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Abstract—Bitcoin is the leading example of a blockchain
application that facilitates peer-to-peer transactions without the
need for a trusted third party. This paper considers possible
attacks related to the decentralized network architecture of
Bitcoin. We perform a data driven study of Bitcoin and present
possible attacks based on spatial and temporal characteristics of
its network. Towards that, we revisit the prior work, dedicated
to the study of centralization of Bitcoin nodes over the Internet,
through a fine-grained analysis of network distribution, and
highlight the increasing centralization of the Bitcoin network over
time. As a result, we show that Bitcoin is vulnerable to spatial,
temporal, spatio-temporal, and logical partitioning attacks with
an increased attack feasibility due to the network dynamics. We
verify our observations by simulating attack scenarios and the
implications of each attack on the Bitcoin network. We conclude
with suggested countermeasures.

I. INTRODUCTION

Blockchain is a new paradigm for distributed computing,

with Bitcoin being its most popular application [45], [53]. Due

to its high market share of over $110 billion USD [16], [10],

Bitcoin has been a lucrative target of attack for adversaries,

who have been mainly targeting Bitcoin’s exchanges, the

blockchain fabric, and nodes involved in Bitcoin’s network.

In this paper, we analyze the peer-to-peer model of cryp-

tocurrencies and associated security. In particular, through

network data analysis (§IV), we uncover and exploit the

increasing centralization of Bitcoin nodes over the Internet,

the non-uniform consensus among peers, and the software

diversity of Bitcoin clients to devise and optimize partitioning

of the Bitcoin network. We outline spatial, temporal, spatio-

temporal, and logical attacks, exploiting various aspects of

Bitcoin dynamics. Some of those attacks are not new. For

example, in 2014, an attacker from a malicious ISP hijacked

IP prefixes of 19 Internet providers to isolate Bitcoin traffic

and steal $83,000 USD worth of bitcoins [32], [47], [39], as an

instance of the spatial attack. This attack has been formalized

and examined in [3]. Our work, in addition to new attack

vectors, shows that the network has become more vulnerable

due to increasing centralization.

In 2017, 13 ASes hosted 30% Bitcoin nodes while 50 ASes

hosted 50% Bitcoin nodes [3]. In our analysis, started on

February 28, 2018, we found that only 8 ASes host 30% of

Bitcoin nodes and 24 ASes host 50% of Bitcoin nodes. At

the organization-level, we found that only 13 organizations

host 50% of the Bitcoin nodes. Among them, only two orga-

nizations host 65.7% of Bitcoin hashing rate, with the lead-

ing organization (AliBaba) having a 59.4% share of Bitcoin

hashing rate. At the network level, we exploit the increasing

centralization (§V-A) to show empirically that an adversary can

easily partition the network spatially through BGP hijacking,

causing a “hard fork” by controlling a limited number of ASes.

At the AS level, we show a pattern of IP prefix distribution:

in some cases, hijacking as little as 20 prefixes would give the

adversary control over more than 80% of the Bitcoin nodes

residing within this AS. At the organization-level, we uncover

that multiple ISPs control more than one AS, amplifying the

centralization effect, and facilitating new attack avenues.

Unique to our study, we exploit the non-uniform consen-

sus among peers for optimized temporal attacks (§V-B). We

observed that—due to latency and malicious peer behavior—

there is a lag in consensus and block propagation. Through our

analysis, we found that even 5 minutes after the publication

of a block, ≈62.7% of nodes in the network remain behind

the latest block by one or two blocks. We show that such

a behavior can be exploited to optimize an attack in which

the adversary can feed false blocks to nodes and temporally

partition the network. Considering the ethical ramifications of

launching these attacks in practice, we instead use simulation-

based models to validate our findings. Through simulations,

we show that an attacker with ≈ 30% hash power can mislead

nodes that are behind the main chain.

To optimize spatial and temporal attacks, we explore the

spatio-temporal attack vector (§V-C). By observing that only

5 ASes hosted ≈30% of synchronized nodes, this attack

considers them as more valuable targets, thus reducing the

attacker’s effort. Observing the presence of more than 200 Bit-

coin software versions, demonstrating high software diversity,

we outline a logical attack, in which an adversary manipulates

the client behavior to partition the network (§V-D).

Little work has been done on measuring temporal behaviors

in the Bitcoin network for attacks. Apostolaki et al. [3]

performed a data analysis on Bitcoin to understand AS-

level centralization of nodes and miners, and presented the

possibility of routing attacks. However, their work was limited

to spatial attacks at vantage points on the Internet, which we

demonstrate more effective due to network centralization.

Contributions and Roadmap. In summary, we make the

following contributions. 1) Through data-driven analysis, we
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Fig. 1. Bitcoin illustration with full nodes and lightweight nodes. Lightweight
nodes only have the view that their associated full nodes provide. Full nodes
F1, F2, and F5 have updated views while F3 and F4 are 1-2 blocks behind.

provide deeper insights into the Bitcoin network by outlining

characteristics, distribution, location, and performance of full

nodes. 2) Embracing various characteristics of the network, we

propose several directions of attacks and validate them through

data analysis and simulations. We outline, demonstrate, model,

optimize, and evaluate spatial, temporal, spatio-temporal, and

logical attacks. 3) We discuss possible countermeasures to

address those attacks. Through the rest of the paper, in §II,

we outline the Bitcoin network model, and in §III, we outline

the threat model and adversarial capabilities. We provide our

preliminary analysis in §IV. In §V, we discuss the partitioning

attacks on Bitcoin network and in §VI, we explore the possible

countermeasures for each attack. That is followed by related

work and conclusion in §VII and §VIII, respectively.

II. THE BITCOIN NETWORK MODEL

The Bitcoin network consists of nodes connected in a peer-

to-peer model. Upon joining the network, nodes connect to

each other using public IP addresses, and use the gossip

protocol to exchange network information such as transactions,

blocks, and addresses. There are special nodes in the network,

called miners, that are responsible for extending the blockchain

by creating new blocks [49].

Ideally, all the participating nodes in the network need to

have an updated copy of the blockchain, but the growing

size of the chain makes it infeasible to be used on smart

devices. For example, the current blockchain size in Bitcoin

is approximately 150GB [57], and if a user wants to use

Bitcoin’s services on his smart phone, he might not be able

to download the complete blockchain and become part of the

network. To address this problem, third party services such as

Blockchain.info [36] provide an easy access to such clients by

downloading Blockchain and providing access to smart device

users. Blockchain.info maintains an active node in Bitcoin that

keeps track of all transactions and blocks, and replicates the

network view to all of its customers. Therefore, the current

Bitcoin network is structured into full nodes that are active

in the main network, and lightweight nodes that use services

of full nodes. In Figure 1, we provide an illustration of this

model. For more information regarding the full nodes and the

lightweight nodes, we refer the reader to [29].

III. THREAT MODEL

In this section, we outline the basics of partitioning attacks

on Bitcoin and describe our threat model. Through data-driven

analyses, we establish the modus operandi of the Bitcoin

network, and describe capabilities needed by the adversary

to partition the network spatially and temporally. Towards

that, we revisit Apostolaki et al.’s work [3] (referred to as

the “classical attack”), providing a baseline for partitioning

attacks. We highlight new targeted attacks on the network, by

introducing temporal, spatio-temporal, and logical partitioning

attacks, which have not be identified before.

For the spatial partitioning, we assume the adversary to

be an autonomous system (AS), an ISP organization, or a

nation-state. An AS hosting a fewer Bitcoin nodes can launch

a BGP attack on another AS that hosts more nodes. As a

result, it can hijack the Bitcoin traffic, isolate the mining

power, or simply harm the reputation of the target AS. For

temporal attacks, we assume a malicious mining pool that

attempts to fork the network and deprive an honest miner

from block rewards. With soft forks, the adversary aims to

create a temporary imbalance in system ramifications, such

as transaction processing, and by hard forks it attempts to

permanently split the network with diverging views. Finally,

for logical attacks, we assume the adversary to be a software

developer capable of exploiting bugs in the Bitcoin software

client. Additionally, due to the centralization of Bitcoin traffic

and a shift in country-level policies towards Bitcoin, we do not

exclude the possibility of a nation-state adversary. As such, a

nation-state can partition the network by blocking the flow

of traffic through its ASes and organizations. Countries such

as Bolivia, Kyrgyzstan, and Nepal have permanently banned

Bitcoin and its exchanges [59]. If China, for example, decides

to ban Bitcoin, it will have a significant impact on the health

of the Bitcoin network since 60% of the mining traffic goes

through China (as shown in Table IV).

Adversarial View. We assume that the adversary has a consis-

tent view of the network similar to the one available to us for

conducting our analysis. The adversary will have access to the

following information. 1) The top ASes and organizations that

host a maximum number of nodes and their distribution over

time. 2) The temporal spread of block information among all

nodes in the network upon block broadcast. 3) The vulnerable

nodes in the network based on their location, uptime, latency,

consensus time, and neighboring peers. 4) The vulnerable

network entities (ASes and organizations) based on their public

information such as BGP prefixes, neighboring ASes, location,

and routing information.

Adversarial Capabilities. In the threat model, adversaries

have unique capabilities. For example, a malicious AS or

organization will have the ability to announce false routing

information to other ASes and separate the target AS from

neighboring nodes. This, in turn, can disrupt the exchange of

transactions, blocks, and mining information, thereby affecting

full nodes, lightweight nodes, and mining pools.

For temporal partitioning, the adversarial mining pool will

have a consistent view of the network, which will allow it to

identify nodes that are behind the blockchain. Obtaining this
information is not challenging since various Bitcoin crawlers
are available and can be used to access the blockchain view of
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nodes in Bitcoin [15]. This can be exploited by the malicious

mining pool to identify vulnerable nodes that are 1–5 blocks

behind. A malicious miner, for instance, can mislead those

nodes by propagating false information in the network. Doing

so may create a temporary or even a permanent partitioning in

the network, where a group of nodes are misled into following

a counterfeit blockchain.

IV. PRELIMINARY ANALYSIS

In this section we present key observations and results

obtained from an initial analysis, including the distribution of

Bitcoin full nodes over ASes and organizations.

A. Data Collection

For our analysis, we crawled data from Bitnodes [15], which

is a Bitcoin service supported by Earn.com [17]. Bitnodes

maintains a persistent connection with all reachable nodes by

running a full node that connects to the rest of the network. Af-

ter connecting with all nodes, Bitnodes uses inventory message

(inv) and data messages (getdata, getblock, gettransaction) to

get recent blocks and transactions from each node (for more

information regarding these protocol messages, we refer the

reader to the Bitcoin protocol documentation [13]). For each

node, Bitnodes records the response time to calculate useful

information such as the latency, the uptime, and the latest

block etc. From IP addresses, it determines the corresponding

AS, organization, and location of a node.

We used the information provided by Bitnodes to develop

another crawler, atop Bitnodes, to acquire data and store it in

our local database. We ran the crawler on our campus server

for two months, and our complete dataset spans two months of

Bitcoin network information with an aggregate size of 80GB.

In summary, we were able to collect the Bitcoin network

information sampled at every 10 minutes to analyze consensus

distribution after each published block, and at every 1 minute

to observe consensus pruning in the network in-between the

publication of two successive blocks.

B. Methodology

In our initial experiments, first we cross-validated the infor-

mation provided by Bitnodes. We mapped the crawled IP ad-

dresses to a commercial-grade geo-mapping dataset obtained

from Digital Envoy (DE) [46]. The DE dataset mapping of

Bitnodes IP addresses validated the information in our dataset

regarding ASes and organizations. After establishing data

reliability, we performed a series of experiments to analyze

the configuration of the network, and the distribution of nodes

across ASes and organizations. The initial results gave us a

holistic view of the network and its centralization, which we

used to describe spatial partitioning attacks.

Next, we analyzed the consensus distribution among nodes,

based on their view of the blockchain. We recorded the latest

block published by miners in the network and the most recent

block that every node had. The difference between the two

denoted how far behind the node was from the network. As

shown in Figure 1, nodes F3 and F4 are 1-2 blocks behind

the main chain. Therefore, they provide an outdated view of

network to their lightweight nodes. This information can be

used by the attacker to lure them into a counterfeit network

by feeding them bogus blocks or a different blockchain. We

leveraged this information to outline temporal partitioning

attacks that can be launched on Bitcoin network to isolate

nodes based on their outdated view. Our results showed that

dynamics of Bitcoin network are not consistent over time and

there are vulnerable spots for an attacker who can connect to

a group of nodes and partition them.

Experiments and Simulations. We modelled and simu-

lated partitioning attacks on Bitcoin based on the data, the

network view, and adversarial capabilities. Our simulations

accurately reproduced the vulnerable state of the network that

was observed in our data analysis. By causing non-targeted

communication errors, forks were created that resembled those

occurring naturally when the network is not synchronized.

Bitcoin forks have been observed up to a height of 13, and

can enable double-spending [38]. As in the real network, the

simulator resolved forks within two or three block intervals,

with all nodes joining the longest chain. The simulation

showed that partitioning attacks can create and exploit such

forks using targeted communication disruption, holding them

open long enough to achieve attack objectives.

C. Measurements and Observations

Below, we discuss some key observations we made during

the preliminary analysis on the Bitcoin network on February

28, 2018. We show the number of full nodes in the network

and their distribution with respect to IP addresses, link speed,

latency, and block index.

The network snapshot showed that there were 13,635 full

nodes in the Bitcoin network. This shows that the size of the

actual network is small compared to SPV clients, considering

that Blockchain.info alone hosts 2.3–5 million users [35]. At

the time of data collection, 11,382 (83.47%) nodes were up

while 2,253 (16.52%) nodes were down. Only 6,155 (45.14%)

nodes had the most updated copy of the blockchain while

7,480 (54.86%) were 1 or more blocks behind. We also make

use of peer information maintained by Bitnodes to characterize

certain properties of nodes, including the latency index, the

uptime index, and the block index. Each of these indicators

can be used to profile the given node in the network.

Among the full nodes, 12,737 (93.41%) had IPv4 address,

while 579 (4.24%) had IPv6 address. The remaining 319

(2.33%) full nodes had onion addresses, meaning that they

were using TOR services to run Bitcoin. The average link

speed of the IPv4 and IPv6 was 25.04 Mbps and 23.06 Mbps,

respectively. Their latency index, block index, and uptime

index were also similar to one another. On the other hand,

TOR nodes had a high average links speed of 432.67 Mbps;

approximately 17 times higher than the average link speed of

IPv4 and IPv6 nodes, respectively. Consequently, they also had

low latency and higher uptime index. We report our findings

from preliminary analysis in Table I.
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TABLE I
OVERVIEW NODE CHARACTERISTICS OBSERVED ON FEB 28, 2018. NOTE

THAT THE IPV4 AND IPV6 NODES ARE SIMILAR IN LINK SPEED (MBPS),
LATENCY AND UPTIME INDEX, WHILE TOR NODES HAVE MUCH HIGHER

LINK SPEED AND LOW LATENCY.

Link Speed Latency Index Uptime Index
Type Count μ σ μ σ μ σ
IPv4 12,737 25.04 258.80 0.70 0.45 0.68 0.44

IPv6 579 23.06 245.36 0.86 0.35 0.67 0.42

TOR 319 432.67 1046.5 0.24 0.25 0.76 0.37

Fig. 2. Network topology consisting of organizations, ASes and full nodes.
Organizations D and E can launch BGP attacks against F and B respectively.

V. PARTITIONING ATTACKS ON BITCOIN

Based on our preliminary analysis, we propose four types

of partitioning attacks that can be launched on the Bitcoin

network. The fundamental premise of each attack is related to

the spatial positioning of nodes, the topological symmetry of

the network, the temporal consensus over the blockchain state,

or the client side software used by nodes to run Bitcoin. We

define these attacks as spatial, temporal, spatio-temporal, and

logical partitioning attacks, respectively.

A. Spatial Partitioning

In this section, we analyze the centralization of full nodes

and mining pools across ASes and organizations. Towards that,

we revisit the prior work to evaluate the classical attack, and

demonstrate that over time, the Bitcoin network has further

centralized and become more vulnerable.

Attack Objectives. The objective of spatial partitioning is to

isolate Bitcoin nodes. The objective can be purely to isolate

miners, and restricting their access to the network, or eclipsing

an entire AS that hosts a large fraction of nodes. A mining pool

might launch such an attack against its competitor to increase

its chances to publish more blocks. A competing cryptocur-

rency can launch this attack to affect Bitcoin’s reputation.

Attack Procedure. In Figure 2, we provide an illustration

of a BGP attack, which can be launched by a malicious

organization or an AS. In this attack, the malicious AS

announces prefixes that belong to the victim AS. As shown

Figure 2, organizations D and E can launch BGP attacks

against organization F and B, respectively, by broadcasting

more specific prefixes. Moreover, the attack can be made

more targeted by announcing prefixes addressing only Bitcoin

nodes. This attack relies on two major factors: the total number

of ASes and organizations, and the total number of nodes

hosted in each of them. In particular, if the total number

of ASes and organizations hosting full nodes is large, the

attack becomes costly. Similarly, if the number of nodes is

TABLE II
A VIEW OF TOP TEN ASES AND ORGANIZATIONS IN BITCOIN ON

FEBRUARY 28TH 2018. THE TABLE SHOWS THAT BITCOIN IS MORE

CENTRALIZED WITH RESPECT TO ORGANIZATIONS THAN ASES. AS24940
INTERCEPTS THE MAXIMUM BITCOIN TRAFFIC.

ASes # of Nodes Total Nodes % Organizations # of Nodes Total Nodes %
AS24940 1,030 7.54% Hetzner Online GmbH 1,030 7.54%
AS16276 697 5.11% Amazon.com, Inc 756 5.54%
AS37963 640 4.69% OVH SAS 700 5.13%
AS16509 609 4.47% Hangzhou Alibaba 640 4.69%
AS14061 460 3.37% DigitalOcean, LLC 503 3.69%
AS7922 414 3.04% Comcast Communication 414 3.04%
AS4134 394 2.89% No.31, Jin-rong Street 394 2.89%
TOR 319 2.34% TOR 319 2.34%
AS51167 288 2.11% Contabo GmbH 288 2.11%
AS45102 279 2.05% Alibaba (China) 279 2.05%
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Fig. 3. CDF of the Bitcoin full nodes in ASes and organizations.

concentrated within a few ASes, that makes a better target

rather than attacking arbitrary ASes with fewer nodes. To

evaluate that, we carried out two experiments to observe

the total number of ASes hosting Bitcoin nodes and the

distribution of nodes among those ASes.

Practical Considerations. Our results show that the full

nodes in Bitcoin are highly centralized at the AS and organi-

zation level. Compared to [3], the network has become even

more centralized, and more vulnerable to BGP hijacking and

routing attacks. In particular, we observed that among the total

of 84,903 ASes in the world [50], only 8 (0.0094%) ASes

host 30% Bitcoin nodes. 24 (0.028%) ASes host 50% while

1,660 (1.95%) ASes host 100% Bitcoin nodes. This shows a

significant difference in the number of ASes that host 50% and

100% full nodes. To understand that, we plot CDF of ASes

that host the traffic of full nodes in Figure 3.

Similarly, we observed that the top 8 organizations in-

tercepted 30% Bitcoin traffic and the top 13 organizations

intercepted 50% traffic, collectively. We also noticed that each

organization controlled one or more ASes, alluding to the

possibility of a fine-grained partitioning attack.

In Table II, we show the top 10 ASes and organizations

along with the percentage of total nodes that they host. We

group TOR nodes and treat them as a single AS. AS24940

hosts 7.54% nodes and its corresponding organization Hetzner
Online also hosts 7.54% nodes, meaning that the Bitcoin traffic

routed by Hetzner Online entirely goes through AS24940.

On the other hand, Amazon.com routes 5.54% of the traffic

while AS16276 intercepts 5.11% traffic. This shows that

Amazon.com owns another AS besides AS16276 that also

routes traffic. This model can be observed in Figure 2.

As outlined in Figure 3, 50% of the Bitcoin network

is hosted by 21 organizations and 24 ASes, respectively.

Moreover, 30% of the traffic is hosted by 8 organizations and
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TABLE III
DISTRIBUTION OF BITCOIN FULL NODES OVER TIME.

2017 2018 Change %
ASes with 50% nodes 50 24 52%
ASes with 30% nodes 13 8 38%

ASes, respectively. Prior work [3] done in 2017, showed that

50% of the network was hosted by 50 ASes and 30% of the

network was hosted by 13 ASes. To understand the change

in the network, let N1 be the number of nodes comprising

p% of the network in 2017. Let N2 be nodes comprising

the same p% of the traffic in 2018. We define the change

in the centralization of the network as C = (N1−N2)×100
N1 ,

and provide the results of change in Table III. Notice that

over one year, 50% nodes have been centralized by a factor

of 52%. The prior work did not look into the distribution of

network with respect to organizations, so we do not have a

baseline for comparison. Although, it can be observed from

our data and plots, that full nodes are more concentrated at

the organization level.

Mining pools are another important part of Bitcoin, since

they are responsible for extending the blockchain and main-

taining its state. Mining pools consist of miners on the Internet

communicating via a special mining protocol known as the

“Stratum Mining Protocol” [14]. All miners compute PoW and

send the result to the stratum server address specified by the

mining pool. The stratum address is made public by the mining

pool. As such, if the link to the stratum server is compromised,

the mining pool gets disconnected and its aggregate hash rate

decreases. To analyze the distribution of stratum servers, we

carried out two experiments. First, we gathered information

about major mining pools in Bitcoin and their hash rate from

Blockchain.info [8]; results are reported in Table IV. Next

we selected the top 5 mining pools, which had an aggregate

hash rate of 65% of the total in the Bitcoin network. We then

collected the stratum address of the selected mining pools from

their websites and traced the IP address corresponding to each

stratum address [9], [2], [25]. We mapped each IP address to

the AS hosting the stratum server. We found that 3 ASes had

65% of Bitcoin mining pool traffic while one organization

“AliBaba” alone had more than 50% of the Bitcoin mining

pool traffic. We report our results in Table IV. In the light

of our threat model, and given an adversary capable of BGP

hijacking, policy enforcement at an organization level, or

collusion, having an organization hosting more 50% of the

mining power makes such an attack even more effective.

Attack Validation. In this section, we will validate our

observations and hypothesis regarding BGP hijacking on Bit-

coin ASes and organizations. BGP routing attacks on Internet

happen frequently. In 2008, a service provider from Pakistan

hijacked Youtube traffic by announcing more specific BGP

prefixes than the ones announced by Youtube [31]. Similarly,

in 2014, a Canadian ISP hijacked prefixes of 19 organiza-

tions hosting Bitcoin traffic including Amazon, OVH, Digital

Ocean, LeaseWeb, and Alibaba [32]. In 2017 alone, 14,000

BGP attacks were launched against major ASes [51].

TABLE IV
TOP 5 MINING POOLS PER HASH RATE, ASES, AND ORGANIZATIONS.
65.7% MINING DATA GOES THROUGH ONLY THREE ORGANIZATIONS.
ALIBABA HAS A VIEW OF AT LEAST 60% OF THE MINING DATA. WE

EXCLUDE THE REMAINING 12 MINING POOLS FROM THE STUDY AS THEIR

TOTAL CONTRIBUTION TO HASH RATE IS MINIMAL.

Mining Pool H. Rate % ASes Organizations

BTC.com 25%
AS37963 Hangzhou Alibaba
AS45102 AliBaba (China)

Antpool 12.4% AS45102 AliBaba (China)
ViaBTC 11.7% AS45102 AliBaba (China)
BTC.TOP 10.3% AS45102 AliBaba (China)

F2Pool 6.3%
AS45102 AliBaba (China)
AS58563 Chinanet Hubei

12 others 34.3% — —
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To validate the attack and its impact, we selected the top

5 ASes from Table II, and enumerated the IP addresses of

full nodes hosted by these ASes. Next, we grouped the IP

addresses based on the BGP prefixes announced by each AS.

We then calculated the number of BGP prefixes required to

isolate a percentage of full nodes hosted by the AS. As a result,

a group of full nodes sharing the same BGP prefix can all

be compromised if the BGP prefix is hijacked. We report our

findings in Figure 4, where we show that except for AS16509,

95% of full nodes in all other ASes are vulnerable, once

fewer than 40 BGP prefixes are hijacked. AS24940, which

hosts 1,030 nodes can be compromised by hijacking only 15

BGP prefixes, while it takes more than 140 BGP prefixes

to compromise AS16509, which hosts 609 nodes. Taking the

number of isolated nodes as an advantage and the number of

prefixes to be hijacked as an effort, AS24940 will be more

costly with smaller advantage than AS16509.

Implications. Spatial partitioning is detrimental to the Bitcoin

network as it facilitates other major attacks including double-

spending attacks, eclipse attacks, and the 51% attack. As

shown in Table IV, if an attacker hijacks 3 ASes, he can isolate

more than 60% of the Bitcoin hash power. As Figure 4 shows

that by hijacking 15 BGP prefixes, the attacker can cut 95%

traffic of AS24940 that hosts 1,030 full nodes. By isolating the

hash power, an attacker can cause delays in the block creation

and the transaction confirmation.

If the attacker is a mining pool with lower hash rate, it

can launch the attack on competing mining pools and deprive

them of their mining rewards. By isolating a majority of the

network’s hash power, the attacker can launch the 51% attack

on Bitcoin which will grant him a permanent control over

the blockchain. Furthermore, in peer-to-peer settings, nodes
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Synced Nodes

Behind Nodes

Attacker

Partitioned 
Blockchain

Fig. 5. An illustration of the temporal attack. The attacker establishes connections with nodes and identifies vulnerable nodes that have an outdated view.
Vulnerable nodes have have not been provided new blocks by surrounding peers, which shows their weak relationship/connectivity. We annotate this weak
relationship with dotted lines. The attacker feeds his copy of blocks to vulnerable nodes, thereby partitioning the network into two conflicting chains.

are responsible to relay blocks and transactions to each other.

By hijacking a subset of nodes, the attacker can introduce a

cascade effect in which propagation of blocks and transactions

can be stalled; the attacker does not have to isolate all nodes by

hijacking all BGP prefixes in an AS. Isolating a major subset

of nodes can eclipse the entire AS.

B. Temporal Partitioning

Temporal partitioning involves isolation of a group of nodes

in the network that are some blocks behind the rest of the

network. As shown in Figure 1, three nodes have the most

updated copy of the blockchain, while nodes F3 and F4 are 1–

2 blocks behind. These nodes might be behind the main chain

due to a number of reasons, such as the network latency, a low

bandwidth, software malfunctions, or a malicious peer. There-

fore, these nodes have an outdated view of the blockchain

and remain vulnerable to partitioning attacks. In Figure 5, we

provide an abstraction of the temporal attack that exploits the

vulnerable nodes, and introduces a soft fork in the network.

Attack Objectives. The objective of the temporal partitioning

is the isolation and subversion of nodes or a group of nodes

within the network. Latency in updating the blockchain is a

well known vulnerability of Bitcoin, which is confirmed in

our data. Propagation delays are known to be key contributors

towards the latency [22]. Propagation delays are influenced by

the number of hops between nodes due to sparse peering, and

the time required by software clients to verify and forward

a block. Solutions have been proposed that cluster nodes

to reduce latency [54], [26], but the authors note this may

increase the potential for partitioning attacks. This indicates

a trade-off between spatial and temporal vulnerability. Also

contributing to the node latency are communication failures

and the behavior of nearby peers. The adversary would seek

to disrupt communication and control peers where the attack

is launched. It is inexpensive to setup new nodes on the

Bitcoin network for this purpose. The adversary would want

to separate and control nodes which are not up to date with

the main network. Under normal operation, those nodes might

eventually catch up with the network, but an adversary will

prevent that from happening.

Attack Procedure. Analysis of Bitcoin nodes over a period

of days shows several times a day when a significant fraction

of nodes are not up-to-date. We report our findings in Figure 6.

In Figure 6, the x-axis denotes a time-index for network

observations (one observation every 10 minutes in Figure 6(a)

and Figure 6(b), and one every minute in Figure 6(c)). The y-

axis is stacked, meaning that curves are cumulative. The green

part shows nodes that are up-to-date, the yellow part shows

nodes that are 1 block behind, and the purple part shows nodes

that are 2-4 blocks behind. The remaining colors and their

descriptions are in the figure.

From Figure 6(a), we were able to make following obser-

vations. 1) Generally, a majority of nodes (≈ 50%) remains

synchronized on the blockchain state. These nodes do not lag

behind in the main chain for a long duration. 2) 10% nodes are

forever behind the main blockchain. They do not update their

blockchain and as such, they have no benefit in the network.

3) 30-40% nodes in Bitcoin occasionally waver in terms of

their view of the blockchain. Possibly due to network latency

or consensus delay, they lag behind the most recent block.

To further study the distribution of consensus in the net-

work, we take a single day snapshot of the network to observe

consensus pruning among all nodes. From the view of an

attacker, with higher granularity, there is a better vantage point

to attack a group of nodes. Focusing on a single day shown

in Figure 6(b), we observed that some yellow and purple spikes

are larger and wider than others. The height of a spike denotes

the count of nodes that are behind the updated nodes, while

the width indicates the length of time for which they remain

behind the updated nodes.

From Figure 6(b), with a closer look at the network, we

made the following observations. 1) Consensus pruning is not

uniform across the network. 2) The most frequent delay among

the blocks is 1 block indicated by yellow region, followed

2-4 blocks, indicated by the purple region. 3) On various

occasions, yellow and purple spikes can reach up to 7,000

nodes; approximately 90% of the network can be partitioned

if an attacker isolates them.

In Bitcoin, on average, a block is published after every 10

minutes. Once a block is published, ideally the network is

expected to be synchronized within 10 minutes before the

next block is computed. However, network synchronization

is an artifact of time and fairness of the network. In the

previous two experiments, we observed that with fine grained

sampling, on a given day, the attacker can isolate a group of

nodes which are behind the main chain. To further analyze

this behavior, we performed another experiment that involved

per-minute sampling of network. Our objective was to observe

the distribution of consensus among peers immediately after

broadcast of one block and before the broadcast of the next

one. We plot the results obtained from the third experiment

in Figure 6(c). It can be observed in the figure that there

are vulnerable spots in the network in which up to 90% of

the network is 1-4 blocks behind. As such, the non-uniform
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(a) General trend of the network (b) One day snapshot (c) Consensus between block propaga-
tion

Fig. 6. Temporal consensus in Bitcoin network. Y-axis denotes number of nodes in 1000. In each figure, green region denotes the up-to-date blocks. Yellow
region denotes 1 block behind. Purple, blue, and magenta regions represent nodes that are 2–4, 5–10, and ≥ 10 blocks behind respectively. Figure 6(a) shows
the overall network, Figure 6(b), shows a day (March 25) that offers greater attack opportunity, and Figure 6(c) shows consensus pruning during 10 minutes.

TABLE V
THE MAXIMUM NUMBER OF VULNERABLE NODES.

T (minutes) ≥ 1 block ≥ 2 blocks ≥ 5 blocks

5 6280(62.67%) 3206(31.99%) 966(9.68%)
10 1761(27.13%) 1189(11.87%) 955(9.53%)
15 1141(11.39%) 1083(10.81%) 952(12.00%)
20 1109(13.97%) 1023(15.76%) 947(11.93%)
25 1070(10.68%) 1013(15.61%) 942(9.40%)
30 1042(10.39%) 984(9.82%) 942(9.39%)
40 1040(10.37%) 984(9.82%) 940(9.38%)
70 1036(10.34%) 976(9.74%) 929(9.27%)
200 908(9.08%) 887(8.82%) 821(8.16%)

consensus pruning presented itself as an attack opportunity

whereby an attacker can find a time window to isolate a

group of targeted nodes. In Figure 6(c), the width of nodes

that are behind show the attack time window while the height

represents the number of vulnerable nodes.

This becomes an optimization problem to find the moment

where a majority of nodes is behind for the longest attack

window. The attacker’s timing constraints include the time to

calculate false blocks and establish connections to vulnerable

nodes. Hence, to identify vulnerable nodes, we formulate the

temporal attack as an optimization model: Given a timestamp
t and a timing constraint T, find the maximum number of
vulnerable nodes whose lagging time L(t) is at least T.

Lagging time L(t) of a node is defined as minimum timing for

this node to catch up to the main blockchain if it lags behind

at t. The objectives of this formulation are as follows. 1) By

identifying maximum nodes that were lagging concurrently,

attacker could isolate them and mislead them with false blocks.

2) By investigating all possible timestamps, an attacker could

find an optimal time to attack those nodes.

We identify nodes whose historical behaviors show their

vulnerability to temporal attacks, and record their results

in Table V. Note that, at any time, the total number of nodes

in Bitcoin fluctuates between 8k–13k. For any time window,

we are interested in finding the maximum percentage of

vulnerable nodes for that window. As such, the normalization

parameter, represented by the total number of nodes at that

time, may change, which results in an increasing percentage

for a decreasing number of nodes in Table V. For instance,

for 6,280 nodes, the total number of nodes was 10,020, which

is about 62.67%. On the other hand, for 908 nodes, the total

number of nodes was 10,000 which approximates to 9.08%.

We tested with a variety of timing constraints T and present

the results that best suit the attacker. The first column shows

different T values, the second/third/forth columns show the

maximum number of nodes that lag behind main chain for at

least 1/2/5 blocks respectively. The decreasing of maximum

number of nodes, along with the increasing of timing con-

straint, shows the fact that the longer time it takes to implement

an attack, the fewer choice of vulnerable nodes is available.

We noticed that there were moments in which a majority of

nodes in the network (≥ 50%) was at least 1 block behind for

more than 5 minutes, and up to 20% nodes lagged behind the

main chain for more than 15 minutes.

With this information, we perform a theoretical analysis

on the timing threshold T that is suitable for the attacker to

isolate a targeted set of m nodes. We assume the attacker

wants to isolate m nodes which requires the attacker to create

connections to these nodes and feed them its own version

of block. We model the required timing for this process as

an exponential distribution by rate λ. In 2015, the Bitcoin

community switched from a traditional gossip-style protocol

known as trickle spreading to diffusion spreading, in which the

information propagates with independent exponential delays.

This method of modeling Bitcoin connections has been used

in prior work as well, by Fanti et al. [27]. Using that, the

timing of the attacker to connect to a node is:

f(t) = λe−λt, F (t) = 1− e−λt (1)

where f(·), F (·) are probability density and cumulative dis-

tribution functions. Given timing assigned to isolate m nodes

is T = (t1, ...tm). The probability that an attacker isolates m
nodes under T , derived from Cauchy inequality theorem is:

ρ(T ) =
m∏
i=1

(1− e−λti) ≤
(
1−

∑m
i=1 e

−λti

m

)m

(2)

Theorem 1: (Cauchy Theorem) Let x1, x2, ...xn are n non-

negative numbers, then:

n∏
i=1

xi ≤
(∑n

i=1 xi

n

)n

≤
∑n

i=1 x
n
i

n
(3)

Both equalities occur if and only if x1 = x2 = ... = xn
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TABLE VI
MINIMUM TIMING CONSTRAINT T (SECONDS) TO ISOLATE m NODES

UNDER THE GIVEN RATE λ.

λ
m

100 300 500 800 1000 1200 1500

0.4 142 424 705 1127 1610 2313 3517
0.5 133 397 661 1057 1320 1851 2814
0.6 127 379 630 1007 1258 1545 2345
0.7 122 365 607 970 1213 1455 2010
0.8 119 354 589 942 1177 1412 1765
0.9 116 346 575 920 1149 1379 1723

Now, consider a timing constraint T, in which the attacker

wants to isolate all m nodes. This means that the timing

assignment T should satisfy
∑m

i=1 ti ≤ T. So:

ρ(T ) ≤ (1− e−
λ
m T)m (4)

With timing constraint T, the attacker will have at most(
T
m

)
choices for timing assignment T . By union bound, the

probability p to isolate m nodes within T is bounded by:

p ≤ b(m, T) =

(
T

m

)
(1− e−

λ
m T)m (5)

Given m, b() is monotonically increasing by T. Therefore,

given a successful probability p, we can infer a lower bound

of T by binary bisection. We experiment with the relationship

among values of m, T, and λ. We set the targeted successful

rate of attacker p as 0.8, and test it with various values of

λ. The results are recorded in table VI. Column labels show

different values of m nodes that the attacker aims to isolate,

and row labels show values of λ. Values in each cell denote

the bound of T such that within this bound, the attacker can

isolate m nodes under delay rate λ with probability of at least

0.8. For example, with λ = 0.8 and m = 500, it would take

only 589 seconds (approximately 10 minutes) to isolate all m
nodes with probability at least 0.8. 500 is much smaller than

number of vulnerable nodes in 10 minutes timing constraint

(from table Table VI, there can be 1,761 vulnerable nodes

within T = 10 minutes). Therefore, we conclude that Bitcoin

is highly vulnerable to temporal attacks.

Simulation and Attack Validation. To validate the insights

obtained from our data and theoretical analysis, we developed

a simulation model in R to test temporal attacks. The simulator

was tested in base simulation scenarios, such as zero and per-

fect communication among nodes. As an internal error check,

and to make the simulation more realistic, each simulated node

maintains a 64-bit MD5 hash linked chain of values updated to

its current fork. By adjusting parameters, the simulation was

capable of accurately representing the state of the network as

we observed in our dataset.

The default number of Bitcoin peers is 8, which is used in

our simulation. Studies have shown that peers are distributed,

and can be associated with any AS [26]. Our experimental

data confirmed this distribution. Following this, the peers

were evenly distributed in terms of communication errors and

latency. Peer communication failure rate is represented by a

model parameter, typically around 10 percent failures. The

latency is represented by the number of communication time

steps per simulation block. This is scaled according to the

simulation size. Each time step represents one peer-to-peer

communication attempt for each node.

The simulation was used to model information flow through

the network under different attack scenarios. A network of

10,000 nodes can be simulated using a square grid of size 100.

We ran simulations using the entire network. For clarity a grid

of size 25 (1/16 of the active nodes) is shown in the figures.

This grid ran faster, is easier to read, and well simulated exper-

imental results. Using different scaled network simulations we

discovered that the upper limit of Decker and Wattenhofer’s

node propagation delay Tdelay can be expressed as a ratio of

the block interval divided by the network diameter. Taking the

inverse of this ratio we arrive at a non-dimensional parameter,

the span ratio representing how many times information can

travel from one side of the Bitcoin network to the other during

the block interval. Assuming a square grid, network diameter is

proportional to the square root of the number of nodes. A given

span ratio Rspan with the Bitcoin block interval Tblock thus

yields a maximum propagation delay to maintain the state of a

network of N nodes: Tdelay = Tblock/(Rspan ∗N0.5). As the

Bitcoin network grows, a smaller propagation delay is required

to synchronize peers. Specifically, Tdelay is inversely related to

the square root of the number of nodes. The maximum value

of Rspan in simulation was 2.0, corresponding to a 3 second

interval per peer communication in the actual network of

10,000 nodes. With reasonable values for the communication

failure, such a small time step resulted in a network that was

fully updated between blocks. Therefore, Rspan = 2.0 is a

good target for blockchain synchronization.

Figure 7 shows a sample of results obtained from simula-

tion, where the attacker has 30% of the network hash rate.

Once a portion of the network is isolated, it can be sustained

with successive forks, since the isolated nodes naturally as-

sume that block delays are due to network issues. As such,

they do not know that new blocks are taking more time to

calculate due to the lower hash rate of the attacker. Meanwhile,

the main chain loses some of its hash rate and is therefore,

less capable of responding. Note that the cost of launching a

temporal attack is much less than the spatial attack, provided

that the attacker has the consistent view of the network as

shown in Figure 6.

Implications. Even a short term fork in the network would

cause sufficient disruption to invalidate transactions. Such

an attack is likely to result in significant loss to network

stakeholders. Quantifying the impact of adverse events on

Bitcoin has been inconclusive [28][23], and is dependent upon

user perception [48]. However, once the targeted nodes are

isolated, as shown in Figure 5, the soft fork will create a

temporary partition in the network. The isolated nodes will

be following a counterfeit blockchain with different transac-

tions from the main chain. Therefore, when nodes recover

from the fork, the attacker’s blocks will be rejected, and all

transactions belonging to legitimate users in those blocks will

also be reversed. This will require a major update on the set

of all UTXO’s at each node, and a system-wide check on

the transactions being reversed. Standing out in our analysis
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(a) Time Step 151 (b) Time Step 201 (c) Time Step 251

Fig. 7. Simulation of temporal attack. Figure 7(a) shows fork B emerging at node [7,7]. Compare the color distribution to the peaks of Figure 6(c) above.
Two blocks later in Figure 7(b) fork B has control of 1/6 of the nodes. In Figure 7(c) the longer chain A overwhelms fork B but has lost synchronization
so cannot prevent emergence of a new fork C.

is the observation that Bitcoin has a level of asymmetric

vulnerability. With a market capitalization of o(1011) USD and

network configuration of o(104) nodes, each full node is worth

o(107) USD. However, the cost of disrupting the network is

far less than the value being impacted, which makes Bitcoin

an economically attractive target for temporal attacks.

C. Spatio-temporal Partitioning

In this section, we analyze how an attacker can make use

of spatial and temporal distribution of nodes over time to

find vulnerable spots in the network, through which he can

effectively isolate a group of nodes. From our data analysis,

we found the feasibility and cost of this attack compared to

spatial and temporal partitioning. Saptio-temporal analysis also

provides insights into the general behavior of nodes within an

AS or an organization. Therefore, it is intuitive to investigate

the attributes of the overall topology of Bitcoin network in

relation to the ASes and organizations.

Attack Objectives. In this attack, the aim of the adversary

is to split the network based on the network’s vulnerability to

both the spatial and temporal partitioning. As shown in Fig-

ure 6(a) and Figure 6(b), the purple and yellow nodes are

vulnerable to temporal attacks. However, the attacker cannot

launch the same attack on nodes lying in the green region

(synced nodes), since they are up-to-date and will reject a false

block. These nodes can still be partitioned based on the BGP

attack presented in spatial partitioning. A combined effect of

both attacks will be an optimized and targeted attack that will

affect the entire Bitcoin network.

It is worth mentioning that for a BGP attack on nodes within

the green region, the attacker does not have to isolate all target

nodes. Since these up-to-date nodes are connected with each

other, therefore, an attack on a subset of nodes can have a

cascade effect, thereby compromising all other nodes.

Attack Procedure and Validation. For a successful attack,

the attacker will need information about the ASes and or-

ganizations of the synced nodes as well as nodes that are

behind. The feasibility of this attack depends on the adversarial

capabilities of the attacker. To analyze that, we elaborate the

network behavior from Figure 6(b) in Figure 8(a). The green

line indicates the number of nodes that are synced, while

yellow and purple lines show nodes that are 1 block and 2–4

blocks behind respectively.

TABLE VII
TOP 5 ASES THAT HOSTED ALL THE SYNCHRONIZED NODES

IN FIGURE 6(B) FOR 24 HOURS.

AS Organization Nodes Percentage
AS4134 No.31, Jin-rong 993 9.57%

AS24940 Hetzner Online 830 7.98%
AS16276 OVH SAS 530 5.22%
AS16509 Amazon.com 417 4.19%
AS14061 DigitalOcean 332 3.23%

Per our threat model, if the attacker is an AS, it will prefer

to hijack BGP prefixes to damage Bitcoin. As such, it will

prefer maximum nodes in the green region and minimum

nodes in yellow and purple region, to maximize the attack

severity. If the attacker is a mining pool, then it will launch

a temporal attack, and will prefer minimum nodes in green

region and maximum nodes in other regions. However, if

the attacker is a cloud service provider that has both routing

and mining capabilities, then it can launch both spatial and

temporal attacks. Therefore, the key aspect of spatio-temporal

attack is that it is adjustable to the capabilities of an attacker.

Although multiple attack scenarios and case studies can

be drawn for spatio-temporal partitioning but in the interest

of space, we illustrate one case study. From our simulations,

we observed that the temporal partitioning forks the network

at a faster rate than spatial attacks. Therefore, we assume a

case in which cloud provider waits for minimum number of

synced nodes, and launches a spatio-temporal attack. As seen

in Figure 8(a), at two instances, the number of synced nodes

falls as low as 3,000, while the number of nodes that are 2–

4 blocks behind go as high as 6,000 nodes. This can serve

as an ideal attack opportunity to launch the spatio-temporal

attack. To isolate synced nodes, the attacker needs to have

information about their ASes. To analyze that, we gathered

information about synced nodes and their corresponding ASes

and organizations. In Table VII, we enlist the top 5 ASes and

organizations that hosted most synced nodes in Figure 8(a).

We observed that 28% of synced nodes are hosted within

the top 5 ASes. We plot their hosting pattern over a full day

in Figure 8(b) and Figure 8(c). The cloud provider can spatially

attack synced nodes by hijacking five ASes and temporally

attack the remaining nodes.

Implications. Spatio-temporal attack is an optimized and

targeted attack that provides multiple attack opportunities to a

strong adversary to take down the network with minimal effort.
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Fig. 8. Spatial and temporal distribution of nodes for the day defined in Figure 6(b). For the synced nodes in Figure 8(a), we outline their distribution across
top five ASes in Figure 8(b) and Figure 8(c). On average, AS4134 hosts most of the nodes.

TABLE VIII
TOP 5 SOFTWARE VERSIONS USED BY BITCOIN FULL NODES ALONG WITH

THEIR RELEASE DATE, LAG FROM THE DATE OF COLLECTION IN DAYS,
AND PERCENTAGE OF USERS.

Index Version Release Date Lag Users %
1 B. Core v0.16.0 02-26-2018 59 36.28%
2 B. Core v0.15.1 11-11-2017 166 27.52%
3 B. Core v0.15.0.1 09-19-2017 219 5.01%
4 B. Core v0.14.2 06-17-2017 313 4.67%
5 B. Core v0.15.0 04-22-2017 369 2.05%

As demonstrated by our results in Figure 8, at a given time,

more than 50% of nodes can be behind the main blockchain

and vulnerable to temporal attacks. Moreover, at the same

time, the remaining synced nodes can be attacked by hijacking

BGP prefixes of their hosting ASes and organizations. The

attacker can select a suitable trade-off between the lagging

nodes and synced nodes, based on the attacker’s capabilities,

and disrupt the network. For a successful attack on synced

nodes, the attacker may just have to isolate a small number of

nodes that relay blocks to each other, and due to the cascade

effect, remaining nodes will eventually collapse. As such, if

the number of full nodes is small in a cryptocurrency such

as Bitcoin Cash or Litecoin, the attacker can compromise the

entire cryptocurrency by affecting the flow of valuable data

including transactions and blocks.

D. Logical Partitioning

The Bitcoin network is actuated by communication among

peers, each of which is a full node running software that

conforms to a protocol. The protocol is defined by an open

source software project, Bitcoin Core, initially published by

Satoshi Nakamoto on January 9, 2009 [12]. Since 2009, there

have been over 40 updates to Bitcoin Core, with the latest,

v0.16.0 released in February 2018. New versions build upon

previous ones with improved security, performance and func-

tionality. Since the Bitcoin network is open to any client that

satisfies the network protocol, peers can run modified software.

Optional features such as SegWit [1] are implemented in this

way, compatible with Bitcoin Core.

Table VIII shows the distribution of Bitcoin software at the

time of our data collection, along with their release date and

percentage of users. We observed that 288 Bitcoin software

variants are used by full nodes. The latest version of Bitcoin

Core, 0.16.0, is used by only 36% of the nodes while 27%

use version 0.15.1. The remaining 37% of the network uses

286 different software clients.

Attack Objectives. The objective of the attacker would be to

gain the confidence of full nodes. Changes may be subtle and

not perceived as threats. Diverse incentives may be employed

for adoption. In our scenario, the attacker’s influence over

the software would be sufficient to optimize and magnify the

effects of the attack.

Attack Procedure. Peer “democracy” in software selection

has served well, but is vulnerable to attacks. Over time, a

modified software variant might gain popularity by offering

better performance and features. One example is Falcon,

a custom Bitcoin client run by 10 nodes. Falcon provides

faster connectivity and minimum delay during transaction

propagation [60]. Falcon is not malicious, but it demonstrates

the independence of peers to run a client that is not part of

Bitcoin Core. A hypothetical client that economizes the cost

of running a full node might gain general acceptance, while

at the same time reducing the cost of controlling a significant

portion of the network.

In a more subtle scenario, a malicious entity with cooperat-

ing peers could modify the Bitcoin Core software after down-

load. The modifications may be surreptitious or proclaimed

to be enhancements. Nodes influenced by the attacker would

seem normal, but would be used to facilitate an attack. A

simple example of permissible client modification would be

to increase the number of peer connections [11], and help the

spread of malicious blocks.

In either case, the software would provide a platform to

enhance the partitioning attack. During the attack, modified

clients could steal bitcoins from connected wallets, isolate

peers from the network, propagate false information in the

network, and cause DoS attacks on neighboring peers. To

further analyze vulnerabilities associated with Bitcoin software

clients, we mapped known client versions to the National

Vulnerability Database (NVD). From NVD, we obtained 36

reported vulnerabilities along with the vulnerability ID, the

publishing date, and the CVSS severity. For instance, a

vulnerability with ID CVE-2018-17144, shows that Bitcoin

clients are vulnerable to a remote denial-of-service attack via

duplicate inputs. This vulnerability can be found in all client

versions, which puts the entire network at risk. Some other

notable vulnerabilities reported in NVD are CVE-2017-9230,

CVE-2013-5700, and CVE-2013-4627 [21], [19], [20]. For

more details, we refer the reader to [18].

Implications. Logical partitioning can be used to optimize

attacks and take advantage of nodes in the crippled network.
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With each node valued at o(107) USD, incentives exist to

distribute and support software modifications, especially if

not obviously malicious. Logical partitioning proceeds along

several tracks: Bitcoin Core heterogenity and improvement

proposals, independent developer versions, and publicly an-

nounced hard forks, such as Bitcoin Cash. These collide

with spatial and temporal dimensions to create and optimize

opportunities for other network attacks.

VI. COUNTERMEASURES

To prevent spatial partitioning, mining pools should spread

stratum servers across various ASes. This can resist the cen-

tralization of stratum servers and raise the attack cost, since the

attacker will have to hijack more BGP prefixes to isolate the

targeted pool. Furthermore, large Bitcoin exchanges such as

Coinbase and Bitstamp should also host their full nodes across

multiple ASes to prevent spatial attacks. In Bitcoin, spatial

partitioning is an artifact of BGP hijacking and to counter

that, Zhang et al. [60] propose reactive and proactive defense

strategies that are based on the idea of “bogus route purging

and valid route promotion” that can prevent BGP attacks on

ASes across the Internet.

Temporal partitioning results from malicious peer behavior

towards nodes that are behind the main chain. Although nodes

can be behind due to various factors, the absence of a trusted

central authority, makes them unaware of their condition. To

counter that, we propose a simple yet effective scheme, called

BlockAware, which uses the expected block time to notify the

node about its blockchain view with respect to the network. In

BlockAware, a node compares the timestamp of its latest block

tl and the current time tc. Since the block time in Bitcoin

is fixed at 600 seconds, a difference between the two values

exceeding 600 seconds (tc−tl > 600) indicates a node has not

received the latest block. In such a situation, the node can try

to connect to other nodes, and query them for the latest block.

As part of our ongoing work, we are prototyping BlockAware
over Bitcoin Core to defend against the temporal attacks.

Vulnerability to logical partitioning is due to the open

network protocol. A central authority to regulate client partici-

pation would violate decentralization, a fundamental principle

of Bitcoin. To remain the favored client, Bitcoin Core must

continue to provide the best results for those who, typically

without direct compensation, accept the responsibility of run-

ning a full node. In Bitcoin ecosystem, it would be reassuring

for more than 36% nodes to run the most up-to-date version

of Bitcoin Core. However, as diversity has long been known

to enhance network security [43], we do not advocate en-

forcement mechanisms. Therefore, logical partitioning attacks

remain a vulnerability to be considered.

VII. RELATED WORK

Spatial Partitioning. The classic study on partitioning at-

tacks was carried out by Apostolaki et al. [3] based on the

centralization of Bitcoin network with respect to ASes, and

highlighting the possibility of routing attacks with BGP pre-

fixes. Some notable work on the attack surface includes eclipse

attacks [33], double-spending [37], Bitcoin transaction graph

analysis [52], anonymity in Bitcoin peer-to-peer model [40],

and extracting intelligence from Bitcoin [56], [34].

Blockchain Forks. Temporal and spatio-temporal partitioning

on the blockchain result in a fork that leads the affected nodes

into following a different blockchain. As such, forks have

been widely studied in the community from the standpoint of

regular nodes and miners. Decker and Wattenhofer [22] studied

the occurrence of forks in the Bitcoin network. They concluded

that propagation delay is the major factor that might result in

a fork. The results in our experiments have validated their

theory since delay is the major factor that causes some blocks

to stay behind the main chain. Kwon et al. [41] introduced

a new form of blockchain fork known as the Fork After

Withholding (FAW) attack which guarantees more rewards

than block withholding attacks. Eyal et al. [24] proposed a

Byzantine fault tolerant blockchain protocol that addresses the

problems of forks. Gervais demonstrated that double-spending

is possible due to block tampering [30].

Consensus in Distributed Systems. In a blockchain, consen-

sus about the state of the system is achieved with a consensus

protocol. Bano et al. [5] surveyed blockchain consensus pro-

tocols along with their strengths and limitations. In a similar

vein, Juri Mattila [44] analyzed blockchain consensus proto-

cols and provided use cases for each scheme. Sun et al. [58]

performed vulnerability analysis on distributed systems and

proposed a trust evaluation framework to improve throughput

and identify malicious peer behavior.

Related Attacks. Other notable attacks on blockchain appli-

cations include DDoS attacks, DNS attacks, selfish mining,

the 51% attack, and blockchain ingestion [55], [7], [6]. Li et
al. [42], surveyed the security aspects of the blockchain by

studying attacks on popular blockchain applications including

Bitcoin, Ethereum, and Monero. Atzei et al. [4] performed

analysis on vulnerabilities of smart contracts in Ethereum.

VIII. CONCLUSION

In this paper, we examine various partitioning attacks that

can be launched on blockchain-based cryptocurrencies individ-

ually or in concert. We demonstrate that the Bitcoin network

is becoming increasingly centralized at the AS-level, making

it more vulnerable to spatial partitioning. Data collection and

analysis demonstrate that consensus pruning of the Bitcoin

network is non-uniform, presenting optimizable opportunities

for an attacker to fork the network by segregating vulnerable

nodes. We study four forms of partitioning attack: spatial,

temporal, spatio-temporal, and logical. We validate our attacks

with simulations and discuss the implication of each attack.

Finally, we present possible countermeasures to those attacks.

To the best of our knowledge, this is the first study conducted

to analyze the attack surface of Bitcoin covering spatial,

temporal, and logical dimensions.

Acknowledgement. This work is supported by Air Force

Material Command award FA8750-16-0301, Global Research

Lab program of the National Research Foundation NRF-

2016K1A1A2912757, and NSF grant CNS-1814614.

1185

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2020 at 17:19:39 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] N. Acheson, “What is segwit?” 2018, https://tinyurl.com/y7d94hbu.
[2] Antpool, “Antpool stratum address,” https://www.antpool.com/, 2018.
[3] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing

attacks on cryptocurrencies,” in IEEE Symposium on Security and
Privacy, SP San Jose, USA, May 2017, pp. 375–392, https://doi.org/
10.1109/SP.2017.29.

[4] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts sok,” in Proceedings of the 6th International Conference
on Principles of Security and Trust - Volume 10204, 2017, https://tinyurl.
com/yd832abs.

[5] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “SoK: Consensus in the Age of Blockchains,”
2017, https://arxiv.org/abs/1711.03936.

[6] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver, “Stressing out: Bit-
coin stress testing,” in International Conference on Financial Cryptog-
raphy and Data Security. Springer, 2016, pp. 3–18, http://damonmccoy.
com/papers/bitcoin16-final22.pdf.

[7] M. Bastiaan, “Preventing the 51%-attack: a stochastic analysis of two
phase proof of work in bitcoin,” 2015, http://fmt.cs.utwente.nl/files/
sprojects/268.pdf.

[8] Blockchain, “Hashrate distribution,” 2018, https://blockchain.info/pools.
[9] BTC, “Btc.com stratum address,” 2018, https://pool.btc.com/helpCenter?

id=miner.
[10] CoinMarketCap, “Cryptocurrency market capitalizations — coinmarket-

cap,” 2018, https://coinmarketcap.com/.
[11] B. Community, “Modify number of bitcoin peers,” 2013, https://goo.gl/

FggMtn.
[12] ——, “Bitcoin core version history,” 2018, https://bitcoin.org/en/

version-history.
[13] ——, “Bitcoin developer reference,” 2018, https://bitcoin.org/en/

bitcoin-for-developersn.com.
[14] ——, “Stratum mining protocol,” 2018, https://en.bitcoin.it/wiki/

Stratum mining protocol.
[15] ——, “Bitnodes: Global bitcoin nodes distribution,” 2018, https://

bitnodes.earn.com/.
[16] ——, “Global charts,” 2018, https://coinmarketcap.com/charts/.
[17] E. Community, “Earn: Earn money by answering messages and com-

pleting tasks,” 2018, https://earn.com.
[18] N. Community, “National vulnerability database,” https://tinyurl.com/

y9guktjx.
[19] CVE, “Vulnerability details : Cve-2013-4627,” 2018, https://www.

cvedetails.com/cve/CVE-2013-4627/.
[20] ——, “Vulnerability details : Cve-2013-5700,” 2018, https://www.

cvedetails.com/cve/CVE-2013-5700/.
[21] ——, “Vulnerability details : Cve-2017-9230,” 2018, https://www.

cvedetails.com/cve/CVE-2017-9230/.
[22] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin

network,” in Proceedings of 13th International Conference on Peer-to-
Peer Computing, IEEE P2P, Trento, Italy, Sep 2013, pp. 1–10, https:
//doi.org/10.1109/P2P.2013.6688704.

[23] J. Donier and J.-P. Bouchaud, “Why do markets crash? bitcoin data
offers unprecedented insights,” vol. 10, 03 2015.

[24] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse, “Bitcoin-ng: A
scalable blockchain protocol,” Mar 2016, https://tinyurl.com/y7gxcdgr.

[25] F2Pool, “F2pool stratum address,” 2018, https://www.f2pool.com/help.
[26] M. Fadhil, G. Owenson, and M. Adda, “Locality based approach to

improve propagation delay on the bitcoin peer-to-peer network,” in
Symposium on Integrated Network and Service Management (IM), May
2017, https://doi.org/10.23919/INM.2017.7987328.

[27] G. C. Fanti and P. Viswanath, “Deanonymization in the bitcoin P2P
network,” in Annual Conference on Neural Information Processing
Systems 2017 Long Beach, CA, USA, Dec 2017, pp. 1364–1373,
https://tinyurl.com/y72zgvtk.

[28] A. Feder, N. Gandal, J. T. Hamrick, and T. Moore, “The impact of DDoS
and other security shocks on bitcoin currency exchanges: evidence from
mt. gox,” J Cyber Secur, vol. 3, no. 2, pp. 137–144, Jun. 2017.

[29] A. Gervais, S. Capkun, G. O. Karame, and D. Gruber, “On
the privacy provisions of bloom filters in lightweight bitcoin
clients,” in Computer Security Applications Conference, ACSAC, New
Orleans, LA, USA, C. N. P. Jr., A. Hahn, K. R. B. Butler, and
M. Sherr, Eds. ACM, Dec 2014, pp. 326–335. [Online]. Available:
https://doi.org/10.1145/2664243.2664267

[30] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering with
the delivery of blocks and transactions in bitcoin,” in Proceedings of
the 22nd ACM Conference on Computer and Communications Security
(CCS), Denver, Colorado, Oct. 2015, pp. 692–705, https://doi.org/10.
1145/2810103.2813655.

[31] S. Goldberg, “Why is it taking so long to secure internet routing?”
Commun. ACM, vol. 57, no. 10, pp. 56–63, Sep. 2014, http://doi.acm.
org/10.1145/2659899.

[32] A. Greenberg, “Hacker redirects traffic from 19 internet providers
to steal bitcoins,” Jun 2017, https://www.wired.com/2014/08/
isp-bitcoin-theft/.

[33] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse
attacks on bitcoin’s peer-to-peer network,” in Proceedings of
the 24th USENIX Security Symposium (Security), Washington,
DC, Aug. 2015, https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/heilman.

[34] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“Tumblebit: An untrusted bitcoin-compatible anonymous payment hub,”
in Network and Distributed System Security Symposium, NDSS San
Diego, USA, Feb 2017, http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2017/09/ndss201701-3HeilmanPaper.pdf.

[35] G. Hileman and M. Rauchs, “Global cryptocurrency benchmarking
study,” 2017, https://tinyurl.com/lnx44cf.

[36] B. Info, “Bitcoin block explorer,” 2018, https://blockchain.info/.
[37] G. Karame, E. Androulaki, and S. Capkun, “Two bitcoins at the price

of one? double-spending attacks on fast payments in bitcoin.” IACR
Cryptology ePrint Archive, vol. 2012, no. 248, 2012, http://eprint.iacr.
org/2012/248.

[38] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Capkun,
“Misbehavior in bitcoin: A study of double-spending and accountabil-
ity,” ACM Trans. Inf. Syst. Secur., vol. 18, no. 1, pp. 2:1–2:32, 2015,
http://doi.acm.org/10.1145/2732196.

[39] S. Khandelwal, “Hacker hijacks isp networks to steal $83,000 from
bitcoin mining pools,” Aug 2014, https://tinyurl.com/yaxnmyb8.

[40] P. Koshy, D. Koshy, and P. D. McDaniel, “An analysis of anonymity in
bitcoin using P2P network traffic,” in International Conference on Fi-
nancial Cryptography and Data Security FC, Christ Church, Barbados,
Mar 2014, pp. 469–485, https://doi.org/10.1007/978-3-662-45472-5 30.

[41] Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, “Be self-
ish and avoid dilemmas: Fork after withholding (faw) attacks on
bitcoin,” in Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, TX, Oct.–Nov. 2017,
https://doi.org/10.1145/3133956.3134019.

[42] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security
of blockchain systems,” CoRR, vol. abs/1802.06993, 2018, http://arxiv.
org/abs/1802.06993.

[43] B. Littlewood and L. Strigini, “Redundancy and diversity in security,” in
Proceedings of the 9th European Symposium on Research in Computer
Security (ESORICS), Sophia Antipolis, France, Sep. 2004, https://doi.
org/10.1007/978-3-540-30108-0 26.

[44] J. Mattila, “The blockchain phenomenon–the disruptive potential of
distributed consensus architectures,” Tech. Rep., 2016.

[45] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008,
https://bitcoin.org/bitcoin.pdf.

[46] NetAcuity, “Netacuity and netacuity edge ip location technology,” Feb
2014, http://www.digitalelement.com/.

[47] H. News, “Hacker redirects traffic from 19 internet providers to steal
bitcoins,” 2014, https://news.ycombinator.com/item?id=8150374.

[48] M. Polasik, A. I. Piotrowska, T. P. Wisniewski, R. Kotkowski, and
G. Lightfoot, “Price fluctuations and the use of bitcoin: An empirical
inquiry,” International Journal of Electronic Commerce, vol. 20, no. 1,
pp. 9–49, Sep. 2015, https://doi.org/10.1080/10864415.2016.1061413.

[49] B. Reward, “Bitcoin block reward halving countdown,” 2018, http://
www.bitcoinblockhalf.com/.

[50] RIR, “Autonomous systems in the world,” 2018, https://tinyurl.com/
yaz73jnb.

[51] A. Robachevsky, “14,000 incidents: A 2017 routing security year in
review,” Jan 2018, https://goo.gl/MtiVus.

[52] D. Ron and A. Shamir, “Quantitative analysis of the full bitcoin trans-
action graph,” in International Conference on Financial Cryptography
and Data Security FC, Okinawa, Japan, Apr 2013, https://doi.org/10.
1007/978-3-642-39884-1 2.

1186

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2020 at 17:19:39 UTC from IEEE Xplore.  Restrictions apply. 



[53] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2P mixing and unlink-
able bitcoin transactions,” in Proceedings of the 2017 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb.–Mar. 2017, https://tinyurl.com/y99reaqs.

[54] M. F. Sallal, G. Owenson, and M. Adda, “Proximity awareness approach
to enhance propagation delay on the bitcoin peer-to-peer network,” in
International Conference on Distributed Computing Systems ICDCS,
Atlanta, USA, Jun 2017, pp. 2411–2416, https://doi.org/10.1109/ICDCS.
2017.53.

[55] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” in Financial Cryptography and Data Security.
Springer, 2016, https://doi.org/10.1007/978-3-662-54970-4 30.

[56] M. Spagnuolo, F. Maggi, and S. Zanero, “Bitiodine: Extracting intelli-
gence from the bitcoin network,” in International Conference Financial
Cryptography and Data Security, Christ Church, Barbados, Mar 2014,
pp. 457–468, https://doi.org/10.1007/978-3-662-45472-5 29.

[57] Statista, “Bitcoin blockchain size 2010-2017 — statistic,” 2018, https:
//tinyurl.com/y8ys8evp.

[58] Y. L. Sun, Z. Han, W. Yu, and K. J. R. Liu, “A trust evaluation
framework in distributed networks: Vulnerability analysis and defense
against attacks,” in 25th IEEE International Conference on Computer
Communications INFOCOM, Joint Conference of the IEEE Computer
and Communications Societies, Barcelona, Spain, Apr 2006, https:
//doi.org/10.1109/INFOCOM.2006.154.

[59] S. Williams, “Bitcoin banned countries,” 2017, https://tinyurl.com/
y8r5gdhl.

[60] Z. Zhang, Y. Zhang, Y. C. Hu, and Z. M. Mao, “Practical defenses
against BGP prefix hijacking,” in Proceedings of the 2007 ACM Con-
ference on Emerging Network Experimentand Technology CoNEXT ,
New York, USA, Dec 2007, p. 3, http://doi.acm.org/10.1145/1364654.
1364658.

1187

Authorized licensed use limited to: University of Florida. Downloaded on August 18,2020 at 17:19:39 UTC from IEEE Xplore.  Restrictions apply. 


