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Abstract— The widespread and ever-increasing demand for performing 

in-situ inference, signal processing and other computationally intensive 

applications in mobile IoT devices requires fast, compact and energy-

efficient Vector-by-Matrix Multipliers (VMM). The time-domain VMMs 

based on emerging non-volatile memory devices exhibit significantly higher 

circuit density and energy efficiency than their current-mode counterparts. 

However, load capacitors used to accumulate the weighted summation of 

the inputs in the time-domain-based circuits, dominate their energy 

dissipation and footprint area. The true potential of the time-domain-based 

VMMs may be realized only when this overhead is minimized. To this end, 

in this brief, we propose a novel Successive Integration and Re-scaling (SIR) 

approach for implementing a highly efficient mixed-signal time-domain 

VMM for low-to-medium-precision computing. For a proof of the concept, 

we quantitatively evaluated performance of the proposed SIR VMM, and 

compared it with the results for conventional time-domain VMM, using a 

similar 1T-1R array. Preliminary simulation results for the 4-bit 200×200 

VMM, implemented using 55-nm technology node, show area and energy 

efficiencies of 1.33 bits/µm2 and ~1.3 POp/J – the numbers, respectively, 

~2.5× and ~2.65× higher than those for the prior-work time-domain VMM. 

Furthermore, we analyze the system-level performance of the proposed SIR 

VMM engine in the neuromorphic accelerator architectures and provide 

preliminary estimates for various Deep/Reccurent Neural Network 

(DNN/RNN) applications. 

 

Index Terms— Mixed-Signal Computing, Time-Domain 

Computing, Vector-by-Matrix Multiplier, Successive Integration 

and Re-scaling Technique, 1T1R Memory, ReRAM, Memristor 

I. INTRODUCTION 

Weighted summation of the inputs tends to be the dominant 

operation in the widely used bio-inspired feedforward/recurrent [1]-

[3] and more advanced, spiking [3]-[4] neural networks and many 

other signal processing algorithms. The demand for implementing 

these resource-intensive applications on mobile devices in our age of 

big data and internet-of-things (IoT) calls for efficient hardware 

realization of vector-by-matrix multipliers (VMM) [5]-[22]. Owing to 

the sparse design (off-chip synaptic weight storage) and frequent 

memory access, even the most advanced digital implementations of 

VMM engines are extremely power hungry [6]. The most promising 

solutions for implementation of energy-efficient VMMs are arguably 

based on emerging non-volatile memory devices [6], [8], [10]-[12], 

and [22]. Such mixed-signal VMMs demonstrate remarkable 

efficiency due to their natural ability to perform in-memory multiply-

and-add operation using Ohm’s and Kirchoff’s laws, as well as their 

inherent massive parallelism, performing all such operations over the 
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entire weight array in a single cycle.  

Unfortunately, the circuit density and energy efficiency of the 

most prospective current-mode VMMs based on resistive-switching 

devices are so far limited because of relatively high cell currents, 

which results in higher overhead of the Input/Output (I/O) peripheral 

circuitry [10]-[11]. In principle, the lower currents and much higher 

input/output array impedances offered by the modified NOR flash 

array [10] allows a drastic reduction in the peripheral overhead of the 

current-mode VMM circuits based on embedded NOR flash [23]. 

However, the limited feature-size and scaling prospects of the 

floating-gate memory devices restricts the circuit density of these 

VMM implementations [10]. Similarly, inferior density is one of the 

major disadvantages of the mixed-signal VMMs based on switch-

capacitor approach [9]-[10]. 

In order to address this issue, time-domain VMMs with passive 

and digital peripheral I/O circuits were proposed and explored [13]-

[22]. However, the linear mapping of input signals on the input pulse 

duration, used in this architecture, necessitates the use of a large load 

capacitor to integrate the weighted sum of partial components of the 

signal at the output. Such large capacitor dominates the area and 

energy landscape in the existing time-domain VMMs, with its 

domination only growing as the VMM size is increased. 

Additionally, the VMM latency grows exponentially with 

input/computing precision in the originally proposed architecture. 

Therefore, to realize the potential of the time-domain VMM 

approach, the load capacitor should be minimized and different 

encoding scheme must be utilized.  

In this brief, we address this challenge by proposing a novel 

Successive Integration and Re-scaling (SIR) approach, which does 

that while preserving the inherent advantages of the time-domain 

architecture, such as a low I/O peripheral circuitry overhead. In the 

proposed approach, the individual bits in the digital input are encoded 

by binary pulses of fixed amplitude and duration - unlike their 

encoding by the duration of fixed-amplitude pulses in the 

conventional time-domain VMMs. After each binary pulse, the 

electric charge accumulated on the load capacitor is divided via the 

charge-sharing mechanism, yielding an area- and power-efficient 

VMM.  

II. SUCCESSIVE INTEGRATION AND RE-SCALING APPROACH 

A. General Idea 

An N×M VMM operation may be represented in a compact matrix 

form of: 

         Y N×1 = W N×M X M×1,       (1) 

where the individual elements   and  are 

related as: 

                   (2) 

Using the binary representation of P-bit inputs xi as: 

xi(P-1)…...xi(1)xi(0), we can express the generalized P-bit dot-
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product operation with respect to the input bits as: 

    ,                             (3) 

where xi(k) is the kth bit (with k = 0 corresponding to the LSB) of the 

ith digital input. A re-scaled version of this dot-product, yj’ = 2-Pyj can 

be easily obtained in an iterative manner by initializing yj,-1 = 0 and 

then successively computing the weighted partial sum (yj,k) for the kth 

input bit xi(k) (starting from the least significant bit), and adding the 

result to half the value of the previous sum: 

            .                        (4)  

After P-1 successive bit-wise dot-product calculation (“integration”) 

and re-scaling (“division”) operations, we get yj,P-1 = yj’. 

 This representation is the basis for the proposed SIR-VMM. The 

overall structure of the VMM and its operation scheme are shown in 

Figs. 1(a) and 1(b), respectively. In the proposed VMM architecture, 

programmable embedded nonvolatile memory devices serve as the 

cross-point current sources. The VMM operation is performed in two 

phases. During Phase I, P successive integration (I) and re-scaling 

(D) operations are performed. At the kth step of this phase, the kth bits 

of all inputs are selected, using the signal k (see Fig. 1a), passed via 

the select line to the array of P×1 input Multiplexers (MUXs). If the 

kth bit of the ith input, xi(k) , equals 1, a digital pulse with duration of 

Ts is generated by a simple AND operation performed on the selected 

bit-location (k), and a shared input pulse 1. This input pulse enables 

the current source with a current proportional to the magnitude of the 

weight, Iij  wij (with i =1:N) on that row for the fixed duration of Ts. 

The integrating capacitor (CI) remains disconnected from the dividing 

capacitor (CD) during this period, and accumulates the charge carried 

by currents from the programmable nonvolatile memories. As a 

result, during this phase the voltage on CI changes by  

,                (5) 

While CI integrates the charge, CD is kept grounded through a pass-

gate. Once the integration of each single-bit component (besides the 

Pth bit) has been completed, this capacitor, with CD = CI, is connected 

to CI via a pass gate. The resulting charge sharing re-scales the 

voltage by the required factor of 2. After P-1 iterations of such 

integration and re-scaling operations, the change in voltage across CI 

becomes proportional to the dot-product yj: 

               (6) 

In Phase II, this dot-product output is converted to digital domain 

by a counter-based converter similar to the conventional time-domain 

VMM approach [15]: CI is charged with a constant current source (Is) 

until the capacitor voltage reaches the threshold voltage Vth. At this 

instance, a pulse with a rising edge is generated at the output of the 

threshold circuit, enabling a counter to count the time from the 

threshold-crossing time to a reference time point (Tj).  

For the total swing of voltage across the capacitor CI to have a 

desired value V0, at the given bit precision P, minimum pulse width 

Ts and maximum cell current Imax, its capacitance should be equal to  

 .              (7) 

This value is proportional to TPhase-I, which in turn scales as P, while 

in the conventional time-domain approach [15] and [22], Tphase-I  ( 

2P) should be large enough to accommodate 2P quantized discrete 

intervals representing P-bit input information.  This difference leads 

to a significant reduction of the required load capacitance in this SIR 

scheme. 

B. SIR Multiplier Based on 1T-1R Memory Array 

As a proof-of-concept, we have quantitatively evaluated the 

performance of the proposed SIR VMM and of the conventional 

time-domain VMM, based on a modified memory array of 1T-1R 

memory cells, each consisting of a memristor device connected at the 

source of the select transistor (MOSFET), rather than on the drain (as 

is the case for the conventional 1T-1R memory array) and acting as a 

programmable current sink to encode a particular analog weight [22] 

– see Fig. 1(a). Application of a pulse corresponding to each input bit 

activates the MOSFET, which acts like a switch. The MOSFET is 

operated in the sub-threshold mode and its source voltage is dictated 

by the resistance-state of the memristor. Therefore, by tuning the 

resistance of the memristor, the 1T-1R block can sink a current 

proportional to the resistance-state of the memristor. 

Similar to [22], we have used a simple compact model for the 

memristor, , where R0 is the initial resistance-state, 

and β is the non-linearity factor. An initial ON-state resistance (R0 = 

RON) of 1 MΩ and OFF-state resistance (R0 = ROFF) of 9 MΩ has 

been considered in this work. The MOSFET models and the line 

parasitics and process variations have been adapted from 

GlobalFoundries 55-nm technology node Process Design Kit (PDK). 

may be noted that since 1T-1R blocks act as programmable current 

sink, in the simulated circuit, the integrating capacitor is initially 

charged to a high voltage (Vreset=Vth+V0) and then discharged 

through the memory block (programmed to store the matrix of 

weights wij) during the VMM operation. The difference V0 between 

the initial voltage and the threshold voltage has been set to 0.2 V to 

minimize the voltage drop across the memristor and eliminate the 

possibility of accidental cell re-programming (state disturbance).  

III. Results and Discussion 

A. VMM-Level Implementation 

We performed a rigorous analysis to explore the design space for 

optimizing the performance of the proposed SIR VMM. The device 

parameters and circuit operating points such as the gate length, input 

gate voltage, etc. were chosen to minimize the non-idealities such as 

Channel Length Modulation (CLM), Drain-Induced Barrier Lowering 

(DIBL), etc. which tend to deviate the behavior of the modified 1T-

1R array from the ideal constant current sink. For instance, the input 

gate voltage was selected to bias the MOSFET within the 1T-1R 

block in sub-threshold mode which is relatively immune to the 

 
Fig. 1.  (a) SIR-VMM structure, and (b) an example of the time diagram 

of VMM operation (on the example of the 4-bit precision). 
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voltage swing on the drain. Moreover, similar to [22], MOSFETs 

with a larger length (Lg = 240 nm) which exhibit a lower DIBL/CLM 

error were used instead of the minimum-sized MOSFETs (Lg = 60 

nm). Extensive VMM-level simulations of both circuits were 

performed in HSPICE for different VMM sizes. To calculate the 

output error, multiple runs of HSPICE simulations were performed 

using different randomized inputs and weights in each run to traverse 

the entire sample space of inputs and weights, following the 

methodology discussed in detail in ref. [22]. The output 

computational error was then obtained as the maximum difference 

between the theoretically calculated output time period considering 

ideal current sinks and the output time period obtained via transient 

simulation of the entire VMM circuit in HSPICE. Moreover, we also 

considered 10% fabrication process variations in the line parasitics 

while characterizing the computed outputs’ errors. The single-bit 

pulse width Ts was chosen as 1 ns (operating frequency of 1 GHz) 

considering the response time (RC delay including parasitics) of the 

1T-1R array as well as the digital I/O circuitry which was designed to 

operate up to a frequency of 1 GHz. Furthermore, to take into account 

the worst case due to fabrication errors, a 3-sigma variation of 10% in 

the line parasitics was also considered in our simulations. 

Fig. 2(a) shows the worst-case errors, calculated as the maximum 

error over the entire parameter space of possible inputs and weights, 

as functions of the VMM size. Through rigorous analysis, we have 

found that output errors in the proposed SIR VMM are, just as in the 

conventional VMM [22], caused mainly by CLM, DIBL, and 

interconnect parasitics. However, the inclusion of the pass transistors 

connecting CI and CD introduces an additional resistance to the flow 

of charges during the charge sharing (D) process. A somewhat slower 

charging and discharging of CD and CI, respectively, due to the 

channel resistance of the pass-gate transistors leads to an increased 

computational error in the proposed SIR scheme as observed in Fig. 

2(a). To mitigate this effect, therefore, the width of the pass 

transistors was also increased by 120 nm per 10 inputs of the array. 

Such a sub-optimal design point was chosen after performing 

estimations based on the actual layout and PDK models from the 55-

nm technology node considering all the aforementioned factors. 

Despite this additional source of computational error, the SIR VMM 

supports a precision of 4-bits which is suitable for applications that 

can be performed with high accuracy utilizing even low precision (~4 

bits) VMM operations such as inference, classification, recognition 

etc. [22].  

 Other possible sources of errors in the proposed SIR VMM are the 

noise contribution of the memory array (especially on the weights 

associated with the more significant input bits), unintentional 

differences between the capacitances of CI and CD, and variations in 

MOSFETs’ and memristors’ characteristics. Owing to the lack of an 

experimentally validated noise and variation model for the 

memristor, their analysis is left for future work, but we believe that 

they would not affect the difference between the proposed and 

conventional time-domain VMMs and hence, the conclusions made 

in this brief would remain the same. Moreover, input-independent 

errors can be compensated by properly adjusting memory cell 

currents. 

Fig. 2(a) also shows the results for the signal throughput of the 

proposed SIR VMM and the conventional time-domain VMM. It 

clearly indicates that the 4-bit SIR VMM provides a significantly 

higher throughput (for our design point, 3.3 TOp/s) due to the binary-

weighted encoding of inputs instead of their direct mapping. For a 

given VMM size and operating frequency, the throughput of the 

proposed SIR scheme depends only on the precision (P) and is higher 

than the conventional time-domain VMM by a factor of  

 (~1.33 times for bit-precision of 4).  

A significant reduction in the load capacitor due to the modified 

encoding scheme (as explained in section II.A) leads to a 

considerably improved area and energy efficiency in the SIR VMM 

as shown in Figs. 2(b) and (c). Moreover, the contribution of the load 

capacitors into the circuit area and the energy dissipation reduces by 

more than a factor of 3 in the proposed SIR scheme as compared to 

the conventional time-domain VMM. Furthermore, the input 

decoder’s contribution to the area and energy also reduces, due to the 

modified binary weight encoding scheme. Also, Phase II in SIR 

VMM does not require a dedicated 1T-1R block of the same size for 

sweeping constant currents as in [22], resulting in smaller overheads 

of output conversion circuitry. Moreover, the throughput, area- and 

energy-efficiency of the proposed SIR architecture improves with 

increasing VMM size similar to the conventional time-domain 

approach [22] owing to the larger sharing factor of the I/O circuitry 

with increasing VMM size. 

In particular, our simulations indicate that the area and energy 

efficiencies of the SIR VMM may be as high as, respectively, 1.33 

bits/µm2 and ~1.3 POp/J (1 Op = 1 P-bit arithmetic operation such as 

addition or multiplication), for a >4-bit 200×200 VMM – the 

numbers ~2.5× and ~2.65× higher than those for the prior-work time-

Fig. 2. (a) The computational error (99.9 percentile of the error values for multiple runs of VMM operation with randomly chosen weights and inputs) and 
throughput, (b) area, and (c) energy efficiency, and their breakdown for the proposed and conventional time-domain VMMs [21] targeting 4-bit precision, 

for a 55-nm 1T-1R technology, as functions of the linear size of the square weight matrix. 

 

TABLE I 
VMM-PERFORMANCE BENCHMARKING 

Reference [7] [8] [10] [11] [15] [17] [22] 
This 

work 

Approach CM CM CM TD TD TD TD TD 

Process(nm) 180 22 180 14 55 250 55 55 

Precision 

(bits) 
3 ~4 ~5 <8 ~6 ~7 ~5 ~4 

EE(TOP/J) 6.4 60 5.7 18 85 <290 498 1305 

I/O 
included 

Yes No Yes No Yes No Yes Yes 

Results Sim Sim Exp Sim Sim Sim Sim Sim 

CM: current-mode      TD: time-domain 
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domain VMM [22] and significantly higher than the other current-

mode implementations (shown in table I). Interestingly, the new 

energy efficiency results for time-domain VMM approach are close 

to the estimates obtained for current-mode circuits based on (less-

scalable) embedded NOR flash memories [23]. 

B. System-Level Implementation 

To analyze the system-level performance of the proposed SIR 

technique, we target a recently-proposed energy/area efficient 

architecture called aCortex [10] (shown in Fig. 3(a)). The main 

components of aCortex architecture includes a centralized eDRAM-

based Main Memory (MM), a configurable chain of digital buffers, 

an array of input DTC convertors, 2D arrays of analog/time-domain 

VMM blocks (PE), an array of output Integrate and Digitalize Units 

(IDU), and finally a digital auxiliary unit (AUX) used for infrequent 

pooling/addition/vector-vector multiplication operations. This 

architecture aims to maximize one-shot analog/time domain 

computing and minimize the peripheral-circuitry overhead by sharing 

them on a very large 2D mesh structure of PEs connected via shared 

analog Input/Output Buses (I-BUS/O-BUS). For each VMM step, 

inputs are loaded from MM to digital buffers, converted to time-

domain signals, and propagated through target columns of PEs. 

Meanwhile, target PEs/IDUs are activated, and the outputs are 

integrated and converted back to digital domain at IDUs. At the last 

step, output results are stored back into the MM. Note that bus 

splitters are used between PEs/IDUs/Buffers in order to minimize the 

energy overhead of unutilized potion of different buses. 

Table III shows the system-level performance results and the 

energy/area breakdown for two architectures based on conventional 

and SIR VMM techniques targeting two DNNs: Inception-V1 and 

ResNet-152, as well as Google’s RNN for language translation 

(GNMT). As shown in Table II, the SIR scheme achieves ~40% 

improvement over conventional scheme in terms of Storage 

Efficiency (SE) while maintaining comparable Energy Efficiency 

(EE), throughput and Computational Efficiency (CE). Since the SIR 

scheme requires multiple pulses on the input bus while the 

conventional scheme requires only one pulse, a higher activity on the 

I-BUS results in larger communication energy for the SIR scheme. 

This increase in the communication energy degrades the EE, and 

ultimately results in comparable system-level EE with the 

conventional scheme despite the lower contribution from the small 

load capacitor in the SIR scheme. Moreover, the delay overhead of 

multiple control signals per operation from Controller to the PEs 

negates the throughput gain of the SIR scheme over its conventional 

counterparts, and results in relatively low throughput gain. However, 

it may be noted that for heavily granular multi-core architectures in 

which the energy overhead of time-domain signal bus is negligible 

compared to the digital buses and the control signals are highly 

localized and fast, VMM-level EE and throughput gain of the SIR 

scheme results in a significant boost in system-level EE and speed. 

Finally, Table III compares the system-level performance metrics 

of the SIR with 1T-1R current sink-based aCortex architecture and 

the state-of-the-art digital and mixed-signal accelerators. The SIR 

scheme based aCortex achieves record-breaking EE and SE while 

meeting the throughput/inference time for a wide variety of 

applications such as near sensor inference (IoT/mobile devices).  

IV.  CONCLUSION 

In this brief, we propose a novel successive integration and re-

scaling scheme to perform extremely energy- and area-efficient 

VMM operation with embedded nonvolatile memory devices in the 

time domain. The proposed approach alleviates the need for utilizing 

bulky load capacitor for integrating the dot-product in the 

conventional memory-based time domain approaches and allows for 

linear scaling of VMM latency with input/computing precision. We 

believe that this work is an important step in the quest for ultra-
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Fig. 3. (a) aCortex overall architecture, main components, and 
interconnections for time-domain implementation. This figure also shows the 

packing of weight matrices and active components during each computation 

step. (b) aCortex row-first operation scheme for convolution tasks. 

TABLE II 

SYSTEM_LEVEL RESULTS FOR CONVENTIONAL AND SIR ACORTEX 

VMM Technique  Conventional SIR 

 Network Inc-V1 ResNet GNMT Inc-V1 ResNet GNMT 

 SE (MB/mm2) 0.135 0.157 0.132 0.26 0.37 0.38 

 Area (mm2) 46.2 240.3 602 24 102 209 

 NVM (%) 38.97 45.2 46.2 37.5 50.9 53.3 

 Periphery (%) 42.93 49.16 50.25 27.6 36.1 37.2 

 Other (digital) (%) 18.1 5.64 3.55 34.8 13.0 9.5 

 EE (TOp/J) 106.7 106.4 421.8 103 107 548 

 Computation (%) 11.57 9.17 23.5 19.8 25.8 55.8 

 Communication (%) 41.27 51.64 36.11 41.5 50.8 26.5 

 Memory access (%) 47.16 39.19 40.39 38.7 23.3 17.7 

Throughput (TOp/s) 1.41 1.99 10.88 1.4 1.98 15.6 

Inference time (ms) 3.38 9.48 0.22 3.4 9.5 0.16 

 TABLE III 

SYSTEM-LEVEL PERFORMANCE BENCHMARKING 

Architecture 
DaDian 

Nao [24] 
TPU 

 [25] 
ISAAC 

[26] 
PUMA 

[27] 
aCortex 

[10] 
This 

Work 

Tech. node 28 nm  28 nm 32 nm 32 nm 55 nm 55 nm 

Approach digital digital ReRAM ReRAM 2D-NOR 1T1R 

Precision(bits) 16 8 16 16 4 4 

Area (mm2) 88 330 85.4 90.6 292.9 209 

Power (W) 20.1 40 65.8 62.5 0.039 0.025 

Thr.put(TOp/s) 5.54 92 39.9 52.31 14.97 15.6 

CE 

(TOp/s-mm2) 
0.063 0.28 

0.46 
(0.62*) 

0.58 
(0.78*) 

0.051 0.074 

SE(MB/mm
2

) 0.2 
off-

chip** 
0.74 

(0.25*) 
0.76 

(0.257*) 
0.273 0.38 

EE(TOp/J) 0.286 0.43 
0.35 

(5.14*) 
0.84 

(12.09*) 
380.25 548 

*Highly optimistic mapping of the performance results to our design spec 

(55nm, 4-bit), ** Memory access overhead not included 
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efficient VMM engines, providing new optimal design options for 

neuromorphic processors [28]-[29].  
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