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Abstract— We propose an extremely dense, energy-efficient 

mixed-signal vector-by-matrix-multiplication (VMM) circuits 

based on the existing 3D-NAND flash memory blocks, without any 

need for their modification. Such compatibility is achieved using 

time-domain-encoded VMM design.  We have performed rigorous 

simulations of such a circuit, taking into account non-idealities 

such as drain-induced barrier lowering, capacitive coupling, 

charge injection, parasitics, process variations, and noise. Our 

results, for example, show that the 4-bit VMM of 200-element 

vectors, using the commercially available 64-layer gate-all-around 

macaroni-type 3D-NAND memory blocks designed in the 55-nm 

technology node, may provide an unprecedented area efficiency of 

0.14 µm2/byte and energy efficiency of ~11 fJ/Op, including the 

input/output and other peripheral circuitry overheads. 

Keywords—Mixed-signal VMM, 3D-NAND flash memory, Time 

domain encoding scheme. 

I. INTRODUCTION 

The vector-by-matrix multiplication (VMM) is the most 
common operation in deep neural networks and many other 
tasks. This fact is the motivation for the current intensive 
development of efficient VMM circuits and optimal 
architectures for their deployment in neuromorphic processors. 
Most VMM implementations are digital, with many commercial 
and experimental processor architectures developed recently, 
see, e.g. review in [1]. The performance of such processors on 
VMM-heavy benchmarks is much higher compared to the 
standard CPUs, in part due to using low-precision operations, 
suitable for the most frequent inference function. Digital 
approaches, however, lead to relatively sparse design, which 
necessitates storing most of the synaptic weights off-chip, hence 
paying large performance penalty for memory access. As 
demonstrated by prior work, these inefficiencies could be 
overcome by utilizing mixed-signal (MS) circuits based on 
advanced analog-grade non-volatile memory devices [2, 3]. On 
the other hand, MS approaches to the VMM tasks have their own 
challenges. The developed technologies for fabrication of highly 
scalable emerging memristive devices are not yet mature, still 
requiring a substantial improvements in device-to-device 
uniformity, and in device current reduction. The floating-gate 
memory cells, whose optimal design mitigates these problems, 
have relatively large cells, even if implemented by re-design of 
highly optimized commercial flash memories [3]. The resulting 
relatively low circuit density may lead, just like in the case of 
the digital implementations, to significant inter- and intra-chip 
data transfer overheads [3]. Additional concern is substantial 
area/energy overhead of conversion between analog and digital 
domains in MS inference accelerator architectures.    

These challenges have provided the main motivation for our 
work - the development of VMM circuits and architectures 
based on 3D-NAND memories [4]. Indeed, even the already 
developed commercial 3D-NAND memory technology enables 
record-breaking effective bit density, ultra-low fabrication cost 
per bit, and multi-level cell programming capability [4], while 
still rapidly advancing.  Fig. 1a shows a typical 3D-NAND 
memory architecture. In it, many layers of memory cells are 
stacked on top of each other, with the cells connected in the z-
direction (normal to the chip surface) to form a “string”. On the 
top of each string, there is a bit-select-line (BSL) transistor that 
connects it to the bit line (BL). The memory block consists of a 
2D (x-y-plane) mesh of such strings, with all memory cells of 
the same level (i.e., at the same z-position) sharing the common 
word-line (WL) metal plate. In addition, the strings share BSLs 
in the x-direction, and BLs in the y-direction.  

While showing a possible dramatic increase of the stored 
weight density (scaling as the number of the cell layers), Fig. 1 
also points to a major problem for the VMM implementation. 
Namely, sharing of each word line by all cells of that layer does 
not allow to use the “current-mode” approach that was 
successfully employed for the adaptation of a commercial 2D 
flash memory for MS-VMM [3]. In future, an appropriate 
redesign of the 3D wiring (perhaps, as in the 2D work, not 
touching the highly optimized memory cells) may be the best 
option. However, such modification (assumed in the recent work 
[5]) would require a major technological effort. (The approach 
in [5] also requires using high-resistance and high-capacitance 
WL on the critical path).  

The main contribution of our work is to show that the time-
domain approach to the VMM function [6-9] may enable using 
commercial 3D-NAND memories without any modification. 
After describing this approach in the beginning of section 2, we 
then use the balance of the paper to present quantitative analysis 
of the possible performance of the resulting 3D-VMM blocks, 
taking into account various non-idealities impacting their 
performance.  

II. 3D-VMM DESIGN 

A. Time-domain VMM  

The target analog VMM operation may be represented as 

𝑦𝑗 =
1

𝑀
∑ 𝑤𝑖𝑗𝑥𝑖 
𝑀
𝑖=1 ,   (1) 

where xi, wij, and yj are real numbers, which may take any values 

within range [0, 1]. In the time-domain approach [9], the 

components xi and yi of the input and output vectors are encoded 
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with the durations  of fixed-amplitude pulses: Δi
in = xiT, Δj

out 

= yjT, where T is a certain fixed time window, while the matrix 

elements (“weights”) wij are represented by adjustable current 

sources Iij within a fixed range [0, Imax]: wij = Iij/Imax. (In floating-

gate memory cells, the weights are kept in the form of stored 

floating gate charges, which define the source-to-drain currents 

Iij at a fixed drain voltage.)   

The computation is performed in two phases (Fig. 1b). 

During the first Tint-long (integration) phase, the input pulse Δi
in 

turns on fixed drain voltages, and hence the current sources Iij 

of the ith row, leading to the injection of electric charges equal 

to IijΔi
in  wijxi into the jth column through the corresponding 

memory cells. The charges from multiple rows of the jth column 

are summed up on its load capacitor C. As a result, by the end 

of phase I, the capacitor voltages VC (which are reset before the 

operation) become proportional to the component of the desired 

VMM output vector:   

𝑉C,𝑗 =
1

𝐶
∑ 𝐼𝑖𝑗∆𝑖

in.𝑀
𝑖=1     (2) 

During the second T-long phase, these voltages are 

converted into the durations Δj
out of the output pulses (Fig. 1b). 

This is done by additional charging of each load capacitor with 

a constant “sweep” current equal to MImax, inducing a linear 

ramp-up of its voltage in time, starting from the value (2). At 

the moment when the total voltage reaches the fixed threshold 

Vth, an output fixed-amplitude pulse is initiated, with its falling 

edge aligned with the end of this phase II. As a result, the 

duration of the output pulse generated in phase II is 

∆𝑗
out=

1

𝑀𝐼max
∑ 𝐼𝑖𝑗∆𝑖

in𝑀
𝑖=1   .      (3) 

where, just for convenience, all load capacitances are assumed 

to be equal to C = MImax/Vth. Also, note that T  ≥  Tint, because 

of the extra voltage margins reserved for coupling (see below). 

The described approach can be easily extended to four-

quadrant time-domain VMM, by using differential 

rows/columns, and a set of four cells for each weights, to 

represent positive and negative inputs/outputs [9].   

B. 3D-VMM structure and operation 

In 3D-VMM block, each elementary (“single-shot”) VMM 

operation uses the weights recorded in the floating-gate cells of 

one x-y layer of the 3D-NAND memory circuit (see Fig. 1a). 

This layer is selected by setting its WL voltage to 2 V, while 

setting the cells of all other layers to the highly conductive 

“pass” state by applying 5 V to those WLs. The cell currents 

are collected and integrated at the BL. However, irrespective of 

the selected layer of cells, the inputs are always applied to bit-

select lines. The “sweep” currents, necessary for phase II of the 

operation, are injected through the top layer of cells of all 

strings, enabled by a positive voltage applied to all BSLs.  

Such elementary VMM operations, based on different 

layers, are used as steps of the time-division-multiplexing 

operation. Clearly, such VMM operation mode does not require 

changes in the usual NAND flash memory array, and only 

needs to complement it with custom-designed peripheral 

decoder and level-shifter circuits.   

Note that because of significant WL parasitics in 3D-NAND 

memory, the total delay for performing one VMM elementary 

operation is 2TLS + Tint + T, where TLS
 is the time required to 

select a certain layer.  

C. Non-idealities 

For our detailed analysis, we have specifically considered 

the 3D-NAND memory based on polysilicon gate-all-around 

macaroni-body charge-trap cells. Besides its widespread use, 

another reason for this choice is availability of a behavioral 

compact model for such memory, which may be used for 

quantitative simulation. In such model, individual cells are 

approximated as cylindrical gate-all-around nanowire FETs 

with a voltage-controlled-current-source [10]. The model takes 

into account various parasitic capacitance coupling effects, and 

accurately reproduces the experimental string current 

characteristics. 

We next discuss the most important factors affecting 

computing precision: 

 
Fig.1. The main idea of the 3D-VMM circuit. (a) Cartoon of 3D-NAND flash memory block and its use in the proposed circuit.  For simplicity, a layer of transistors 

at the bottom of the block, which connects the cell strings to the common source (ground) is not shown. (b) Basic structure and example of operation in the utilized 

time-domain approach [9].  (c) Circuit diagram of the peripheral neuron, which consists of a load capacitor C, connected to the bit line (BL), and an SR latch, 

implementing a unit step function of its input. (d) Equivalent circuit of a single string for the operation mode.  
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Drain-induced barrier lowering (DIBL): Let us first note 

that since the current is sunk through the cells to the source line, 

we consider the scheme in which BL voltage is charged to a 

voltage ΔVD + Vth at the start of phase I, where ΔVD is the total 

voltage swing on BL during computation, and then discharged 

to Vth in the phase II.  

DIBL error is defined as a relative difference of currents via 

string of cells at two extreme BL voltages, i.e. 

  EDIBL ≈ 1 - I(Vth)/I(Vth + ΔVD).  (4) 

Without considering additional headroom to deal with 

capacitive coupling, the typical values are Vth = 0.6 V and ΔVD 

= 0.2 V, which correspond to the quasi optimal operation 

conditions for the CMOS-based neuron implementation [9]. 

According to Eq. 4, the DIBL error is proportional to the 

small signal transconductance gain δID/δVD of a string over the 

target operating regime. Given the small signal model shown in 

Fig. 1d, the transconductance gain can be formulated as: 

   
𝜕𝐼D

𝜕𝑉D
=

1

𝑅D+𝑅0+(1+𝑔m𝑅0)𝑅s
  ,           (5) 

where gm and R0 are the small signal parameters of a single 

memory cell, and RD and RS are the lumped string resistances on 

the drain and source side, respectively, of the selected memory 

cell. According to Eq. 5, larger RD and RS help reducing the 

DIBL error, but at the cost of limiting the current range. 

Moreover, because of stronger effect of RS, DIBL error is less 

for top memory cells (which was the reason for using top layer 

for sweep currents). Also, DIBL error is less for larger string 

currents due to intrinsically larger R0, when the selected cell 

operates closer to strong inversion mode. These observations 

are confirmed by modeling (Fig. 2). In line with Eq. 4, DIBL 

error increases almost linearly with the total swing in the target 

operation region (Fig. 2b). 

Capacitive coupling: Due to the switched-capacitor nature 

of the proposed approach, capacitive coupling is a significant 

source of compute error. We break down the sources of 

coupling into two components. The first component, gate-drain 

(GD) coupling, is caused by their overlap in BSL transistor and 

coupling between BSL and BL wires.  The second one (DD) is 

caused by the parasitic capacitors between the string and the 

rest of the memory block. These two lumped capacitors are 

denoted as Cgd and Cdd, respectively (Fig. 1d).  

Note that Cdd is distributed over the total length of the string. 

When a 2.5 V rising edge is applied to BSL line, GD coupling 

results in an immediate positive disturbance charge on the BL 

voltage with the amount of Cgd× (2.5 V). Moreover, when the 

string is selected via BSL, DD coupling causes a negative 

disturbance charge on BL to charge the string parasitic 

capacitors Cdd from their initial voltage (ground) to their final 

DC voltage at which the string sinks the target current. When a 

2.5 V falling edge is applied to BSL, the capacitive coupling is 

dominated by the GD coupling which causes an immediate 

negative disturbance charge on BL by -Cgd×(2.5 V).  

GD coupling disturbance is almost independent of the 
selected cell location and programming state, while the DD 
coupling disturbance during rising edge is highly dependent on 
both (Fig. 3). The amplitude and time constant of the DD charge 
disturbance are both larger for the cells closer to the bottom of 
the string due to higher voltage variation on the parasitic 
capacitors (Cdd), especially the ones closer to the bottom but 
higher than the selected cell where the path to both ground and 
BL are highly resistive.  

Taking into account the coupling, we can formulate the 

amount of voltage disturbance on the BL for each input as ΔVcp 

= QD/C0 where C0 is the amount of load capacitance per input, 

and QD is the total disturbance charge caused by one input in 

both phase I when the target weight layer is selected and a rising 

edge followed by a falling edge is applied to BSL, and also 

phase II when the sweeping layer, i.e. top layer, is selected and 

one rising edge is applied to BSL. A major portion of QD, and 

consequently ΔVcp is dependent on the location of target weight 

layer (Fig. 3b). Hence the maximum disturbance charge 

(QD)max, which causes the largest disturbance voltage swing on 

BL (ΔVcp)max = (QD)max/C0, occurs when the target weight layer 

is at the bottom of the string. 

In order to support VMM operation on all the layers, reset 

voltage ΔVD + Vth should be selected to reserve a portion of total 

voltage swing on BL for the worst case voltage variation due to 

coupling. Hence, we select ΔVD = ΔVcmp + (ΔVcp)max, where 

ΔVcmp is the voltage swing without considering the capacitance 

coupling for the weight and sweep current sources. Though the 

utilized differential scheme is robust to coupling, the output 

time window in which the output pulse is generated should be 

scaled by a coupling coefficient αcp = 1 + (ΔVcp)max/ ΔVcmp. Note 

 

Fig. 2: (a) Small-signal DIBL error contours (shown in %) in ID-VD space for 

top, middle, and bottom layer memory cells, programmed in various states in 
a 64-layer 3D-NAND memory. Small-signal error is defined as 100×(1 - I(VD) 

/ I(VD+1 mV)), i.e. relative change in string current for a 1 mV change in the 

BL voltage. (b) Total DIBL error (%) for ±0.2 V swing on the drain voltage 
around VD = 0.7 V for various memory states. 

 



that a small portion of (ΔVcp)max still affects the output precision 

because of difference in disturbance charge caused by positive 

and negative sub-weights due to process variation, and 

dependence of disturbance charge on the programmed state of 

the flash cells. Also note that a larger (ΔVcp)max leads to a higher 

BL voltage swing and consequently a larger DIBL error. 

Noise: White (shot/thermal) noise will dominate at the 

considered high-bandwidth operation. (We assume that the 

cells with extremely high flicker noise will be set to high 

conductive states and avoided during mapping.). The noise 

power for a single string operating in subthreshold can be 

approximated as ~ 2qImax/T, while SNR for a single device as 

SNRcell ≈ 2q/Imax, where q is an electron charge. Accordingly, 

for an M×1 VMM unit (a dot product), noise and signal power 

are 𝑃noise
𝑀×1 =

 𝑞𝑀𝐼max

𝑇
 and 𝑃signal

𝑀×1 = (𝑀𝐼max)
 , respectively. 

Hence, 

      SNR𝑀×1 =
𝑃signal
𝑀×1

𝑃noise
𝑀×1 ≈

𝑀𝐼max𝑇

 𝑞
= 𝑀 × SNRcell.           (6) 

The equivalent 3σ error due to noise is derived as 

    𝐸3σ
𝑀×1 ≈

 ×3×√
2𝑞𝑀𝐼max

𝑇

𝑀𝐼max
= 6 × √

 𝑞

𝑀𝐼max𝑇
=

𝐸3σ
cell

√𝑀
.         (7) 

In the above equation, the distribution is multiplied by two due 

to the differential scheme. According to the derived equation, 

compute error is inversely proportional to the square root of 

maximum current, compute time window, and the VMM size.  

D. Compute precision  

The compute (output) precision pO can be defined separately 

from the weight precision [9] as 

    𝑝𝑂 = − log (𝐸c) − 1, 𝐸c =
1

𝑇
max
Δout

|Δideal − Δout|   ,  (8) 

where EC is a maximum absolute difference between the ideal 

(Δideal) and actual (Δout) output pulse durations, normalized by 

its maximum value.  

The 3D-VMM circuit can be designed following various 

optimization targets such as precision, energy, speed and area. 

Here, we focus on the precision which generally limits the 

design space in application-specific hardware design. The main 

tunable circuit parameters impacting precision are Imax and Tint.  

In Table I, various combinations of (Tint, Imax) are targeted 

to investigate the impact of these parameters on 3D-VMM’s 

compute precision. Assuming ΔVcmp = 0.2 V and  (QD)max = 

6×10-16, we first calculate dependent parameters such as load 

capacitor, coupling voltage disturbance, and output time 

window for every combination of Imax and Tinp. Then, full 

circuit-level SPICE simulations are performed on 10 different 

VMM sizes from 10×10 to 1000×1000 with 1000-times 

randomized inputs/weights considering detailed parasitic 

models for the interconnect wires and devices, and also process 

variations considering the 55-nm technology node. The results 

for different simulated scenarios show that the compute error 

for the noise-free circuit remains relatively constant over the 

target VMM size range.  

Table I also reports the SNR and 3σ noise error parameters, 

calculated according to Eqs. 6 and 7, and total error targeting 

three representative VMM sizes. Fig. 4 shows that bit-

precision, corresponding to the calculated error, increases with 

respect to Imax, Tint, and VMM size.  

E. Weight  precision  

Similar to 2D flash memory circuits [3], the weight 

precision in 3D-VMM is also expected to be affected by the 

tuning accuracy and drift of the analog memory state. The 

additional challenge for cell current tuning will be relatively 

large resistance RD and RS (Fig. 1d). The voltage drops across 

 
Fig. 4: 3D-NAND based VMM bit precision with respect to VMM size for Imax 

= 100 nA, 200 nA, and 300 nA for Tint = (a) 8 ns, (b) 16 ns, and (c) 32 ns. 
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Fig. 3: Charge disturbance on BL due to capacitive coupling. (a) Time domain 
representation of drain (BL) current and its disturbances caused by coupling 

when a 2.5V rising edge (at t = 0.5 ns) followed by a same-amplitude falling 

edge (at t = 2 ns) is applied to the BSL for various programming states where 
the selected cell is located at top, middle, and bottom layer of the string. (b) 

Total string disturbance charge on a drain caused by capacitive coupling when 

a 2.5 V rising + falling edge is applied to BSL and target cell is located in top, 
middle, and bottom layer and programmed in various states (corresponding to 

phase I of computation), as well as when a single 2.5 V rising edge applied to 

BSL and target cell is located in top layer and programmed in various states 
(corresponding to phase II of computation). Error bar represents 3σ distribution 

of the disturbance charge due to process variations. 
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these resistors (especially RS) must be taken into account while 

optimizing the programming scheme for a target output current. 

Quantitative analysis of such factors is challenging, mostly 

due to the lack of published relevant data. It should be noted, 

however, that the utilization of barrier-engineered materials and 

the gate all-around architecture in the 3D-NAND memory 

results in a narrower threshold voltage distribution and a lower 

threshold voltage shift due to cell-cell coupling as compared to 

the planar counterparts. In fact, multi-level state capabilities (> 

3 bits) have been routinely demonstrated in 3D-NAND 

memories, and is expected to further improve as its technology 

continues to advance [4]. 

III. CASE STUDY: 4-BIT VMM WITH DIGITAL I/O 

The 3D-VMM parameters can be chosen to operate with any 

precision from 2 bits to 5 bits. Here we describe the results 

obtained for the 4-bit precision, which is sufficient for many 

neuromorphic inference tasks [3]. A 4-bit 3D-VMM block 

consists of the following main components (Fig. 1a): 

 DTC converts the digital input to the time-domain pulse of 

fixed amplitude and controllable duration. As was described 

earlier [9], this unit includes one shared 4-bit counter and one 

4-bit comparator connected to a 1-bit latch per input. 

 3D-FM is the 3D-NAND memory block for the M×N (per 

layer) VMM, which consists of M×2N cells with the 

dimensions reported in [10], as well as an extra marginal 

space for routing the word and bit-select lines. Note that the 

parasitics of the word-line plate extensions by routing and 

vias/wires are taken into account in the simulations. 

 CAP stands for the load capacitor. We assume MOSCAP 

implementation in the 55-nm technology, and also account 

for an extra marginal space around each capacitor. The use of 

MOM/MIM capacitors would further improve density. 

 NB represents the neuron circuit, consisting of a pair of 

NAND latches and a couple of AND and NOT logic gates for 

implementing the differential scheme.  

 TDC converts the time-encoded digital output to the 

corresponding digital output number. This unit consists of a 

4-bit adder and a 4-bit DFF per output. The adder and the 

DFFs form an accumulator, which counts the duration of the 

output pulse, using clock pulses (shared by all accumulators). 

This unit along with DTC constitutes the “I/O”. 

 𝐖𝐋 represents the word-line level shifters, which apply the 

read/pass voltages (2 V / 5 V) to the word-line plates (Fig. 

1a). Note that the width of each driver transistors is made 

proportional to the area (M×N) of the plate it serves, in order 

to keep the layer selection time (TLS) within a limited range 

comparable to the computation time.  

 𝐁𝐒𝐋 is an array of level-shifters driving the bit-select lines 

and converting the 1.2 V time-encoded, fixed-amplitude 

input pulses to 2.5 V digital pulses.  

As Table I shows, the optimal design point, which 

guarantees the 4-bit precision across VMMs of various size is 

Imax = 300 nA, and Tint =16 ns. Fig. 5 shows the energy, area, 

and throughput calculation results for various sizes of our 3D-

VMM, as well as the energy and area breakdowns for this 

design point. The energy consumption is dominated by the 

 

Fig. 5: 3D-NAND based VMM performance metrics. (a) Energy per operation 
breakdown. (b) Area efficiency breakdown. (c) Throughput as a function of 

VMM size. 

 

TABLE I.  DESIGN SPACE EXPLORATION. CIRCUIT SPECIFICATIONS AND COMPUTE ERROR (DUE TO NOISE AND CIRCUIT NONIDEALITIES) FOR VARIOUS CHOICES 

OF TINT AND IMAX. FINAL VMM ERROR IS REPORTED FOR THREE DIFFERENT VMM SIZES (M = 10, 100, AND 1000), AND THE ACHIEVABLE OUTPUT BIT-PRECISION IS 

SHOWN BY A COLOR CODING SCHEME IN WHICH ORANGE = 2 BITS, BLUE = 3 BITS, GREEN = 4 BITS, AND YELLOW = 5 BITS. 

Input time window Tint  8 ns 16 ns 32 ns 

Maximum cell current Imax 100nA 200nA 300nA 100nA 200nA 300nA 100nA 200nA 300nA 

Load capacitor per input C0 (fF) 4 8 12 8 16 24 16 32 48 

Coupling vol. swing ΔVcp
max (mV) 150 75 50 75 32.5 25 32.5 16.25 12.5 

Coupling coefficient, αcp 1.75 1.375 1.25 1.375 1.1875 1.125 1.1875 1.094 1.062 

Output time window Tout (ns) 14 11 10 22 19 18 38 35 34 

Single device SNRcell (dB) 33.97 36.98 38.75 36.98 40 41.76 40 43.01 44.77 

Single device noise 3σ error (%) 12 8.48 6.92 8.48 6 4.89 6 4.24 3.46 

Noise-free VMM comp. error (%) 6.24 3.55 1.79 4.25 2.31 1.16 3.62 1.92 0.96 

Final compute error M =10 (%) 10.03 6.23 3.98 6.93 4.20 2.71 5.51 3.26 2.05 

Final compute error M =100 (%) 7.44 4.40 2.48 5.10 2.91 1.65 4.22 2.34 1.30 

Final compute error M =1000 (%) 6.62 3.81 2.01 4.52 2.50 1.31 3.81 2.05 1.07 

 



word line selection and by feeding the inputs into the bit-select 

lines. (The per cell capacitance of the bit-select lines is lower 

than that of the load capacitance C0, but their voltage swing is 

higher). The contribution of I/O and neuron circuits to the 

energy consumption decreases as the VMM size increases, due 

to their higher sharing factor. As a result, the energy per 

operation is only ~9 fF for M = N = 500. The area is dominated 

by the CAP, though its contribution is minor in energy 

consumption (Fig. 5b). Similar to the energy trend, the relative 

areas of I/O and neuron get smaller for larger VMM sizes. 

Finally, Fig. 5c shows the VMM’s throughput for its various 

sizes considering scaling to maintain TLS within the range of [20 

ns, 30 ns].  

IV. VMM DESIGN FOR LOWER CURRENTS  

In the presented performance analysis, the largest current 

flowing into a neuron is M×Imax, which corresponds to the 

largest possible values of weights and inputs for the dot product 

operation. For digital circuits, this is analogous to rounding full 

precision (i.e., 2p + log2M  bit long) dot product result to p most 

significant bits. In some applications, neuron input currents 

might be always well below their maximum possible value. In 

this case, it is natural to tailor VMM design for the specific 

largest expected dot-product output currents to minimize the 

impact of rounding and quantization.  

The straightforward modification of the proposed design to 

accommodate lower currents is to shrink the load capacitor. 

Such approach, however, may result in large voltage 

disturbance caused by the capacitive coupling of 3D-NAND 

array, and, in turn, in a significant drop of VMM output 

precision. A better approach in this case is to use resistive 

successive integration and re-scaling (RSIR) VMM design, 

which is adapted from SIR concept recently introduced in [11] 

(Fig. 6a,b). In such VMM, input bits are presented in a 

sequential manner, and an iterative integration and re-scaling 

(division by 2) operation is performed to calculate the final 

results, similar to a digital serial multiplier. A load resistor (RI) 

is added to the conventional SIR-VMM to minimize the effect 

of capacitive coupling so that a coupling-free weighted-sum is 

calculated in each iteration as 𝑉𝑐,𝑗
𝑘 = 𝑅𝐼 ∑ 𝐼𝑖𝑗𝑥𝑖

𝑘 +𝑀
𝑖=1 𝑉𝑐,𝑗

𝑘−1 , 

where k is a step number (bit position). Fig. 6c shows the 

preliminary estimates for the error in 3D-NAND RSIR VMM 

as a function of its size for two scenarios in which the maximum 

VMM current output is equal to M1/sq×Imax, with considered sq 

= 2 and sq = 3. (For example, sq=2 is representative of 

extracting p bits from the middle of the full precision result.) 

These results show that 3D-VMM precision can be maintained 

in >4 bits range even for a very low output current range of [0, 

M1/3×Imax]. These results are preliminary, and a thorough 

design-space optimization is an important future work. 

V. SUMMARY  

We have proposed and performed detailed simulations of 

VMM circuits based on the native 3D NAND memories, not 

requiring any redesign.  As a case study, we have considered 4-

bit 3D-VMM with digital input/output interface and showed 

that such design achieves a ~100× better area efficiency than 

that of its 2D-NOR memory-based counterpart [3], while 

maintaining a comparable energy efficiency and throughput. 

Such mixed-signal 3D-NAND VMM circuits are especially 

appealing for accelerating inference function of large 

complexity neural network models, whose weights cannot be 

stored locally on a chip using conventional approaches.     
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Fig. 6: (a) VMM structure and (b) signaling of the proposed resistive 

successive integration and re-scaling (RSIR) VMM. (c) Compute error (%) for 

3D-NAND RSIR VMM as a function of its size. 
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