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Abstract— The widespread and ever-increasing demand for performing
in-situ inference, signal processing and other computationally intensive
applications in mobile IoT devices requires fast, compact and energy-
efficient Vector-by-Matrix Multipliers (VMM). The time-domain VMMs
based on emerging non-volatile memory devices exhibit significantly higher
circuit density and energy efficiency than their current-mode counterparts.
However, load capacitors used to accumulate the weighted summation of
the inputs in the time-domain-based circuits, dominate their energy
dissipation and footprint area. The true potential of the time-domain-based
VMMs may be realized only when this overhead is minimized. To this end,
in this brief, we propose a novel Successive Integration and Re-scaling (SIR)
approach for implementing a highly efficient mixed-signal time-domain
VMM for low-to-medium-precision computing. For a proof of the concept,
we quantitatively evaluated performance of the proposed SIR VMM, and
compared it with the results for conventional time-domain VMM, using a
similar 1T-1R array. Preliminary simulation results for the 4-bit 200x200
VMM, implemented using 55-nm technology node, show area and energy
efficiencies of 1.33 bits/um’? and ~1.3 POp/J — the numbers, respectively,
~2.5x and ~2.65x higher than those for the prior-work time-domain VMM.
Furthermore, we analyze the system-level performance of the proposed SIR
VMM engine in the neuromorphic accelerator architectures and provide
preliminary estimates for various Deep/Reccurent Neural Network
(DNN/RNN) applications.

Index Terms— Mixed-Signal Computing, Time-Domain
Computing, Vector-by-Matrix Multiplier, Successive Integration
and Re-scaling Technique, 1 T1IR Memory, ReRAM, Memristor

I. INTRODUCTION

Weighted summation of the inputs tends to be the dominant
operation in the widely used bio-inspired feedforward/recurrent [1]-
[3] and more advanced, spiking [3]-[4] neural networks and many
other signal processing algorithms. The demand for implementing
these resource-intensive applications on mobile devices in our age of
big data and internet-of-things (IoT) calls for efficient hardware
realization of vector-by-matrix multipliers (VMM) [5]-[22]. Owing to
the sparse design (off-chip synaptic weight storage) and frequent
memory access, even the most advanced digital implementations of
VMM engines are extremely power hungry [6]. The most promising
solutions for implementation of energy-efficient VMMs are arguably
based on emerging non-volatile memory devices [6], [8], [10]-[12],
and [22]. Such mixed-signal VMMs demonstrate remarkable
efficiency due to their natural ability to perform in-memory multiply-
and-add operation using Ohm’s and Kirchoff’s laws, as well as their
inherent massive parallelism, performing all such operations over the
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entire weight array in a single cycle.

Unfortunately, the circuit density and energy efficiency of the
most prospective current-mode VMMs based on resistive-switching
devices are so far limited because of relatively high cell currents,
which results in higher overhead of the Input/Output (I/O) peripheral
circuitry [10]-[11]. In principle, the lower currents and much higher
input/output array impedances offered by the modified NOR flash
array [10] allows a drastic reduction in the peripheral overhead of the
current-mode VMM circuits based on embedded NOR flash [23].
However, the limited feature-size and scaling prospects of the
floating-gate memory devices restricts the circuit density of these
VMM implementations [10]. Similarly, inferior density is one of the
major disadvantages of the mixed-signal VMMs based on switch-
capacitor approach [9]-[10].

In order to address this issue, time-domain VMMs with passive
and digital peripheral I/O circuits were proposed and explored [13]-
[22]. However, the linear mapping of input signals on the input pulse
duration, used in this architecture, necessitates the use of a large load
capacitor to integrate the weighted sum of partial components of the
signal at the output. Such large capacitor dominates the area and
energy landscape in the existing time-domain VMMs, with its
domination only growing as the VMM size is increased.
Additionally, the VMM latency grows exponentially with
input/computing precision in the originally proposed architecture.
Therefore, to realize the potential of the time-domain VMM
approach, the load capacitor should be minimized and different
encoding scheme must be utilized.

In this brief, we address this challenge by proposing a novel
Successive Integration and Re-scaling (SIR) approach, which does
that while preserving the inherent advantages of the time-domain
architecture, such as a low /O peripheral circuitry overhead. In the
proposed approach, the individual bits in the digital input are encoded
by binary pulses of fixed amplitude and duration - unlike their
encoding by the duration of fixed-amplitude pulses in the
conventional time-domain VMMs. After each binary pulse, the
electric charge accumulated on the load capacitor is divided via the
charge-sharing mechanism, yielding an area- and power-efficient
VMM.

II. SUCCESSIVE INTEGRATION AND RE-SCALING APPROACH

A. General Idea

An NxM VMM operation may be represented in a compact matrix
form of:

Yy Ml = WNXM/\/MXI (1)
where the individual elements y; € ¥, x; € X and w;; € W are
related as:

Y = il xawy @

Using the binary representation of P-bit inputs x; as:
xi(P-1).....xi(1)xi0), we can express the generalized P-bit dot-
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Fig. 1. (a) SIR-VMM structure, and (b) an example of the time diagram
of VMM operation (on the example of the 4-bit precision).
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product operation with respect to the input bits as:
¥; = Troo 28 X x (l)wy;, 3)

where xi(k) is the k™ bit (with k = 0 corresponding to the LSB) of the
ih digital input. A re-scaled version of this dot-product, y;> = 27y; can
be easily obtained in an iterative manner by initializing ;-1 = 0 and
then successively computing the weighted partial sum (3;4) for the &
input bit xi(k) (starting from the least significant bit), and adding the
result to half the value of the previous sum:

1
Yike = Yl x(wy; + 2 Vik-1- “)

After P-1 successive bit-wise dot-product calculation (“integration’)
and re-scaling (“division”) operations, we get y;,r-1 = ;.

This representation is the basis for the proposed SIR-VMM. The
overall structure of the VMM and its operation scheme are shown in
Figs. 1(a) and 1(b), respectively. In the proposed VMM architecture,
programmable embedded nonvolatile memory devices serve as the
cross-point current sources. The VMM operation is performed in two
phases. During Phase I, P successive integration (I) and re-scaling
(D) operations are performed. At the k™ step of this phase, the k™ bits
of all inputs are selected, using the signal k& (see Fig. 1a), passed via
the select line to the array of Px1 input Multiplexers (MUXs). If the
k™ bit of the i input, xi(k) , equals 1, a digital pulse with duration of
Ts is generated by a simple AND operation performed on the selected
bit-location (k), and a shared input pulse ®1. This input pulse enables
the current source with a current proportional to the magnitude of the
weight, /;j oc wij (with i =1:N) on that row for the fixed duration of 7.
The integrating capacitor (Ci) remains disconnected from the dividing
capacitor (Cp) during this period, and accumulates the charge carried
by currents from the programmable nonvolatile memories. As a
result, during this phase the voltage on Ci changes by

T.
dvj :C_: Ly x (I, %)

While Ci integrates the charge, Cb is kept grounded through a pass-
gate. Once the integration of each single-bit component (besides the
P bit) has been completed, this capacitor, with Cp = C, is connected
to Ci via a pass gate. The resulting charge sharing re-scales the
voltage by the required factor of 2. After P-1 iterations of such
integration and re-scaling operations, the change in voltage across Ci
becomes proportional to the dot-product y;:

p_1y Ts wap_
AV = 27D YRS 28 XLy xi () ©)

In Phase II, this dot-product output is converted to digital domain
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by a counter-based converter similar to the conventional time-domain
VMM approach [15]: Ci is charged with a constant current source (/s)
until the capacitor voltage reaches the threshold voltage Vin. At this
instance, a pulse with a rising edge is generated at the output of the
threshold circuit, enabling a counter to count the time from the
threshold-crossing time to a reference time point (AT)).

For the total swing of voltage across the capacitor Ci to have a
desired value AV, at the given bit precision P, minimum pulse width
Ts and maximum cell current /max, its capacitance should be equal to

C; = maxTs [1 - (é)p] . )

AV

This value is proportional to Tphase-1, which in turn scales as P, while
in the conventional time-domain approach [15] and [22], Tphase-1 (oc
2P) should be large enough to accommodate 27 quantized discrete
intervals representing P-bit input information. This difference leads
to a significant reduction of the required load capacitance in this SIR
scheme.

B. SIR Multiplier Based on 1T-1R Memory Array

As a proof-of-concept, we have quantitatively evaluated the
performance of the proposed SIR VMM and of the conventional
time-domain VMM, based on a modified memory array of 1T-1R
memory cells, each consisting of a memristor device connected at the
source of the select transistor (MOSFET), rather than on the drain (as
is the case for the conventional 1T-1R memory array) and acting as a
programmable current sink to encode a particular analog weight [22]
— see Fig. 1(a). Application of a pulse corresponding to each input bit
activates the MOSFET, which acts like a switch. The MOSFET is
operated in the sub-threshold mode and its source voltage is dictated
by the resistance-state of the memristor. Therefore, by tuning the
resistance of the memristor, the 1T-1R block can sink a current
proportional to the resistance-state of the memristor.

Similar to [22], we have used a simple compact model for the
memristor, | = Rﬁsinh (BV) , where Rois the initial resistance-state,
(1]

and £ is the non-linearity factor. An initial ON-state resistance (Ro =
Ron) of 1 MQ and OFF-state resistance (Ro = Rorr) of 9 MQ has
been considered in this work. The MOSFET models and the line
parasitics and process variations have been adapted from
GlobalFoundries 55-nm technology node Process Design Kit (PDK).
may be noted that since 1T-1R blocks act as programmable current
sink, in the simulated circuit, the integrating capacitor is initially
charged to a high voltage (Viese=Vit+AVo) and then discharged
through the memory block (programmed to store the matrix of
weights w;) during the VMM operation. The difference AVo between
the initial voltage and the threshold voltage has been set to 0.2 V to
minimize the voltage drop across the memristor and eliminate the
possibility of accidental cell re-programming (state disturbance).

III. Results and Discussion
A. VMM-Level Implementation

We performed a rigorous analysis to explore the design space for
optimizing the performance of the proposed SIR VMM. The device
parameters and circuit operating points such as the gate length, input
gate voltage, etc. were chosen to minimize the non-idealities such as
Channel Length Modulation (CLM), Drain-Induced Barrier Lowering
(DIBL), etc. which tend to deviate the behavior of the modified 1T-
IR array from the ideal constant current sink. For instance, the input
gate voltage was selected to bias the MOSFET within the 1T-1R
block in sub-threshold mode which is relatively immune to the
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Fig. 2. (a) The computational error (99.9 percentile of the error values for multiple runs of VMM operation with randomly chosen weights and inputs) and
throughput, (b) area, and (c) energy efficiency, and their breakdown for the proposed and conventional time-domain VMMs [21] targeting 4-bit precision,
for a 55-nm 1T-1R technology, as functions of the linear size of the square weight matrix.

voltage swing on the drain. Moreover, similar to [22], MOSFETs
with a larger length (Lg = 240 nm) which exhibit a lower DIBL/CLM
error were used instead of the minimum-sized MOSFETs (Lg = 60
nm). Extensive VMM-level simulations of both circuits were
performed in HSPICE for different VMM sizes. To calculate the
output error, multiple runs of HSPICE simulations were performed
using different randomized inputs and weights in each run to traverse
the entire sample space of inputs and weights, following the
methodology discussed in detail in ref. [22]. The output
computational error was then obtained as the maximum difference
between the theoretically calculated output time period considering
ideal current sinks and the output time period obtained via transient
simulation of the entire VMM circuit in HSPICE. Moreover, we also
considered 10% fabrication process variations in the line parasitics
while characterizing the computed outputs’ errors. The single-bit
pulse width 75 was chosen as 1 ns (operating frequency of 1 GHz)
considering the response time (RC delay including parasitics) of the
1T-1R array as well as the digital I/O circuitry which was designed to
operate up to a frequency of 1 GHz. Furthermore, to take into account
the worst case due to fabrication errors, a 3-sigma variation of 10% in
the line parasitics was also considered in our simulations.

Fig. 2(a) shows the worst-case errors, calculated as the maximum
error over the entire parameter space of possible inputs and weights,
as functions of the VMM size. Through rigorous analysis, we have
found that output errors in the proposed SIR VMM are, just as in the
conventional VMM [22], caused mainly by CLM, DIBL, and
interconnect parasitics. However, the inclusion of the pass transistors
connecting Ci and Cp introduces an additional resistance to the flow
of charges during the charge sharing (D) process. A somewhat slower
charging and discharging of Cb and Cj, respectively, due to the
channel resistance of the pass-gate transistors leads to an increased
computational error in the proposed SIR scheme as observed in Fig.
2(a). To mitigate this effect, therefore, the width of the pass
transistors was also increased by 120 nm per 10 inputs of the array.
Such a sub-optimal design point was chosen after performing
estimations based on the actual layout and PDK models from the 55-
nm technology node considering all the aforementioned factors.
Despite this additional source of computational error, the SIR VMM
supports a precision of 4-bits which is suitable for applications that
can be performed with high accuracy utilizing even low precision (~4
bits) VMM operations such as inference, classification, recognition
etc. [22].

Other possible sources of errors in the proposed SIR VMM are the
noise contribution of the memory array (especially on the weights
associated with the more significant input bits), unintentional
differences between the capacitances of Ci and Cp, and variations in
MOSFETSs’ and memristors’ characteristics. Owing to the lack of an
experimentally validated noise and variation model for the
memristor, their analysis is left for future work, but we believe that

they would not affect the difference between the proposed and
conventional time-domain VMMSs and hence, the conclusions made
in this brief would remain the same. Moreover, input-independent
errors can be compensated by properly adjusting memory cell
currents.

Fig. 2(a) also shows the results for the signal throughput of the
proposed SIR VMM and the conventional time-domain VMM. It
clearly indicates that the 4-bit SIR VMM provides a significantly
higher throughput (for our design point, 3.3 TOp/s) due to the binary-
weighted encoding of inputs instead of their direct mapping. For a
given VMM size and operating frequency, the throughput of the
proposed SIR scheme depends only on the precision (P) and is higher

than the conventional time-domain VMM by a factor of
2F . . ..
PPy = (~1.33 times for bit-precision of 4).

A significant reduction in the load capacitor due to the modified
encoding scheme (as explained in section II.A) leads to a
considerably improved area and energy efficiency in the SIR VMM
as shown in Figs. 2(b) and (c). Moreover, the contribution of the load
capacitors into the circuit area and the energy dissipation reduces by
more than a factor of 3 in the proposed SIR scheme as compared to
the conventional time-domain VMM. Furthermore, the input
decoder’s contribution to the area and energy also reduces, due to the
modified binary weight encoding scheme. Also, Phase II in SIR
VMM does not require a dedicated 1T-1R block of the same size for
sweeping constant currents as in [22], resulting in smaller overheads
of output conversion circuitry. Moreover, the throughput, area- and
energy-efficiency of the proposed SIR architecture improves with
increasing VMM size similar to the conventional time-domain
approach [22] owing to the larger sharing factor of the I/O circuitry
with increasing VMM size.

In particular, our simulations indicate that the area and energy
efficiencies of the SIR VMM may be as high as, respectively, 1.33
bits/um? and ~1.3 POp/J (1 Op = 1 P-bit arithmetic operation such as
addition or multiplication), for a >4-bit 200x200 VMM - the
numbers ~2.5% and ~2.65x% higher than those for the prior-work time-

TABLE I
VMM-PERFORMANCE BENCHMARKING
Reference (71 | 81 | 1oy | iy | sy | o7 | r22] I;;‘rsk

Approach CM |CM | CM | TD TD D TD | TD
Process(nm) | 180 | 22 180 14 55 250 55 | 55

Precision

(bits) 3 ~4 ~5 <8 ~6 ~7 ~5 | ~4

EE(TOP/J) 6.4 60 5.7 18 85 1305

.I/O Yes | No | Yes | No Yes No Yes | Yes
included
Results Sim | Sim | Exp | Sim | Sim Sim | Sim | Sim

CM: current-mode TD: time-domain



to the estimates obtained for current-mode circuits based on (less-
scalable) embedded NOR flash memories [23].

B. System-Level Implementation

To analyze the system-level performance of the proposed SIR
technique, we target a recently-proposed energy/area -efficient
architecture called aCortex [10] (shown in Fig. 3(a)). The main
components of aCortex architecture includes a centralized eDRAM-
based Main Memory (MM), a configurable chain of digital buffers,
an array of input DTC convertors, 2D arrays of analog/time-domain
VMM blocks (PE), an array of output Integrate and Digitalize Units
(IDU), and finally a digital auxiliary unit (AUX) used for infrequent
pooling/addition/vector-vector — multiplication  operations.  This
architecture aims to maximize one-shot analog/time domain
computing and minimize the peripheral-circuitry overhead by sharing
them on a very large 2D mesh structure of PEs connected via shared
analog Input/Output Buses (I-BUS/O-BUS). For each VMM step,
inputs are loaded from MM to digital buffers, converted to time-
domain signals, and propagated through target columns of PEs.
Meanwhile, target PEs/IDUs are activated, and the outputs are
integrated and converted back to digital domain at IDUs. At the last
step, output results are stored back into the MM. Note that bus
splitters are used between PEs/IDUs/Buffers in order to minimize the
energy overhead of unutilized potion of different buses.

Table III shows the system-level performance results and the
energy/area breakdown for two architectures based on conventional
and SIR VMM techniques targeting two DNNs: Inception-V1 and
ResNet-152, as well as Google’s RNN for language translation
(GNMT). As shown in Table II, the SIR scheme achieves ~40%
improvement over conventional scheme in terms of Storage
Efficiency (SE) while maintaining comparable Energy Efficiency
(EE), throughput and Computational Efficiency (CE). Since the SIR
scheme requires multiple pulses on the input bus while the

8 First Author et al.: Title
(a) Time-Domain aCortex Architecture (b) Convolution TABLE Il
A 4 4 4 A 4 4 4 (1203 SYSTEM LEVEL RESULTS FOR CONVENTIONAL AND SIR ACORTEX
L. L. |’. L - .4 (2 5]6 kg == =% VMM Technique Conventional SIR
! o .. 7 8]o] Network Inc-V1[ResNet| GNMT| Inc-V1 |ResNet| GNMT
|>I |>I|' Step#l SE (MB/mm?) 0.135 | 0.157 | 0.132 | 026 | 037 | 038
L.L.L '|. 4 N 4 B'm 1 Area (mm?) 462 [2403 | 602 | 24 | 102 | 209
EEE A NVM (%) 38.97 | 45.2 46.2 37.5 50.9 53.3
klklli NN i Periphery (%) 42.93 | 49.16 | 5025 | 27.6 | 36.1 | 37.2
Step#2 Other (digital) (%) 18.1 5.64 3.55 34.8 13.0 9.5
B-B<B-03 1+ EE (TOp/J) 106.7 | 106.4 | 421.8 103 107 548
EEE R Computation (%) 11.57 | 9.17 23.5 19.8 25.8 55.8
Z Communication (%)| 41.27 | 51.64 | 36.11 | 41.5 50.8 26.5
Stept3 Memory access (%) | 47.16 | 39.19 | 40.39 | 38.7 | 233 [ 177
Throughput (TOp/s) | 141 | 199 | 1088 | 14 | 198 | 156
7
E E : E Inference time (ms) 3.38 9.48 0.22 34 9.5 0.16
B TABLE III
Step#4 SYSTEM-LEVEL PERFORMANCE BENCHMARKING
4 . DaDian| TPU | ISAAC | PUMA [aCortex| This
B-g<g-a Architecture 1\ 1241 1251 | 26 | 1271 | 110) | work
L Tech. node 28nm | 28nm | 32nm | 32nm | 55nm |55 nm
[

L \ ) Approach digital | digital | ReRAM | ReRAM |2D-NOR] 1T1R
[ [Jiou Digital L-BUS Analog O-BUS Precision(bits) 16 8 16 16 4 4
Il Digital Buffer W DTC =P Time-Domain 1-8US =P Digital S-BUS Area (mm?’) 88 330 854 | 906 | 2929 | 209

Power (W) 20.1 40 65.8 62.5 0.039 | 0.025
Fig. 3. (a) aCortex overall architecture, main components, and Thr.put(TOp/s) | 5.54 92 39.9 52.31 14.97 | 15.6
interconnections for time-domain implementation. This figure also shows the
i i ; i i ; CE 0.063 0.28 0.46 0.58 0.051 | 0.074
packing of weight matrices and active components during each computation (TOp/s-mm?) : : 0.62%) | (0.78%) : .
step. (b) aCortex row-first operation scheme for convolution tasks. ) off- 0.74 0.76
. . . 0.2 . ; y 0.273 0.38
domain VMM [22] and significantly higher than the other current- SE(MB/mm ) chip** ] (0.25%) (0.257%)
mode imple.mentations (showp in tabl_e I). Interestingly, the new EE(TOp/J) 0286 | 043 0.35* 0-84* 38025 | 548
energy efficiency results for time-domain VMM approach are close (5.14%) [(12.09%)

*Highly optimistic mapping of the performance results to our design spec
(55nm, 4-bit), ** Memory access overhead not included

conventional scheme requires only one pulse, a higher activity on the
I-BUS results in larger communication energy for the SIR scheme.
This increase in the communication energy degrades the EE, and
ultimately results in comparable system-level EE with the
conventional scheme despite the lower contribution from the small
load capacitor in the SIR scheme. Moreover, the delay overhead of
multiple control signals per operation from Controller to the PEs
negates the throughput gain of the SIR scheme over its conventional
counterparts, and results in relatively low throughput gain. However,
it may be noted that for heavily granular multi-core architectures in
which the energy overhead of time-domain signal bus is negligible
compared to the digital buses and the control signals are highly
localized and fast, VMM-level EE and throughput gain of the SIR
scheme results in a significant boost in system-level EE and speed.

Finally, Table III compares the system-level performance metrics
of the SIR with 1T-1R current sink-based aCortex architecture and
the state-of-the-art digital and mixed-signal accelerators. The SIR
scheme based aCortex achieves record-breaking EE and SE while
meeting the throughput/inference time for a wide variety of
applications such as near sensor inference (IoT/mobile devices).

IV. CONCLUSION

In this brief, we propose a novel successive integration and re-
scaling scheme to perform extremely energy- and area-efficient
VMM operation with embedded nonvolatile memory devices in the
time domain. The proposed approach alleviates the need for utilizing
bulky load capacitor for integrating the dot-product in the
conventional memory-based time domain approaches and allows for
linear scaling of VMM latency with input/computing precision. We
believe that this work is an important step in the quest for ultra-



efficient VMM engines, providing new optimal design options for
neuromorphic processors [28]-[29].
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