which may take any values
within range [0, 1]. In the time-domain approach [9], the
components x; and y; of the input and output vectors are encoded
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Fig.1. The main idea of the 3D-VMM circuit. (a) Cartoon of 3D-NAND flash memory block and its use in the proposed circuit. For simplicity, a layer of transistors
at the bottom of the block, which connects the cell strings to the common source (ground) is not shown. (b) Basic structure and example of operation in the utilized
time-domain approach [9]. (c) Circuit diagram of the peripheral neuron, which consists of a load capacitor C, connected to the bit line (BL), and an SR latch,
implementing a unit step function of its input. (d) Equivalent circuit of a single string for the operation mode.

with the durations A of fixed-amplitude pulses: A" = x;T, A
=y,T, where T is a certain fixed time window, while the matrix
elements (“weights”) w; are represented by adjustable current
sources /;; within a fixed range [0, /max]: Wij= Iji/Imax. (In floating-
gate memory cells, the weights are kept in the form of stored
floating gate charges, which define the source-to-drain currents
I; at a fixed drain voltage.)

The computation is performed in two phases (Fig. 1b).
During the first Tiy-long (integration) phase, the input pulse A/™
turns on fixed drain voltages, and hence the current sources /;;
of the i™ row, leading to the injection of electric charges equal
to I;A™ oc wix; into the /" column through the corresponding
memory cells. The charges from multiple rows of the j column
are summed up on its load capacitor C. As a result, by the end
of phase I, the capacitor voltages V¢ (which are reset before the
operation) become proportional to the component of the desired
VMM output vector:

X .
Ve, =2 Zita I 2

During the second T7-long phase, these voltages are
converted into the durations A;*" of the output pulses (Fig. 1b).
This is done by additional charging of each load capacitor with
a constant “sweep” current equal to My, inducing a linear
ramp-up of its voltage in time, starting from the value (2). At
the moment when the total voltage reaches the fixed threshold
Vi, an output fixed-amplitude pulse is initiated, with its falling
edge aligned with the end of this phase II. As a result, the
duration of the output pulse generated in phase II is

A= S LA 3)

J MImax

where, just for convenience, all load capacitances are assumed
to be equal to C = MInax/Vin. Also, note that T > Tin, because
of the extra voltage margins reserved for coupling (see below).

The described approach can be easily extended to four-
quadrant time-domain VMM, by wusing differential
rows/columns, and a set of four cells for each weights, to
represent positive and negative inputs/outputs [9].

B. 3D-VMM structure and operation

In 3D-VMM block, each elementary (“single-shot”) VMM
operation uses the weights recorded in the floating-gate cells of
one x-y layer of the 3D-NAND memory circuit (see Fig. 1a).
This layer is selected by setting its WL voltage to 2 V, while
setting the cells of all other layers to the highly conductive
“pass” state by applying 5 V to those WLs. The cell currents
are collected and integrated at the BL. However, irrespective of
the selected layer of cells, the inputs are always applied to bit-
select lines. The “sweep” currents, necessary for phase II of the
operation, are injected through the top layer of cells of all
strings, enabled by a positive voltage applied to all BSLs.

Such elementary VMM operations, based on different
layers, are used as steps of the time-division-multiplexing
operation. Clearly, such VMM operation mode does not require
changes in the usual NAND flash memory array, and only
needs to complement it with custom-designed peripheral
decoder and level-shifter circuits.

Note that because of significant WL parasitics in 3D-NAND
memory, the total delay for performing one VMM elementary
operation is 271s+ Tine + T, where Tisis the time required to
select a certain layer.

C. Non-idealities

For our detailed analysis, we have specifically considered
the 3D-NAND memory based on polysilicon gate-all-around
macaroni-body charge-trap cells. Besides its widespread use,
another reason for this choice is availability of a behavioral
compact model for such memory, which may be used for
quantitative simulation. In such model, individual cells are
approximated as cylindrical gate-all-around nanowire FETs
with a voltage-controlled-current-source [10]. The model takes
into account various parasitic capacitance coupling effects, and
accurately reproduces the experimental string current
characteristics.

We next discuss the most important factors affecting
computing precision:
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Fig. 2: (a) Small-signal DIBL error contours (shown in %) in Ip-¥p space for
top, middle, and bottom layer memory cells, programmed in various states in
a 64-layer 3D-NAND memory. Small-signal error is defined as 100x(1 - I(Vp)
/ I(Vp+1 mV)), i.e. relative change in string current for a 1 mV change in the
BL voltage. (b) Total DIBL error (%) for £0.2 V swing on the drain voltage
around Vp=0.7 V for various memory states.

Drain-induced barrier lowering (DIBL): Let us first note
that since the current is sunk through the cells to the source line,
we consider the scheme in which BL voltage is charged to a
voltage AVp+ Vi at the start of phase I, where AVp is the total
voltage swing on BL during computation, and then discharged
to Vi in the phase II.

DIBL error is defined as a relative difference of currents via
string of cells at two extreme BL voltages, i.e.

EppL=1 - [(Vth)/[(Vtth AVD). (4)
Without considering additional headroom to deal with
capacitive coupling, the typical values are Vi = 0.6 V and AVp

= 0.2 V, which correspond to the quasi optimal operation
conditions for the CMOS-based neuron implementation [9].

According to Eq. 4, the DIBL error is proportional to the
small signal transconductance gain 8/p/0Vp of a string over the
target operating regime. Given the small signal model shown in
Fig. 1d, the transconductance gain can be formulated as:

dlp 1

aVp  Rp+Ro+(1+gmRo)Rs ’ )
where gm and R are the small signal parameters of a single
memory cell, and Rp and Rs are the lumped string resistances on
the drain and source side, respectively, of the selected memory
cell. According to Eq. 5, larger Rp and Rs help reducing the
DIBL error, but at the cost of limiting the current range.
Moreover, because of stronger effect of Rs, DIBL error is less

for top memory cells (which was the reason for using top layer
for sweep currents). Also, DIBL error is less for larger string

currents due to intrinsically larger Ry, when the selected cell
operates closer to strong inversion mode. These observations
are confirmed by modeling (Fig. 2). In line with Eq. 4, DIBL
error increases almost linearly with the total swing in the target
operation region (Fig. 2b).

Capacitive coupling: Due to the switched-capacitor nature
of the proposed approach, capacitive coupling is a significant
source of compute error. We break down the sources of
coupling into two components. The first component, gate-drain
(GD) coupling, is caused by their overlap in BSL transistor and
coupling between BSL and BL wires. The second one (DD) is
caused by the parasitic capacitors between the string and the
rest of the memory block. These two lumped capacitors are
denoted as Cyq and Cyq, respectively (Fig. 1d).

Note that Cyq is distributed over the total length of the string.
When a 2.5 V rising edge is applied to BSL line, GD coupling
results in an immediate positive disturbance charge on the BL
voltage with the amount of Cyex (2.5 V). Moreover, when the
string is selected via BSL, DD coupling causes a negative
disturbance charge on BL to charge the string parasitic
capacitors Cyq from their initial voltage (ground) to their final
DC voltage at which the string sinks the target current. When a
2.5V falling edge is applied to BSL, the capacitive coupling is
dominated by the GD coupling which causes an immediate
negative disturbance charge on BL by -Cg%x(2.5 V).

GD coupling disturbance is almost independent of the
selected cell location and programming state, while the DD
coupling disturbance during rising edge is highly dependent on
both (Fig. 3). The amplitude and time constant of the DD charge
disturbance are both larger for the cells closer to the bottom of
the string due to higher voltage variation on the parasitic
capacitors (Caq), especially the ones closer to the bottom but
higher than the selected cell where the path to both ground and
BL are highly resistive.

Taking into account the coupling, we can formulate the
amount of voltage disturbance on the BL for each input as AV,
= Op/Co where C) is the amount of load capacitance per input,
and Qb is the total disturbance charge caused by one input in
both phase I when the target weight layer is selected and a rising
edge followed by a falling edge is applied to BSL, and also
phase II when the sweeping layer, i.e. top layer, is selected and
one rising edge is applied to BSL. A major portion of Op, and
consequently AV, is dependent on the location of target weight
layer (Fig. 3b). Hence the maximum disturbance charge
(Ob)max, Which causes the largest disturbance voltage swing on
BL (AVep)max = (Op)max/Co, occurs when the target weight layer
is at the bottom of the string.

In order to support VMM operation on all the layers, reset
voltage AVp+ Vi should be selected to reserve a portion of total
voltage swing on BL for the worst case voltage variation due to
coupling. Hence, we select AVp = AVemp + (AVep)max, Where
AVemp 1s the voltage swing without considering the capacitance
coupling for the weight and sweep current sources. Though the
utilized differential scheme is robust to coupling, the output
time window in which the output pulse is generated should be
scaled by a coupling coefficient ocp =1 + (AVep)max/ AVemp. Note
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Fig. 3: Charge disturbance on BL due to capacitive coupling. (a) Time domain
representation of drain (BL) current and its disturbances caused by coupling
when a 2.5V rising edge (at ¢ = 0.5 ns) followed by a same-amplitude falling
edge (at £ = 2 ns) is applied to the BSL for various programming states where
the selected cell is located at top, middle, and bottom layer of the string. (b)
Total string disturbance charge on a drain caused by capacitive coupling when
a 2.5 V rising + falling edge is applied to BSL and target cell is located in top,
middle, and bottom layer and programmed in various states (corresponding to
phase I of computation), as well as when a single 2.5 V rising edge applied to
BSL and target cell is located in top layer and programmed in various states
(corresponding to phase II of computation). Error bar represents 3¢ distribution
of the disturbance charge due to process variations.

that a small portion of (AV p)max still affects the output precision
because of difference in disturbance charge caused by positive
and negative sub-weights due to process variation, and
dependence of disturbance charge on the programmed state of
the flash cells. Also note that a larger (AVcp)max leads to a higher
BL voltage swing and consequently a larger DIBL error.

Noise: White (shot/thermal) noise will dominate at the
considered high-bandwidth operation. (We assume that the
cells with extremely high flicker noise will be set to high
conductive states and avoided during mapping.). The noise
power for a single string operating in subthreshold can be
approximated as ~ 2¢/max/T, while SNR for a single device as
SNRe¢!! = 2¢g/Inax, Where g is an electron charge. Accordingly,
for an Mx1 VMM unit (a dot product), noise and signal power

Mx1 _ 2qMImax M><1 _ 2 :
are Ppoise =~ and Pggna = (MInax)® , respectively.
Hence,
Mx1
Psignal _ MImaxT
SNRM** = SE ~ =2 = M x SNR°!. (6)
noise q

The equivalent 3¢ error due to noise is derived as
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Fig. 4: 3D-NAND based VMM bit precision with respect to VMM size for [yax
=100 nA, 200 nA, and 300 nA for T, = (a) 8 ns, (b) 16 ns, and (c) 32 ns.

In the above equation, the distribution is multiplied by two due
to the differential scheme. According to the derived equation,
compute error is inversely proportional to the square root of
maximum current, compute time window, and the VMM size.

D. Compute precision
The compute (output) precision po can be defined separately
from the weight precision [9] as
1 .
Po = —loga(Ec) — 1, Ec = ymax|a®e?!

where Ec is a maximum absolute difference between the ideal
(A% and actual (A°"") output pulse durations, normalized by
its maximum value.

_ Aoutl

The 3D-VMM circuit can be designed following various
optimization targets such as precision, energy, speed and area.
Here, we focus on the precision which generally limits the
design space in application-specific hardware design. The main
tunable circuit parameters impacting precision are Imax and Tiy.

In Table I, various combinations of (7in, [max) are targeted
to investigate the impact of these parameters on 3D-VMM’s
compute precision. Assuming AVemp = 0.2 V and (QOp)max =
6x107'%, we first calculate dependent parameters such as load
capacitor, coupling voltage disturbance, and output time
window for every combination of Imax and Tinp. Then, full
circuit-level SPICE simulations are performed on 10 different
VMM sizes from 10x10 to 1000x1000 with 1000-times
randomized inputs/weights considering detailed parasitic
models for the interconnect wires and devices, and also process
variations considering the 55-nm technology node. The results
for different simulated scenarios show that the compute error
for the noise-free circuit remains relatively constant over the
target VMM size range.

Table I also reports the SNR and 36 noise error parameters,
calculated according to Eqgs. 6 and 7, and total error targeting
three representative VMM sizes. Fig. 4 shows that bit-
precision, corresponding to the calculated error, increases with
respect to Imax, Tint, and VMM size.

E. Weight precision

Similar to 2D flash memory circuits [3], the weight
precision in 3D-VMM is also expected to be affected by the
tuning accuracy and drift of the analog memory state. The
additional challenge for cell current tuning will be relatively
large resistance Rp and Rs (Fig. 1d). The voltage drops across



TABLE L DESIGN SPACE EXPLORATION. CIRCUIT SPECIFICATIONS AND COMPUTE ERROR (DUE TO NOISE AND CIRCUIT NONIDEALITIES) FOR VARIOUS CHOICES
OF Tinr AND Jyax. FINAL VMM ERROR IS REPORTED FOR THREE DIFFERENT VMM SIZES (M = 10, 100, AND 1000), AND THE ACHIEVABLE OUTPUT BIT-PRECISION IS
SHOWN BY A COLOR CODING SCHEME IN WHICH ORANGE = 2 BITS, BLUE = 3 BITS, GREEN = 4 BITS, AND YELLOW = 5 BITS.

Input time window Tint 8 ns 16 ns 32 ns

Maximum cell current Imax 100nA | 200nA | 300nA | 100nA | 200nA | 300nA | 100nA | 200nA | 300nA

Load capacitor per input Co (fF) 4 8 12 8 16 24 16 32 48

Coupling vol. swing AVe,™* (mV) 150 75 50 75 325 25 325 16.25 12.5

Coupling coefficient, acp 1.75 1.375 1.25 1.375 1.1875 1.125 1.1875 1.094 1.062

Output time window Tout (ns) 14 11 10 22 19 18 38 35 34

Single device SNR!' (dB) 33.97 36.98 38.75 36.98 40 41.76 40 43.01 44.77

Single device noise 36 error (%) 12 8.48 6.92 8.48 6 4.89 6 4.24 3.46

Noise-free VMM comp. error (%) 6.24 3.55 1.79 4.25 2.31 1.16 1.92

Final compute error M =10 (%) 10.03

Final compute error M =100 (%) 7.44

Final compute error M =1000 (%) 6.62
these resistors (especially Rs) must be taken into account while output pulse, using clock pulses (shared by all accumulators).
optimizing the programming scheme for a target output current. This unit along with DTC constitutes the “I/O”.

Quantitative analysis of such factors is challenging, mostly =~ ® WL represents the word-line level shifters, which apply the
due to the lack of published relevant data. It should be noted, read/pass voltages (2 V /5 V) to the word-line plates (Fig.
however, that the utilization of barrier-engineered materials and la). Note that the width of each driver transistors is made
the gate all-around architecture in the 3D-NAND memory proportional to the area (M*N) of the plate it serves, in order
results in a narrower threshold voltage distribution and a lower to keep the layer selection time (7is) within a limited range
threshold voltage shift due to cell-cell coupling as compared to comparable to the computation time.
the planar counterparts. In fact, multi-level state capabilities (> e BSL is an array of level-shifters driving the bit-select lines
3 bits) have been routinely demonstrated in 3D-NAND and converting the 1.2 V time-encoded, fixed-amplitude
memories, and is expected to further improve as its technology input pulses to 2.5 V digital pulses.

continues to advance [4]. As Table 1 shows, the optimal design point, which

guarantees the 4-bit precision across VMMs of various size is
) Inax = 300 nA, and Tin =16 ns. Fig. 5 shows the energy, area,

The 3D-VMM parameters can be chosen to operate with any 44 throughput calculation results for various sizes of our 3D-
precision from 2 bits to 5 bits. Here we describe the results VMM, as well as the energy and area breakdowns for this

obtained for the 4-bit precision, which is sufficient for many design point. The energy consumption is dominated by the
neuromorphic inference tasks [3]. A 4-bit 3D-VMM block

consists of the following main components (Fig. 1a):

III. CASE STUDY: 4-BIT VMM WITH DIGITAL I/O

e DTC converts the digital input to the time-domain pulse of
fixed amplitude and controllable duration. As was described
earlier [9], this unit includes one shared 4-bit counter and one
4-bit comparator connected to a 1-bit latch per input.

e 3D-FM is the 3D-NAND memory block for the MxN (per
layer) VMM, which consists of Mx2N cells with the
dimensions reported in [10], as well as an extra marginal
space for routing the word and bit-select lines. Note that the
parasitics of the word-line plate extensions by routing and
vias/wires are taken into account in the simulations.

e CAP stands for the load capacitor. We assume MOSCAP : w0 w00 s
implementation in the 55-nm technology, and also account
for an extra marginal space around each capacitor. The use of
MOM/MIM capacitors would further improve density.

e NB represents the neuron circuit, consisting of a pair of
NAND latches and a couple of AND and NOT logic gates for
implementing the differential scheme.

e TDC converts the time-encoded digital output to the
corresponding digital output number. This unit consists of a
4-bit adder and a 4-bit DFF per output. The adder and the Fig. 5: 3D-NAND based VMM performance metrics. (a) Energy per operation

DFFs form an accumulator, which counts the duration of the breakdown. (b) Area efficiency breakdown. (c) Throughput as a function of
VMM size.

100 200 300 400 500
BSL 1/O mmCAP NB -e-E/Op

1/0 mmm CAP NB mmm 3D-FM -8-AE




word line selection and by feeding the inputs into the bit-select
lines. (The per cell capacitance of the bit-select lines is lower
than that of the load capacitance Cy, but their voltage swing is
higher). The contribution of I/O and neuron circuits to the
energy consumption decreases as the VMM size increases, due
to their higher sharing factor. As a result, the energy per
operation is only ~9 fF for M = N = 500. The area is dominated
by the CAP, though its contribution is minor in energy
consumption (Fig. 5b). Similar to the energy trend, the relative
areas of I/O and neuron get smaller for larger VMM sizes.
Finally, Fig. 5¢ shows the VMM’s throughput for its various
sizes considering scaling to maintain 71s within the range of [20
ns, 30 ns].

IV. VMM DESIGN FOR LOWER CURRENTS

In the presented performance analysis, the largest current
flowing into a neuron is Mx/n., which corresponds to the
largest possible values of weights and inputs for the dot product
operation. For digital circuits, this is analogous to rounding full
precision (i.e., 2p + logoM bit long) dot product result to p most
significant bits. In some applications, neuron input currents
might be always well below their maximum possible value. In
this case, it is natural to tailor VMM design for the specific
largest expected dot-product output currents to minimize the
impact of rounding and quantization.

The straightforward modification of the proposed design to
accommodate lower currents is to shrink the load capacitor.
Such approach, however, may result in large voltage
disturbance caused by the capacitive coupling of 3D-NAND
array, and, in turn, in a significant drop of VMM output
precision. A better approach in this case is to use resistive
successive integration and re-scaling (RSIR) VMM design,
which is adapted from SIR concept recently introduced in [11]
(Fig. 6a,b). In such VMM, input bits are presented in a
sequential manner, and an iterative integration and re-scaling
(division by 2) operation is performed to calculate the final
results, similar to a digital serial multiplier. A load resistor (Ry)
is added to the conventional SIR-VMM to minimize the effect
of capacitive coupling so that a coupling-free weighted-sum is
calculated in each iteration as VC’fj =R YN I ]-xl-k + VC’fj_1 ,
where k is a step number (bit position). Fig. 6¢ shows the
preliminary estimates for the error in 3D-NAND RSIR VMM
as a function ofits size for two scenarios in which the maximum
VMM current output is equal to M$9x ., with considered sq
= 2 and sq = 3. (For example, sq=2 is representative of
extracting p bits from the middle of the full precision result.)
These results show that 3D-VMM precision can be maintained
in >4 bits range even for a very low output current range of [0,
M"3x[ax]. These results are preliminary, and a thorough
design-space optimization is an important future work.

V. SUMMARY

We have proposed and performed detailed simulations of
VMM circuits based on the native 3D NAND memories, not
requiring any redesign. As a case study, we have considered 4-
bit 3D-VMM with digital input/output interface and showed
that such design achieves a ~100x better area efficiency than
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Fig. 6: (a) VMM structure and (b) signaling of the proposed resistive
successive integration and re-scaling (RSIR) VMM. (c) Compute error (%) for
3D-NAND RSIR VMM as a function of its size.

that of its 2D-NOR memory-based counterpart [3], while
maintaining a comparable energy efficiency and throughput.
Such mixed-signal 3D-NAND VMM circuits are especially
appealing for accelerating inference function of large
complexity neural network models, whose weights cannot be
stored locally on a chip using conventional approaches.
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