
EVASIVE PATH PLANNING UNDER SURVEILLANCE
UNCERTAINTY∗

MARC AURÈLE GILLES
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Abstract. The classical setting of optimal control theory assumes full knowledge of the process
dynamics and the costs associated with every control strategy. The problem becomes much harder if
the controller only knows a finite set of possible running cost functions, but has no way of checking
which of these running costs is actually in place. In this paper we address this challenge for a class
of evasive path planning problems on a continuous domain, in which an Evader needs to reach a
target while minimizing his exposure to an enemy Observer, who is in turn selecting from a finite set
of known surveillance plans. Our key assumption is that both the evader and the observer need to
commit to their (possibly probabilistic) strategies in advance and cannot immediately change their
actions based on any newly discovered information about the opponent’s current position. We con-
sider two types of evader behavior: in the first one, a completely risk-averse evader seeks a trajectory
minimizing his worst-case cumulative observability, and in the second, the evader is concerned with
minimizing the average-case cumulative observability. The latter version is naturally interpreted as
a semi-infinite strategic game, and we provide an efficient method for approximating its Nash equi-
librium. The proposed approach draws on methods from game theory, convex optimization, optimal
control, and multiobjective dynamic programming. We illustrate our algorithm using numerical ex-
amples and discuss the computational complexity, including for the generalized version with multiple
evaders.

Key words. path planning, semi-infinite games, Nash equilibrium, surveillance evasion, convex
optimization, Hamilton-Jacobi PDEs
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1. Introduction. Path planning is a problem of interest for many communities:
traffic engineering, autonomous driving, robotics, and military. In the classical set-
ting, the path planner is assumed to have full information about the environment and
chooses a path minimizing some undesirable quantity; e.g., time-to-target, distance
traveled, fuel consumption, or threat exposure. A particular type of continuous path
planning problems is surveillance-evasion applications. In the simplest scenario, an
evader (E) is choosing a path to minimize its exposure to an observer (O) whose
surveillance plan is fixed and fully known to E in advance. This formulation is conve-
niently treated in the framework of optimal control theory, reviewed in section 2, with
the evader’s optimal policy recovered by solving a Hamilton-Jacobi-Bellman (HJB)
partial differential equation (PDE). But the real focus of this paper is on path plan-
ning under uncertainty, where E knows the full list of different surveillance plans
available to O but does not know which of them is currently in use.

The key assumption of our model is that neither E nor O can change their respec-
tive strategy in real time based on the opponent’s discovered position or actions. In
practical contexts (e.g., in satellite-based surveillance), this restriction might be due
to either a delayed analysis of observations or due to logistical needs of committing
to a strategy in advance. As in many other optimization under uncertainty situa-
tions, it is natural for E to treat this as an adversarial problem – either because the
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prior statistics on the frequency of use for specific surveillance plans are unreliable
or because O might be actively adjusting these frequencies in response to E’s routing
choices.

In considering each potential path to its destination, E needs to evaluate the
trade-offs in observability with respect to different surveillance plans. This naturally
brings us to the notion of Pareto optimality [23] and the numerical methods developed
for multi-objective optimal control problems [13, 18, 19, 25]. As we show in section 3,
the method introduced in [19] can be used to find the deterministic optimal policy for a
completely risk-averse evader (i.e., minimizing the worst-case observability). Unfortu-
nately, the computational cost of this approach grows exponentially with the number
of surveillance plans available to O. But if the goal for both players is to optimize the
average-case/expected observability, we show that this can be accomplished by adopt-
ing a much more computationally affordable method from [25], despite its significant
drawbacks for general multi-objective control problems. Moreover, we show that, if
the evader’s average-case optimal strategy is deterministic, then that same strategy
is also worst-case optimal.

For the rest of the paper, we concentrate on the average-case observability for-
mulation using a semi-infinite zero-sum game [35] between E and O, each of them
searching for the best randomized/mixed strategy – an optimal probability distribu-
tion over that player’s available deterministic/“pure” options. We refer to these as
“Surveillance-Evasion Games” (SEGs), although the same terminology was previously
used in the 1960s and 1970s to describe a very different class of problems, where the
Evader needs to escape from the Observer’s surveillance zone as quickly as possi-
ble [15,20–22]. Aside from this terminological overlap, those earlier papers have little
in common with our context since in them E and O operated with full information
on their opponent’s current state, reacted in real time, and sought optimal feedback
policies recovered by solving Hamilton-Jacobi-Isaacs equations.

In classical (finite zero-sum two-player) strategic games, the Nash equilibrium is
typically obtained using linear programming [26]. But the fact that E’s set of pure
strategies is uncountably infinite makes this approach unusable in our SEGs. Instead,
we show how to compute the Nash equilibrium in section 4 by combining convex
optimization with fast numerical methods for HJB equations. The computational
cost of the resulting method scales at most linearly with the number of surveillance
plans. We illustrate this approach on a large number of examples, with the details of
our numerical implementation covered in section 5.

We note that the same ideas are also useful outside of surveillance-evasion con-
text, whenever the path planner cannot assess the actually incurred running cost
until it reaches the target. In fact, the same PDEs and semi-infinite zero-sum games
can be used to model civilians’ routing choices in war zones and other dangerous
environments, minimizing their exposure to bomb threats.

Our modeling approach is quite general, but to simplify the exposition we will as-
sume that the evader is moving in a two-dimensional domain with occluding/impenetrable
obstacles, both the observability and E’s speed are isotropic (i.e., independent of E’s
chosen direction of motion), and all O’s surveillance plans are stationary (i.e., the
observer is choosing among possible stationary locations). This further simplifies the
PDE aspect of our problem from a general HJB to stationary Eikonal equations, the
efficient numerical methods for which are particularly well-developed in the last 25
years (e.g., [30]).

In section 6, we generalize the problem by considering multiple evaders. We first
treat this as a two-player game between a single observer and a centralized controller of
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all evaders. But we also show that the resulting set of strategies is a Nash equilibrium
even from the point of view of individual/selfish evaders. We conclude by discussing
further extensions and limitations of our approach in section 7.

2. Continuous path planning. The case where the observer’s strategy is fixed
and known can be easily handled by methods of classical optimal control theory.
The goal is to guide an evader (E) from its starting position xS to its desired target
xT while minimizing the “cumulative observability” (also called “cumulative cost”)

along the way through its state space represented by some compact set Ω ⊂ Rd.
More precisely, we will suppose that A is a compact set of control values, and A
is the set of E’s admissible controls which are measurable functions a : R 7→ A.
The evader’s dynamics are defined by y′(t) = f(y(t),a(t)), with the initial state
y(0) = x ∈ Ω. (Even though E only cares about the optimal trajectory from xS , the
method we use encodes optimal trajectories to xT from all starting positions x.) In all
of our numerical examples, we will assume that E’s state is simply its position, f is its
velocity defined on a known map Ω that excludes (impenetrable, occluding) obstacles,
and E is allowed to travel along ∂Ω (including the obstacle boundaries). Suppose
Ta = min{t ≥ 0 | y(t) = xT } is the travel-time-through-Ω associated with this
control. A pointwise observability function (also called cost function) K : Ω×A 7→ R
is then defined to reflect O’s surveillance capabilities for different parts of the domain,
taking into account all obstacles/occluders and E’s current position and direction.
The cumulative observability is then defined by integrating K along a trajectory
corresponding to a(·) with initial position x

J (x,a(·)) =

∫ Ta

0

K(y(t),a(t)) dt, (2.1)

which we will also denote as J (a(·)) when x is clear from the context. As usual in dy-
namic programming, the value function is then defined by minimizing the cumulative
observability: u(x) = infa(·) J (x,a(·)), with the infimum taken over controls leading
to xT without leaving Ω (i.e., Ta <∞ and y(t) ∈ Ω, ∀t ∈ [0, Ta] along the correspond-
ing trajectory). Under suitable “small-time controllability” assumptions [2], it is easy
to show that u is locally Lipschitz on Ω. If it is also smooth, a Taylor series expansion
can be used to show that u satisfies a static Hamilton-Jacobi-Bellman PDE:

min
a∈A
{K(x,a) +∇u(x) · f(x,a)} = 0, ∀x ∈ Ω \ {xT }; u(xT ) = 0, (2.2)

with the special treatment at ∂Ω \ {xT } where the minimum is taken over the subset
of control values A that ensure staying inside Ω.

Unfortunately, the value function u is generically non-smooth, and there usually
are starting positions with multiple optimal trajectories – these are the locations where
the characteristics cross and∇u is undefined. Thus, a classical solution to (2.2) usually
does not exist. The theory of viscosity solutions introduced by Crandall and Lions [11]
overcomes this difficulty by selecting the unique weak solution coinciding with the
value function of the original control problem. Restricting the process dynamics to Ω
is similarly handled by switching to domain-constrained viscosity solutions [2, 33].

To simplify the exposition, we focus on isotropic problems, where the observability
K and the speed of motion f depend only on x. In this case, we choose A = {a ∈
Rd | |a| = 1} and interpret a as the direction of motion. Then K(x,a) = K(x) and
f(x,a) = f(x)a, with f encoding the speed of motion through the point x. In this
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case, the optimal direction is known analytically: a∗ = −∇u/|∇u| and (2.2) reduces
to an Eikonal equation

|∇u(x)|f(x) = K(x), ∀x ∈ Ω \ {xT }; u(xT ) = 0. (2.3)

The characteristics of these static PDEs are precisely the optimal trajectories,
which define the direction of “information flow”. This is quite useful once (2.3) is dis-
cretized on a grid (e.g., substituting upwind divided differences for partial derivatives,
while taking u = +∞ for all gridpoints outside of Ω to enforce the state constraints).
The discretization yields a large coupled system of nonlinear equations. Knowing
the characteristic direction for every gridpoint, one could, in principle, re-order the
equations, effectively decoupling this system. But since the PDE is nonlinear, its
characteristic directions are not known in advance. One path1 to computational effi-
ciency is to determine those characteristic directions simultaneously with solving the
discretized system, in the spirit of Dijkstra’s classical algorithm for finding shortest
paths on graphs [14]. Two such non-iterative methods (Tsitsiklis’ Algorithm [37] and
Sethian’s Fast Marching Method [29]) are applicable to this special isotropic case.
Once (2.3) is solved, the optimal trajectory may be recovered by finding the path or-
thogonal to the level curves of u(x). This can be achieved numerically by the steepest
descent method on u(x). An example of the solution of (2.3) is shown in 1.

(a) (b)

Fig. 1. (a) The observability function K(x) for an observer position (0.5, 0.5). The gray
rectangle is an obstacle, which obstructs the vision of the observer. The shadow zones created
by the obstacle can be computed using the solution of the Eikonal equation (see subsection 5.1).
(b) A contour plot of the solution of (2.3) for f(x) = 1 and the cost function in (a). The red
diamond is the starting position, the red circle is the target position, and the green curve is the
optimal trajectory, which is orthogonal to the level curves of u(x) and follows a part of the obstacle
boundary. See section 5 for additional information and parameters used.

1
Fast Sweeping [39] is another popular approach for gaining efficiency in solving Eikonal equa-

tions. We refer readers to [7, 8] for a review of many other “fast” techniques, including the hybrid
marching/sweeping methods that aim to combine the best features of both approaches. Even though
our own implementation is based on Fast Marching, any of these methods can be used to solve
isotropic control problems arising in subsequent sections. Which one will be faster depends on the
domain geometry and the particular pointwise observability functions.
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3. Multiple observer locations and different notions of optimality. We
now transition to the setting where the observer has a choice of multiple surveillance
plans. Assuming that the observer remains stationary, this is equivalent to choosing
its position from a fixed set of r locations X = {x̂1, · · · , x̂r} known to the evader.
Each location is associated with a pointwise observability function Ki(x) for an evader
moving through x ∈ Ω and an observer stationed at x̂i. (Typically, Ki is a decreasing
function of |x − x̂i| when x is visible from x̂i or a small constant σ > 0 if x is in a
“shadow zone”; see section 5 for further details.) This results in r different definitions

of the cumulative observability J = [J1, . . . ,Jr]T for a particular control. Ideally,
a rational evader would prefer a path that minimizes its exposure to all possible
observer locations x̂i. Unfortunately, there usually does not exist a single control
minimizing all Ji’s simultaneously. This naturally leads us to a notion of Pareto
optimal trajectories and the methods for computing them efficiently. We review two
such methods2 in subsection 3.1 and explain how they can be used for planning by an
evader optimizing either the worst-case or average-case observability in subsection 3.2.

3.1. Multiobjective path planning. For a fixed starting position x ∈ Ω, a
control a(·) is dominated by a control â(·) if Ji(x, â(·)) ≤ Ji(x,a(·)) for all i and
the inequality is strict for at least one of them. We call a(·) Pareto optimal if it
is not dominated by any other control. In other words, Pareto optimal controls are
the ones that cannot be improved with respect to any one criterion without making
them worse with respect to another. The vector of costs associated with each Pareto
optimal control defines a point in Rr and the set of all such points is the Pareto Front
(PF). In path planning applications, the PF is typically used to carefully evaluate all
tradeoffs. (E.g., what is the smallest attainable J1 given the desired upper bounds
on J2, . . . ,Jr ?)

Mitchell and Sastry developed a method for multiobjective path planning [25]
based on the usual scalarization approach to multiobjective optimization [23]. Let
∆r = {λ = (λ1, . . . λr) |

∑r
i=1 λi = 1, and all λi ≥ 0}. For each λ ∈ ∆r one can

define a new pointwise observability function Kλ =
∑r
i=1 λiKi and a new cumulative

observability function J λ =
∑
i Ji. A weighted cost Eikonal equation

|∇uλ(x)|f(x) = Kλ(x) (3.1)

is then solved for a fixed λ, providing a control function aλ(·) satisfying aλ(·) ∈
arg mina(·)∈A J λ(xS ,a(·)). We call such a control function λ-optimal. If λi > 0 for
all i, the obtained λ-optimal control is also guaranteed to be Pareto optimal; see
Figure 2. However, if at least one λi = 0 and multiple λ-optimal strategies exist for
a specific λ, then some of the λ-optimal strategies may not be Pareto optimal. Such
corner cases (illustrated in Figure 5) might require additional pruning; alternatively,
one can rule out such non-Pareto trajectories by perturbing λ to ensure that all
components are positive.

Additional linear PDEs can be solved simultaneously to compute the individual
costs (J1, . . .Jr) incurred along any λ-optimal trajectory; e.g., when f and all Ki’s
are isotropic, the corresponding linear equations are

∇vλi · ∇uλ = KiK
λ/f2, (3.2)

2
Here we describe these methods in terms of exposure to different observer’s positions, but

both of them were introduced for much more general multi-objective control problems. In many
applications it is necessary to balance completely different criteria; e.g., time vs fuel vs money vs
threat, etc. Other methods for approximating the full PF can be found in [18] and [13].
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where vλi (x) = Ji
(
x,aλ(·)

)
.

To approximate the PF, this procedure is repeated for a large number of λ ∈ ∆r.
Unfortunately, as shown in Figure 2, scalarization-based methods can only recover
the convex portion of PF [12]. This is an important drawback since in many optimal

J1

J2

Q

λ

J1 = J2

P

R

J1

J2 J1 = J2

S

Q

(A) (B)

Fig. 2. (a) Convex smooth Pareto Front with a point Q corresponding to the worst case optimal

λ = (λ1, λ2) ∈ [0, 1]
2
. The line perpendicular to λ is tangent to PF at Q. If any part of PF fell

below it, the path corresponding to Q would not be λ-optimal. The dotted line is the central ray
(where J1 = J2)). (b) Non-convex smooth Pareto Front. Points P and R correspond to 2 different
λ-optimal paths. The portion of PF between P and R (including the worst-case optimal point Q)
cannot be found by scalarization. Point S, found as a convex combination of P and R, is average-
case optimal.

control problems the non-convex parts of PF are very common and equally important.
An alternative approach was developed in [19] to address this limitation and produce
the entire PF for all x ∈ Ω simultaneously. The method is applicable for any number
of observer positions, but to simplify the notation we explain it here for r = 2 only. We
expand the state space to Ωe = Ω× [0, B] and define the new value function w(x, b) =
inf J1(x,a(·)), with the infimum taken over all controls satisfying J2(x,a(·)) ≤ b.
Thus, b is naturally interpreted as the current “budget” for the secondary criterion.
The value function is then recovered by solving an augmented PDE

min
a∈A

{
K1(x,a) +∇xw · f(x,a) − K2(x,a)

∂w

∂b

}
= 0. (3.3)

The method in [19] uses a first-order accurate semi-Lagrangian discretization [16] to
compute the discontinuous viscosity solution of (3.3) for a range of problems in multi-
criterion path planning. The method was later generalized to treat constraints on
reset-renewable resources [34]. The same approach was also adapted to Probabilistic
RoadMap graphs and field-tested on robotic platforms at the United Technologies
Research Center [10].

Aside from approximating the entire PF, the key computational advantage is the
explicit causality: since K2 is positive, all characteristics are monotone in b and meth-
ods similar to the explicit “forward marching” in b-direction are applicable. (I.e., the
system of discretized equations is trivially de-coupled.) Of course, the main drawback
of the above idea is the higher dimensionality of Ωe. For r observer locations, the
scalarization approach [25] requires solving (r+ 1) PDEs on Ω ⊂ Rd, but the parame-
ter space Λr is (r−1)-dimensional. In contrast, with w(x, b) there are no parameters,
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but the computational domain is (d + r − 1)-dimensional. Several techniques for re-
stricting the computations to a relevant part of Ωe were developed in [19], but the
computational cost and memory requirements are still significantly higher than for
any (single) HJB-solve in Ω.

3.2. Different notions of adversarial optimality. The Pareto Front allows us
to answer one version of the surveillance-evasion problem: if the evader is completely
risk-averse, he may choose the worst-case optimal strategy. That is, E will pick a
control aW (·) that minimizes the observability from its “worst” observer position x̂i:

max
x̂i∈X

Ji(aW (·)) ≤ max
x̂i∈X

Ji(a(·)), ∀a(·) ∈ A.

This corresponds to the version of the problem where E is forced to “go first”, with
O selecting the maximizing x̂i ∈ X in response. The following result shows that the
intersection of Pareto Front with the “central ray” (i.e., the line where J1 = J2 · · · =
Jr) yields the worst-case optimal strategy for E:

Theorem 3.1. If a=(·) is a Pareto-optimal control satisfying Ji(a=(·)) = Jj(a=(·))
for all i, j ∈ {1, · · · r}, then a=(·) is also worst-case optimal.

Proof. Suppose there exists a′(·) s.t.

max
x̂i∈X

Ji(a′(·)) < max
x̂i∈X

Ji(a=(·))

then for all j we have:

Jj(a′(·)) ≤ max
x̂i∈X

Ji(a′(·)) < max
x̂i∈X

Ji(a=(·)) = Jj(a=(·)),

which contradicts the Pareto-optimality of a=(·).
The corresponding vector of costs J (a=(·)) may lie on the convex portion of PF,

as in Figures 2(A) and 3, in which case aW = a= can be found by scalarization
[25]. But if J (a=(·)) lies on the non-convex portion of PF, as in Figures 2(B) and
4, the computational cost of finding the evader’s worst-case optimal strategy grows
exponentially with r as it involves solving a non-linear differential equation in (r+d−1)
dimensions [19]. As it will be shown in sections 4-6, the latter scenario is particularly
common on domains with obstacles.

Luckily, another interpretation of evader’s objectives proves much more compu-
tationally tractable. Even though a=(·) yields the lowest worst-case observability
that E can achieve if he must choose a single control function deterministically, E
might be able to attain an even lower expected (or average-case) observability if he
switches to “mixed policies”, choosing a probability distribution over a set of Pareto
optimal controls. This is illustrated in Figure 2(B): by choosing probabilistically a
path corresponding to the point P and another corresponding to point R, E obtains
a new point S on the central ray, whose expected observability is lower than for the
worst-case optimal Q regardless of O’s selected location. This, of course, assumes
that O’s location is selected without knowing in advance which of the two paths will
be used by E. Indeed, for any single run from xS to xT , the worst-case observability
of this probabilistic policy is based on the worst cases for P and R, which (from the
point of view of a completely risk-averse evader) would make the average-case opti-
mal S inferior to the worst-case optimal Q. This scenario is fully realized in Figure 4,
where J1(a=(·)) = J2(a=(·)) ≈ 4.94, the expected observability corresponding to the
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(a) (b)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

λ∗

J 2

J1
(c)

Fig. 3. (a) Two observer positions and the corresponding observability maps Ki. (b) The λ
∗
-

optimal path corresponding to λ
∗ ≈ (0.30, 0.70) is shown in yellow over the level sets of u

λ
∗

. The

radii of black disks centered at x̂
′
is are proportional to the corresponding components of λ

∗
. The two

best response trajectories used when O chooses x̂1 or x̂2 are shown in blue and pink respectively.
The trajectory in yellow is worst-case optimal for the evader as it is equally observable from both
locations. (c) The convex part of Pareto Front (computed using the scalarization approach) intersects
the “central ray” (J1 = J2, shown in red). The worst-case optimal vector λ

∗
is orthogonal to PF at

the point of intersection (in yellow), whose coordinates correspond to the partial costs of the optimal
path. The probability distribution λ

∗
, together with the yellow trajectory form a Nash equilibrium

of the strategic game between the evader and the observer described in section 4. See section 5 for
additional information and parameters used.

(a) (b)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

λ∗

J 2

J1(c)

Fig. 4. (a) Two observer positions and the corresponding observability maps Ki. (b) Two
λ
∗
-optimal trajectories corresponding to λ

∗ ≈ (0.29, 0.71) are shown in yellow and green over the

level sets of u
λ
∗

. The two best response trajectories used when O chooses x̂1 or x̂2 are shown in
blue and pink respectively. The worst-case optimal trajectory is plotted in gray. (c) The convex
part of the Pareto Front (in cyan) computed using the scalarization approach, and the whole Pareto
Front (in black) computed using the method in [19]. The convex part of the Pareto Front does
not intersect the central ray (shown in red). The worst-case optimal strategy (in gray) lies on the
non-convex part of the Pareto Front and thus cannot be computed using scalarization. The Nash
equilibrium pair of strategies consists of using positions x̂1 and x̂2 with probabilities λ

∗
for O and

using the yellow and green trajectories (both of which lie on the convex part of the PF) with probability
[p(yellow), p(green)] = [0.29, 0.71] for E (see section 4). The latter mixed strategy is average-case
optimal for E. See section 5 for additional information and parameters used.
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optimal “probabilistic mix” of yellow and green trajectories is ≈ 4.83, but the worst
case associated with this mixed policy is J1(yellow) ≈ 6.03.

We note that O could also consider using a mixed strategy. In this case, Kλ

can be interpreted as the expected pointwise observability when using the probability
density λ ∈ ∆r over the positions X . Similarly J λ(a(·)) is the expected cumula-
tive observability when using the control function a(·). Figure 2 shows that when
we are interested in the average-case optimal behavior for both O and E, we only
need to consider a convex hull of PF (denoted co(PF)), and the scalarization is thus
adequate. Note that in Figures 3, 4, and 6, the set co(PF) was approximated by im-
posing a fine grid on ∆r and re-solving (3.1) for each sampled λ. Since we only care
about the intersection of co(PF) with the central ray, this procedure is wasteful – and
prohibitively expensive for high r. In the next section, we consider the case where
both E and O optimize the expected/average-case performance by reformulating this
as a semi-infinite strategic zero-sum game. We show that such Surveillance-Evasion
Games (SEGs) can be solved through scalarization combined with convex optimiza-
tion, without approximating the (convex hull of the) entire Pareto Front.

Remark 3.2. Up till now, our geometric interpretation in Figures 3, 4, and 6
assumed that either PF or at least the co(PF) must intersect the central ray. If this
is not the case, O will avoid using some of his positions. E.g., Figure 5 shows the
pink and yellow trajectories corresponding to a1(·) and a2(·), which are optimal with
respect to the observer positions x̂1 and x̂2. Since J1(a2(·)) ≤ J2(a2(·)), the E’s
worst-case for a2(·) is actually the observer location x̂2. A generalization of this
scenario for r > 2 is covered in Theorem 4.2.

(a) (b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ∗

J 2

J1(c)

Fig. 5. (a) Two observer positions and the corresponding observability maps Ki plotted in

logarithmic scale. (b) The value function u
λ
∗

at λ
∗

= (0, 1). The worst-case optimal strategy for O
is the yellow trajectory, but both the yellow trajectory and the light blue trajectories are λ

∗
-optimal.

The pink trajectory is the best response when the observer uses position x̂1. (c) The Pareto Front
does not intersect the central ray. The worst-case optimal trajectory is the one point on the Pareto
Front that is closest to the central ray: the yellow point. The blue point is λ

∗
-optimal but it is not

Pareto optimal as it is dominated by the yellow point. The Nash equilibrium strategy consists of
the position x̂2 for O, and the yellow trajectory for E (see section 4). See section 5 for additional
information and parameters used.

4. Surveillance-Evasion Games (SEGs). In this section, we reformulate the
problem of evasive path planning under surveillance uncertainty as a strategic game.
This can model either the actual adversarial interactions between two players or the
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risk-averse logic of the evader even if the surveillance patterns are not likely to change
in response to that evader’s strategy. (The latter case is typically interpreted as a
“game against nature”.)

We assume that the evader is attempting to minimize (while the observer is at-
tempting to maximize) the total expected observability integrated over E’s trajectories
and dependent on O’s positions. We further assume that O is aware of E’s initial lo-
cation xS and its target location xT but not of the trajectories chosen by E. Similarly,
E is aware of the predefined locations of O, but not of the realized positions chosen by
O. This game may be stated deterministically or stochastically. In the deterministic
case, each player chooses a single pure strategy. That is, the observer chooses a single
location x̂i ∈ X and the evader chooses a single control function a(·) ∈ A. In the
probabilistic setting, each player chooses a mixed strategy, i.e., a probability distri-
bution over the pure strategies. In other words, O chooses a probability distribution
λ ∈ ∆r over positions and E chooses a probability distribution θ ∈ ∆A over control
functions. The mixed strategy λ of the observer can be interpreted in several different
ways:

1. O chooses a single position x̂i according to the probability distribution λ
before E starts moving, and remains at that position until the end of the
round (that is, until E reaches the target).

2. O can randomly teleport between its positions at any time, and each λi reflects
the proportion of time spent at the corresponding position x̂i.

3. O has a budget of “observation resources”, and λ reflects the fraction of
these resources spent at each location. In this case, Ki reflects the pointwise
observability corresponding to 100% of resources allocated to the position x̂i.

Since we assume that neither player has access to the realization of the opponent’s
strategy in real time, these three interpretation are equivalent (and lead to the same
optimal strategies) in our context. The payoff function of the game is the cumulative

expected observability, and can be expressed as P (λ, θ) = Eθ
[
J λ(a(·))

]
where Eθ [·]

denotes the expectation over the mixed strategy θ.
This SEG is a two-player zero-sum game [26], as each player’s gains or losses are

exactly balanced by the losses or gains of the opponent. Furthermore, it is semi-
infinite as the set of pure strategies for O is a finite number r, whereas the set of
pure strategies for E is uncountably infinite. A central notion of solution for strategic
games is a Nash equilibrium [26], a pair of strategies for which neither player can
improve his payoff by unilaterally changing his strategy. That is, a pair of strategies
(λ∗,θ∗) is a Nash equilibrium if both of the following conditions hold:

P (λ∗,θ∗) ≤ P (λ∗,θ) for all θ ∈ ∆A ,

P (λ∗,θ∗) ≥ P (λ, θ∗) for all λ ∈ ∆r .
(4.1)

A pure strategy Nash equilibrium does not always exist, therefore we focus on
finding a mixed strategy Nash equilibrium. In our setting, the minimax theorem
for semi-infinite games [28] assures that a mixed strategy Nash equilibrium (λ∗,θ∗)
exists, that all Nash equilibria have the same payoff, and that they are attained at
the minimax (which is also equal to the maximin):

P (λ∗,θ∗) = min
θ∈∆A

max
λ∈∆r

Eθ
[
J λ(a(·))

]
= max
λ∈∆r

min
θ∈∆A

Eθ
[
J λ(a(·))

]
. (4.2)

Although θ is a probability distribution over the uncountable set ∆A, there always
exists an optimal mixed strategy θ∗ which is a mixture of at most r pure strategies,
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where r is the maximum number of positions for the observer [28]. In fact, it is easy
to show that there will always exist a Nash equilibrium (λ∗,θ∗) with the number of
pure strategies used in θ∗ not exceeding the number of non-zero components in λ∗.

In the case of finite two-player zero-sum games, computing the Nash equilibrium
is easily achieved by linear programming. For our SEGs, the challenge in computing
a Nash equilibrium arises from enumerating the control functions a(·) ∈ A which are
part of E’s mixed strategy. Indeed, we do not possess a useful parametrization of the
set of control functions A, and our only computational kernel to generate a single λ-
optimal control function aλ(·) is to solve the weighted-cost Eikonal equation in (3.1).
For that reason, our solution strategy to compute the Nash Equilibrium involves two
steps:

1. Find an approximate optimal strategy of the observer λ∗ using convex opti-
mization (see subsection 4.1).

2. Find an approximate optimal strategy of the evader θ∗ by generating near-
optimal control functions (see subsection 4.2).

4.1. Optimal strategy of the Observer. In order to compute an optimal
strategy λ∗ of the observer, we consider the following problem:

max
λ∈∆r

min
a(·)∈A

J λ (xS ,a(·)) = max
λ∈∆r

uλ(xS) . (4.3)

For any fixed strategy λ for O, the inner minimization represents the optimal response
of player E to that fixed strategy. Therefore, the maximin problem answers the
question: what is the optimal strategy for O given that E gets to observe that strategy
and respond? We call this problem the E-response problem. Note that although E
could use a mixed strategy, there always exists a pure strategy which is optimal. That
is:

min
θ∈∆A

Eθ
[
J λ(a(·))

]
= min
a(·)∈A

J λ (a(·)) . (4.4)

This implies that any optimal λ for (4.3) is also an optimal λ for (4.2). Consequently,
the optimal λ for (4.3) is one half of a Nash equilibrium pair. However, the optimal
pair (λ,a(·)) of (4.3) is not a Nash equilibrium, except in a specific situation described
in the following theorem.

Theorem 4.1. Suppose there exists λ= ∈ ∆r with associated λ=-optimal control
function aλ=(·) which satisfies Ji(aλ=(·)) = Jj(aλ=(·)) for all i, j ∈ {1, . . . , r}, then

(λ=,a
λ=(·)) is a Nash equilibrium.

Proof. The fact that E cannot improve his payoff follows from the definition of
aλ= ∈ arg mina(·) J λ=(a(·)). O may not improve his payoff either as for all λ,

J λ(aλ=(·)) =
∑

λiJi(aλ=(·)) =
∑

λ=,iJi(aλ=(·)) = J λ=(aλ=(·)) .

This situation corresponds to the case when the convex part of the Pareto Front
intersects the central ray, such as in the example in Figure 3. Theorem 3.1 implies
that in this case, the worst-case optimal strategy for E coincides with E’s half of
the Nash equilibrium. Note that in general such a λ= does not have to exist; e.g.,
in Figure 4 and Figure 6 the convex part of the Pareto Front does not intersect the
central ray. In such situations, the worst-case optimal strategy for E and the Nash
Equilibrium are different. Moreover, the latter involves a mixed strategy for E covered
in subsection 4.2.
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We now direct our attention to solving the E-response problem numerically. Equa-
tion (4.3) may be stated as the following optimization problem:

max
λ

G(λ) (4.5)

s.t. λi ≥ 0,
r∑
i=1

λi = 1 .

The objective function G(λ) = mina(·)∈A
∑r
i=1 λiJi(a(·)) is concave as it is the

pointwise minimum of linear functions. Furthermore, the vector of individual cumu-
lative costs J (aλ(·)), where aλ(·) ∈ arg mina(·)∈A J λ(a(·)), is a supergradient of G

(denoted as J (aλ(·)) ∈ ∂G(λ)). A supergradient provides an ascent direction of a

concave function, i.e., w ∈ ∂G(λ) if for all λ̂ ∈ ∆r,

G(λ̂)−G(λ) ≤ wT (λ̂− λ) .

The fact that J (aλ(·)) ∈ ∂G(λ) is seen from the following computation: for any λ̂,

G(λ̂)−G(λ) =

(
min
a∈A

r∑
i=1

λ̂iJi(a(·))
)
−

r∑
i=1

λiJi(aλ(·))

≤
r∑
i=1

λ̂iJi(aλ(·))−
r∑
i=1

λiJi(aλ(·))

= J (aλ(·))T (λ̂− λ) .

Evaluating the vector J (aλ(·)) can be challenging computationally; we show how
this can be done in subsection 5.2. Once this ascent direction is known, one still
needs to ensure that λ remains a feasible probability distribution over X , and we use
the orthogonal projection operator Π : Rr → ∆r. The operator Π can be computed
in O(r log r) operations [4, 38] as summarized in Algorithm 4.1. The resulting pro-
jected supergradient method [3, Chap. 8] is shown in Algorithm 4.2. The iterates
of Algorithm 4.2 for the example from Figure 6 are illustrated in Figure 7.

Algorithm 4.1 Orthogonal projection onto the probability simplex

1: Input λ ∈ Rr

2: Sort λ into u: u1 ≥ u2 ≥ · · · ≥ ur
3: Find ρ = max{1 ≤ j ≤ r : uj + 1

j

(
1−∑j

i=1 ui

)
> 0}

4: τ ← 1
ρ (1−∑ρ

i=1 ui)

5: return x s.t. xi = max{λi + τ, 0}, i = 1, . . . r.

4.2. Optimal strategy of the Evader. Computing the evader’s half of the
Nash equilibrium is more challenging due to the fact that the set of E’s pure strategies,
i.e., the set of control functions a(·) leading from the source xS to the target xT , is
uncountably infinite. We propose a heuristic strategy to approximate θ∗ which relies
on two properties of the Nash equilibrium in semi-infinite games:
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Algorithm 4.2 Projected supergradient method for finding the maximum of G over
the set ∆r

1: Input Initial guess λ0, stepsizes αk, number of iterations n
2: for k = 0 : (n− 1) do

3: Compute G(λk) = uλk(xS) and find some g ∈ ∂G(λk)
4: λk+1 ← Π (λk + αkg)
5: end for
6: return arg max

λ∈{λ0,...,λn}
G(λ)

(a) (b)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

λ∗
J 2

J1
(c)

Fig. 6. (a) Two observer positions and the corresponding observability maps Ki on a do-
main with a single obstacle (shown in gray). (b) Two λ

∗
-optimal trajectories corresponding to

λ
∗ ≈ (0.39, 0.61) are shown in yellow and green over the level sets of u

λ
∗

. The two best response
trajectories used when O chooses x̂1 or x̂2 are shown in blue and pink respectively. The trajecto-
ries in yellow and green are not worst-case optimal for the evader but are used in E’s mixed Nash
equilibrium strategy. (c) The convex part of the Pareto Front does not intersect the central ray
(shown in red). This is the same situation already observed in Figure 4, but it is even more com-
mon on domains with obstacles. The Nash equilibrium pair of strategies consists of using positions
x̂1 and x̂2 with probabilities λ

∗
for O, and using the yellow and green trajectories with probability

[p(yellow), p(green)] = [0.65, 0.35] for E. See section 5 for additional information and parameters
used.

1. There exists a Nash mixed strategy for E which uses only r pure strate-
gies3 [28].

2. All pure strategies employed with positive probability in the Nash equilibrium
have the same expected payoff, with the expectation taken over the other half
of the Nash. In particular, all control functions used with positive probability
in the Nash equilibrium are λ∗-optimal.

The following characterization of the Nash equilibrium helps us generate a good
candidate set of λ∗-optimal trajectories.

Theorem 4.2. Let (λ∗,θ∗) ∈ ∆r ×∆A and I = {i | λ∗i 6= 0}. (λ∗,θ∗) is a Nash
equilibrium if and only if the following three conditions hold:

3
This result assumes that the set S = {(s1, s2, . . . sr) | si = P (x̂i,a(·)); i = 1, 2, . . . , r;a(·) ∈

A} ⊂ Rr
is bounded and co(S) is closed. In our case, S is not bounded for the full set of control

functions in A but becomes bounded if we restrict our attention to Pareto optimal control functions.
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Fig. 7. (a) Convex part of PF, and the individual costs of the first 6 iterates λk of Algorithm 4.2
(with stepsizes αk = 3

/
k) for the problem shown in Figure 6. (b) The λk-optimal trajectories of the

first 6 iterates. We note that only a few iterates are needed to obtain trajectories which are close to
the central ray. Thus, it does not require computing the whole PF which saves computational time.

1. λ∗ is a constrained maximizer of G(λ) in (4.5),
2. if i ∈ I then Eθ∗ [Ji(a(·))] = G(λ∗), and
3. if i 6∈ I, then Eθ∗ [Ji(a(·))] ≤ G(λ∗).

Proof. ( ⇒)
Suppose (λ∗,θ∗) is a Nash equilibrium. Item 1 follows from the minimax theorem

for semi-infinite game and (4.4). Assume Item 2 does not hold, then there must exist

i, j ∈ I s.t. Eθ∗ [Ji(a(·))] > Eθ∗
[
Jj(a(·))

]
. Consider the strategy λ̂ ∈ ∆r:

λ̂k =


λ∗i + λ∗j if k = i

0 if k = j

λ∗k otherwise

.

Then we have that:

P (λ∗,θ∗) =
r∑
i=1

λ∗iEθ∗ [Ji(a(·))] <
r∑
i=1

λ̂iEθ∗ [Ji(a(·))] = P (λ̂,θ∗) .

This contradicts that (λ∗,θ∗) is a Nash equilibrium, thus Item 2 must hold. A
similar argument can be used to demonstrate Item 3: assume there exists i 6∈ I with
Eθ∗ [Ji(a(·))] > G(λ∗). Let j ∈ I and consider the strategy λ̂:

λ̂k =


λ∗j if k = i

0 if k = j

λ∗k otherwise

Once again, this implies that P (λ∗,θ∗) < P (λ̂,θ∗) which contradicts that (λ∗,θ∗) is
a Nash equilibrium.
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(⇐) Assume Items 1 to 3 hold and suppose there exists θ s.t. P (λ∗,θ) <
P (λ∗,θ∗), then there must exist a(·), used with non-zero probability in θ such that:

J λ
∗

(a(·)) < P (λ∗,θ∗) = G(λ∗) .

This contradicts the definition of G(λ∗) = arg mina(·)∈A J λ
∗

(a(·)). Thus, for all
θ ∈ ∆A we have that:

P (λ∗,θ∗) ≤ P (λ∗,θ) . (4.6)

From Items 2 and 3 it follows that for all λ ∈ ∆r:

P (λ∗,θ∗) =
r∑
i=1

λ∗iEθ∗ [Ji(a(·))] ≥
r∑
i=1

λiEθ∗ [Ji(a(·))] = P (λ, θ∗) . (4.7)

Equations (4.6) and (4.7) imply that (λ∗,θ∗) is a Nash equilibrium.

Any mix of λ∗-optimal trajectories forms a λ∗-optimal strategy for the evader.
However, that mix is part of a Nash equilibrium only if the observer has no incentive
to change his strategy in response. Theorem 4.2 says that this is the case when the
θ∗ defining the mix of individual observability of λ∗-optimal trajectories lies on the
central ray of the Pareto Front for a reduced problem. I.e., the PF for the SEG
where the observer has a potentially smaller number of positions (the ones which
are used with positive probability in λ∗). This PF is in an s dimensional criterion
space, where s = |I| ≤ r. In Figure 3, the number of observer positions is r = 2,
and the dimension of the “reduced” problem is also s = 2 since both positions are
used with positive probability. In this example, a single λ∗-optimal trajectory exists
and corresponds to the intersection of the central ray and the convex part of the
PF. In the examples from Figure 4 and Figure 6, we still have r = 2 and s = 2,
however there are two λ∗-optimal trajectories. The Nash mixed strategy for E is thus
obtained by finding a probability distribution (ω1, ω2) ∈ ∆2 over these two trajectories
(a1(·),a2(·)) such that the linear combination of their individual costs lies on the
central ray, i.e., such that ω1J1(a1(·)) + ω2J1(a2(·)) = ω1J2(a1(·)) + ω2J2(a2(·)).
In the example from Figure 5, r = 2 and s = 1. The PF of the reduced problem
is a single point, and thus trivially lies on the “central ray”, yielding a pure Nash
equilibrium strategy for E. In section 5, we show additional examples with r = 3,
s = 3, and r = 6, s = 4. Computationally, Theorem 4.2 means that if we are able
to find a set of g λ∗-optimal control functions A(λ∗) = {aj(·)}j=gj=1, such that Items 2

and 3 hold for some probability distribution ω ∈ ∆g, then λ∗ is O’s optimal response
to ω and we have found a Nash equilibrium pair. Note that the minimum number of
trajectories g needed to form a Nash equilibrium is bounded above by s.

One remaining task is finding such a set A(λ∗). Multiple λ∗-optimal controls

only exist if xS lies on a shockline of uλ
∗

, where the gradient is undefined (e.g., the
limxi→xS ∇u(xi) can be different depending on the sequence {xi}i). Numerically, our

approximation of uλ
∗

will yield a single upwind approximation of ∇uλ
∗

, yielding a
single λ∗-optimal trajectory. As we show in Figure 8, multiple optimal trajectories
might lie in the same upwind quadrant and any numerical implementation of gradient
descent will find only one of them. (In theory, one can approximate the other by
perturbing xS , but the direction of perturbation is unobvious, particularly when xS
lies on an intersection of multiple shocklines, which is surprisingly common in this
application as we show in further sections.)
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(a) (b) (c)

Fig. 8. (a) Two λ
∗
-optimal trajectories in pink and blue plotted over the level sets of u

λ
∗
(x).

The source location xS is on a shockline of u
λ
∗
(x), the two trajectories have the same expected

cumulative observability, but different individual cumulative observability. (b) The individual cost

function v
λ
∗

1 (x) is discontinuous at the source xS . The black square is the region displayed on (c).

(c) The individual cost function v
λ
∗

1 (x) zoomed in around the source and a depiction of the upwind
stencil. The stencil (displayed larger for the sake of visualization) contains a point on either side of

the line of discontinuity of v
λ
∗

1 (x).

This challenge is even more pronounced because 4.2 yields an approximate value
of λ∗, since xS will now be only near a shockline for some perturbed λ∗δ = λ∗ + δλ.
The resulting single λ∗δ-optimal control will be a reasonable approximate solution for
the max-min problem, but can be arbitrarily far from the solution to a min-max
problem (where O has a chance to switch to another strategy).

In view of these challenges, we opt for a different approach, where an approxima-
tion to A(λ∗) is computed iteratively, by adaptively growing a collection of λ∗δ-optimal
controls corresponding to different δλ’s. In some degenerate cases, generating even
the first a1(·) ∈ A(λ∗) may not be trivial since some λ∗-optimal control computed by
solving the Eikonal will not be necessarily Pareto-optimal. E.g., in Figure 5 two con-
trol functions are λ∗-optimal, but only one of them is used in the Nash strategy of E as
the blue trajectory violates Item 3. However, both trajectories are indistinguishable
from the point of view of the Eikonal solver since the position x̂1 has zero weight in

the weighted observability function Kλ
∗

. To address this issue whenever s < r, we set
the weight of the pointwise observability of each unused position i 6∈ I to some small
value ε (our implementation uses ε = 10−6). This is equivalent to seeking the solution
of the weighted cost Eikonal equation for some perturbed λ∗δ = (1 − ε)λ∗ + ε

r−sIIc ,
where IIc is the characteristic function of the complement of I. We now turn our
attention to finding further perturbations needed to generate λ∗δ-optimal trajectories
in order to make Item 2 approximately hold. Our goal is to have

g∑
j=1

ωjJi(aj(·)) = G(λ∗) (4.8)

approximately hold for all i ∈ I = {i | λ∗i > 0}. Unless this is already true with g = 1
(based on the previously found a1(·)), we will need to find more λ∗δ-optimal controls.
Without loss of generality assume that I = {1, . . . , s}, and suppose we have already

generated a set of k λ∗δ-optimal trajectories Ak = {a1(·),a2(·), . . . ,ak(·)}, for some
k < g . In order for (4.8) to approximately hold, we will be increasing k until the
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norm of residual

R(ω) =


G(λ

∗
)

G(λ
∗
)

...
G(λ

∗
)

−

J1(a1(·)) J1(a2(·)) . . . J1(ak(·))
J2(a1(·)) J2(a2(·)) . . . J2(ak(·))

...
...

. . .
...

Js(a1(·)) Js(a2(·)) . . . Js(ak(·))



ω1

ω2

...
ωk

 (4.9)

falls under a threshold tolR. Assuming the set of trajectories Ak has already been
computed, the probability distribution ωk ∈ ∆k minimizing the norm of this residual
‖R(ωk)‖2 can be found by quadratic programming. The residual vector R(ωk) pro-
vides information about which control functions are missing. For example, consider
the case where we observe that a single entry of R(ωk) is large and positive, i.e., that
for some i ∈ I:

k∑
j=1

ωkjJi(aj(·)) << G(λ∗) .

The characterization in Theorem 4.2 implies that A(λ∗) should include at least one
trajectory much more observable from position x̂i. A λ∗δ-optimal trajectory with
that property can be found by perturbing λ to slightly decrease the role of x̂i in O’s

chosen strategy. This is equivalent to re-solving the Eikonal with Kλ
∗
δ corresponding

to λ∗δ = ΠI
(
λ∗ − δei

)
where δ << 1 is chosen adaptively (see Algorithm 5.1), ei is

the i-th standard basis vector, and ΠI is the orthogonal projection onto the simplex
defined only with elements of I. Once a new λ∗δ-optimal control function has been
found, we may solve the quadratic program in (4.9) again with an additional column,
and repeat the process until the norm of the residual is sufficiently small. More
generally, a large ‖R(ω)‖ implies that some control functions in A(λ∗) (or some mix

of control functions) not in the current set Ak has a high observability with respect
to the positive entries of R(ω) while having a low observability with respect to the
negative entries of R(ω). Thus, we set the perturbation direction to −R(ω) instead
of −ei. Throughout this perturbation step, the entries of λ∗ associated with the
complement I are held fixed. Our full method for computing an approximate Nash
equilibrium is summarized in Algorithm 4.3.

This method also has a geometric interpretation in terms of the Pareto Front.
Whenever θ∗ is not a pure strategy, a hyperplane normal to λ∗ supports PF at multiple
points (corresponding to all controls in A(λ∗)). However, any generic perturbation
of λ∗ would result in a hyperplane supporting PF near only one of these points,
and the approximation to λ∗ found by Algorithm 4.2, will correspond to a single
optimal trajectory. For example, if we start with a1(·) corresponding to the yellow
point in Figure 6c (and associated yellow trajectory in Figure 6b), then a small tilt
(decreasing the role of position x̂1 in O’s plan) will yield a hyperplane supporting PF
near the green point, allowing us to approximate the green trajectory in Figure 6b by

solving the weighted cost Eikonal equation with observability function Kλ
∗
δ .

5. Numerical matters. In this section, we detail the implementation of our
algorithm and present additional numerical results. All algorithms were implemented
in C++ and compiled with icpc version 16.0 on a MacBook Pro (16 GB RAM and
an Intel Core i7 processor with four 2.5 GHz cores). The code is available online at
https://github.com/eikonal-equation/Stationary SEG. Our implementation relies on
data structures and methods from Boost, Eigen and QuadProg++ libraries.

https://github.com/eikonal-equation/Stationary_SEG
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Algorithm 4.3 Computing an approximate Nash equilibrium of the SEG.

1: Find λ∗ using Algorithm 4.2
2: I ← {i | λ∗i > tolλ}
3: λ∗δ ← (1− ε)λ∗ + ε

r−sIIc

4: Find λ∗δ-optimal control a1(·) and compute Ji(a1(·)) for all i ∈ I
5: k ← 1, A1 ← {a1(·)}, ω1 ← 1

6: while ‖R(ωk)‖ > tolR do

7: λ∗δ ← (1− ε)ΠI
(
λ∗ − δR(ωk)

)
+ ε

r−sIIc

8: Find λ∗δ-optimal control ak+1(·) and compute Ji(ak+1(·)) for all i ∈ I
9: Ak+1 ← Ak ∪ {ak(·)}

10: ωk+1 ← arg min
ω
k+1∈∆k+1

‖R(ωk+1)‖2
11: k ← k + 1
12: end while
13: return λ∗, Ak, ωk

5.1. Functions, parameters, methods. All of our examples are posed on the
domain Ω = [0, 1]2 with the possible exclusion of obstacles. All figures are based
on computations on a uniform cartesian grid of size n × n = 501 × 501 (with the
grid spacing h = 1/500). To simplify the discussion, we always use a constant speed
function f(x) = 1 though any inhomogeneous speed can be similarly handled by
solving the Eikonal equation (2.3).

The pointwise observability functions are defined as

Ki(x) =

{
σ, if x is in a shadow zone of x̂i;

K̂(|x− x̂i|) + σ, otherwise.

We set σ = 0.1 and K̂(r) = (ρr2 +0.1)−1 with ρ = 1 in all examples except in Figure 5
(where we set ρ = 30 simply to improve the visualization). The visibility of each
gridpoint with respect to each observer position is precomputed and stored, but the
Ki values are computed on the fly as needed.

The shadow zones for each observer are precomputed as follows. For each observer
location x̂i, two distance functions are computed: Di

0(x) and Di(x). The first is the
distance between x̂i and x when the obstacles are absent, while the second is that
distance when obstacles are present. These distance functions can be computed by
imposing the boundary conditions Di

0(x̂i) = Di(x̂i) = 0 and then solving two Eikonal
equations [30]: ∣∣∇Di

0(x)
∣∣ = 1,

∣∣∇Di(x)
∣∣ = Obs(x), (5.1)

with Obs(x) set to ∞ inside the obstacles and 1 otherwise. The shadow zone of x̂i
is characterized by Di > Di

0. But due to numerical errors in their approximation, we
use a threshold value τ = 10−3h (where h is the grid spacing) and specify that x is
in this shadow zone whenever Di(x) > Di

0(x) + τ.
The perturbation stepsize δ in Algorithm 4.3 is chosen adaptively using Algo-

rithm 5.1. The goal of the adaptive strategy is to find the smallest perturbation δ
necessary to obtain an additional λ∗δ-optimal control function ak+1(·).
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Algorithm 5.1 Adaptive strategy for choosing δ to generate ak+1(·)
1: δ ← δ0
2: λ∗δ ← (1− ε)ΠI

(
λ∗ − δR(ωk)

)
+ ε

r−sIIc

3: Compute a λ∗δ-optimal control function â(·)
4: while ‖J (â(·))−J (aj(·))‖2 < tolδ for any j ∈ {1, . . . k} do
5: δ ← 2δ
6: λ∗δ ← (1− ε)ΠI

(
λ∗ − δR(ωk)

)
+ ε

r−sIIc

7: Compute λ∗δ-optimal control function â(·)
8: end while
9: ak+1(·)← â(·)

The initialization used in our implementation is δ0 = 10−4, and the tolerance
is set to tolδ = 10−2‖J (â(·))‖2. The stepsize rule used in the supergradient iter-

ation in Algorithm 4.2 is αk = 1
/

(k‖J (aλ0(·))‖), the initial guess λ0 is a uniform
distribution on A and the tolerance criteria on the residual and the near 0 entries
used in Algorithm 4.3 are tolR = 10−3G(λ∗) and tolλ = 5 · 10−3 respectively. The
quadratic programming problem in (4.9) is solved using the library QuadProg++.

5.2. Computation of individual costs. Running Algorithm 4.2 requires com-
puting the vector of individual observability J (xS ,a

λ(·)). This problem is exactly the
one solved by the scalarization approach described in subsection 3.1. Therefore, it can
in principle be done by solving the Eikonal equation in (2.3) with cost function Kλ and

associated linear equations in (3.2); i.e.: G(λ) = uλ(xS) and Ji(xS ,aλ(·)) = vλi (xS).
However, this technique has a severe drawback for this particular application: at the

optimal λ∗, vλ
∗

i is often discontinuous at xS . E.g., in Figure 8b, the upwind sten-
cil containing the two λ∗-optimal trajectories contains a point on either side of the

discontinuity line of vλ
∗

1 (which is the shockline of uλ
∗

). As a result, the value of

vλ
∗

1 (xS) is updated by interpolating the discontinuous function vλ
∗

1 across the line of
discontinuity.

This effect happens when multiple trajectories are λ∗-optimal. Each of these

trajectories has the same expected cumulative observability J λ
∗

=
∑
i λ
∗
iJi, but dif-

ferent individual observability Ji. This issue leads to a large numerical error when
using vλi (xS) to estimate the supergradient in Algorithm 4.2, causing poor conver-
gence of the method. Instead, we use the following process to compute the individual
costs: first we solve the weighted cost Eikonal equation (3.1) to obtain uλ for a fixed
λ, then we trace the path y(t) using a gradient descent method on the value function

uλ and numerically estimate the integrals:

Ji(xS ,aλ(·)) =

∫ T
a
λ

0

Ki(y(t),aλ(t)) dt, i = 1, . . . , r.

5.3. Additional experiments and error metrics. We present two additional
examples that include a higher number of observer plans. In Figure 9, we show an ex-
ample where the mixed strategy Nash equilibrium consists of a distribution over three

strategies for both the evader and the observer. Figure 9 shows the value function uλ
∗

at the optimal λ∗. We observe that three shocklines of the value function uλ
∗

meet at
the source location xS , which implies that four trajectories are optimal starting from
this location. However, the minimax theorem for infinite games assures that only 3
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pure strategies are necessary to form a Nash equilibrium. Using Algorithm 4.3, we
find an approximate Nash equilibrium which uses a mix of such three trajectories.

Fig. 9. Computed Nash equilibrium for a situation where a mix of three pure strategies are

necessary for each player. The value function u
λ
∗

with three near-λ
∗
-optimal trajectories in pink,

blue and yellow. Part of the pink is obstructed by the blue and green path. The optimal strategy
for O is λ

∗
= [p(x1), p(x2), p(x3)] = [0.34, 0.32, 0.34], and the optimal strategy for E consists of

three trajectories used with probability ω
∗

= [p(blue), p(yellow), p(pink)] = [0.40, 0.20, 0.40]. In this
example, the pink and yellow λ

∗
-optimal trajectories initially coincide near xS , hence one cannot

find both of them by perturbing the initial position xS .

In Figure 10, we show a maze-like example where the observer may choose among
six possible positions. Using Algorithm 4.3, we determine that at the approximate
Nash equilibrium, only four positions are used with positive probability by O, and E
uses four different trajectories which are displayed in Figure 10.

In order to test the performance of Algorithm 4.3, we consider three error metrics:
1. The optimization error in G(λ) arises from several effects: the discretization

error of the Eikonal solver, the discretization error of the path tracing and
path integral evaluation, and the early stopping of the supergradient itera-
tions. To generate the “ground truth”, we performed the same computation
on a finer grid of size of n = 2001 × 2001 (i.e. we consider a grid with 16
times more unknowns) and run the supergradient iteration until we observe
stagnation in the objective function value of the iterates. We approximate
the relative error in our computations on a 501 × 501 grid as:

Erel
[
G(λ∗)

]
=
∣∣G501(λ∗501)−G2001(λ∗2001)

∣∣ /G501(λ∗501) .

2. The Observer’s regret estimates how much the observer could improve his pay-
off by unilaterally deviating from our approximate Nash equilibrium. (Recall
that, if the approximate Nash equilibrium were exact, the observer would
not be able to increase his payoff at all). We quantify this error using the
normalized residual in (4.9), i.e.:

Observer’s regret = ‖R(ω)‖2
/ (
|I|G(λ∗)

)
.

3. The Evader’s regret estimates how much the evader could improve his pay-
off by unilaterally deviating from our approximate Nash equilibrium. This
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Fig. 10. Computed Nash equilibrium for a maze-like example. The value function

u
λ
∗

and four near-λ
∗
-optimal trajectories in pink, blue, yellow and green. The approxi-

mate Nash equilibrium strategy for O is λ
∗

= [p(x̂i)]
i=6
i=1 = [0.174, 0.301, 0.452, 0.073, 0, 0].

The approximate Nash equilibrium strategy for E uses four trajectories with probability ω
∗

=
[p(pink), p(yellow), p(blue), p(green)] = [0.246, 0.461, 0.144, 0.149].

corresponds to how far from λ∗-optimal are the controls produced by Algo-
rithm 4.3. Recall that the control function a1(·) is (up to numerical errors)
λ∗-optimal, whereas ak(·) for k ≥ 2 are (λ∗ + δλ)-optimal. We report the
maximum relative error in λ∗ cumulative observability of the (λ∗ + δλ)-
optimal trajectories, that is:

Evader’s regret = max
k

∣∣∣J λ∗(a1(·))− J λ
∗

(ak(·))
∣∣∣ /J λ∗(a1(·))

These error metrics are reported in Table 1 along with timing metrics for each
example presented in the paper.

Table 1
Table of timing and error metrics. The error metrics are described in the main body of the text.

Figure 3 Figure 5 Figure 6 Figure 9 Figure 10

Number of it. of Algorithm 4.2 100 100 100 300 400
Total CPU time (seconds) 61 61 69 198 321

Erel

[
G(λ

∗
)
]

1 · 10
−3

1 · 10
−3

9 · 10
−4

1 · 10
−3

3 · 10
−4

Observer’s regret 1 · 10
−4

0 3 · 10
−4

4 · 10
−6

1 · 10
−4

Evader’s regret 0 0 2 · 10
−3

2 · 10
−3

2 · 10
−2

6. Extension to groups of evaders. We now consider an extension of the
surveillance-evasion game to a game which involves a team of q evaders. Each evader
El chooses a trajectory leading him from his own source location xlS to a target
location xlT , according to his own speed function f l(x). The pointwise observability

function Kλ is shared for all evaders and depends only on the strategy λ of the
observer. This induces q different cumulative observability functions J l,λ(xlS ,a

l(·))
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defined as in (2.1), and q different value functions ul,λ which are solutions of Eikonal
equations with q different boundary conditions.

In this version of the game, we assume that a central organizer for evaders faces
off against the observer. The goal of that central organizer is to minimize the weighted
sum of evaders’ cumulative expected observabilities. The weights {wl}l=ql=1 in the sum
reflect the relative importance of each evader. We further assume that the central
organizer and the observer agree on that relative importance, making this a two
player zero-sum game with a payoff function defined by:

P (λ, {θl}ql=1) =

l=q∑
l=1

wlEθl
[
J l,λ(xlS ,a

l(·))
]
. (6.1)

Although we focus on a zero-sum two player game, we note that its Nash equilib-

rium
(
λ∗, {θl}l=ql=1

)
must also be among Nash equilibria of a different (q + 1)-player

game: the one, where each of the q evaders is selfishly minimizing their own cumu-
lative observability J l,λ(xlS ,al(·)), while the observer still attempts to maximize the
crowd-wide observability in (6.1). This property follows from two simple facts:

1. The Observer’s payoff is the same in both versions of the game and thus
cannot be improved unilaterally in a (q + 1) player game.

2. In the Nash equilibrium for the two-player game, the central organizer would
only ask each evader to assign positive probabilities to their λ∗-optimal tra-
jectories. (Otherwise, the weighted sum in (6.1) could be improved). Thus,
they would also be maximizing their individual payoffs.

In this new setting, Theorem 4.2 holds and the observer’s half of the Nash equi-
librium may be found by maximizing the concave function:

Gq(λ) = min
a
l
(·)

l=q∑
l=1

wlJ λ(xlS ,a
l(·)) . (6.2)

The function Gq(λ) and its supergradients may be evaluated in a similar way to sub-
section 5.2, but require q solves of the Eikonal equation with different boundary
conditions and speed functions, and the numerical evaluation of q × r path integrals.
However, we note that if all evaders have the same speed function and share the
same target location (or, alternatively, share the same source location), only a single
Eikonal equation solve is in fact required. With minor modifications, Algorithm 4.3
may be also applied to solve this version of the problem. For each perturbation of λ∗

a set of q control functions is generated on line 8 of Algorithm 4.3, with one control
function found for each evader. Although we obtain a new set of q control functions
for each perturbation, some of the control functions for specific evaders may be essen-
tially the same as those already obtained from previous perturbations. We address
this in post-processing, by pruning the output of modified Algorithm 4.3 to identify
distinct trajectories for each evader.

We show numerical results for two test problems with q = 2 equally important
evaders (i.e., w1 = w2) in each of them. An example presented in Figure 11 uses the
same obstacle and the same r = 2 possible observer locations already used in Figure 6.
At the approximate Nash equilibrium found using Algorithm 4.3, the observer uses
these two locations with probabilities λ∗ = (0.35, 0.65) and the central controller
directs both evaders to use pure policies: deterministically choose pink and blue
trajectories to their respective targets. Even though the first evader’s starting position
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and destination are also the same as in Figure 6, his (and the Observer’s) optimal
strategies are quite different here due to the second evader’s participation.

(a) (b)

Fig. 11. Computed approximate Nash equilibrium for a group of two evaders. The approximate
Nash equilibrium pair of strategies is λ

∗
for O, and a single λ

∗
-optimal trajectory for each evader.

(a) The value function u
1,λ
∗

for λ
∗

= [0.35, 0.65] of evader 1, and the λ
∗
-optimal trajectories

for evader 1 shown in pink. (b) The value function u
2,λ
∗

for the same λ
∗

of evader 2, and his
λ
∗
-optimal trajectory shown in blue.

In a maze-like example presented in Figure 12, O can choose among six possible
locations, but his optimal mixed strategy λ∗ uses only four of them. Algorithm 4.3
yields three sets of two near-λ∗-optimal trajectories which form an approximate Nash
equilibrium, but they only contain two distinct trajectories for each of the evaders.
We report timing and error metrics for these two examples in Table 2.

Table 2
Table of running times and errors for examples with multiple evaders.

Figure 11 Figure 12

Number of it. of Algorithm 4.2 353 300
Total CPU time (seconds) 631 594

Erel

[
G(λ

∗
)
]

5 · 10
−4

7 · 10
−3

Observer’s regret 5 · 10
−4

1 · 10
−3

Evader’s regret 5 · 10
−3

1 · 10
−2

7. Conclusion. We have considered an adversarial path planning problem, where
the goal is to minimize the cumulative exposure/observability to a hostile observer.
The current position of the latter is unknown, but the full list of possible positions is
assumed to be available in advance. The key assumption of our model is that neither
the Evader (E) nor the enemy Observer (O) can adjust their plan in real time based
on the opponent’s state and actions. Instead, both of them are required to choose
their (possibly randomized) strategies in advance. We discussed two versions of this
problem; in the first one, a completely risk-averse evader attempts to minimize his
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(a) (b)

Fig. 12. Computed approximate Nash equilibrium for a maze-like example with two evaders.

(a) The value function u
1,λ
∗

of evader 1, and two near-λ
∗
-optimal trajectories for evader plotted in

pink and blue. (b) The value function u
2,λ
∗

of evader 2, and two near-λ
∗
-optimal trajectories for

evader 2 plotted in yellow and green. The approximate Nash equilibrium (λ
∗
,θ
∗
) is λ

∗
= [p(x̂i)] =

[0.168, 0.0455, 0.364, 0, 0, 0.422], and θ
∗

consists of a mixed strategy for the group of evaders. The
mixed strategy of evader 1 is [p(pink), p(blue)] = [0.85, 0.15], and the mixed strategy for evader 2 is
[p(yellow), p(green)] = [0.89, 0.11] .

worst-case cumulative observability. We showed that this version can be solved using
previously developed methods for multiobjective path planning. However, the solution
is prohibitively computationally expensive when O has a large number of surveillance
plans to choose from. In the second version, the subject of optimization is the E’s
expected cumulative observability on its way to the target. We modeled this as a
zero-sum Surveillance-Evasion Game (SEG) between two players: E (the minimizer)
and O (the maximizer). We then presented an algorithm combining ideas from contin-
uous optimal control, the scalarization approach for multiobjective optimization, and
convex optimization which allows us to quickly compute an approximate Nash equi-
librium of this semi-infinite strategic game. Finally, we showed that this algorithm
extends to solve a similar problem involving a group of multiple evaders controlled
by a central planner. The presented algorithm displays at most linear scaling in the
number of observation plans, but further speed up techniques would be desirable;
the computational bottleneck (numerically solving the Eikonal equation) could be
alleviated with domain restriction methods [9] and factoring approaches [27].

Although this paper focused on isotropic problems, the anisotropic observer case
could be treated in a similar fashion. (In practice, the pointwise observability might
depend on the angle between the evader’s direction of motion and the observer’s
line of sight.) This generalization will have to rely on fast numerical methods de-
veloped for anisotropic HJB PDEs; e.g., [1, 24, 31, 36]. In a follow-up paper [6], we
show that time-dependent observation plans (e.g., different patrol routes) can be sim-
ilarly treated by solving λ-parametrized finite-horizon optimal control problems with
numerical methods for time-dependent HJB equations; e.g., [16, 32].

We note that the computational cost of our algorithm increases quickly with the
number of evaders considered. The case involving a large number of selfish evaders
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could be covered by considering the evolution of a time-dependent density of observers,
and treating the problem using mean field games [5, 17]. Another possible extension
would be to consider a group of observers choosing among a larger set of surveillance
plans. In that situation, the set of pure strategies of the observers could increase
exponentially, but we anticipate that the computational cost will grow much slower
since the number of required Eikonal solves would not increase.
Acknowledgements: The authors would like to thank Alex Townsend and anony-
mous reviewers for their helpful suggestions.
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